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Abstract— This paper presents a novel, safe tracking control
design method that learns the parameters of an uncertain Euler-
Lagrange (EL) system online using adaptive learning laws. A
barrier function (BF) is first used to transform the full-state
constrained EL-dynamics into an equivalent unconstrained
dynamics. An adaptive tracking controller is then developed
along with the parameter update law in the transformed state
space such that the states remain bounded for all time within
a prescribed bound. A stability analysis is developed that con-
siders the EL-dynamics’ uncertainty, yielding a semi-globally
uniformly ultimately bounded (SGUUB) tracking error and the
parameter estimation error. The controller design is validated
in simulations using a two-link planar manipulator. The results
show the proposed method’s ability to track the reference
trajectory while remaining inside each of the predefined state
bounds.

I. INTRODUCTION

In many control engineering applications, maintaining
system states within a prescribed bound is essential to satisfy
the system safety property. For example, when a robot moves
in a constrained space, it is crucial for the robot to satisfy
requirements, such as the joint trajectories’ boundedness,
to carry out operations safely. The violation of constraints
can lead to severe degradation of the robot’s performance,
unsafe behavior, and sometimes failure of the robot’s com-
ponents. In robotics applications such as construction, as-
sembly/disassembly in a constrained space, for human-in-
the-loop control applications [1], or distributed multi-robot
control applications [2]–[4], restricting the motion of the
robot to a constrained joint or state space is essential.

Barrier function (BF) is a commonly used approach to
certify the forward invariance of a closed set with respect
to a system model, which can be used to examine the
system’s safety property [5]–[7]. Control barrier functions
(CBFs) are used for the synthesis of safety critical controllers
[8]–[11]. Since CBF is a Lyapunov-based control design, a
control Lyapunov function (CLF) and CBF are merged to
synthesize stable and safe controllers by solving a quadratic
program (QP) for cyber-physical systems in [12]–[14]. The
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robustness properties of the BFs and CBFs in the presence
of disturbances and uncertainties are studied in [7]. CBFs
are also used to design and synthesize controllers for hybrid
systems for walking robot applications in [15]. Controllers
that are synthesized using CBFs and CLFs assume that the
system model is fully known.

In the context of system identification, a data-driven dy-
namic system model learning approach, which retains all its
trajectories in a predefined constrained set, is developed in
[16]. The learning approach uses active learning to select
samples that are used to learn the model parameters by
solving a constrained optimization problem. In [17], a safety
critical-control synthesis using active set invariance is devel-
oped that uses a CBF methodology to enforce set invariance
on systems in the presence of disturbances and uncertainties.
The model identification and control design is achieved in
traditional adaptive control, which requires a persistency of
excitation (PE) condition to learn the system parameters.
In [18], an adaptive CBF is proposed that ensures forward
invariance of a closed set with respect to a nonlinear control-
affine system with parameter uncertainty. The controller and
the parameter update laws are computed by solving an
optimization problem.

Barrier Lyapunov function (BLF) is another method that
is used to control nonlinear systems with output and state
constraints (cf. [19], [20]). By design, the value of a BLF
grows to infinity whenever its argument approaches some
predefined limits. In [19] and [21], a BLF is defined on
the output tracking error to develop an adaptive controller
for single-input and single-output (SISO) nonlinear systems
in a strict-feedback form with constant and time-varying
output constraints. The approach in [21] is extended to output
tracking with partial state constraints in [22]. Using a similar
BLF, in [23], an adaptive neural network with full-state
feedback control that uses a Moore-Penrose pseudoinverse
term in the control law design is developed for an uncertain
robot dynamics with output constraints, and the signals of the
closed-loop systems are proven to be SGUUB. In [24], [25],
a BLF along with RL is used to solve a regulation problem
for a SISO nonlinear systems in the Brunovsky form with
full-state and input constraints.

