

1 A rubric for assessing conformance to the Ten Rules for
2 credible practice of modeling and simulation in healthcare

3

4 Alexandra Manchel^{1,10}, Ahmet Erdemir^{2,10}, Lealem Mulugeta^{3,10}, Joy P. Ku^{4,10}, Bruno V. Rego^{5,10},
5 Marc Horner^{6,10}, William W Lytton^{7,8,10}, Jerry G. Myers, Jr.^{9,10}, Rajanikanth Vadigepalli^{1,10,*}

6

7 ¹ Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia,
8 PA, USA

9 ² Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, OH, USA

10 ³ InSilico Labs LLC, Houston, TX USA

11 ⁴ Department of Bioengineering, Stanford University, Stanford, CA, USA

12 ⁵ Department of Biological & Agricultural Engineering, Louisiana State University, Baton Rouge,
13 LA, USA

14 ⁶ Ansys Inc. Evanston, IL, USA

15 ⁷ Downstate Health Sciences University, Brooklyn, NY, USA

16 ⁸ Kings County Hospital, Brooklyn, NY, USA

17 ⁹ NASA - John H Glenn Research Center, Cleveland, OH, USA

18 ¹⁰ Committee on Credible Practice of Modeling, & Simulation in Healthcare, Interagency
19 Modeling and Analysis Group and Multiscale Modeling Consortium, Bethesda, MD USA

20

21

22 * Corresponding Author

23 Email: rajanikanth.vadigepalli@jefferson.edu

24

25

26 **Abstract**

27 The power of computational modeling and simulation (M&S) is realized when the results are
28 credible, and the workflow generates evidence that supports credibility for the context of use. The
29 Committee on Credible Practice of Modeling & Simulation in Healthcare was established to help
30 address the need for processes and procedures to support the credible use of M&S in healthcare
31 and biomedical research. Our community efforts have led to the Ten Rules (TR) for Credible
32 Practice of M&S in life sciences and healthcare. This framework is an outcome of a
33 multidisciplinary investigation from a wide range of stakeholders beginning in 2012. Here, we
34 present a pragmatic rubric for assessing the conformance of an M&S activity to the TR. This rubric
35 considers the ability of an M&S study to communicate how well the study conforms to the Ten
36 Rules for credible practice and facilitate outreach to a wide range of stakeholders from context-
37 specific M&S practitioners to policymakers. It uses an ordinal scale ranging from Insufficient (zero)
38 to Comprehensive (four) that is applicable to each rule, providing a uniform approach for
39 comparing assessments across different reviewers and different modeling studies. We used the
40 rubric to evaluate the conformance of two computational modeling activities: 1. six viral disease
41 (COVID-19) propagation models, and 2. a model of hepatic glycogenolysis with neural innervation
42 and calcium signaling. These examples were used to evaluate the applicability of the rubric and
43 illustrate rubric usage in real-world M&S scenarios including those that bridge scientific M&S with
44 policymaking. The COVID-19 M&S studies were of particular interest because they needed to be
45 quickly operationalized by government and private decision-makers early in the COVID-19
46 pandemic and were accessible as open-source tools. Our findings demonstrate that the TR rubric
47 represents a systematic tool for assessing the conformance of an M&S activity to codified good
48 practices and enhances the value of the TR for supporting real-world decision-making.

49 **Introduction**

50 The role of computational modeling and simulation (M&S) in healthcare research and
51 clinical practice is expanding at a rapid pace. M&S approaches have been integral to the progress
52 in biomedical sciences and are starting to enable *in silico* and systems medicine efforts [1,2].
53 Computational modeling is relatively new in clinical and biomedical settings, necessitating the
54 standardization of M&S efforts. The addition of standardized practices increases the credibility of
55 the practice of M&S in this area as it has done in other disciplines, such as engineering. This also
56 increases the M&S usefulness and widespread adaptation. Multiple standards have been
57 proposed, both in industry and government, for establishing and ensuring credibility of M&S
58 practices in various engineering fields, including medical devices [3–7]. Similarly, multiple
59 standards exist for systems biology applications, which have been reviewed in Tatka et al. 2023
60 [8], that aim to address conceptual information, nomenclature, data formats, and representations
61 of biochemical systems, and intend to improve the communication and sharing of M&S
62 components.

63

64 In order to promote this standardization process in the biomedical community beyond
65 those working in systems biology, the IMAG/MSM Committee on Credible Practice of Modeling
66 and Simulation in Healthcare developed the “Ten Rules for Credible Practice of Modeling and
67 Simulation in Healthcare” [9]. This framework is an outcome of multidisciplinary input from a wide
68 range of stakeholders [10,11]. These rules aim to establish a unified conceptual framework to
69 design, implement, evaluate, and communicate the activities, products, and outcomes of M&S in
70 the biomedical sciences and clinical care domain. In application, the unified framework enables
71 outreach to the entire M&S user community, ranging from model developers to policy makers to
72 clinicians and other non-M&S practitioners.

73

74 Recently, Tatka et al. [8] reviewed the existing standards for representing and
75 documenting systems biology models. Current standards are limited to agreed-upon modeling
76 formats as a means to share information; however, there is no widely utilized standard for
77 assessing credibility of the practice in this area. As Tatka et al. [8] noted in their review, standards
78 for model annotation must become more widely accepted such that interoperability, reusability,
79 comparability, and comprehension can be improved. Credible practice will also be enhanced
80 when the information needed for simulation and parameter estimation is explicitly defined and
81 stated. Lastly, reproducibility would not be possible without efficient dissemination of all artifacts
82 and proper documentation on an open-source repository platform. When an M&S study conforms
83 to credible modeling practice guidelines at a high level, there is outreach to a wide range of
84 stakeholders, thus with proper dissemination of documentation, one will largely be able to
85 independently reproduce the M&S results. The authors of Tatka et al. [8] note that there is a lack
86 of consensus on quantitative credibility scoring and that a system that addresses this area would
87 provide the community of practice with a metric for comparing the credibility of models and a guide
88 for the development of more credible models.

89

90 The Committee's Ten Rules for Credible Practice of M&S in Healthcare (Table 1)
91 establishes initial standards for systems modeling and beyond [9]. While every effort was made
92 to thoroughly describe and define the rules, it lacks a quantitative, rigorous, and repeatable metric.
93 A consistent application of the rules likely requires a complementary rubric for assessing
94 conformance to the rules and evaluating the credibility of the M&S practice. Such a rubric would
95 be used to assess and communicate various aspects of the Ten Rules (TR), including the validity,
96 level of detail, and overall "correctness" of the M&S practice.

97

98 **Table 1: The Committee's Ten Rules of credible practice of M&S in healthcare [9].**

Rule	Description
------	-------------

1.	Define context clearly	Develop and document the subject, purpose, and intended use(s) of the model or simulation
2.	Use contextually appropriate data	Employ relevant and traceable information in the development or operation of a model or simulation
3.	Evaluate within context	Perform verification, validation, uncertainty quantification, and sensitivity analysis of the model or simulation with respect to the reality of interest and intended use(s) of the model or simulation
4.	List limitations explicitly	Provide restrictions, constraints, or qualifications for or on the use of the model or simulation for consideration by the users or customers of a model or simulation
5.	Use version control	Implement a system to trace the time history of modeling and simulation activities including delineation of each contributors' efforts
6.	Document appropriately	Maintain up-to-date informative records of all modeling and simulation activities, including simulation code, model mark-up, scope and intended use of modeling and simulation activities, as well as users' and developers' guides
7.	Disseminate broadly	Share all components of modeling and simulation activities, including simulation software, models, simulation scenarios and results
8.	Get independent reviews	Have the modeling and simulation activity reviewed by nonpartisan third-party users and developers
9.	Test competing implementations	Use contrasting modeling and simulation implementation strategies to check the conclusions of different strategies against each other
10.	Conform to standards	Adopt and promote generally applicable and discipline specific operating procedures, guidelines, and regulations accepted as best practices

99

100 In principle, a case can be made that each of the Ten Rules in Table 1 needs its own
 101 assessment approach. For example, Rule 1 on defining the context of use can be assessed
 102 according to factors that quantify the level of detail in the documentation of the M&S subject,
 103 scope of the M&S purpose or results and intended use of the M&S results such as to support
 104 clinical decision making, inform regulatory evidence, or to inform next research steps. Additionally,
 105 Rule 3 on model evaluation requires extensive consideration of how the M&S activity and results
 106 are verified and validated, as well as how the assessment is presented to support the intended

107 use. This rule is consistent with U.S. Food and Drug Administration (FDA) guidance and American
108 Society of Mechanical Engineers (ASME) standards for best practices in verification and
109 validation of medical devices [4,12]. However, such a customized, rule-specific assessment
110 approach might become overly complex and unwieldy for consistently evaluating conformance to
111 the Ten Rules.

