
 
 

1 

Assessment of Segmentation-Induced Deviations of Porosity Metrics in 
Powder Bed Fusion Additively Manufactured Components 

 
Peter W. Spaeth1, Erik L. Frankforter, Samuel J. Hocker, and Joseph N. Zalameda 

NASA Langley Research Center, Hampton, VA USA 

ABSTRACT  

Post processing X-ray computational tomography (CT) inspection data for additively manufactured (AM) components can 
induce deviations in defect quantification, affecting subsequent fatigue and failure predictions. To assess the influence and 
potential impact of segmentation-induced measurement deviations, this paper applies several segmentation techniques to 
X-ray CT data for powder bed fusion Ti-6Al-4V specimens exhibiting porosity conditions. X-ray CT reconstructions were 
segmented with varying techniques including Otsu’s thresholding, random forest, k-nearest neighbors, and the multilayer 
perceptron. Metrics such as pore size and global porosity were compared for internal validity. Then, top-down X-ray CT 
measurements of surface-breaking porosity were compared to optical profilometry for cross-validation. 
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1. INTRODUCTION 
 
The rapid advancement of metal additive manufacturing (AM) technologies is driven by its strong potential for creating 
complex, custom parts. However, AM exhibits a large parameter space in processing conditions, creating the potential for 
AM parts to present varying types of defects while potentially exhibiting high heterogeneity compared to conventionally 
manufactured metal parts. This variability presents challenges to nondestructive evaluation (NDE) capabilities in 
establishing quality and safety of AM parts sufficient for safety-critical aerospace applications [1-4]. Two-dimensional 
imaging techniques such as optical microscopy, surface profilometry, and electron backscatter diffraction (EBSD) provide 
the highest resolution for accurate part characterization, however they are restricted to 2D top-down measurements [1, 2]. 
Serial sectioning combined with 2D imaging has become the gold standard for full volumetric measurements in AM 
specimens [5-7]. However, the applicability of serial sectioning is limited by specimen size and the necessary destruction 
of the sample. X-Ray CT can provide nondestructive full volumetric assessments of AM defects, which has made it the de 
facto gold standard amongst AM NDE techniques [1-4, 8]. In practice, though, X-ray CT still presents challenges in 
porosity detection and quantification. 
 
Various factors affect X-ray CT measurement uncertainty for AM defects including sample positioning, material, X-ray 
CT system settings, and reconstruction approach [8, 9]. Additional X-ray CT factors such as resolution can affect 
measurement metrics such as flaw sizing and porosity estimations; beyond resolution effects, X-ray CT measurement 
uncertainty further translates into deviations in X-ray CT porosity quantifications as compared to more accurate serial 
sectioning methods [3, 5, 6]. Porosity size estimates are also significantly influenced by choice of segmentation algorithm 
[1]. The accuracy of porosity measurements further influences probability of detection. For example, Sundar et al. found 
when comparing X-ray CT to serial sectioning, probability of detection (POD) for X-ray CT was only 50% for pores six 
times larger than the voxel resolution [2]. Thompson et al. showed in a round robin test of ten X-ray CT facilities that AM 
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porosity measurements can vary widely in practice due to conditions such as inspection configuration, choice of 
algorithms, and human factors. In round robin testing of a 10 mm laser powder bed fusion (LPBF) AM Ti-6Al-4V cube 
specimen, measured maximum pore size varied between facilities by a factor of approximately 4.5, and bulk porosity 
estimates varied by over a factor of approximately 7 [3].  
 
Together these factors indicate a strong need for improving accuracy and reliability of X-ray CT AM porosity 
measurements. To this end, X-ray CT images were compared to micrographs taken at interior surfaces of cut or polished 
AM specimens since 2D imaging approaches exhibit higher accuracy. The optical microscopy measurements tended to 
underpredict pore sizes, likely due to factors such as capturing the pore depth from a depth and an angle that’s not along 
its longest axis [4]. Furthermore, these kinds of assessments are destructive in nature, and to the best of our knowledge no 
nondestructive techniques have been employed for baselining X-ray CT flaw measurements with more accurate 2D surface 
imaging.  
 