In this paper, an adaptive tracking controller is devel-
oped for an uncertain nonlinear multi-input and multi-output
(MIMO) system represented by the EL-dynamics with full-
state constraints. In [24], [25], a similar BF is used to
transform the full-state constrained system dynamics to an
equivalent system dynamics with no explicit constraints.
The BF is used on each state of the system, allowing for



the transformation of the original MIMO system into a
new unconstrained MIMO system. An adaptive controller is
developed for the transformed dynamics, where the unknown
model parameters are estimated using a gradient parameter
adaptation law. The developed controller and update laws
keep the state within an ultimate bound while remaining
constrained inside the given bounds on the state from any
initial conditions chosen within the bounds for the original
and the transformed systems. A Lyapunov stability analysis
is developed that yields SGUUB tracking error of the desired
trajectory. The parameter estimates of the nonlinear system
model remain bounded. The controller design is tested using
a 2-link robot through numerical simulations. The developed
controller’s performance is compared with the controller’s
performance without the barrier function transform.

II. PRELIMINARIES

In this section, the preliminaries of barrier function are
briefly reviewed.

A. Barrier Function

Consider a continuous nonlinear dynamical system of the
form

ẋi(t) = xi+1(t), ∀i = 1, · · · , n− 1,

ẋn(t) = f (x(t)) + g (x(t))u, (1)

where f : Rn → R, g : Rn → R1×m are lo-
cally Lipschitz continuous nonlinear functions, x(t) =
[x1(t) · · · xn(t)]T ∈ X ⊂ Rn, is the state of the system,
and u ∈ Rm is the control input. The compact set X :=
{xi(t) ∈ R : ai < xi(t) < Ai, ∀i = 1, · · · , n}, where ai ∈
R and Ai ∈ R are lower and upper bounds of each state
which satisfy ai < 0 < Ai, ∀i = 1, · · · , n. Note that
throughout this paper, for ease of notation, we abbreviate
x(t) by x, unless necessary for clarity.

The following logarithmic barrier function candidate
B(xi; ai, Ai): R→ R, is considered in this paper:

B(xi; ai, Ai) , log

(
Ai
ai

ai − xi
Ai − xi

)
, ∀xi ∈ (ai, Ai), (2)

where log(·) is a natural logarithm. From (2), it can be seen
that lim

xi→ai,Ai

B (xi; ai, Ai) =∞.

Using (2), the system can be transformed into a con-
strained state s = [si · · · sn] ∈ Rn as follows

si = B (xi; ai, Ai) , ∀i = 1, · · · , n (3)

xi = B−1 (si; ai, Ai) , ∀i = 1, · · · , n (4)

where

B−1(si; ai, Ai) =
aiAi

(
e

−si
2 − e

si
2

)
Aie

−si
2 − aie

si
2

. (5)

Note that due to the monotonic characteristic of the natural
logarithm the inverse of the barrier function (4) exists within
the range of its definition.

Using the chain rule of differentiation, i.e., dxi

dt = ∂xi

∂si
dsi
dt ,

where

∂xi
∂si

=
Aia

2
i − aiA2

i

a2i e
si − 2aiAi +A2

i e
−si

, (6)

and some algebraic manipulations result in the transformed
state si, and it is given by

ṡi = ki(si)B
−1(si+1; ai+1, Ai+1)

= Fi (si, si+1) , ∀i = 1, · · · , n− 1, (7)
ṡn = kn(sn) (f(x) + g(x)u) = Fn(s) +Gn(s)u, (8)

where

Fn(s) = kn(sn)f
([
B−1(s1) · · · B−1(sn)

])
(9)

Gn(s) = kn(sn)g
([
B−1(s1) · · · B−1(sn)

])
(10)

and ki(si) =
(
∂xi

∂si

)−1
, ∀i = 1, · · · , n. The constrained

system in terms of s can be expressed in a compact form
as follows

ṡ = F (s) +G(s)u, (11)

where F (s) = [F1 (s1, s2) , · · · , Fn(s)]
T , G(s) =

[0, · · · , 0, Gn(s)]
T .