112

113 To address this issue, the Committee formulated a rubric based on the ability of the M&S
114 to facilitate outreach to a wide range of stakeholders from context-specific M&S practitioners to
115 policymakers. Since there exist various levels of M&S expertise in the healthcare domain, the
116 need for direct and clear communication of M&S results is essential. The development of the Ten
117 Rules rubric facilitates such communication and understanding of computational modeling
118 implementation and simulation results between stakeholders. This includes, but is not limited to,
119 communication between the model developers, M&S practitioners, model end-users, as well as
120 clinicians, policy makers, and other decision makers who depend on the knowledge generated by
121 the M&S. Therefore, the purpose of the rubric is to evaluate and assess an M&S study's
122 conformance to credible practices outlined in the Ten Rules as it pertains to outreach capability.

123

124 Most recently, the global response to the COVID-19 pandemic highlights the need for a
125 systematic assessment of credible practice of M&S across this entire spectrum of stakeholders
126 [13–17]. The role of M&S in providing quantitative insight for COVID-19 spread in the general
127 population was called into question due to a failure to predict early (circa 2020) outbreak dynamics
128 [13]. Nonetheless, the model predictions strongly influenced decision makers due to the ability of
129 M&S practitioners to quickly generate results with a perceived to be high degree of precision
130 superior to available observational statistical analyses. In retrospect, although results were
131 computationally precise, they exhibited lower accuracy than initially anticipated. Model
132 transparency, which includes explicit documentation of model choices, assumptions, the steps in

133 the modeling process, and the expectations for the outputs, provides a reasonable defense
134 against the propagation of misinformation and misunderstanding, such as what occurred during
135 the pandemic [15-16]. In several instances during the pandemic, a model developed for
136 population level COVID-19 spread in a large geographical region was applied to a less
137 appropriately applicable region without significant tuning and modification to account for
138 population-specific demographic, clinical, epidemiological, and other influencing factors [18].
139 Such activities during the early part of the COVID-19 pandemic illustrate how the lack of
140 transparency and independent evaluation reduces the utility of models to inform critical decisions
141 [17]. Informing the user of the M&S results of model context and its intended use, such as through
142 the assessment of its conformance to the “Ten Rules in Healthcare” will greatly minimize the
143 negative impacts on model utility at all levels of application [9]. Such an assessment would not
144 just improve transparency but would enable communication of credible practice of M&S in a
145 comprehensive manner (Table 1; [9]).

146

147 The remainder of the manuscript is organized as follows: First, we describe our process
148 for developing and utilizing the rubric. We then present the rubric and an explanation of its
149 components. Next, we illustrate the application of the rubric in multiple use cases to evaluate its
150 utility in assessing the conformance to the Ten Rules in a consistent manner across multiple
151 reviewers and M&S studies. Finally, we discuss best practices for applying the rubric and possible
152 future extensions.

153

154 **Materials and Methods**

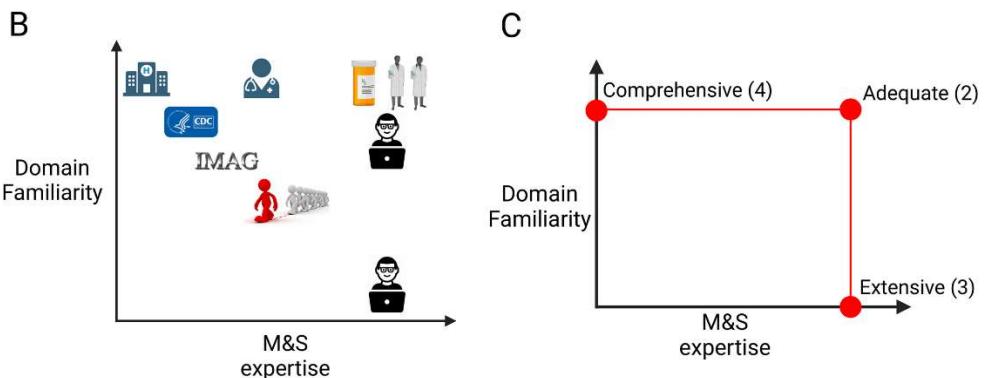
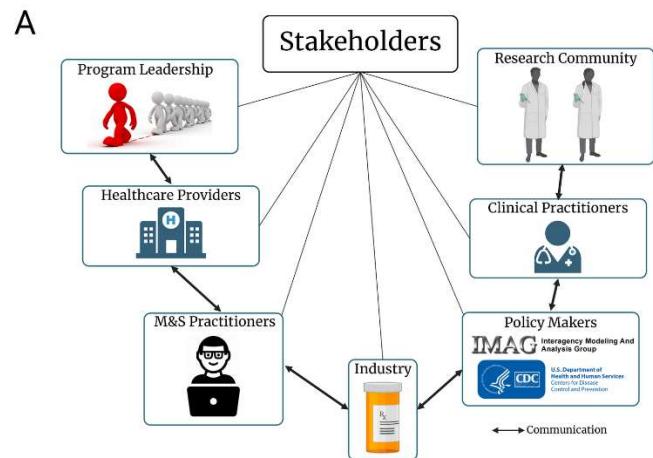
155 **Development of the rubric framework**

156

157 Our proposed rubric can be used to assess and communicate the extent of conformance
158 to the Ten Rules for Credible Practice of M&S based on the capability of outreach to the
159 biomedical and healthcare community (Table 2). The concept of using a rubric for communicating
160 the credibility state of an M&S evolved from challenges in communicating the ten simple
161 assessments at different decision-making levels and in different contextual applications. Thus,
162 the intent of the rubric development, is to bring a concise communication tool to the M&S
163 healthcare community.

164

165 To develop the rubric, the Committee considered requirements of outreach to a wide range
166 of stakeholders (Fig 1A), each of whom has their own distinct use cases and priorities in
167 evaluating an M&S model. For instance, M&S practitioners may want to conduct granular analysis
168 of their own M&S practices, while clinicians are primarily concerned with whether they can trust
169 M&S to inform a clinical practice decision.



170

171 **Table 2. rubric for assessing conformance to the Ten Rules.**

Outreach Capability	Outreach to application-domain experts who may not be M&S practitioners	Outreach to M&S practitioners who may not be application-domain experts	Outreach to application-domain specific M&S practitioners	Outreach to application-domain specific M&S practitioners	None or very limited
Conformance Level	Comprehensive	Extensive	Adequate	Partial	Insufficient
	4	3	2	1	0
Description Level	Can be understood by <u>non-M&S practitioners</u> familiar with the application	Can be understood by M&S practitioners <u>not</u> familiar	Can be understood by M&S practitioners familiar with	<u>Unclear</u> to the M&S practitioners familiar with the application	Missing or grossly incomplete information to properly evaluate the

	domain and the intended context of use	with the application domain and the intended context of use	application domain and the intended context of use	domain and the intended context of use	conformance with the rule
--	--	---	--	--	---------------------------

172

173

174 **Fig 1. Assessing TR rubric conformance to the Ten Rules based on the extent of outreach**

175 **to the stakeholder's domain expertise.** (A) The range of stakeholders that may utilize the rubric.

176 (B) Example distribution of the stakeholders in the stakeholder assessment chart. (C) The

177 conformance levels to each of the Ten Rules based on the extent of outreach to stakeholders

178 along the M&S expertise and domain familiarity axes.

