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Abstract

Does bias exist in planning algorithms? If so, how does bias
manifest, and how important is this bias? Answering this
question requires a formal, mathematical definition of bias.
We formally define bias as the distance between the probabil-
ity distributions of solutions returned by various algorithms,
and and the uniform distribution over solutions. We show in
this paper that deterministic algorithms are inherently biased,
as they don’t return all solutions, and that this property holds
even when algorithms return a set of plans instead of just one
plan. Exceptions are problem instances or problem classes for
which only a single solution exists. We then discuss changing
the definition of bias to compare the probability distributions
of properties of sets of plans instead of individual plans. We
show the property bias is smaller than the bias of actual plans.
Finally, we show that entropy is a proxy for the more complex
and more expensive distance measurement between pairs of
probability distributions. We then describe a roadmap for fu-
ture investigations of bias in planning.

1 1Is Your Planner Biased?

The problems of bias in Al applications of machine learn-
ing has been the subject of considerable debate and recent
research (Hort et al. 2023). Many of these biases arise due
to biases in the data used as input to these algorithms. Ap-
plications like planning may exhibit bias due to unfair rules
or optimization criteria, as opposed to due to training data.
However, when considering the set of solutions to planning
problems, and the possibility that users want to explore mul-
tiple solutions to a problem, a different form of bias in algo-
rithms becomes a pertinent problem to explore. Recent work
(Paredes 2023) has shown that planning algorithms have bi-
ases that lead to errors when using these planners to gener-
ate sample plans as input to learning systems. To date, how-
ever, there has not been a systematic examination of what
bias means, and how problematic it is. This paper provides a
starting point for discussing bias in planning in a principled
way.

We start by defining bias for planning problems requiring
one solution. We then move on to define bias for planning
problems requiring sets of plans.

Sets of plans are typically required when human users of
planning systems have some uncertainty about exactly they
want. We will develop most of the foundation with optimal

planning problems, because we want to define bias for prob-
lems in which a set of plans constitute candidate solutions,
and optimality criteria are often used to define sets of plans
returned.

2 Planning Problems
We start with defining satisficing planning problems.

Definition 1. Let M= (V,0) be a set of variables and
planning operators. Let I be an initial state consisting of
a complete assignment to the variables. Let G be a set of
goal states implicitly defined by an incomplete assignment
to the variables. Let II= (M, I, G) be a planning problem
instance. Let S(I1) be the space of solutions to 11 i.e. a (pos-
sibly partially) ordered series of operators that achieves the
goal from the initial state. Let s€ S(II) be a solution.

Most of our results will be for optimal planning which
requires a cost function over individual plans, which is
our next definition. We focus on Top-K (Katz et al. 2018)
and Top-Quality (Katz, Sohrabi, and Udrea 2020) problems
first. We present a brief aside on multi-criteria planning and
Pareto problems later.

Definition 2. Given a planning problem instance 11. Let
F(s):S(I)= R be a cost function. Optimal solutions are
the set of plans arg minec gy F(s). Let o= (M, I,G, F)
be an optimal planning problem instance. Inputs for Top-K
planning are the number of plans k, and a solution is a set
S such that |S| = k with the property that if s € S then
all v such that F(r) < F(s) also in S (up to the set size).
Inputs for Top-Quality planning are a cost bound q, and the
solution is the (unique) set S = r|F(r) < q.

Diverse-Planning (Srivastava et al. 2007) is the last prob-
lem we investigate for bias. Diverse planning requires a dis-
tance measure J(r, s) measuring the ’distance’ between two
plans. Plan diversity does not strictly require an optimization
criteria, but diversity could be measured over plan cost (or
costs, if the problem is a multi-criteria optimization prob-
lem), and bounds on plan cost can be used to limit those
plans that otherwise must be diverse. While there are many
possible variants of diverse planning, we start with a simple
one to illustrate the issues of bias in a similar way to those
we have discussed above.



Definition 3. Let 11, be an optimal planning problem
instance. Let §(r,s) be a measure of the distance be-
tween two feasible plans, i.e. 6(r,s): S(II) x S(II) =
R. Then a Diverse-Planning problem instance is a tuple
(M,I,G,F,¢). Inputs are set size k and pairwise distance
bound b, i.e. |S| = k and all pairs of plans (r, s) in the so-
lution S must have the property 6(r, s)> b.

3 A Basis for Bias

We start by defining bias for planning problems requiring
one solution. We use the term distance measure over proba-
bility distributions below. Some such measures are not met-
rics because they don’t obey the Triangle inequality (e.g.
Bhattacharya distance). The exact measure or metric used
is unimportant at this time, but for later results, we will use
a specific distance measurement.