III. PROBLEM FORMULATION AND SOLUTION APPROACH

A. Model Development

Consider the Euler-Lagrange (EL) dynamics

M(q)q̈ + C(q, q̇)q̇ +Gr(q) = τ, (12)

where, M(q) ∈ Rd×d denotes a generalized inertia matrix,
C(q, q̇) ∈ Rd×d denotes a generalized centripetal-Coriolis
matrix, Gr(q) ∈ Rd denotes a generalized gravity vector,
τ = [τ1, · · · , τd]T ∈ Rd represents the generalized input
control vector, and q(t), q̇(t), q̈(t) ∈ Rd denote the link
position, velocity, and acceleration vectors, respectively. The
subsequent development is based on the assumption that all
the states are observed, and that M(q), C(q, q̇), and Gr(q),
are unknown. The following properties, found in [26], [27],
are also exploited in the subsequent development.

Property 1: The inertia matrix is positive definite, and
satisfies the following inequality for any arbitrary vector
ξ ∈ Rd:

m1‖ξ‖2 ≤ ξTM(q)ξ ≤ m2‖ξ‖2, (13)

where m1 and m2 are positive constants, and ‖ ·‖ represents
the Euclidean norm.

Remark 1: Since M(q) is a symmetric positive definite
matrix, it can be shown that M−1(q) is also a positive
definite matrix, and its 2-norm is upper and lower bounded
with known constants, i.e., m ≤ ‖M−1(q)‖ ≤ m̄.

Property 2: The EL-dynamics in (12) are linearly
parametrizable as follows

Y (q, q̇, q̈)θ = M(q)q̈ + C(q, q̇)q̇ +Gr(q), (14)

where Y : Rd ×Rd ×Rd → Rd×m is the regression matrix,
and θ ∈ Rm is the set of the unknown parameters.



Property 3: The norm of the centripetal-Coriolis can be
upper bounded in the following manner:

‖C(q, q̇)‖∞ ≤ C̄‖q̇‖, (15)

where C̄ ∈ R denotes known positive bounding constant,
and ‖ · ‖∞ denotes the induced infinity-norm of a matrix.

Let x = [x1, x2]T , where x1 = q ∈ Rd, x2 = q̇ ∈ Rd, and
the EL-dynamics in (12) can be written as follows

ẋ1 = x2,

ẋ2 = f(x) + g(x)τ, (16)

where f : R2d → Rd, g : R2d → Rd×d are nonlinear
continuously differentiable functions, f(x) = M−1(x1)

(
−

C(x1, x2)x2 −Gr(x1)
)
, and g(x) = M−1(x1). With some

algebraic manipulations, the EL-dynamics can be written into
d separate first and second order dynamics:

ẋ1,j = x2,j , (17)
ẋ2,j = fj(x) + gj(x)τ, ∀j = 1, · · · , d (18)

where fj : R2d → R, gj : R2d → R1×d are nonlinear contin-
uously differentiable functions. Using the BF transformation
described in Section II-A for the system in (17) and (18), a
system equivalent to (11) can be formulated as follows

ṡ = F(s) + G(s)τ, (19)

where s = [s1, s2]
T ∈ R2d, s1 = [s1,1, · · · , s1,d]T and

s2 = [s2,1, · · · , s2,d]T are the constrained joint position and
velocity vectors, respectively. Also, F : R2d → R2d and
G : R2d → R2d×d are given by

F(s) =



F1,1(s1,1, s2,1)
...

F1,d(s1,d, s2,d)
F2,1(s)

...
F2,d(s)


, G(s) =


0d×d
G2,1(s)

...
G2,d(s)

. (20)

Assumption 1: The function F : R2d → R2d is locally
Lipschitz continuous, and there exists a positive constant F̄
such that for s ∈ S, ‖F(s)‖ < F̄‖s‖, where S ⊂ R2d is a
compact set containing the origin. Moreover, the system is
assumed to be controllable over S with G(s) being locally
Lipschitz and bounded in S, i.e., ‖G(s)‖ < Ḡ, where Ḡ is a
positive scalar.