179

180 The Committee developed the rubric framework through an iterative approach. The initial
181 framework had reviewers assess models qualitatively, ranking the conformance of a model to
182 each of the Ten Rules as insufficient, partial, adequate, extensive, or comprehensive (Table 2).
183 The qualitative assessment made it challenging to compare reviewer assessments and derive an
184 overall rating for the model when there existed variability between the individual reviewers'
185 assessments, as in the case of the first COVID-19 model (UPenn's COVID-19 model) to which
186 the Committee applied the rubric. Therefore, a second development of the Ten Rules rubric was
187 implemented. In this development, a scoring system was included such that for each rule, the
188 level of conformance is given a numerical score.

189

190 **Application of the rubric for different use cases**

191

192 We applied the Ten Rules and the rubric to evaluate the M&S practices of several COVID-
193 19 modeling studies with versions released early in the pandemic and available at the time of this
194 study: MIT model [19], IHME model [20,21], CU model [22], NE model [23], ICL model [24], UPenn
195 model [25]. Model details can be found in Table 3. Independent reviews by persons with significant
196 experience in M&S credibility assessment and with some familiarity of the application of M&S in
197 supporting government and medical industry decision making are used to assess each model.

198

199 **Table 3. COVID-19 models tested for their conformance to the Ten Rules.**

Location of Model Development	Model Description	Website	Dates Accessed	References

Massachusetts Institute of Technology (MIT)	A novel epidemiological model for predicting detected cases and deaths in the pre-vaccination era of the COVID-19 pandemic	https://www.covidanalytics.io/	June 2020 September 2020 February 2021	[19]
Institute for Health Metrics and Evaluation (IHME)	A model for predicting possible trajectories of COVID-19 infections and the effects of non-pharmaceutical interventions in the United States	https://www.healthdata.org/covid	June 2020 September 2020 February 2021	[20,21]
Columbia University (CU)	A model to infer critical epidemiological characteristics associated with COVID-19	https://columbia.maps.arcgis.com/apps/webappviewer/index.html?id=ade6ba85450c4325a12a5b9c09ba796c	June 2020 September 2020 February 2021	[22]
Northeastern University (NE)	A model used to study spatiotemporal COVID-19 spread	https://covid19.gleamproject.org/#model	June 2020 September 2020 February 2021	[23]
Imperial College London (ICL)	A model used to study the effect of non-pharmaceutical interventions in controlling the COVID-19 epidemic	https://www.imperial.ac.uk/mrc-global-infectious-disease-analysis/disease-areas/covid-19/covid-19-planning-tools/	June 2020 September 2020 February 2021	[24]

University of Pennsylvania (UPenn)	COVID-19 Hospital Impact Model for Epidemics (CHIME), which was designed to assist hospitals and public health officials with understanding hospital capacity needs during the pandemic	https://penn-chime.phl.io/	April 2020 June 2020 September 2020 February 2021	[25]
------------------------------------	---	---	--	------

200

201 The selection process for the COVID-19 models we evaluated did not take into account
 202 potential conformance to the Ten Rules, but rather addresses the availability of the model and
 203 related information present at the time of the study. As none of the models explicitly followed our
 204 recommended credibility practice, we did not seek to compare the COVID-19 models to determine
 205 which one is the most conformant to the Ten Rules but rather to express our assessment based
 206 on the information provided. Finally, this is not an endorsement or criticism of the M&S practices
 207 utilized for the models tested for conformance to the Ten Rules. Instead, we seek to exemplify
 208 how the rubric is to be employed when testing for M&S conformance and outreach. Additionally,
 209 we note that no attempts were made to reproduce any of the results reported by these models,
 210 nor was any attempt made to assess the scientific validity of the models, assumptions, or
 211 limitations. Instead, we assessed the outreach capability of the models and were interested in
 212 their representation and dissemination.

213

214 Two independent reviewers evaluated the conformance of the UPenn COVID-19 model
 215 (details can be found in Table 3) to the Ten Rules in April 2020. They used the initial, qualitative
 216 rubric. A separate independent reviewer (Reviewer 3) assessed the conformance of the remaining
 217 COVID-19 models to the Ten Rules using the numerical scoring version of the rubric. Reviewer

218 3's original assessment was performed on June 24, 2020 and repeated twice: once on September
219 7, 2020 and again on February 5, 2021.

220

221 Finally, the rubric was applied in a clinically relevant M&S study to evaluate the utility of
222 our approach in assessing the extent of credibility of M&S practices in these contexts of use. In
223 the study, the authors developed a multi-scale, multi-organ model of hepatic metabolism. The
224 authors performed a self-assessment of their model's conformance to the Ten Rules prior to their
225 initial manuscript submission on this model and then reassessed their model during the
226 manuscript revision process.

227

228 **RESULTS**

229 **A generalized rubric based on outreach capability**

230

231 The Committee recognized that the rubric needed to account for the different stakeholders
232 who may be interested in utilizing a model. Assessment of a model's ability to communicate how
233 and if it satisfied each of the Ten Rules would differ greatly depending on the stakeholder.
234 Therefore, in the proposed rubric, the key stakeholder traits are distributed along two axes: their
235 level of M&S expertise and their familiarity with the biological domain (Fig 1B). The stakeholder
236 communities can have different mixtures of M&S expertise and domain familiarity. Individuals with
237 expertise in M&S and the biological domain relevant to the context of use are positioned towards
238 the upper right, while individuals with very little M&S expertise and domain knowledge are
239 positioned towards the lower left. The rubric assesses the conformance to each of the Ten Rules
240 based on the extent of outreach to each group (Fig 1C). For a given rule, if the M&S practice was
241 conducted at a level that is primarily accessible to only those with M&S expertise and domain
242 familiarity, we deem this practice to be conformant to the rule at the Adequate level. If the M&S

243 practice of a given rule is more broadly understood by individuals with M&S expertise without
244 familiarity of the specific biological domain, we deem this practice to be conformant to the rule at
245 the Extensive level. If the M&S practice of a given rule is understood by those familiar with the
246 biological domain but do not have M&S expertise, we deem this practice to be conformant to the
247 rule at the Comprehensive level. Lastly, the M&S practice that is unclear to the M&S practitioners
248 with familiarity of the biological domain is considered as a Partial level of conformance, with
249 missing information assessed as an Insufficient level.

250

251 In this rubric, the model with the highest conformance level (Comprehensive) provides
252 outreach to domain experts who may not be M&S practitioners while the lowest conformance level
253 (Insufficient) does not provide sufficient outreach to any community level. Taken together, this
254 rubric provides a generalized and graded approach to assess the conformance to the Ten Rules
255 (Fig 1C). Table 2 shows a concise representation of the proposed conformance rubric to the Ten
256 Rules of credible practice of M&S in healthcare. The extended rubric can be found in S1 File.

257

258 The rubric does not assess the “correctness” (i.e. the validity or accuracy) of the
259 computational models, but rather analyzes M&S credible practice conformance based largely on
260 two dimensions: M&S experience and scientific domain expertise (Fig 1). We note that the rubric
261 for conformance to the Ten Simples Rules is not an M&S practice accreditation process, but rather
262 a communication tool for analyzing the robustness of the M&S practice employed for a
263 computational model within specifically stated context of use.

264

265 **Assessment criteria for each rule**

266

267 Within each of the Ten Rules (i.e., guiding principles of M&S practice), we specified the
268 detailed criteria to assess the level of conformance and outreach capability to all stakeholders
269 across different application contexts (S1 Table). For instance, Rule #1 is to define the context of
270 use clearly by developing and documenting the application, purpose, and intended uses of the
271 model and simulation (Table 1). In our proposed rubric, an M&S practice conforms to this rule at
272 the highest level (Comprehensive) if:

273 1. a summary of the context definition can be understood by non-M&S practitioners,
274 2. detailed explanation is understandable by experts from the application domain that may
275 not be M&S practitioners, and
276 3. many relevant details are included in the documentation that enable adequate
277 understanding by both application domain-specific and non-domain M&S experts.

