

A Psychoacoustic Test on the Effect of Masking on Annoyance to Urban Air Mobility Vehicle Noise

<u>Matthew Boucher</u>, Andrew Christian, Tyler Tracy, Siddhartha Krishnamurthy, Durand Begault, Stephen Rizzi, Kevin Shepherd

NASA Langley Research Center, NASA Ames Research Center

186th Meeting of the Acoustical Society of America Acoustics Week in Canada May 14th, 2024

CANADIAN ASSOCIATION ACOUSTICAL CANADIENNE ASSOCIATION D'ACOUSTIQUE

Outline

- Background
- Audibility and Annoyance
- Psychoacoustic Testing Approach
- Results

transportation for passengers and cargo ^[1]

 Noise concerns must be mitigated in communities where UAM operations take place ^[2]

• Safe, efficient and accessible

 Models of annoyance to UAM noise are needed ^[3]

[1] Thipphavong et al., "Urban Air Mobility Integration Concepts and Considerations," 2018 Aviation Tech., Int., and Operations Conf., (2018)
 [2] Hill et al., "UAM Vision Concept of Operations (ConOps) UAM Maturity Level (UML) 4", NASA (2020)
 [3] Rizzi et al., "Urban Air Mobility Noise: Current Practice, Gaps, and Recommendations," NASA/TP-2020-5007433 (2020).

Urban Air Mobility and Noise

Urban Air Mobility and Noise

- Gap: Human response to UAM vehicle noise in the presence of background noise
 - Noisy city environment
 - Near existing transportation routes

- How does **audibility** affect annoyance?
 - Masking a UAM-like sound with background noise should reduce its annoyance

UAM + Noise

Hypothesis: Masking Reduces Annoyance [4]

- High UAM noise level (rel. background):
 - Annoyance to UAM noise is predicted by UAM noise level
- Low UAM noise level (rel. background):
 No annoyance to UAM noise
- UAM noise and background levels are similar:
 - Annoyance to UAM noise is lower than predicted by UAM noise level alone
 - Masking reduces annoyance

[4] Christian, "The effect of background noise on human response," NATO/STO-TR-AVT-314.

UAM-like sounds used in psychoacoustic test

- Sound A
 - Harmonic tone complex (80-320 Hz)
 - Similar to rotor loading and thickness noise
- Sound B
 - Shaped broadband noise (300-2000 Hz)
 - Similar to rotor self noise
- Masker
 - Designed to mask Sound A
 - Equal amount of masking in 1/3 octave bands ^[5]

[5] Sneddon et al., "Laboratory study of the noticeability and annoyance of low signal-to-noise ratios sounds" NCEJ, 51 (5), 2003.

At what levels are Sound A and B equally annoying?

- At what relative level is Sound A equally annoying to Sound B without the masker?
- This gives an unmasked Equal Annoyance Point
 - Relative difference in level where Sounds A and B are equally annoying

At what levels are Sound A and B equally annoying?

Leve

Sound

Sound B with masker

Frequency

- At what relative level is Sound A equally annoying to Sound B with the masker?
- This gives a masked Equal Annoyance Point
- Two possible results:
 - Unmasked EAP = Masked EAP (masking does not affect annoyance)
 - 2. Unmasked EAP ≠ Masked EAP (masking affects annoyance)

Conditions Tested

Ļ

- Unmasked : Compare Sound A to Sound B
- Masked 1-5: Compare Sound A to Sound B
- Two ranges of Sound A and B: low and high
- Three levels of Masker: low, medium and high

Finding Equal Annoyance Point

Unmasked

Unmasked Equal Annoyance Point ≈ 10-15 dB

Pr(A): probability sound A is more annoying than sound B

A-weighted SPL of Sound A rel. B (dB)

Logistic regression is more accurate: Unmasked Equal Annoyance Point = 12.7 dB

Shift in EAP with Masker at 48.1 dB

- Shift in EAP =
 Masked EAP Unmasked EAP = 5.2 dB
- Meaning: level of Sound A should be increased by 5.2dB (rel. to unmasked case) to remain equally annoying to Sound B

Shift in EAP > 0 Masking reduces annoyance

• Indication: Some masking reduces annoyance to Sound A

Unmasked Equal Annoyance Point = 12.7 dB Masked Equal Annoyance Point = 17.9 dB

A-weighted SPL of Sound A rel. B (dB)

10

20

30

-20

-10

40

Shift in EAP with Masker at 58.1 dB

- Shift in EAP =
 Masked EAP Unmasked EAP = 10.8 dB
- Meaning: level of Sound A should be increased by 10.8 dB (rel. to unmasked case) to remain equally annoying to Sound B

Shift in EAP > 0 Masking reduces annoyance

• Indication: More masking further reduces annoyance to Sound A

Unmasked Equal Annoyance Point = 12.7 dB Masked Equal Annoyance Point = 23.5 dB

Pr(A): probability sound A is more annoying than sound B

Summary for 5 test subjects

Subject	1	2	3	4	5
Average EAP shift (dB)	10.7	6.2	0.0	0.4	8.2

- Masking reduces annoyance for 3 of 5 subjects
- Larger effect when A and B are at low levels
 - More masking in Masked 1 and 2 conditions

14

Path to model the shift in EAP [6]

- Measured audibility thresholds for each subject (d')
 - 3 Alternative Forced Choice adaptive staircase
- Extrapolate audibility thresholds to determine d' at other relative levels
- Measured other Equal Annoyance Points (A vs. M and B vs. M)
- Modeling the shift is focus of upcoming NoiseCon talk/paper by Tyler Tracy

[6] Tracy, T. et al., "An annoyance model for urban air mobility vehicle noise in the presence of a masker," Noise-Con 2024, New Orleans, 2024.

ð

A-weighted SPL

- Shifts in Equal Annoyance Points (with and without masker) indicate that masking does have an effect on annoyance
- Increase in masking reduces annoyance
- Further psychoacoustic testing is necessary to extrapolate results to wider population
- Other conferences later this year:
 - Functional form of reduction in annoyance due to masking at NoiseCon 2024 (Tyler Tracy)
 - Applications to UAM operations at Aeroacoustics 2024 (Steve Rizzi)

[7] Rizzi, S.A., Christian, A.W., Letica, S.J., and Lympany, S.V., "Annoyance model assessments of urban air mobility operations," 30th AIAA/CEAS Aeroacoustics Conference, AIAA-2024-3018, Rome, Italy, 2024..

Thank You

Work supported by NASA's Revolutionary Vertical Lift Technology Project

Questions?

matthew.a.boucher@nasa.gov

Call for papers for a Special Issue

- Advanced Air Mobility Noise: Predictions, Measurements, and Perception
- Potential topics
 - Theoretical, numerical, or empirical predictions of noise characteristics
 - Measurement of noise sources
 (components up to full vehicle)
 - Human perception or psychoacoustic testing, Auralization techniques
 - Aspects of noise certification,
 Passenger comfort and others

- Joint with JASA and JASA Express Letters
- Guest Editors: Matthew Boucher, Alexandra Loubeau, Beckett Zhou, Eric Greenwood, and Damiano Casalino
- Submission Deadline: February 28, 2025

pubs.aip.org/asa/jel