Following (19), the EL-dynamics can be represented in
the constrained space as follows

M(sp)K
−1
2 (s2)ṡ2 + C(sp, sv)K

−1
1 (s1)s2 +Gr(sp) = τ,

(21)
where

sp =
[
B−1(s1,1), · · · , B−1(s1,d)

]T
,

sv =
[
B−1(s2,1), · · · , B−1(s2,d)

]T
,

and

Ki(si) = diag (ki,1(si,1), · · · , ki,j(si,j)) , (22)

with ki,j(si,j) =
∂B−1(si,j)

∂si,j
, ∀i = 1, 2 and ∀j = 1, · · · , d.

Assumption 2: The term Ki(si) defined in (22) is positive
definite, and its 2-norm is upper and lower bounded by
known positive constants, i.e., ki ≤ ‖Ki(si)‖ ≤ k̄i, ∀i =
1, 2.

Lemma 1: Given the term Ki(si) defined in (22) with

ki,j(si,j)=

(
a2i,je

si,j − 2ai,jAi,j +A2
i,je
−si,j

)
Ai,ja2i,j − ai,jA2

i,j

, ∀i = 1, 2,

∀j=1,· · ·, d,

the 2-norm of its inverse, K−1i (si), can be upper bounded
by a positive constant κ̄i, i.e., ‖K−1i (si)‖ ≤ κ̄i, ∀i = 1, 2.

Proof: The 2-norm of K−1i (si) =

diag
(
k−1i,1 (si,1), · · · , k−1i,d (si,d)

)
can be upper bounded

because k−1i,j (si,j) is bounded, that is

lim
si,j→∞

Ai,ja
2
i,j − ai,jA2

i,j(
a2i,je

si,j − 2ai,jAi,j +A2
i,je
−si,j

) = 0,

which implies that 2-norm of K−1i (si) can be upper bounded
by a positive constant κ̄i.
Now, using Property 2, the EL-dynamics in (21) can be
linearly parameterized, and it is given by

MK−12 ṡ2+CK−11 s2+Gr=Y1(sp, sv, s1, s2, ṡ2) θ, (23)

where Y1 : Rd × Rd × Rd × Rd × Rd → Rd×m is the
regression matrix. Note that in (23), and henceforth the
parameter dependency of the elements in the EL-dynamics
are dropped for brevity.

Lemma 2: Suppose that there exist a controller that tracks
the desired trajectory for the system given in (21). Then,
the same controller can also track the desired trajectory of
the original system in (12) given that the initial state of the
system x(0) = x0 ∈ X .

Proof: See proof of ([19], Lemma 1)
Lemma 2 proves that if the initial state is within the

prescribed bound, a control law can be designed for the full-
state constrained system such that it satisfies the tracking
objective of the original system.

B. Control Development

In this subsection, an adaptive control technique is used to
identify the parameters of an uncertain system and track the
desired joint position sdes1 (t) : R+ → Rd and joint velocity
sdes2 (t) : R+ → Rd trajectories.

Assumption 3: The signals sdes1 , sdes2 , ṡdes2 are uniformly
continuous and bounded such that ‖sdes1 ‖ ≤ s̄des1 , ‖sdes2 ‖ ≤
s̄des2 , ‖ṡdes2 ‖ ≤ ¯̇sdes2 , where s̄des1 , s̄des2 , and ¯̇sdes2 are known
positive constants.
To this end, consider the following tracking control input
design

τ = M̂K−12 a+ ĈK−11 v + Ĝr − βK2r, (24)



where (̂·) denotes the parameter estimates and β is a positive
scalar. Signals a, v, r are given by

a = ṡdes2 − Λs̃2, (25)

v = sdes2 − Λs̃1, (26)
r = s̃2 + Λs̃1, (27)

where s̃1 , s1 − sdes1 and s̃2 , s2 − sdes2 are position and
velocity tracking errors, respectively. Λ ∈ Rd×d is a positive
definite diagonal matrix, and its 2-norm is upper bounded by
a known positive constant, i.e., ‖Λ‖ ≤ Λ̄.