278

279 The next levels of conformance are based on whether the context definition was
280 communicated at a level that is a) understandable only by M&S experts, even if they are from
281 outside of the application domain (Extensive); b) restricted to M&S experts with experience in the
282 specific application domain (Adequate); or c) achieved only partially (Partial).

283

284 As another example, Rule #2 is to use contextually appropriate data by employing relevant
285 and traceable information in the development or operation of a model or simulation (Table 1). In
286 our proposed rubric, M&S practice conforms to this rule at the highest level (Comprehensive) if:

287 1. the data used in the M&S development is contextually appropriate,
288 2. all the data used in M&S development and/or operation is traceable to its original source,
289 and
290 3. application-domain experts that are not M&S practitioners can understand which and how
291 the data was used.

292

293 As a general guideline, the level of conformance of an M&S practice to each rule should
294 be assessed systematically by answering the following three questions:

295 1. Does the M&S practice employ the rule as defined by Erdemir et al. (2020)?
296 2. What is its outreach capability, or which types of stakeholders can the M&S practice
297 effectively support?
298 3. How easily can different stakeholders understand the extent to which the rule was applied
299 to the M&S practice?

300

301 It is also important to note that if the answer to the first question is “no” or “uncertain,” the
302 conformance level of the M&S practice for that rule must be scored as 0 (Insufficient). For
303 example, in the case of Rule #2, if the data used in the M&S practice is entirely inappropriate, the
304 answer to the first question would be “no.” As a result, the conformance score for Rule #2 would
305 be 0, regardless of how traceable or well-documented the data is in that M&S practice.

306

307 The detailed criteria corresponding to all of the Ten Rules can be found in S1 Table.

308

309 **Numerical scoring used in the rubric**

310

311 A numerical scoring system was included in the rubric to quantify the assessments with
312 each level of conformance. A conformance level of Insufficient is given a score of 0, while a
313 conformance level of Comprehensive is given a score of 4.

314

315 After the reviewer has completed their assessment of the model's conformance to the
316 rules, a total numeric score can be calculated, thereby allowing for a higher-level understanding
317 of the model's conformance and providing a means of easily comparing assessments between

318 reviewers. Assessment of a model which reaches an overall conformance level of Comprehensive
319 will have a total score in the range [35, 40], while a model with Insufficient conformance will have
320 a total score in the range [0, 5]) (Table 5). The total score is most informative at the high and low
321 extremities, as the M&S study's overall performance can be easily evaluated

322

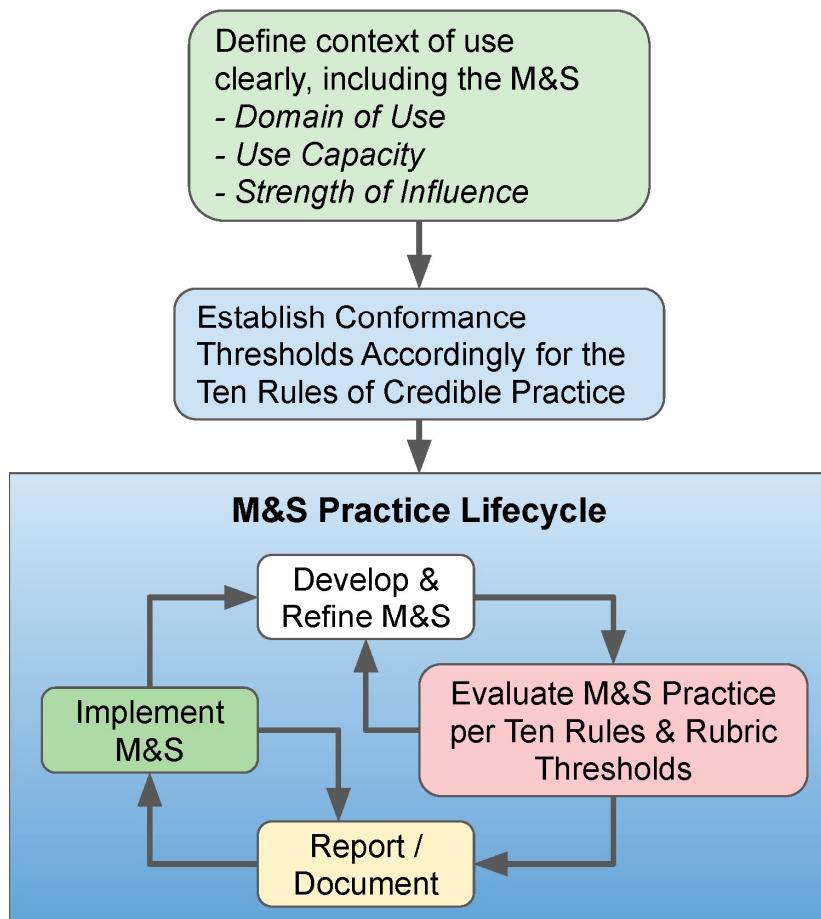
323 **Table 5. Numerical scoring system for assessing conformance to the Ten Rules.**

Conformance Level	Score for each Rule	Score Range for Averaging across Rule	Score Range for Summing all Ten Rules
Comprehensive	4	[3.5, 4]	[35, 40]
Extensive	3	[2.5, 3.5)	[25, 35)
Adequate	2	[1.5, 2.5)	[15, 25)
Partial	1	[0.5, 1.5)	[5, 15)
Insufficient	0	[0, 0.5)	[0, 5)

324

325 If a subset of the TR is not included in a model assessment, the overall scores associated
326 with a given conformance level will need to be adjusted. For example, if two Rules are omitted in
327 the assessment, a Comprehensive conforming model will then have a total score in the range [28,
328 32], rather than [35, 40]. Similarly, Extensive will have a score in the range [20, 28), Adequate will
329 have a score in the range [12, 20), Partial will have a score in the range [4, 12), and Insufficient
330 will have a score in the range [0, 4).

331


332 Numerical scoring also enables the calculation of statistics, such as averages and
333 standard deviations, across multiple assessments for a single rule. When averaging scores
334 across reviewers for a single rule, the score may not be a whole number, which we have
335 accounted for in Table 5, which details the range of conformance scores for each rule.

336

337 **Recommended process for implementing rubric**

338

339 The recommended process for implementing the rubric throughout the M&S life cycle
340 begins with clearly identifying the M&S intended context of use, including M&S domain of use,
341 use capacity, and strength of influence (Fig 2) [9]. Next, the conformance threshold must be
342 established according to the rubric and TR. It is expected that throughout the M&S lifecycle there
343 is to be further development and refinement of the model, thereby necessitating evaluation of the
344 updated M&S per the Ten Rules and rubric thresholds. Following this assessment, there should
345 be clear documentation and then implementation of the M&S. Additionally, when implementing
346 the M&S activities, further reporting and documentation may be needed.

347
348
349 **Fig 2. Recommended process for implementing the TR rubric throughout the M&S**
350 **lifecycle.**
351

352 **Illustrative application of the rubric to assess COVID-19 M&S**
353 **practice**

354

355 We applied the Ten Rules and the rubric to evaluate the M&S practices of several COVID-
356 19 modeling studies, as described in the Methods. Table 4 illustrates a summary of our two
357 independent reviewer processes to evaluate the conformance to the Ten Rules of the UPenn
358 COVID-19 model in April 2020. The complete assessment and conformance testing made by
359 Reviewer 1 can be found in S2 File, and by Reviewer 2 in S3 File. Briefly, Reviewer 1 and 2
360 disagreed on the conformance level of the UPenn COVID-19 model for five of the ten rules (Rule
361 #1, #2, #4, #8, and #10). Despite this variability, the overall conformance of the model as tested
362 using the numeric scoring system resulted in Reviewer 1's overall score of 21 and Reviewer 2's
363 overall score of 20. Both reviewers agreed that the overall conformance of the model was
364 Adequate in that the model can be understood by those with expertise in M&S and the biological
365 domain. Thus, the scoring system facilitates comparisons between reviewers, assessments for
366 each individual rule, and also a model's overall conformance. In the present rubric, the total
367 assessment acts like an average, rather than a sum, of the individual rule assessments and is
368 presented as representing an overall conformance using the same category scale as used for
369 each individual rule.