3.1 Plan Bias

Definition 4 (Plan Bias). Let I1,= (M, I, G, F') be an op-
timal planning problem instance. Let Ay be an algorithm
returning a single solution. Let P, (s) be the probabil-
ity that Algorithm A; generates solution s to 1I,. Define
probability distribution Py 11, (s)= m that is, each so-
lution is returned assuming plans in S(Il,) are sampled
uniformly at random. Let A(Py 1, Pa11,) be a distance

measure over probability distributions. Then A; is biased if
A(PO,HO , Pi,Ho) > 0.

Lemma 1. Let A; be a deterministic planning algorithm.
Then A; is biased if and only if |S(I1,)|> 1.

Proof. A deterministic algorithm A; returns the same solu-
tion s given the same inputs; equivalently, P; 1, (s)= 1 for
some s€ S(II,) and P; g, (r)= 0 for all other solutions.
Therefore |S(II,)|> 1 = A(Pym,, Pim,) > 0. Otherwise,
A(PO,HOaPi7HO) =0. O

Lemma 2. Let A, be the (EXPTIME) algorithm that enu-
merates all optimal solutions in S(Il,) and samples from
among them u.a.r. Then A, is unbiased.

Proof. Trivial. (The algorithm is EXPTIME and not EX-
PSPACE because we can count the number of solutions
without saving them, decide which should be returned,
then generate them again and count solutions, returning the
proper one when it is generated.) O

Lemma 3. Let A; be a deterministic algorithm and A;
be a non-deterministic algorithm. Then A(Py 11, , Pim,)>
A(Pom,; Pjm,)-

Proof. Trivial because any non-deterministic algorithm
must return at least one plan. O

Lemmas 1,2 and 3 indicate that bias, as we have defined
it, does not seem to be an interesting question to address for
algorithms that return a single plan, because all determinis-
tic algorithms exhibit bias, and unbiased algorithms require
enumerating all plans, and thus exponential time. Even were
we to extend the analysis above to multiple planning prob-
lem instances, where deterministic bias would now identify

different individual plans solving different instances, it’s not
clear what is gleaned from the observation of bias. Bias is of
interest for non-deterministic algorithms, especially in rela-
tion to each other, and will be discussed later.

3.2 Plan Set Bias

We now turn our attention to algorithms that return multi-
ple plans. Some of these set-planning problems are posed in
such a way as to ensure a ’fair sample’ of the solutions are
provided. If such algorithms are biased, this is a problem to
be solved. As we will show, bias does indeed exist in algo-
rithms to solve such problems.

Three common optimal planning problems that require
sets of solutions are Top-K, Top-Quality, and Plan-Diversity.
Top-K and Plan Diversity both ask for sets of k plans,
while Top-Quality asks for all plans whose quality exceeds
a bound; in our cost minimization setting, Top-Quality asks
for all plans whose cost is lower than g. We have crafted our
definitions so that our algorithms can return sets of plans,
and we can measure bias of these sets of plans compares to
all possible sets of plans satisfying the problem description.

Definition 5 (Plan Set Bias). Let II, be a set-planning
problem instance, consisting of (M, I, G, F) combined with
additional inputs Y. implicitly defining sets of solutions
as outputs. Specifically, ¥ € {k,q,(8,b,k)}, defining ei-
ther a Top-K, Top-Quality or Plan Diversity problem. Let
S(I,, X)C 2510 pe the set of solution sets to a set-problem
instance. Let A; be an algorithm returning a solution set.
Let P, 11,(S) be the probability that Algorithm A, gener-
ates solution set S€ S(I1,,X). Define probability distribu-
tion Py 11, (S)= m that is, each solution set is re-

turned assuming SC S(I1,, %), are sampled uniformly at
random. Let A(Py 1, , Pomi,) be a metric over probability
distributions. Then A; is biased if A(Po 1, P;,) > 0.

Lemmas 1 - 3 still apply, i.e. if a set-problem has exactly
one solution plan set, deterministic algorithms aren’t biased,
but if a set-problem admits multiple sets as answers, then a
deterministic algorithm is biased, and non-deterministic al-
gorithms are less biased than deterministic algorithms.

Once we investigate the details of different set-problems,
we find we can make some more precise statements about
the existence of bias, as we will see in the results below:

Theorem 1. Let 11, be an optimal planning problem in-
stance. Let A; be a sound and complete Top-Quality algo-
rithm with a cost bound q as input. Then A; is unbiased.

Proof. By definition, there is only one set of plans whose
costs are all < g, so any sound and complete Top-Quality
must return this set. O

Theorem 2. Let 11, be an optimal planning problem in-
stance. Let A; be a deterministic Top-K algorithm with a set
size k as input. Let S" be a solution set to the Top-K prob-
lem defined by 11, and k. Let f = maxscs F(s), that is, f
is the maximum cost of any plan in any solution to the Top-
K problem instance. Let sy = |s € S's.t.F(s) = f|, that
is, the number of maximum cost plans in any solution to the
Top-K instance. Let ny = |s € S(II)s.t.F(s) = f|, that




is, the number of feasible solutions to the optimal planning
problem instance derived from 11, whose cost is f. Then A;
is biased if and only if ny > s;.