In terms of the linear parameterization of the EL-
dynamics, i.e., Property 2, the control input (24) can be
rewritten as

τ = Y2
(
sp, sv,K

−1
2 (s2)a,K−11 (s1)v

)
θ̂ − βK2(s2)r, (28)

where Y2 : Rd × Rd × Rd × Rd → Rd×m is the regression
matrix. Substituting (24) in the EL-dynamics (21) yields the
following closed-loop error dynamics given by

MK−12 ṙ + CK−11 r + βK2r = Y2θ̃, (29)

where θ̃ = θ̂ − θ is the parameter estimation error. The
parameter θ̂ update rule is given by

˙̂
θ = proj

(
−Γ−1Y T2 K2r

)
, (30)

where Γ ∈ Rm×m is a diagonal and positive definite matrix,
and proj(·) is a standard projection operator that ensures the
parameter estimates are bounded, i.e., θ ≤ θ̂ ≤ θ (for further
details see [26]).

Remark 2: The parameter estimation error θ̃ is bounded
and uniformly continuous since θ̂ evolves according to the
update law in (30).

C. Stability Analysis

To facilitate the following development of the Lyapunov
stability analysis, let ζ : [0,∞) → R2d+m denotes the com-

posite state vector, i.e., ζ(t) ,
[
rT (t), sT1 (t), θ̃T (t)

]T
. Let

λmin{·} and λmax{·} denote the minimum and maximum
eigenvalues of its argument.

Theorem 1: The controller and parameter update laws
defined in (28) and (30) ensure SGUUB tracking of the
desired state trajectories, provided the following sufficient
conditions,

γ1 > 2 (1 + γ5 + γ7) , γ3 > 2 (1 + γ5 + γ6) , (31)

are satisfied, where

γ1 = βm k22 γ5 = βλ̄k̄22m̄

γ2 = λmax
{

ΛTΛ
}
ᾱ γ6 = (γ2 + γ4) s̄des2

γ3 = γ1λmin
{

ΛTΛ
}

γ7 = (ᾱ+ γ4) s̄des2

γ4 = Λ̄ᾱ ᾱ = k̄2m̄C̄κ̄
2
1

Proof: Consider a quadratic Lyapunov function candi-
date V : D → R, where D ⊂ R2d+m satisfying V (0) = 0
of the following form

V (ζ) =
1

2
rT r + s̃T1 s̃1 +

1

2
θ̃TΓθ̃. (32)

The Lyapunov candidate can be bounded by

λmin{P}‖e‖2 + b1 ≤ V (ζ) ≤ λmax{P}‖e‖2 + b2, (33)

where P =

[
3
2In

1
2Λ

1
2Λ 1

2In

]
, b1 and b2 are known positive

bounding constants, and e(t) ∈ R2d is defined as

e(t) ,
[
s̃T1 (t) s̃T2 (t)

]T
. (34)

Utilizing (29), the time derivative of the Lyapunov function
(32) can be expressed as

V̇ (ζ) =− rT
(
K2M

−1 (CK−11 + βK2

))
r

+ 2s̃T1 s̃2 + θ̃T
(

Γ
˙̂
θ + Y T2 M

−TK2r
)

(35)

Substituting the expression for ˙̂
θ from the update law (30)

and the filtered tracking error (27) into (35) yields

V̇ (ζ) =− s̃T2
[
K2M

−1 (CK−11 + βK2

)]
s̃2

− s̃T1 ΛT
[
K2M

−1 (CK−11 + βK2

)]
Λs̃1 (36)

− 2s̃T1 ΛT
[
K2M

−1 (CK−11 + βK2

)]
s̃2 + 2s̃T1 s̃2

− θ̃T
(
Y T2 (I +M−T )K2 (s̃2 + Λs̃1)

)
.