370

371 **Table 4. Independent reviewer assessment of the UPenn COVID-19 model's conformance**
372 **to the Ten Rules.**

Rule	Conformance Level		Same Conformance across Reviewers?
	Reviewer 1	Reviewer 2	
1. Define context clearly	Comprehensive	Adequate	No
2. Use contextually appropriate data	Adequate	Partial	No
3. Evaluate within context	Insufficient	Insufficient	Yes
4. List limitations explicitly	Adequate	Partial	No

5.	Use version control	Extensive	Extensive	Yes
6.	Document appropriately	Extensive	Extensive	Yes
7.	Disseminate broadly	Comprehensive	Comprehensive	Yes
8.	Get independent reviews	Insufficient	Partial	No
9.	Test competing implementations	Partial	Partial	Yes
10.	Conform to standards	Adequate	Comprehensive	No

373

374 A separate independent reviewer (Reviewer 3) assessed the conformance of the
 375 remaining COVID-19 models to the Ten Rules. For each of these model assessments, Rule #3
 376 (Evaluate within context) and Rule #9 (Testing competing implementations) were not examined
 377 as these rules posed the greatest uncertainty and required in-depth knowledge of the model
 378 structure and development. Here, for simplicity, we discuss the results from the most recent
 379 assessment on February 5, 2021; however, extensive commentary from each assessment is
 380 documented in S4 File. The most recent assessment of the MIT COVID-19 model's conformance
 381 to the Ten Rules is exemplified in Table 6, and the reviewer's reasoning for each conformance
 382 score is highlighted in the Comments column of the table. Despite the reviewer-assessed overall
 383 model conformance level being Extensive, the total score was 18-19, which would point towards
 384 an overall conformance level of Adequate. The scoring system introduced in the Methods section
 385 provides reviewers with the ability to properly evaluate their complete assessment of model
 386 conformance to the Ten Rules in a more quantitative manner. Reviewer 3 followed the same
 387 protocol for assessing conformance of the remaining COVID-19 models to the Ten Rules. The
 388 models' conformances to the Ten Rules can be found in Table 7 and the detailed assessments
 389 can be found in S4 File. The overall conformance across the COVID-19 models assessed by
 390 Reviewer 3 were between Adequate and Extensive. All of the COVID-19 models have shown
 391 improvement according to the Ten Rules rubric following reassessment.

392

Table 6. Reviewer 3's assessment of the MIT COVID-19 model's conformance to the Ten Rules.

Rule	Conformance Level	Conformance Level Score	Comments
1. Define context clearly	Extensive	3	- A critical tool for COVID-19 planning that charts the progression of the pandemic across the United States and the world.
2. Use contextually appropriate data	Extensive	3	- Country-level projections are modeled based on historical data to increase the accuracy of future predictions. - Data is aggregated over 100 published clinical studies and preprints released between December 2019 and March 2020. - Declaration of collaborators and partner institutions that provide data and insights to model development team.
4. List limitations explicitly	Adequate	2	- Differences between Johns Hopkins University map and MIT cases reported - Total counts only account for countries in which they have sufficient data and where the pandemic is currently active. - Limitations explicitly stated in the paper
5. Use version control	Extensive	3	- Extensive documentation on differences between versions and updates. - Model codes are available on Github: https://github.com/COVIDAnalytics/DELPHI
6. Document appropriately	Extensive	3	- Model documentation contains the system of equations and rates. - Code is well documented and there are detailed instructions on how to reproduce the results.
7. Disseminate broadly	Extensive	3	- Model results regularly published with interactive graphics.

			<ul style="list-style-type: none"> - Results, data, models and simulations are openly available to the public and scientific community.
8. Get independent reviews	Insufficient/Partial	0-1	<ul style="list-style-type: none"> - Paper with scientific findings published in [19]
10 Conform to standards	Partial	1	<ul style="list-style-type: none"> - Codes are written in Python and Mathematica and data is provided in comma-separated variables (CSV) format.
Overall Conformance	Extensive	18-19	<ul style="list-style-type: none"> - The epidemiologically based model is disseminated broadly and provides links to model descriptions and data sources from their project website. - The code utilized in the research is accessible to the public via a GitHub repository and the model limitations are adequately described.

395

396 **Table 7. Reviewer 3 assessment of COVID-19 model conformances to the Ten Rules.**

Rule	Conformance Level (Score)				
	IHME Model	CU Model	NU Model	ICL Model	Average Conformance across models
1. Define context clearly	Extensive (3)	Extensive (3)	Extensive (3)	Adequate/Extensive (2-3)	Extensive (2.75)
2. Use contextually appropriate data	Extensive (3)	Extensive (3)	Adequate/Extensive (2-3)	Adequate/Extensive (2-3)	Extensive (2.5)
4. List limitations explicitly	Partial (1)	Adequate (2)	Adequate (2)	Adequate (2)	Adequate (1.75)
5. Use version control	Adequate/Extensive (2-3)	Adequate (2)	Insufficient (0)	Extensive (3)	Adequate (1.75)
6. Document appropriately	Adequate (2)	Adequate (2)	Extensive (3)	Extensive (3)	Extensive (2.5)
7. Disseminate broadly	Adequate/Extensive (2-3)	Adequate/Extensive (2-3)	Adequate/Extensive (2-3)	Adequate/Extensive (2-3)	Adequate (2)

8. Get independent reviews	Adequate/ Extensive (2-3)	Extensive (3)	Adequate (2)	Extensive (3)	Extensive (2.5)
10 Conform to standards	Partial (1)	Partial (1)	Insufficient (0)	Partial (1)	Partial (0.75)
Overall Conformance	Adequate (16)	Adequate (18)	Adequate (14)	Adequate (18)	Adequate (16.5)

397

398 Following Reviewer 3's assessment of the five COVID-19 model conformances to the Ten
 399 Rules, we analyzed the results to identify the rules to which the models were least conformant. If
 400 a model was between two conformance levels for a given rule, the lower conformance level was
 401 used in the comparative analysis. The average numerical conformance score across all models
 402 for each rule was assessed. Those with an average score lower than 1.5 meant that the
 403 conformance level was at most Partial. The only rule that met this requirement was Rule #10:
 404 Conform to standards. In all COVID-19 models assessed by Reviewer 3, the conformance levels
 405 of the models to Rule #10 was either Partial or Insufficient, meaning the M&S practice of
 406 conforming to standards was incompletely stated (Partial conformance score) or insufficient
 407 evidence was presented to support conformance to standards (Insufficient conformance score)
 408 as assessed by M&S practitioners familiar with the application domain and the intended context
 409 of use. In order for the COVID-19 models to increase their conformance levels to Rule #10 of the
 410 Ten Rules, the models should have been implemented using community standards and formats.
 411 The associated documentation should lay out the details on the standards including version
 412 numbers and any exceptions or deviations that influence the use of the model. For instance, the
 413 IHME COVID-19 model is written in the widely used Python programming language; however, the
 414 model has not yet been configured for use outside of the internal IHME infrastructure. The current
 415 Partial conformance to Rule 10 can be increased to Adequate and possibly Extensive if IHME
 416 provides sufficient evidence for following appropriate standards such as Python style guides and
 417 statistical modeling standards (e.g., The American Statistical Association's Ethical Guidelines for
 418 Statistical Practice).

419

420 **Illustrative application of the rubric to M&S of liver metabolism**

421

422 The rubric was applied to a clinically relevant M&S study by Verma et al. [26] in which the
423 authors developed a multi-scale, multi-organ model of hepatic metabolism. The authors
424 performed a self-assessment of their model's conformance to the Ten Rules prior to their initial
425 manuscript submission and then re-assessed their model during the manuscript revision process.
426 Below is a summary of the author's self-assessment included with the manuscript as a way to
427 illustrate the application of the rubric.