There are two main goals of this paper. The first is to demonstrate a data-driven method for the selection of 
hyperparameters in the porosity segmentation pipeline starting with data normalization and feature selection, continuing 
through the selection of classifier parameters, and ending with a choice scoring function. The second goal is to demonstrate 
a method to nondestructively quantify the quality of the X-ray CT segmentation against surface profilometry data that 
measures the lateral size and depth of surface breaking pores. 

2. METHODS 

2.1 The test specimen 
A disk-shaped Ti-6Al-4V titanium alloy test specimen (Figure 1) measuring 21 mm in diameter and 3 mm thick was built 
using LPBF AM under varying process conditions, which are detailed in [5]. The build was carried out with individual 
processing conditions across 16 equiangular sectors of the disk in an effort to produce distinct regions with distinct porosity 
characteristics. Prior to taking X-ray CT and profilometry measurements, the top surface of the disk was polished revealing 
surface breaking porosity concentrated in an angular section of approximately 67.5 degrees (Figure 1 (a)-(c)). 
 

 
(a) 

 
(b) 

 
(c) 

Figure 1. Volumetric representation of a Ti-6Al-4V disk-shaped AM specimen created using X-ray CT data that was used for 
analysis (a). An image derived from X-ray CT that represents the depth of surface breaking porosity (b). Estimate for depth 
of surface breaking porosity obtained using surface profilometry (c). 

2.2 Surface profilometry measurements 
Surface profilometry measurements were used to estimate the depth across the top surface of the disk (Figure 2). 
Measurements were taken with a Keyence® VR 62002, acquired at 160x magnification. The pixel size was 7.4 µm and the 
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vertical resolution was 10 µm. These surface profilometry scans provided a co-registered height image and a texture image 
across the surface of the disk. Following data acquisition, a reference plane was set in the Keyence® VR-6000 Analyzer 
software by specifying planar areas on the non-porous regions of the disk’s top surface. This processing step rotates and 
translates the height data so the top surface has a z-axis normal, while applying the same rotation to the texture data to 
keep the datasets co-registered. 
 

 
(a) 

 
(b) 

Figure 2. Surface profilometry height image (a), and texture image showing reference plane alignment (b). The rectangular 
box on the disk image in (b) shows the area used for alignment; the line plots below and to the right in (b) show the height 
profile compared to the reference plane fit along the lines specified in the 2D image. 

2.3 X-ray CT measurements and porosity segmentation 

The disk specimen was interrogated using a Nikonâ Metrology HMXST 225™ X-ray system that can resolve to 5 µm. The 
disk was imaged at an operating voltage of 180 kV, current intensity of 40 µA, and rotational angle of 0.11 degrees. The 
volumetric reconstruction of the disk was produced from 3,142 projections resulting in a 12.9 µm voxel resolution. 
 
Three supervised binary classification algorithms (random forest, k-nearest neighbors, and the multilayer perceptron) were 
trained on hand-labeled images in order to estimate porosity in the disk. An example X-ray CT image slice with manual 
labels and an example segmentation are shown in Figure 3. Across the four training images, the training data contained 
approximately 1.2 percent of the total number of voxels in the X-ray CT volume, with approximately balanced classes (a 
1.1 background-to-foreground voxel ratio). 
 

 
(a) 

 
(b) 

Figure 3. Two-dimensional slice of X-ray CT volume of the AM disk orthogonal to the top surface including manual labels 
of component (shown in green) and background (shown in blue) voxels (a). Example segmentation of the X-ray CT image 
slice (b). 

Image features that were used as inputs for classification were computed using scikit-image [6]. The features included 
image intensity, averaged local gradients, eigenvalues of the image Hessian, and the three largest eigenvalues of the image 
structure tensor. Features were computed for each image and its Gaussian blurring, which was computed with standard 
deviation of 16 pixels, ultimately producing an input feature vector of length 14 at every pixel.  
 