Proof. The worst-case cost f of a solution to a Top-K prob-
lem is a function of k the size of the set requested, the feasi-
ble plans in the domain, and the cost function. The number
of plans of this worst-case cost in a solution is also a func-
tion of k and the feasible plans in the domain. The number of
plans in IT,, however, is not dependent on the size of the set
k, but is rather a function of the instance itself. If there are
enough worst-cost plans that, for a given k, the Top-K algo-
rithm can choose some of those worst-case cost plans to fill
out a solution set S’, then any deterministic algorithm will
return only one of the many sets that could be constructed.
The remainder of the proof follows similar lines to the other
deterministic bias results. 0

Deterministic bias of Top-K algorithms appears to be a
less-problematic form of bias, because the bias exists only
in the choice of the "worst’ plans in the set. Bias is still po-
tentially a problem if the difference in quality between the
optimal plan and the worst plan in the set is small. How-
ever, the problem of bias can also be essentially eliminated
if we ask for a Top-Quality solution as opposed to a Top-K
solution.

Theorem 2 shows that Top-K problems have an unintu-
itive property. We don’t necessarily know the distribution of
F(s), and this ny, up-front. While it seems reasonable that
there are increasing numbers of plans with larger F'(s), it’s
not a guarantee, and so the sizes of the sets correspoding
to solutions of Top-K problems aren’t known either. Put an-
other way, the set size requested isn’t a ’constraint’ in the
usual way one would expect it to be.

As an aside, the definitions of bias can be extended to
multi-criteria problems and algorithms that find the Pareto
Frontier. The Pareto Frontier is unique, so sound and com-
plete algorithms will be unbiased. Approximations of the
Pareto Frontier may be of interest but the definitional ma-
chinery needed is probably not worth investing in at this
time. Analogs of *Top-K’ could also be defined, i.e. take the
union of Top-K for each cost function separately; now we
have biased deterministic algorithms.

In general, deterministic algorithms for Diverse-Planning
will exhibit bias when there are multiple sets of k plans such
that all pairs of plans in the solution S must have the prop-
erty §(r, s)> b, leading to the following result:

Theorem 3. Let (M,I,G,F,0) be a Diverse-Planning
problem instance. Let A; be a deterministic Diverse-
Planning problem with input 3 consisting of set size k and
pairwise distance bound b. Let 11, be a solveable diverse
planning problem instance for set size k and pairwise dis-
tance bound b. Then there exists k' < k and b/ < b such that
A; is biased.

Proof. Let S, € S(I1,, ). Let m < n, and let S" C S be
formed by arbitrarily removing m plans from S. Let b’ =
ming min, ses d(r, s). Trivially & > b since S solves the
diverse planning problem instance I, with inputs b, k; re-
moving one or more plans from S could increase the largest

distance in this solution, but when we remove m plans from
the set we trivially obtain () solutions to a problem with
setinputs &' = k — m, b'. O

Diverse Planning seems like a good target for investigat-
ing bias because, as defined, problem instances can have
many solutions, and any algorithm will need to choose (arbi-
trarily) one of the many solutions. Unlike single plan prob-
lems, the set will consist of many plans; unlike Top-K, the
free choice in the set of plans is not necessarily limited to
the poorest quality plans.

This manifestation of bias in Diverse-Planning algorithms
can be slightly mitigated by finding the largest k& or the
largest b for which a solution exists. However, there may still
be multiple solutions to the problem defined by the largest
set, so deterministic algorithm bias may still exist.

4 Changing the Bias

The definition of bias we have used so far is very strict.
Bias exists if algorithms do not return plans in the space of
solutions to the satisficing planning problem instance. We
propose to focus on plan property bias instead of individ-
ual plan bias. The idea is that instead of measuring bias in
the sets of plans that are produced compared to the sets of
feasible plans, we instead focus on the properties of sets of
plans. If many plans, or plan sets, are similar because they
have similar properties, then bias in plan sets may not trans-
late to bias in the properties of interest. Instead, it may make
more sense to summarize or abstract a set of plans by the
properties exhibited by plans in the set. As we will see in
later sections, there is also justification in using properties
to define the cost functions and distance metrics used to de-
fine our set-planning problems, and asking if there is bias in
these properties, rather than the plans themselves.

What properties might we want to use? The goal proposi-
tions in the satisficing planning problem aren’t suitable, but
if goals have value, then achieved goal propositions would
be useful properties. We could use a set of propositions not
in the goals that are considered ’interesting’, i.e. side effects
like resource consumption. We could use the cost function,
or for Pareto problems, the cost functions. We could use the
plan diversity distances. We could use propositions as ’tra-
jectories’, i.e. states experienced during the plan. We also
hope to reduce the bias we see in deterministic algorithms
by focusing on aspects of plans that are important rather than
the actual plans. If a large set of plans is summarized by a
small set of properties, then perhaps opportunities for bias
are minimized.