428

429 **Rule #1 (Define context clearly):** The authors provided a detailed description of the
430 model's context written using terminology familiar to non-M&S practitioners who are
431 knowledgeable about the application domain, so the authors described the model's conformance
432 to Rule #1 (Define context clearly) as Comprehensive (score = 4). Briefly, the authors described
433 that the primary goal of the model was to evaluate the role of neural signals in controlling the
434 metabolic functionality of the liver, particularly in regulating the glycogenolysis to maintain
435 appropriate responses to hormonal signals to meet the systemic glucose demands. The biological
436 domain, structures, spatial scales, and time scales are explicitly stated. Additionally, the authors
437 included an explanation of other uses for the model, which include exploration of the effect of
438 dietary intake and insulin resistance in promoting a hepatic steatosis-like phenotype in the context
439 of innervation, calcium signaling and central nervous system (CNS) activation.

440

441 **Rule #2 (Use contextually appropriate data):** The authors believed their model
442 conformed to an Extensive (score = 3) level for Rule #2 since the *in vitro*, *ex vivo*, *in vivo* preclinical

443 and human subject data used for model building and validation was confirmed to meet the detailed
444 data requirements for consistency and explicit description of data heritage.

445

446 **Rule #3 (Evaluate within context):** The authors' self-assessed conformance level was
447 Extensive (score = 3) since verification and validation of the model output was explicitly described
448 and performed by both the developer and a third-party lab member not involved in the study.
449 Additionally, the authors state that during the revision process, there was extensive validation
450 performed as the model was recalibrated based on experimental hepatic calcium dynamics and
451 catecholamine secretion in humans during periods of increased exercise.

452

453 **Rule #4 (List limitations explicitly):** The model's conformance was considered to be
454 Comprehensive (score = 4) as all limitations were explicitly provided. In addition, the limitations
455 were detailed in a manner that is understandable by experts in the liver physiology and pathology
456 domain, even if they are not M&S experts. An example limitation was that the model was
457 parameterized the same for simulating human-like and rodent-like extents of innervation and only
458 differed by the extent of innervation, which does not use M&S terminology but states the issue in
459 biomedical terms. Note that in the study Verma et al. [26] did not explicitly state the quantitative
460 levels of M&S prediction error arising from the explicitly stated limitations. Under the rubric, those
461 details are not required. There just needs to be sufficient information for an individual to
462 understand under which conditions a model should not be used.

463

464 **Rule #5 (Use version control):** The model's conformance was considered to be
465 Extensive (score = 3) as the evolution of the model and the various versions are explicitly
466 documented on GitHub. GitHub is a platform familiar to M&S practitioners but not necessarily to
467 experts in the liver physiology and pathology domain. Hence, the conformance level was not
468 considered Comprehensive (score = 4).

469

470 **Rule #6 (Document appropriately):** The model's conformance level is Extensive (score
471 = 3) as comments were provided in the model code, the scope and intended use were described
472 in the main text, and a user guide for M&S practitioners was described in the main text and
473 supplemental files. During the revision process, the model alternative was explained in the main
474 text and an additional supplemental figure was included to detail the results of the model
475 alternative. The user guide was utilized by the independent reviewer (see Rule 8 below) with M&S
476 expertise but little domain familiarity, demonstrating the Extensive level of conformance to Rule
477 6.

478

479 **Rule #7 (Disseminate broadly):** The conformance level was considered as Extensive
480 (score = 3) as the simulations, results and implications were described in the main text and the
481 model files are present in the supplementary material and on GitHub. The software used for this
482 M&S study (Matlab, XPP and a Matlab/XPP interface) are all publicly available either freely or for
483 a fee. The links to these resources and code files were included in the manuscript, enabling
484 potentially Extensive dissemination.

485

486 **Rule #8 (Get independent reviews):** The self-assessed model conformance was
487 Extensive (score = 3), as a member of the research group not involved in the study or field
488 performed a review. We note that in order to minimize the bias in the assessment, an internal
489 review, even by a member of the group not involved in the study, is more appropriately scored as
490 a 2 (Adequate). An outside review (outside the primary research groups that conducted the study
491 or even outside the study authors' institutions) could be considered as a 3 (Extensive), and a
492 multi-person independent cross-institutional review, particularly by non-M&S practitioners, could
493 be scored at 4 (Comprehensive).

494

495 **Rule #9 (Test competing implementations):** The conformance level only reached a
496 conformance level of Adequate (score = 2) as competing implementations were tested and
497 compared by the first three authors of the paper during the initial manuscript preparation.
498 Furthermore, the competing implementations could only be understood by M&S practitioners
499 familiar with the application domain and the intended context of use, thus justifying the Adequate
500 conformance level. During the manuscript revision stage, the model was further revised, leading
501 to its refinement and improvement. The main text was also updated to include the changes made
502 to the model during revision.

503

504 **Rule #10 (Conform to standards):** The model's conformance was considered Adequate
505 (score = 2) as the model was implemented and simulated in a widely used platform for multiscale
506 modeling (Matlab, in this case), along with another freely available and popular software, XPP.
507 Following best coding practices described in Wilson et al. [27] and Hunter-Zinck et al. [28], the
508 model code is commented at critical locations to aid the reader as well. Although the model was
509 documented and disseminated using publicly available online platforms such as GitHub and open
510 access manuscript supplementary material in conformance with rule #7, there was limited
511 evidence of following the operating procedures, guidelines and standards as described in the
512 credible practice of M&S in healthcare: ten rules from a multidisciplinary perspective [9].

513

514 The complete self-assessment for this model is included as a supplement to this
515 manuscript (S5 File).

516

517 The computational modeling and simulation study of hepatic metabolism has an overall
518 conformance level of Extensive (total numeric score = 30). Therefore, the overall practice of M&S
519 for this biological scenario can be understood by M&S practitioners not familiar with the
520 application domain and intended context of use. For this example, M&S practice to reach a

521 Comprehensive level of conformance to the TR, the authors would need to incorporate additional
522 features into the study. For example, a detailed step-by-step user's and developer's guide such
523 that a non-M&S practitioner can replicate the M&S results would improve the score corresponding
524 to Rule #6. Additionally, the authors could follow a stricter set of operating procedures and
525 guidelines such that the M&S study appropriately conforms to modeling standards in
526 representation, software code and documentation (Rule #10). Lastly, the authors could more
527 comprehensively test and formally document competing implementations of their model for
528 improving the score on Rule #9.

529

530 **Discussion**

531

532 We have described a rubric that specifies detailed criteria for assessing the level of
533 conformance to the Ten Rules for Credible Practice of M&S in Healthcare. The rubric is based on
534 the outreach capability of an M&S practice across a wide range of stakeholder communities
535 including program leadership, healthcare providers, policy makers and clinical practitioners. The
536 rubric establishes a generalized and graded approach to assess levels of conformance from
537 lowest (Insufficient) to highest (Comprehensive). We have illustrated the application of this rubric
538 in two contexts of use including COVID-19 studies and a liver metabolism model. In the context
539 of assessing COVID-19 studies, we evaluated the consistency of applying the rubric across
540 multiple reviewers. We proposed a scoring scheme that provides a consistent process for M&S
541 assessments and identification of critical credibility conformance gaps across a range of
542 reviewers' familiarity levels. The Ten Rules augmented with the rubric aims to provide a
543 generalized approach for the development and evaluation of the credible practice of M&S in
544 translational and fundamental research endeavors aimed at *in silico* support of systems medicine
545 efforts.

546

547 Assessing the outreach capability of an M&S study is useful for those within and outside
548 of a specific scientific discipline. It enables clear communication and application across various
549 stakeholder groups. For example, through the use of the Ten Rules and TR rubric, those working
550 in an industrial setting can easily understand and implement the M&S practices undertaken by
551 the academic research community. Additionally, these parties can communicate to policy makers
552 and higher-level stakeholders that can take action and employ a new development of the Ten
553 Rules and TR rubric to suit their needs. The continuous evolution of the rubric as seen with the
554 implementation of a numerical scoring system for conformance illustrates a framework that is
555 driven by refinement and improvement by the healthcare community.