Four training images were used in an 80-20 training-test split to compute, using scikit-learn [7], hyperparameters of the 
classification pipeline using n-fold cross-validation. During cross-validation, adjusted Rand index [8] was used to score 
the hyperparameters of the pipeline. The cross-validation process also included feature selection using k-best features 
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(SelectKBest with k = 2 or 4) and feature scaling (StandardScaler, MinMaxScaler, or RobustScaler). The list of all 
hyperparameters for each classifier are detailed in Table 1, and the parameters selected through cross validation are 
highlighted in bold. A fifth labeled image was withheld for additional validation. 
 

Table 1. Modeling pipeline in Scikit-learn for porosity segmentation of the X-ray CT volume of the disk showing 
preprocessing steps (scaling and feature selection), hyperparameters for each classifier, and cross-validation scores. The best 
performing hyperparameters and preprocessing steps are shown in bold. 

Classifier Hyperparameters Scaler Feature 
Selector 

Mean test 
score 

StDev test 
score 

k-Nearest 
neighbors 

weights  n_neighbors MaxMin, 
Standard, Robust 

SelectKBest 
0.9934 0.0010 uniform, 

distance 
3, 7, 11 k = 2, 4 

Multilayer 
perceptron 

hidden_layer_sizes MaxMin, 
Standard, Robust 

SelectKBest 
0.9876 0.0007 50, 100 k = 2, 4 

Random 
forest 

max_depth n_estimators MaxMin, 
Standard, Robust 

SelectKBest 
0.9920 0.0011 5, 10 50, 100 k = 2, 4 

 
Ultimately, the best performing parameters were applied to segment the entire X-ray CT volume, image-by-image, across 
the direction parallel to the surface of the disk. For comparison, a fourth segmentation was obtained using Otsu’s global 
thresholding method [9] applied across the entire X-ray CT volume. 
 
2.4 Top-surface depth estimates derived from segmented volumes 
In order to use the profilometry data to evaluate the quality of the X-ray CT segmentations,  each segmented X-ray CT 
volume was used to create a depth estimate for surface breaking porosity in the form of a two-dimensional image. Shen et 
al. demonstrated methods for forming images from top-down projections of X-ray CT data to get a 2D slice for comparison 
with structured light system metrological measurements [10] (although to our knowledge the techniques has not been 
assessed for defect evaluation). First, voxels representing the overall surface of the disk were estimated using the Sobel 
filter [11] after filling interior pores in the binary segmentation with a three-dimensional morphological operation. Next, 
a plane was aligned using random sample consensus (RANSAC) [12] to the top-surface voxels of the disk, and the 
orthogonal distance from each top-surface voxel to the fitted plane was computed. Finally, for each pixel in the depth 
image, its grayscale value was defined to be the radial basis function (RBF) interpolation of the orthogonal distances to 
the plane for all surface voxels in a neighborhood of the image pixel after its registration to X-ray CT coordinates. In each 
case the depth was oriented by the outward facing normal to the top surface. 
 
The profilometry depth image was rescaled using bicubic interpolation to match the dimensions of the depth images that 
were derived from the binary X-ray CT segmentations, and missing data in the foreground of the profilometry depth image 
was filled using biharmonic interpolation. Each depth image derived from a binary segmentation was registered to the 
rescaled profilometry depth image using a Euclidean transformation that was computed using RANSAC. Sets of 
corresponding points used for estimating the Euclidian registration were manually identified after first windowing all 
images to have pixel values between -500 µm and 150 µm from the top surface. Example registration data are shown in 
Figure 4. 
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(a) 

 
(b) 

Figure 4. Profilometry-based depth estimate for surface breaking porosity of the disk together with manually labeled locations 
for image registration (shown in yellow) (a). Representative depth estimate derived from X-ray CT segmentation and manually 
labeled locations for image registration (shown in red) (b). 