4.1 Property Bias

To define property bias, we first need a mapping of feasible
plans to properties, and a mapping from plan sets to property
sets. We then need to translate plan set probability distribu-
tions into property set distributions. Then our set-planning
problems produce sets of plans that also map to property
sets, and we can proceed as we did before, and measure the
distance between the probability distributions when plan sets
are returned u.a.r. versus the algorithm probabilities.



Definition 6 (Property). Let I1, be a planning problem in-
stance, consisting of (M, I, G, F) Let ¢; be a property of a
solution s€ S(I1,). We will abuse notation and treat ¢; as a
Boolean function mapping plans to true or false, ¢;(s) = T
if s has property ¢; and ¢;(s) = L otherwise, thus ¢;(s) :
S(II)= B.

A set of solutions may have many plans with a specific
property. One option is to ask if two sets of solutions re-
turned by an algorithm have the same properties, or if we
want those sets of plans to have not only the same proper-
ties, but the same numbers of plans with those properties. To
ease the bias burden, we will start with the idea of the set
of properties exhibited by any plan in the set, and discuss
alternatives in later sections.

Definition 7 (Property Set). Let 11, be a planning problem
instance, consisting of (M,I,G,F) Let ¢1...¢; be prop-
erties of a solution s€ S(Il,). Let SC S(II,). Denote the
property set of S by ®s= U, sc5¢i(s), that is, all proper-
ties ¢; for which there exists s€ S such that ¢;(s) = T.

We will denote the function ®(S) that computes ®g. If
®, is the set of all properties, 2%+ is the power set of all
property sets that could be exhibited by a plan set (including
the empty set).

Definition 8 (Property Set Bias). Let I, be a set-planning
problem instance, consisting of (M, 1, G, F) combined with
additional inputs X implicitly defining sets of solutions as
outputs. Let S(I1,, X)C 250D pe the set of solution sets o
set-problem instances.

Let A; be an algorithm returning sets of plans as so-
lutions to the set-planning instance. Denote the probabil-
ity that property set ®g is returned by the algorithm by
P, (®g).

Denote by S(I1, X, ®g) those plan sets in S(I1,, %) ex-
hibiting property set ®g. Define probability distribution

Pom, (®s)= % that is, each property set is re-

turned assuming SC S(I1,, %), are sampled uniformly at
random. Let A(Pi 11, (®(S)), Pom, (2(S))) be a distance
measure over probability distributions. Then A; is biased if
A(Po1, (2(5)), Piu, (2(5))) > 0.

There is an analog of Theorem 1 for Top-Quality; since
there is still only one Top-Quality plan set, it has a unique
property set, so all algorithms exhibit no Property Set Bias.
The analogous theorem of Theorem 2 needs to be re-cast
in terms of the number of distinct property sets correspond-
ing to Top-K solution sets, but also otherwise holds, as does
Theorem 3. So far, it seems that structurally, at least, the use
of property sets does not strongly influence the existence of
bias.

We suggested that by mapping sets of plans to sets of
properties of sets of plans, deterministic algorithms will
be penalized less than they would be over sets of actual
plans, because the number of distinct property sets would
be smaller than the number of distinct plan sets '. The intu-
ition is that the ’coarser’ probability distributions resulting

'One could hypothetically construct property sets larger than
the number of plan sets, but it seems unlikely to be worthwhile to
do so in practice.

from mapping many plan sets to the same property set will
reduce the distance between the resulting probability distri-
butions. We would also expect to see less bias for property
sets with fewer properties, for similar reasons. We prove this
result (for one distance measure) below:

Theorem 4. Let (M,I,G,F) be a set-planning prob-
lem instance with additional inputs Y implicitly defin-
ing sets of solutions. Let A; solve this problem. Let ®g
be a property set over solutions. Then A(Py 11, Pim,) >

A(Pom, (2(5)), Pim, (B(S)))-

Proof. Consider the (discrete) Bhattacharya distance
Ap, a common measure of ’distance’ between two
probability  distributions. Ap(Pi(X), P2(X))

—log(} ,cx VPi(z)Pe(x)). We can investigate the

case where, initially, X = S(II,,X), the set of plan sets,
and after consolidation, they lead to plan property sets
y € Y. For simplicity below we will denote Py 11, (X) by
P(X) and P; 11, (X) by Q(X) and Py, (®x) by P(Y)
and P; i1, (Px) by Q(Y).