556

557 The TR rubric was introduced to expand the reviewer's utilization of the Ten Rules.
558 Specifically, the introduction of the rubric concept is aimed at expanding the focus of the reviewer
559 from solely evaluating a model based on its validity and accuracy, to including the assessments
560 of how supporting information regarding the M&S credibility engages the community beyond those
561 who are familiar with M&S and the context of use. It is important to note, however, that not every
562 M&S needs to meet a score of Comprehensive to be acceptable. For example, for a
563 Comprehensive conformance level, the outreach is to non-M&S practitioners familiar with the
564 application, while a conformance level of Extensive can be understood by M&S practitioners not
565 familiar with the domain and context of use. Therefore, depending on the use of the model, an
566 Extensive conformance level may be more appropriate than a Comprehensive conformance level.

567

568 Assessment of the five discussed COVID-19 model conformances to the Ten Rules shows
569 the value of utilizing such a rubric that prioritizes outreach capability. Specifically, it shows the
570 Ten Rules and TR rubric can establish a cumulative assessment of the TR that has improved
571 consistency in evaluation at each competency level, which was a critical need for decision making

572 support as illustrated by the application to COVID-19 models. Multiple reviewers assessed the
573 conformance of the UPenn COVID-19 model to the Ten Rules. There were notable differences in
574 how the reviewers viewed the supporting credibility evidence, which illustrated that the reviewer's
575 experience level, and their understanding of the context of use relative to the models' intended
576 use, can influence the evaluation. This influence appeared to be nearly orthogonal to the
577 underlying credibility factor domains, leading to the investigation into a more granular and defined
578 TR rubric.

579

580 Following the updated rubric application, the consistency of findings between reviewers of
581 similar backgrounds was improved, especially if we consider the consolidated or summed
582 conformance scoring where both reviewers' scores correspond to an overall model conformance
583 level of Adequate.

584

585 The assumption that each rule's contribution is equally weighted with respect to the global
586 conformance introduces a limitation in the assessment scheme. For instance, it is possible to
587 accumulate an overall score in the Adequate or Extensive range and still have conformance to
588 one or more individual TR be characterized as Insufficient. This suggests a comprehensive
589 reporting that is more representative of the individual scores may be necessary to communicate
590 the complete M&S credibility outreach picture. An option is to use tailored decision ranking tools
591 such as pairwise comparison and analytical hierarchical processes (AHP) to capture specific
592 community best practice principles by effectively weighting the individual credibility rules.
593 Although the pairwise and AHP approaches may provide domain specific consistency, it is a
594 recommended best practice to provide the set of conformance scores for individual rules as well
595 as the global conformance score when delivering these assessments to decision makers in order
596 to ensure appropriate communications levels. In this case, the rubric assessed 10 rules that can
597 be grouped into representations tailored for the technical or decision-making community. A

598 proposed method is illustrated in Table 8 representing a grouping of the Ten Rules to derive
599 categorical scores for Development, Application and Supporting Evidence aspects for use in
600 regulatory applications.

601

602 **Table 8. Example of categorizing the TR and rubric assessments to support regulatory**
603 **applications according to Reviewer 1's assessment of the UPenn COVID-19 model's**
604 **conformance to the Ten Rules.**

Development		Application		Supporting Evidence		Overall
Rule 1	4	Rule 2	2	Rule 6	3	Summary Score 2.1
Rule 3	0	Rule 4	2	Rule 7	4	
Rule 5	3			Rule 8	0	
Rule 10	2			Rule 9	1	
Development Score 2.25		Application Score 2		Supporting Evidence Score 2		

605
606 The proposed numerical score has its limitations, i.e., a moderate score does not directly
607 inform the intended audience of the individual conformance levels for each of the TR. However,
608 at the high and low extremities, one can readily determine exceptional vs. poor M&S conformance
609 to credible modeling practices using the proposed summative scoring method. A more granular
610 numerical scoring approach can help develop a deeper understanding of the M&S study's
611 conformance level when the summative total numerical score across the TR is in the moderate
612 range. Our alternative approach for a categorized rubric with combined numerical scores for M&S
613 Development (including Rules 1, 3, 5, and 10), M&S Application (Rules 2 and 4), and M&S
614 Supporting Evidence (Rules 6, 7, 8, and 9) strikes a balance. Another alternative is to develop
615 visual representations, for example using radar/spider plots, that can illustrate the multiple levels
616 of conformance across the TR without combining into a single numerical score.

617

618 There is additional need and opportunity for streamlining the assessment of M&S activities
619 using the Ten Rules and TR rubric in addition to other associated frameworks. For instance, it
620 may take a significant amount of time to perform the assessment manually. Therefore, automating
621 components of the assessment may provide a capability of assessing the M&S results and
622 associated literature in an unbiased manner. This would be a boon to many communities of
623 practice, especially the healthcare community. A more systematic approach could be taken such
624 that the wider scientific community and stakeholders of the Ten Rules and TR rubric can be
625 included. The Interagency Modeling and Analysis Group (IMAG) and the Multiscale Modeling
626 (MSM) consortium are examples of two groups with significant roles in formulating and developing
627 the Ten Rules and TR rubric. As they both serve a joint purpose of serving the scientific
628 community and providing a collaborative platform to outline good practice of simulation-based
629 medicine, it may be possible to look to their leadership and guidance in systematizing and
630 automating unbiased assessment processes [10].

631
632 While a community effort is valuable to progress and implement the ideologies of the Ten
633 Rules and TR rubric, a specific set of guidelines must be established to ensure proper
634 employment. An excellent example of successful first steps in this direction lies with The
635 Physiome scientific journal. The Physiome is an open access journal that, for a small fee, confirms
636 the reproducibility and reusability of the models according to the Ten Rules. By adopting the Ten
637 Rules and TR rubric for M&S credibility, journal curators established that published models
638 generally only conform to an Adequate level of outreach. Implementing an additional guideline in
639 which the model must meet an overall conformance level of Extensive for publication into the
640 journal may promote the benefits of M&S outreach capability to the scientific community.

641
642 Future implementations of the Ten Rules and TR rubric could consider how the credible
643 practice for assessment of an M&S practice may be transferable from one context to another. For

644 example, another context of use was noted for the model of liver metabolism. However, the
645 reviewers did not assess the model in this alternate context. It is an open question as to how the
646 assessments of the Ten Rules can be applied to the alternate contexts of use and under what
647 conditions this can occur. It may be the case where the previous assessments of only some of
648 the Rules can be transferred while others may be “non-transferable”. Additionally, M&S practices
649 may be altered at different user levels. For instance, it may not be appropriate to use a model
650 built on data from a local hospital system and apply the model at the national scale. Furthermore,
651 the transferability issue has implications for assessing the conformance of ensemble models, or
652 a single model that contains multiple diverse models, to the Ten Rules. One potential solution
653 may be to provide reasoning for including each of the models into the greater ensemble model in
654 the same way that a single equation within an ordinary differential equation (ODE)-based model
655 would be explained.

656

657 In an additional future implementation, we propose that the current rules and rubric can
658 be adjusted to more explicitly account for patient-specific/digital twin models as they begin to be
659 utilized in the clinical setting. An updated and extended set of rules and practices may be
660 developed for assessing and ensuring the credibility of these models. The need for an updated
661 list of rules is essential in the personalized modeling realm as the current methods lack
662 consistency and credibility, especially within the clinic. Additionally, the Ten Rules may not be
663 adequate in assessing the complexity and detail required for digital twin modeling. The updated
664 and extended rules for digital twin modeling can then be used as a guide during the developmental
665 stages of model development to avoid the problems seen with current digital twin efforts as
666 previously discussed. Future modeling efforts that are guided by future implementations of the
667 rules may also establish more trust and interaction between the modeler and clinician, thereby
668 bridging the gap that currently exists in translating computational models from research into the
669 healthcare field.

670
671 The TR rubric is used to assess a model's conformance to the Ten Rules for credible
672 practice in M&S in healthcare. It is highly recommended that the M&S activity in the healthcare
673 domain reaches either a conformance level of Comprehensive or Extensive. Both conformance
674 levels have their own intended outreach capability as Comprehensive models can be understood
675 by **non**-M&S practitioners familiar with the application domain and the intended context of use
676 while Extensive models can be understood by M&S practitioners **not** familiar with the application
677 domain and the intended context of use. Thus, defining which group must use the M&S results to
678 support their decision is of utmost importance. The outreach goal for a given model is to be as
679 clear and comprehensible to as broad an audience as possible such that the model can be widely
680 adopted.