The term
(
I +M−T

)
in (36) can be upper bounded using

the triangle inequality given by ‖I+M−T ‖ ≤ 1 + m̄ = M̄.
Furthermore, utilizing the bounding property of EL-dynamics
(15), Remark 1, and Lemma 1, (36) can be upper bounded
as

V̇ (ζ)≤ ᾱ‖s2‖‖s̃2‖2 − γ1‖s̃2‖2 + γ2‖s2‖‖s̃1‖2 − γ3‖s̃1‖2

+ 2γ4‖s2‖‖s̃1‖‖s̃2‖+ 2γ5‖s̃1‖‖s̃2‖+ 2‖s̃1‖‖s̃2‖
+ γ8‖s̃2‖+ γ9‖s̃1‖, (37)

where γ8 = Ȳ2M̄k̄2
¯̃
θ and γ9 = γ8λmax{Λ} in which Ȳ2

and ¯̃
θ denote positive bounding constants on the regression

matrix Y2 and θ̃, respectively. Completing the squares in (37)
and rearranging the terms yield

V̇ (ζ) ≤−
(γ1

2
− ᾱ‖s2‖

)
‖s̃2‖2 −

(γ3
2
− γ2‖s2‖

)
‖s̃1‖2

+ 2 (γ4ᾱ‖s2‖+ γ5 + 1) ‖s̃1‖‖s̃2‖+ δ, (38)

where δ =
γ2
8

2γ1
+

γ2
9

2γ3
. Using Young’s inequality, the third

term in (38) can be upper bounded as

2 (γ4‖s2‖+ γ5 + 1) ‖s̃1‖‖s̃2‖ ≤ (γ4‖s2‖+ γ5 + 1)

×
(
‖s̃1‖2 + ‖s̃2‖2

)
. (39)

Expressing ‖s2‖ = ‖s̃2+sdes2 ‖, and using triangle inequality
along with Assumption 3, the expression in (38) can be
further bounded as

V̇ (ζ) ≤−
(γ3

2
− (γ2 + γ4) ‖s̃2‖ − γ6 − γ5 − 1

)
‖s̃1‖2

−
(γ1

2
− (ᾱ+ γ4) ‖s̃2‖ − γ7 − γ5 − 1

)
‖s̃2‖2 + δ.

(40)



By letting c1 = γ3
2 − γ6− γ5− 1 and c2 = γ1

2 − γ7− γ5− 1,
the upper bound on the derivative of the Lyapunov function
(40) can be rewritten and simplified further as

V̇ (ζ) ≤− (c− ρ‖s̃2‖) ‖e‖2 + δ, (41)

where c , min {c1, c2}; hence c is positive if c1 and c2 are
chosen according to the sufficient conditions given by (31).
Also, ρ , max {(γ2 + γ4) , (ᾱ+ γ4)}; and the negative term
in (41) dominates only if the positive term involving ‖e‖2 is
negative definite, i.e., ‖s̃2‖ < c

ρ .
Now, let η = c− ρ‖s̃2‖ and substituting in for ‖e‖2 from

(33), yield

V̇ (ζ) ≤− η

λmax{P}
V + ε, ∀‖s̃2‖ <

c

ρ
, (42)

where ε = ηb2
λmax{P}+δ. The solution to the linear differential

inequality in (42) can be obtained using the Comparison
lemma, lemma 3.4 of [28], and it is given by

V (ζ(t)) ≤ V (0)exp

(
− η

λmax{P}
t

)
+
λmax{P}ε

η

[
1− exp

(
− η

λmax{P}
t

)]
,

(43)

where it is defined on the following domain

D ,

{
ζ ∈ R2d+m

∣∣‖ζ‖ ≤ c

ρ

}
. (44)

It can be seen from (43) and (32) that e(t) ∈ L∞. Using
the standard signal chasing, Assumption 3, and Remark 2,
it can be concluded that the designed controller ensured
semi-globally uniformly ultimately bounded tracking of the
desired trajectory.