We want to show that the plan property bias is smaller
than the plan set bias, thus we want to show

—log [ Y VPu)Q(y) | < —log (Z P(%)Q(l‘))

yey zeX

Multiplying both sides by —1 yields:

log | > VPu)Qy) | > log <Z \/P(x)Q(x)>

yeyY reX

Exponentiating both sides yields:

S VPHIa) z(ZW)

yey zeX

Let X, C X be those plan sets with the same plan set
property corresponding to y € Y. Specifically, the plan
property set partitions the plan sets. We now show that for
each y

Py)Qw) > | D VP)Q(x)

TEXy

Squaring both sides yields:

PWQW > | Y /Pl)Q)P)Q;)

T, X5 EXy

Recall P(x;) is some constant derived from the uniform
distribution of plans in S(IL,); denote this by 1. Similarly,
P(y) is also derived from the uniform distribution of plans
in S(II,) and the number of plan property sets; denote this



by g Specifically, 3 is the number of plan sets with a given
plan property set. After substitution:

éQ(y) > > Q(fﬁz‘i;?(ﬂfj)
z;,T;€X,
Simplifying:
Powy= (L S Vewew
a Yy) = o i 7

Recall Q(y) = fo;,xjexy Q(x;); making this substitu-
tion on the left side yields

T ew)=2 (2 X Jewew)

T, €X,y T;,r;€Xy,

Let z,,, = arg max; Q(z;). Because Q(z,) < Q(z,,) we

see that
Q(xm) > \/ Q(xm>Q(xj)

We can group all terms on the right side with x,,; there
are (3 such terms, and thus

20 = | = Y o)

JijEXy

If we now proceed down the list of z; to the next largest,
we see the same inequality holds (there are, in fact, fewer
and fewer mixed terms remaining, so the second largest plan
property probability only has § — 1 mixed terms, the third
highest has 5 — 2, etc.

Recapping: We have now shown that for each y

Py)Qw) > | > VP@)Q(x)

T€EXy

Recalling the inequality

S VPHIAH) z(ZJW)

yey zeX

each term in the left sum for a plan property set y has
a corresponding set of terms from the set X, in the right
sum corresponding to for which the inequality holds, thus
proving the result. O

We return to our original motivation for focusing on plan
set bias. Knowing now that an algorithm’s plan bias is larger
than or equal to its plan set bias suggests that the plan bias is
too ’pessimistic’ a measure of the bias. Focusing instead on
the properties of sets of plans will provide a more ’accurate’
assessment of the bias.

4.2 Property Hierarchies Reduce Bias

Do plan property sets with fewer properties lead to smaller
bias than property sets with more properties? Consider two
arbitrary plan property sets. The probabilities over plan
property sets induced by arbitrary property sets are also ar-
bitrary. We might select a large set of properties that hap-
pen to be disfavored by planners, or a small set of prop-
erties that planners fairly sample. However, if we take the
union of two or more properties to create a new prop-
erty set, we would expect bias to go down, because the
new property set combines the plans from the more fine-
grained properties. Let ®x, Py C & be sets of proper-
ties. Basically, each property set partitions the set of plan
sets. Suppose Py has fewer ’buckets’ than ®x. Suppose
further that we guaranteed that some of the ’buckets’ in
® x are re-allocated to other ’buckets’ in ®y to achieve the
reduction in granularity, in exactly the same manner that
plan sets are ’bucketed’ by property sets in the first place.
Then we would expect A(Py 1, (Py (S5)), P, (v (S5)))
< APy, (@x(5)), P, (®x(S))), for similar reasons to
our proof above that plan set bias is always larger than plan
property set bias.

Corollary 1. Let (M,I,G,F) be a set-planning prob-
lem instance with additional inputs Y implicitly defining
sets of solutions. Let A; solve this problem. Let S(®x)
be those plan sets in S(11,,%) exhibiting property set
®x. Suppose we have two property sets ®x, Py such
that |®x| > |®y| and for every property set ®, C
2%y there is a property set ®, C 2%X such that
S(®z) € S(Py). Then APy, (Py (S)), P, (Py (5)))
< APy, (Px (), P, (Px (5)))

Using this observation, we can construct the partially or-
dered lattice of bias for a given ’basis’ of property sets.

4.3 Generalizing the Property Set Functions

We have assumed that the property sets of plan sets are func-
tions of properties of single plans. We also assumed in Def-
inition 7 the property set of a set of plans is the union of
the properties of the plans. There’s no reason to restrict our-
selves to unions of the properties of single plans; we can say
the property set of a set of plans is the intersection of the
properties of the plans in a set, or any other set function.
None of the results above change; the property sets still par-
tition the plans, and thus the plan sets, meaning Theorem 4
and Corollary 1 still apply.

Furthermore, there is also no reason to restrict the prop-
erty set functions to be functions over single plans; for plan
diversity, as we see in the notes below, we can benefit from
generalizing the definition of property functions to functions
of pairs of plans. In general, the property set is already de-
fined as a function of the whole set of plans anyway. Again,
none of the results above change; now, property sets are de-
fined over sets of plans, but the plan sets are still suitably
partitioned. All that changes is the probability calculations.

5 The Cost of Assessing Bias

In the previous development of bias, we used distance mea-
sures between the probability of returning a plan or plan set,



and the uniform distribution over those plans or plan sets.
While theoretically useful in characterizing bias, there are
practical problems in using such approaches; we would need
to enumerate all solutions to a single problem instance, then
perform random sampling on top of this to characterize the
probability some algorithm returns each plan. Is there a less
expensive way to characterize bias?