681
682 In conclusion, we formulated a rubric that promotes consistent and continuous evolution
683 and testing of M&S practices such that one can reach the appropriate outreach level. In addition
684 to the evolution of individual models, the TR rubric may evolve to meet the needs of its users as
685 one continues to test its conformance to the Ten Rules. The development of the TR rubric has
686 initiated a large community effort to assess the outreach, reproducibility, replicability, and
687 credibility of M&S studies in the scientific healthcare domain.

688
689 **Acknowledgments**

690 The authors would like to acknowledge the Interagency Modeling and Analysis Group and the
691 Multiscale Modeling Consortium, who enabled activities of the Committee on Credible Practice
692 of Modeling & Simulation in Healthcare. We would also like to thank the individual contributions
693 of the Committee members who continue to help advance the efforts of the Committee but were
694 not able to contribute to this manuscript.

695 **References**

696 1. VPH Institute | Virtual Physiological Human - International non-profit organisation
697 [Internet]. [cited 2023 Feb 14]. Available from: <https://www.vph-institute.org/>

698 2. European Virtual Human Twin [Internet]. [cited 2023 Apr 21]. Available from:
699 <https://www.edith-csa.eu/>

700 3. National Aeronautics and Space Administration. Standard for Models and Simulations.
701 NASA. 2024;Report No.: NASA-STD-7009.

702 4. V&V40 A. Assessing credibility of computational modeling through verification and
703 validation: application to medical devices. The American Society of Mechanical Engineers
704 (ASME). 2018;

705 5. National Research Council of National Academies. Assessing the Reliability of Complex
706 Models. National Research Council. 2012;

707 6. Pathmanathan P, Aycock K, Badal A, Bighamian R, Bodner J, Craven BA, et al.
708 Credibility assessment of in silico clinical trials for medical devices. PLoS Comput Biol.
709 2024 Aug 8;20(8):e1012289.

710 7. FDA. Assessing the Credibility of Computational Modeling and Simulation in Medical
711 Device Submissions. 2023;

712 8. Tatka LT, Smith LP, Hellerstein JL, Sauro HM. Adapting modeling and simulation
713 credibility standards to computational systems biology. J Transl Med. 2023 Jul
714 26;21(1):501.

715 9. Erdemir A, Mulugeta L, Ku JP, Drach A, Horner M, Morrison TM, et al. Credible practice
716 of modeling and simulation in healthcare: ten rules from a multidisciplinary perspective. J
717 Transl Med. 2020 Sep 29;18(1):369.

718 10. Mulugeta L, Erdemir A. Committee on credible practice of modeling and simulation in
719 healthcare. ASME 2013 Conference on Frontiers in Medical Devices: Applications of
720 Computer Modeling and Simulation. ASME; 2013. p. V001T10A015.

721 11. Erdemir A, Guess TM, Halloran JP, Modenese L, Reinbolt JA, Thelen DG, et al.
722 Commentary on the integration of model sharing and reproducibility analysis to scholarly
723 publishing workflow in computational biomechanics. IEEE Trans Biomed Eng. 2016
724 Oct;63(10):2080–5.

725 12. Strategic Plan for Regulatory Science | FDA [Internet]. [cited 2023 Oct 16]. Available
726 from: <https://cacmap.fda.gov/science-research/advancing-regulatory-science/strategic->
727 [plan-regulatory-science](https://cacmap.fda.gov/science-research/advancing-regulatory-science/strategic-plan-regulatory-science)

728 13. Kuhl E. Data-driven modeling of COVID-19-Lessons learned. Extreme Mechanics
729 Letters. 2020 Oct;40:100921.

730 14. Panovska-Griffiths J. Can mathematical modelling solve the current Covid-19 crisis?
731 BMC Public Health. 2020 Apr 24;20(1):551.

732 15. Barton CM, Alberti M, Ames D, Atkinson J-A, Bales J, Burke E, et al. Call for
733 transparency of COVID-19 models. *Science*. 2020 May 1;368(6490):482–3.

734 16. Bunker D. Who do you trust? The digital destruction of shared situational awareness and
735 the COVID-19 infodemic. *Int J Inf Manage*. 2020 Dec;55:102201.

736 17. Reps JM, Kim C, Williams RD, Markus AF, Yang C, Duarte-Salles T, et al.
737 Implementation of the COVID-19 Vulnerability Index Across an International Network of
738 Health Care Data Sets: Collaborative External Validation Study. *JMIR Med Inform*. 2021
739 Apr 5;9(4):e21547.

740 18. Newton AJH, Chartash D, Kleinstein SH, McDougal RA. A pipeline for the retrieval and
741 extraction of domain-specific information with application to COVID-19 immune
742 signatures. *BMC Bioinformatics*. 2023 Jul 20;24(1):292.

743 19. Li ML, Bouardi HT, Lami OS, Trikalinos TA, Trichakis N, Bertsimas D. Forecasting
744 COVID-19 and Analyzing the Effect of Government Interventions. *Oper Res*. 2022 Jun
745 10;

746 20. IHME COVID-19 health service utilization forecasting team, Murray CJ. Forecasting the
747 impact of the first wave of the COVID-19 pandemic on hospital demand and deaths for
748 the USA and European Economic Area countries. *medRxiv*. 2020 Apr 26;

749 21. IHME COVID-19 Forecasting Team. Modeling COVID-19 scenarios for the United
750 States. *Nat Med*. 2021 Jan;27(1):94–105.

751 22. Li R, Pei S, Chen B, Song Y, Zhang T, Yang W, et al. Substantial undocumented
752 infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2). *Science*.
753 2020 May 1;368(6490):489–93.

754 23. Chinazzi M, Davis JT, Ajelli M, Gioannini C, Litvinova M, Merler S, et al. The effect of
755 travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak.
756 *Science*. 2020 Apr 24;368(6489):395–400.

757 24. Flaxman S, Mishra S, Gandy A, Unwin HJT, Mellan TA, Coupland H, et al. Estimating
758 the effects of non-pharmaceutical interventions on COVID-19 in Europe. *Nature*. 2020
759 Aug;584(7820):257–61.

760 25. Weissman GE, Crane-Droesch A, Chivers C, Luong T, Hanish A, Levy MZ, et al. Locally
761 Informed Simulation to Predict Hospital Capacity Needs During the COVID-19 Pandemic.
762 *Ann Intern Med*. 2020 Jul 7;173(1):21–8.

763 26. Verma A, Manchel A, Narayanan R, Hoek JB, Ogunnaike BA, Vadigepalli R. A spatial
764 model of hepatic calcium signaling and glucose metabolism under autonomic control
765 reveals functional consequences of varying liver innervation patterns across species.
766 *Front Physiol*. 2021 Nov 26;12:748962.

767 27. Wilson G, Aruliah DA, Brown CT, Chue Hong NP, Davis M, Guy RT, et al. Best practices
768 for scientific computing. *PLoS Biol*. 2014 Jan 7;12(1):e1001745.

769 28. Hunter-Zinck H, de Siqueira AF, Vásquez VN, Barnes R, Martinez CC. Ten simple rules
770 on writing clean and reliable open-source scientific software. *PLoS Comput Biol*. 2021
771 Nov 11;17(11):e1009481.

772 **Supporting Information**

773 **S1 File.** The extended Ten Simple Rules rubric with detailed criteria.

774 **S2 File.** Reviewer 1's complete assessment and conformance testing to the Ten Simple Rules

775 using the rubric applied to the COVID-19 modeling studies.

776 **S3 File.** Reviewer 2's complete assessment and conformance testing to the Ten Simple Rules

777 using the rubric applied to the COVID-19 modeling studies.

778 **S4 File.** Reviewer 3's complete assessment and conformance testing to the Ten Simple Rules

779 using the rubric applied to the COVID-19 modeling studies.

780 **S5 File.** The complete self-assessment and conformance testing to the Ten Simple Rules using

781 the rubric applied to the Verma et al. (26) multi-scale, multi-organ model of hepatic metabolism.