IV. NUMERICAL EVALUATIONS

In this section, the controller and adaptive laws developed
in (24) and (30) are simulated for a two-link robot planar
manipulator, with dynamics shown in (45), where c1, c2, c12
denote cos(q1), cos(q2), and cos(q1 + q2) respectively, sin2

denotes sin(q2), and g is the gravitational constant.[
θ1 + 2θ2c2 θ3 + θ2c2
θ3 + θ2c2 θ3

]
︸ ︷︷ ︸

M(q)

[
q̈1
q̈2

]
+

[
−θ2sin2q̇2 −θ2sin2(q̇1 + q̇2)
θ2sin2q̇1 0

]
︸ ︷︷ ︸

C(q,q̇)

.

[
q̇1
q̇2

]
+

[
θ4gc1 + θ5gc12

θ5gc12

]
︸ ︷︷ ︸

Gr(q)

=

[
τ1
τ2

]

(45)

The nominal values of the parameter vector θ =
[θ1, θ2, θ3, θ4, θ5]T are

θ1 = 0.325 kg.m2 θ3 = 0.217 kg.m2

θ2 = 0.240 kg.m2 θ4 = 2.4 kg.m θ5 = 1.0 kg.m

The desired trajectory is selected as

qd1 =
(
1 + 2e−2t

)
sin(t), qd2 =

(
1 + 5e−t

)
cos(t).

Fig. 1. Evolution of the joint angles for the planar robot simulation using
an adaptive law with and without BF.

The objective is to track the desired joint trajectory provided
that the model parameters are unknown while the state Q =
[q, q̇]T satisfies the following constraints,

q1 ∈ (−1.2, 1.2) q̇1 ∈ (−1.3, 3.1)

q2 ∈ (−1.3, 6.1) q̇2 ∈ (−5.5, 1.1)

To this end, the barrier function formulation presented in
Section II is used along with the adaptive control developed
in Section III.

The feedback and adaptation gains, i.e., β and Λ, and
Γ are selected based on the gain conditions presented in
Theorem 1. The results of the simulation are shown in Figs.
1-3. The joints position evolution q1(t) and q2(t) of a two
degrees-of-freedom planar robot using an adaptive law with
and without BF are shown in Fig. 1. It can be observed
from Fig. 1 that when the adaptive law with BF is used,
the estimated trajectories are blocked from crossing over the
boundaries that are set for each of the joints. The position
and velocity estimation errors are depicted in Fig. 2. From
Figs. 1 and 2, it is clear that the tracking error asymptotically
converges to zero, and, because the Lyapunov candidate does
not contain any terms that are negative definite in θ̃, the
parameter estimation does not converge but it does remain
bounded. Boundedness of the parameter estimation errors
can be seen in Fig. 3.

V. CONCLUSION

An online safe tracking controller for an uncertain multi-
input and multi-output robotic system with full-state con-
straints is developed. With no prior knowledge of the sys-
tem parameters, a barrier function was used to transform
the full-state constrained EL-dynamics into an equivalent
unconstrained system. A controller is developed on the
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Fig. 2. Evolution of the position and velocity joint angles estimation errors
for the planar robot simulation using an adaptive law with BF.
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Fig. 3. Evolution of the parameter estimation error for the planar robot
simulation.

transformed system that tracks the desired trajectories of the
original system. An adaptive law was designed resulting in
the solutions of the constrained dynamics to remain inside a
pre-specified safe region with guarantees on the boundedness
of the parameter estimation error and SGUUB of tracking
errors. The simulation results validate the boundedness of
estimated parameters and that of the tracking errors.
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