Suppose we sampled some number of solutions to esti-
mate the probability distribution F; 7, of plans returned by
some algorithm A;. We denote this estimated distribution by

P; 11, We could measure the bias of this distribution relative
to the uniform distribution over those plans found. We note
that in (Paredes 2023), the uniform distribution over plans
found is used to create less biased samples of plans, but it
is not used to compute bias. This approach is also is subject
to the problem that not all plans in S(II,, ) are found, and
thus some plans will be missing entirely from any calcula-
tion of bias performed this way.

An alternative is to compute the entropy of this distribu-
tion, H(Pim,) = — 3., pi(s) log(pi(s)). We know bias is
maximized when algorithms return solutions according to
the uniform distribution. We also know entropy is maxi-
mized when the distribution is uniform. So while the func-
tional forms might be different (depending on the particular
distance measure that is used), as the probabilities change,
entropy and bias behave in a similar way. Ideally we would
like to prove that if A; has higher entropy than A;, we can
also conclude that A; is less biased than A ;. Such a proof de-
pends on the distance metric used for computing bias. While
it seems difficult to extract the entropy measure directly from
the Bhattacharya distance metric easily, the (asymmetric)
Kullbach Liebler Divergence offers a more promising ap-
proach to this idea, as the next result shows:

Theorem 5. Let (M,I,G,F) be a set-planning prob-
lem instance with additional inputs Y implicitly defin-
ing sets of solutions. Let A; solve this problem.

Let Arcr(Pim,|[Pom,) = 22, pi(s)log(——1> - ))‘)) be

the KL Divergence of P;m, relative to Pon Then
Axrn(Pim,lPon,) = —H(Pin,) — log(m)-

Proof. Recall Py 11, (S) We then have:

_ 1
TS, X))

Agr (P, Pon,) sz ) log( (5 5)))
1

(11,

—sz <10ng) log(S(Ho)l))
—sz ) log(pi(s sz ol ! )

= —H(P;n,) — log(m) sz(s)

=—H(P,)— og(m)

— IOg(Wll'ln) is positive since log of quantities
less than one are negative. The first term is the negative of

The term

the entropy of the probability of returning a plan. When that
probability is uniform, Agr(P;m,||Po,m,) = 0; when it
is anything other than uniform, the entropy decreases, the
negative of the entropy increases, so Ax (P, ||Pom,) >
0.

Notice that we don’t need to enumerate all solutions, or
even estimate the number of solutions, to compute the en-
tropy. We merely need good estimates of pi,Ho given those
solutions returned by the non-deterministic algorithm. We
also don’t need to use the somewhat complex distance mea-
sures over probability distributions, and decide which of the
options to pick. While solutions will still be missing if we
don’t guarantee all of them are found, and thus the entropy
H(P,) = — 3, pi(s) log(p(s)) will not capture every-
thing, this observation offers a reduced cost method of com-
puting a proxy for bias that is useful, as we discuss further
in later sections. Finally, we can extend this calculation to
plans or plan sets returned by any number of algorithms.
Notice the entropy for algorithm A; can still be computed if
A; produces a solution that A; did not produce; the entropy
contribution for A; is zero.

Having established this, we can prove a simplified version
of Theorem 4, replacing the more complex metric between
probabilities with entropy:

Theorem 6. Let (M,I,G,F) be a set-planning problem
instance with additional inputs 3 implicitly defining sets of

solutions. Let A; solve this problem. Let &g be a property
set over solutions. Then H(P; 11,) > H(P; 11,(®(95)).

Proof. As with Theorem 4, to simplify the notation, let X
be the set of plan sets, and Y be the set of property sets, and
let Yx denote those plan sets with property set Y, and recall
that Y partitions X (every plan set in X is in one partition
element y). So we want to prove

H(P(X)) > H(P(Y))
Expanding the entropy formulas:

— > p(x)log(p Y " ply)log(p

zeX yey

== > pla)log( Y p(x)

yeY zeXy reXy
== > p@log( > p(2)
z€Xy z|z,x€Xy

The somewhat inelegant condition above captures the fact
that, for the entropy of the plan property set distribution, we
sum all those plan sets with identical property sets inside
the log. We know p(z) < Land 3 . x, p(z) <1 s0

log(p(x)) < 0 and IOg(Zz\z,meXY p(z)) < 0. We also see
that, because log() is increasing,

log(p(z)) <log( Y  p(2))

zlz,x€Xy

Therefore, for each x,



—p(x)log(p(x)) > —p(z)log(p( > p(2))
z|z,x€Xy
This means
— > p(a)log(p(z)) > — > plx)log( > p(2))
reX reXy z|z,2€Xy
completing the proof. O

6 Results: Your Planner is Biased
A summary of results:

* Bias is measured using probability of plan sets or plan
property sets.