3. RESULTS 
The first comparison of the segmentation methods was an internal check for consistency. For each segmentation, porosity 
volume fraction and equivalent spherical diameter (ESD) were estimated based on internal pores of equivalent spherical 
diameter larger than five voxels. The results of the porosity analysis in Table 2 show that Otsu’s threshold produced the 
smallest total porosity fraction estimate and smallest estimate of mean ESD for the specimen, while all four methods 
computed a mean pore diameter to within 8 percent of the mean value across all methods. The total variation of mean ESD 
was 14 µm, which is similar to the voxel length, 13 µm, of the X-ray CT volume. Global porosity volume fraction among 
all methods ranged from 0.75% to 1.62%. On the other hand Otsu’s thresholding produced an estimate for global porosity 
fraction that was smallest among all the segmentation methods. 
 

Table 2. Pore statistics obtained from each of the four segmentation methods. 

Segmentation method Mean ESD (mm) StDev ESD (mm) Porosity volume fraction (%) 

Otsu threshold 0.114 0.065 0.75 

k-nearest neighbors  0.125 0.084 1.62 

Multilayer perceptron 0.125 0.081 1.40 

Random forest 0.128 0.083 1.49 

 
Next the profilometry texture image was used to trace 18 surface breaking pores of varying depth, shape, and aspect ratio. 
The hand traced pores, shown in Figure 5, were used as domains on which to evaluate the registered depth images (and 
hence the segmentations from which they were derived) against the profilometry data. 
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(a) 

 
(b) 

Figure 5. Texture image obtained from surface profilometry (a). Depth image obtained from profilometry and manually 
identified pores (shown in color) (b). 

The difference in depth between the profilometry data and segmentation-derived estimate was measured at each pore, 𝑃! ,
𝑖 = 1,… , 18, using area-normalized mean absolute deviation. Mean absolute deviation (MAD) normalized by area at a 
pore 𝑃 is given by 
 

|𝑓" − 𝑓#|$%&' =
∫ |𝑓"(𝑥, 𝑦) − 𝑓#(𝑥, 𝑦)|	𝑑𝑥	𝑑𝑦$

∫ 𝑑𝑥𝑑𝑦$
, (1)	 

 
where 𝑓" and 𝑓# represent the height functions derived from surface profilometry and X-ray CT segmentation, respectively. 
The mean absolute deviation across all 18 pores is shown as a function of pore aspect ratio in Figure 6. Aspect ratio 
measures the length of the major axis of the pore in the plane of the top surface divided by the maximum depth of the pore. 

 
Figure 6. Mean absolute deviation of surface breaking porosity depth estimate versus aspect ratio for each manually identified 
pore, across all segmentation methods. The data show an increase in error and variation for low aspect ratio pores. 

Finally, the (area-normalized) mean absolute deviation was averaged across all 18 pores, with the results summarized in 
Table 3. Under this metric, the multilayer perceptron classifier and Otsu thresholding segmentations produced the lowest 
errors. 
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Table 3. Average and median mean absolute deviation for the depth estimates across all manually labeled pores. 

Segmentation method Average mean absolute deviation (mm) Median mean absolute deviation (mm) 

Otsu threshold 0.063 0.055 

k-nearest neighbors  0.102 0.086 

Multilayer perceptron 0.063 0.059 

Random forest 0.081 0.078 

 

4. DISCUSSION 
The results show that for the given training data, the neural network- and Otsu-derived depth estimates best agree with the 
data provided by surface profilometry. Misclassified voxels in the segmentations, errors derived from the plane fitting 
procedure, and errors arising from the registration of the depth images to the profilometry coordinates all contribute to the 
overall error in the comparisons. 
 
However, even in the worst case, the median absolute deviation across all pores is on the same order of magnitude as the 
quantization error in the profilometry data itself. The analysis of the estimation errors on a pore-by-pore basis also shows 
that the errors and variability in pore depth estimates are largest for low-aspect ratio pores, i.e. pores that are shallow 
compared with their area at the surface of the disk. 
 