* Deterministic algorithms producing a single solution to
most problems, even those returning sets of plans, are
inherently biased, regardless of whether plan sets or plan
property sets are used to measure bias. The root cause of
this is the number of solutions to problem instances. In
limited cases, the definition of the problem itself ensures
there is a unique solution, thus there is no possibility of
bias.

e Of the set-planning problems we have described,
Diverse-Planning is the most interesting in terms of the
existence of bias. Top-K planning problems have some
possibility of bias, but it is of limited interest (the only ar-
bitrary plans are the poorest quality plans) and the related
Top-Quality problem has a unique set solution. Pareto
problems also have no bias.

* Property set bias is smaller than plan set bias over the
same set of plan sets. Combining a ’ground’ set of plan
properties to create new properties reduces bias.

* Exponential time enumeration and sampling may be
needed to create truly unbiased algorithms.

» Entropy and bias are closely related (especially via dis-
tance measures like A k1) and offer opportunities to as-
sess bias without the need to enumerate all solutions to
problem instances, but evaluating bias likely still takes
exponential time.

Our results so far are summarized in the table below.

[ Problem [ Alg | Bias | Notes
Optimal Det. Biased 1 set = Unbiased
Optimal || Non-Det. TBD Algorithm dependent

Top-K Det. Biased 1 set = Unbiased
Top-K Non-Det. TBD Algorithm dependent
Top-Q Det. Unbiased 1 set by definition
Top-Q Non-Det. | Unbiased 1 set by definition
Diverse Det. Biased 1 set = Unbiased
Diverse || Non-Det. TBD Algorithm dependent

7 Investigating Bias
What do the results above say about further investigations
of bias? In this section, we describe a roadmap for future
research on this topic.

7.1 Investigating Bias for Deterministic
Algorithms

Single-Plan Algorithms: Investigating bias for single-plan
algorithms (plan existence) don’t appear interesting, be-
cause every such algorithm is biased. However, there is
still value in comparing different deterministic algorithms
to each other, in order to ask how the plans are produced
by each algorithm might be biased. This line of investiga-
tion doesn’t require the heaviweight machinery of proba-
bility distance metrics; the probabilities of sets of proper-
ties produced by these algorithms can be compared directly.
By way of example: suppose one gave 10 planners the same
problem instance. Are the same plans produced, or not? Why
or why not? Do algorithms with common infrastructure (say,
FF heuristics) produce the same plans, or not?

Plan-Set Algorithms: As we discussed, bias in Top-K plan-
ning is potentially uninteresting, because the free choice is
limited to the worst plans; however, there may still be some
interesting investigations when the span of quality is small.
A comparison of deterministic Top-K and Top-Quality is
also of interest, since Top-Quality is guaranteed to be un-
biased. We suggest that, of the various plan-set problems
we have discussed, that investigations of bias in determin-
istic algorithms appear to be of most interest for Diverse-
Planning. In this setting, if some sets of plans are systemati-
cally ignored in favor of others, then the quest for ’diversity’
seems to be in jeopardy. For instance, are pairs plans whose
distance is close to b ignored in favor of plans of maximum
distance, especially when k is ’small’ and many solutions
exist?

7.2 Investigating Bias for Nondeterministic
Algorithms

Bias in Approximation Algorithms: Investigations of bias
in non-deterministic algorithms are valuable for both single-
plan and plan-set algorithms. There are two settings in
which we can investigate non-deterministic algorithm bias.
The first is sound algorithms, i.e those ensuring a solution
is found, but for which the solution can vary. Are non-
deterministic algorithms still biased? If so, how? And given
that the best unbiased algorithm we can imagine takes EXP-
TIME, can we generate unbiased algorithms with lower ex-
pense?

Approximation algorithms for very large or very hard
problems pose a different challenge for the investigation of
bias. Consider, for instance, a Top-K or Top-Quality prob-
lem, in which the optimization problem can’t be solved.
These algorithms are likely biased, because optimal plans
are hard or impossible to find. Assessing the true bias for
such algorithms, unfortunately, requires finding those solu-
tions; if this is simply impossible, we may be reduced to
comparing the bias using entropy.

Entropy and Bias for Non-deterministic Algorithms
(Chan et al. 2014),(Diakonikolas and Kane 2016) show that
a number of samples proportional to 1/|S(Il,)| (and the de-
sired error) are needed to characterize whether an unknown
distribution (say, the probability of solutions from a random-
ized algorithm) is ’close to’ a known distribution (say, the



uniform distribution). The results use the {; norm, but are
illustrative; in general, we don’t need to enumerate all solu-
tions to our planning problems. However, for a given prob-
lem instance, we don’t know |S(IL,)|, and even if we did,
the number of samples needed may still large and costly to

obtain. We would like to say: if H(P; r,) < H(P;m,) then
H(P;n,) < H(Pjn,) i.e. the relative order of bias com-
puted using true entropy is the same as the order resulting
from the sample entropy. Empirical questions we could in-
vestigate include: 1) if we gave some number of randomized
algorithms increasing amounts of time, how would their en-
tropies change? 2) How does the entropy estimate compare
to the bias estimate if we took the time to actually compute
it, assuming that is possible?

7.3 Plan Set vs Property Set Bias

Single-Plan Algorithms: Just as it is sensible to ask whether
deterministic algorithms return the same or different plans
for the same planning problem instance, we can ask if algo-
rithms return plans with similar or different properties. Since
many plans share the same properties, changing the focus to
those properties of interest may be more fruitful in the single
plan algorithm case, regardless of whether the algorithms in
question are deterministic or non-deterministic.

Plan-Set Algorithms: Properties serve to focus on what
matters for plan-set algorithms in the same way that they
do for single-plan algorithms. For Top-K problems, even
though bias is of limited interest, there are some interesting
property bias questions to investigate. There is no reason to
make the cost function a property, because we know what
plan costs will be present in solutions. However, some prop-
erties of the worst plans may not be present in the sets re-
turned by some algorithms. For diverse planning as we have
defined it, the pairwise distances may be worth posing as
properties. If b is the distance threshold, for any two plans
r, s we know d(r, s) > b. Is it of interest if plans with larger
separations are present? Does this bias matter? Is bias ac-
ceptable to reduce the number of the *worst’ plans returned
by Top-Quality? It is likely to be more interesting to know
if other properties of plans, including their costs, may not be
present in the sets returned by some algorithms. Corollary
1 also suggests ways to combine property sets and find ones
that are fine-grained enough to be of interest, while reducing
bias.

Unifying Bias Investigations with Properties: The cost of
aplan F(s) and plan distance §(r, s) can both be thought of
as functions of properties of plans. When written this way,
F(®(s)) and plan distance 6(P(r), ®(s)), we can then think
about how the full set of properties is ’partitioned’ by the
cost and distance metrics:

* &1 is the set of properties used as input to the cost func-
tion.

* &; is the set of properties used as input to the plan dis-
tance metric.

» &% is the set of properties correlated with those proper-
ties used as inputs to the cost function.

» &S is the set of properties correlated with those proper-
ties used as input to the plan distance metric.

* @, is the 'residual’ properties, namely ® \ (P U &5 U
oS, U 05)

This strategy of using properties as the foundation for
costs and distance metrics allows users to focus on which
of the sets bias might, or might not, appear in. In diverse
planning, we would expect bias to occur in properties used
in the distance metric. Bias in the 'residuals’ may not be of
interest, but investigating bias in the ’residuals’ may reveal
unexpected correlations with properties influencing the plan
distance.

7.4 Bias is Everywhere

Our theoretical foundation has focused on sets of plans,
and algorithms that produce plans. But an optimal plan-
ning problem is simply one form of constrained optimiza-
tion problem. All of our definitions and theorems apply to
any constrained optimization problem for which a user may
want many solutions. This covers scheduling, constraint sat-
isfaction, combinatorial design problems, machine learn-
ing...everything.

7.5 Related Work

The survey of bias mitigation in machine learning (Hort
et al. 2023) includes an extensive discussion of classifier-
centric fairness metrics. Metrics may be based on the data,
on the predicted outcomes, on the structure of groups
(classes) the classifiers take as input, and so on. Some met-
rics are based on a similar notion of differences in probabil-
ity of predictions. No metric appears to use a notion of the
set of possible classifiers that could be produced given a set
of data, which is the comparable method to that we propose.

Top-K planning has its roots in shortest path problems
(Aljazzar and Leue 2011). Top-K and Top-quality planning
have been the subject of considerable recent work, includ-
ing (Katz, Sohrabi, and Udrea 2020) and (Katz et al. 2018).
Work on eliminating some plans from consideration to re-
duce ’pathologies’ in the sets of solutions has led to prob-
lem formulations such as Loopless Top-K (von Tschammer,
Matm uller, and Speck 2022) and Subset-Top-K (Katz and
Sohrabi 2022).

Diverse planning also has a long history (Srivastava
et al. 2007),(Nguyen et al. 2012),(Coman and Munoz-Avila
2011),(Roberts, Howe, and Ray 2014), (Sohrabi et al. 2016),
(Vadlamudi and Kambhampati 2016). (Goldman and Kutur
2015) highlights pathological behavior of some plan diver-
sity metrics and points out problems in aggregating plan di-
versity measures over sets of plans, and also provides theo-
retical and practical solutions / new diversity metrics.

The concept of properties as a foundation of planning is
also of interest. (Lehman and Stanley 2011) showed that
a search space can be collapsed into a finite space (be-
haviour space) to model solutions’ characteristics. Their mo-
tivation behind discretising the solution space was to keep
track of different solutions generated by evolutionary algo-
rithms. (Eifler, Frank, and Hoffmann 2022) describes the use
of properties as a means of eliciting user preferences.
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