The best performing classifier compared similarly to Otsu thresholding in estimating depth of surface breaking pores in 
the disk. To understand why, consider the grayscale values in the X-ray CT representation of the disk that are shown in 
Figure 7 corresponding to the full X-ray CT volume, and those voxels included in the training set. In both cases the first 
two peaks in the histogram arise from voxels corresponding to the background and acrylic holder used to secure the disk 
during acquisition of the X-ray CT data, and the third peak corresponds to voxels in the disk specimen. While Otsu’s 
segmentation is able to successfully separate the specimen from the background it is worth noting that the specific threshold 
computed by Otsu’s method (and hence the pores predicted by Otsu’s segmentation) depends on the choice of data used 
to compute it. Had Otsu’s threshold been computed on the training data the threshold would increase by nearly 4 percent 
resulting in a decrease in porosity, driving the results that were obtained from Otsu’s method closer to those derived from 
the other classifiers. 

 
Figure 7. Distribution of X-ray CT grayscale values across the full volume (shown in blue) and across the training data set 
(shown in orange). 
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The number of classified voxels in the labeled data that was used to train the three classifiers accounted for approximately 
1.2 percent of the overall voxel count in the X-ray CT volume. Although the classifiers were trained using class weighted 
scoring and sampling methods, despite the similarity of the distribution of grayscale values in the training set to the overall 
X-ray CT volume, it is possible that the existence of a class imbalance in the training data did impact the overall results. 
Uncertainty quantification could be applied to estimate the statistical quality of the overall results as a function of the 
imbalance of the training data through the application of Monte Carlo methods to the training of the individual classifiers. 
 
Finally, near surface porosity and its effect on the depth images derived from the X-ray CT segmentation was examined 
in the neighborhood of a surface breaking pore that is highlighted in Figure 8. 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 8. Texture image obtained from surface profilometry (a) with region of interest (highlighted in red) showing a manually 
labeled pore in red (b). Depth image in the same region of interest obtained from surface profilometry (c) and estimated from 
X-ray CT segmentation that was computed with the multilayer perceptron (d). 

The dark grayscale values in the depth estimate from the multilayer perceptron to the right of the manually labeled pore 
shows depth from the top surface that is not visible in the texture image Figure 8 (b) nor the depth measurement obtained 
using surface profilometry Figure 8 (c). The reason for this can be understood by examining the X-ray CT volume in the 
corresponding region that is highlighted in green in Figure 9. 
 

 
(a) 

 
(b) 

Figure 9. Texture image obtained from surface profilometry that shows a manually labeled pore (red) and region (green) 
selected for comparison with X-ray CT (a). X-ray CT reveals underlying near surface porosity (green region) that accounts 
for a difference in depth estimate obtained through profilometry and using X-ray CT segmentation. 

This analysis suggests the possibility to extend the method into the component, for example to highlight pores that laterally 
expand beneath the top surface and cannot be seen by profilometry alone. 

5. CONCLUSIONS 
This paper demonstrates two capabilities. First, that modeling pipelines can be optimized to segment volumetric X-ray CT 
inspections of AM components in the context of supervised classification. This optimization is accomplished using training 
data that is manually derived from the X-ray CT inspection to drive the training and testing framework for hyperparameter 
selection. 
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The second capability that this paper demonstrates is the ability to use surface profilometry data to nondestructively 
evaluate the performance of different porosity segmentation algorithms. To make the comparison, an estimate of surface 
breaking porosity is first derived from the segmented X-ray CT data, subsequently registered to depth data derived from 
the profilometry, and finally various metrics of performance are computed. Comparison against the profilometry images 
ranks the performance of the segmentations and provides an extrinsic assessment of their performance. In this context the 
profilometry data can be subsequently used to further optimize the hyperparameters in the segmentation pipeline. 
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