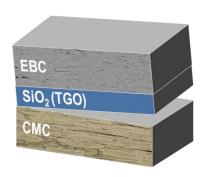


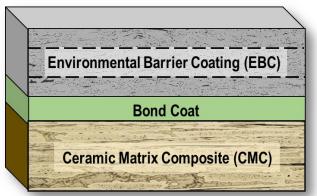
Environmental Testing Of High Temperature Materials and Coatings

Craig Robinson

Chief, Environmental Effects and Coatings Branch NASA Glenn Research Center, Cleveland OH 44135

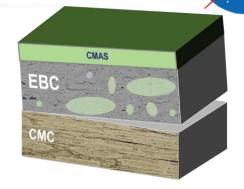

ARPA-E ULTIMATE Phase 2 Kickoff and Annual Program Review Atlanta, GA March 27-28, 2024

Introduction

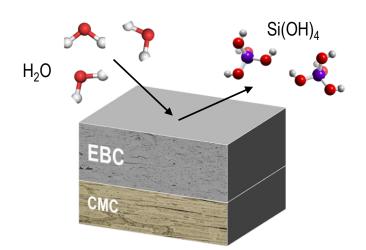


- Today's materials for extreme environments have unique challenges and design requirements that require multi-faceted evaluations.
- Thermo-mechanical behavior is obviously important, but environmental effects are often the limiting factor and root cause of failure of materials in service.
 - Degradation modes such as oxidation, recession, erosion, foreign object damage, and chemical corrosion can negatively impact the materials thermo-mechanical behavior.
 - Evaluation of materials systems under relevant conditions are critical.....start by identifying mechanisms and develop corresponding test methods.
 - Comprehensive modeling begins with thermo-mechanical behavior, then considers environmental degradation modes that provide a "knock down" of that behavior.

Environmental Barrier Coating & Failure Modes

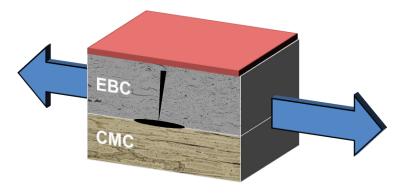


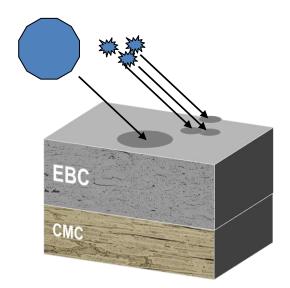
Steam Oxidation



TC: Barrier from environment

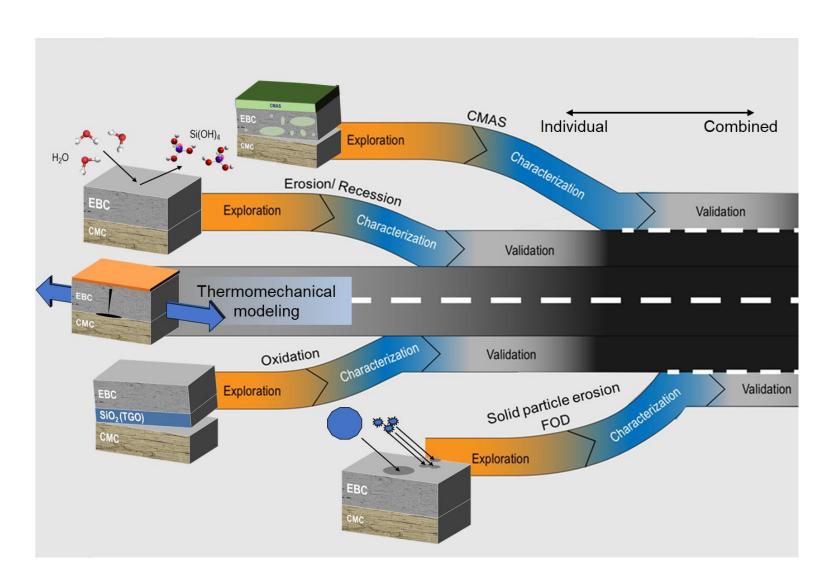
BC: Bonding, adhesion, oxidation resistance

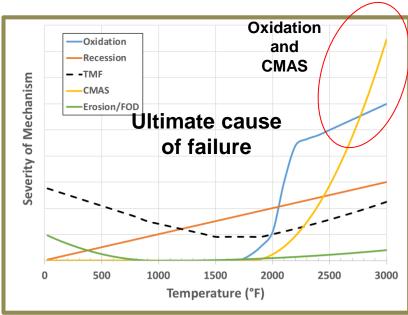

CMAS Attack & Infiltration (Calcium-Magnesium-Alumino-Silicate)


Hydroxide Formation/Recession

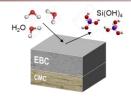
Individual mechanisms must be well understood before evaluating combined effects

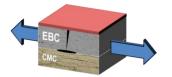
Synergies between failure modes determine EBC lifetime and design requirements


Thermomechanical Durability


Erosion and FOD

Roadmap for EBC failure mechanism modeling


Illustration of EBC Mechanism map


Exploration requires testing

Environmental Testing Summary

Thermochemistry

 $P(H_2O) = N/A$ V = N/A $P_{total} = N/A$

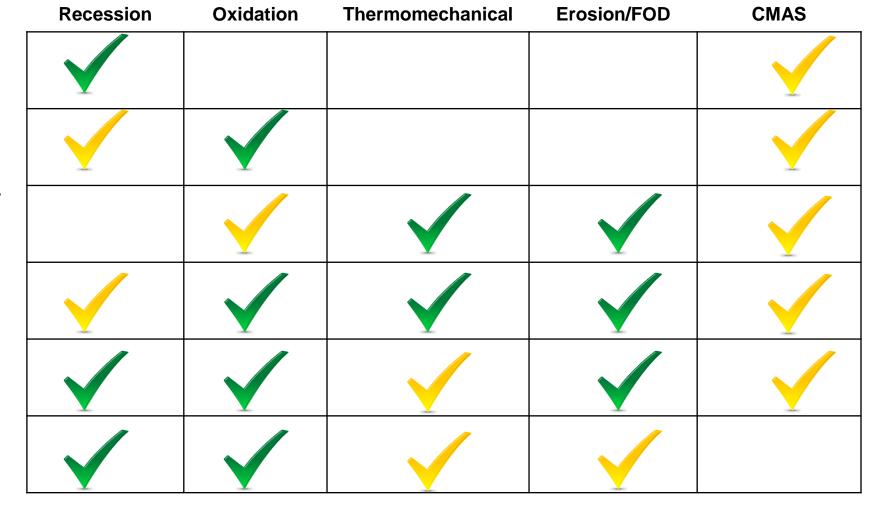
Steam Cycling

 $P(H_2O) = 0.9atm$ V = 10 cm/s $P_{total} = 1 atm$

High Heat Flux Laser

 $P(H_2O) = 0.1atm$ V = none $P_{total} = 1 atm$

Jet-A Burner Rig

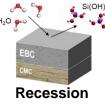

 $P(H_2O) = 0.1 \text{ atm}$ V ~ 100 - 340 m/s $P_{total} = 1 \text{ atm}$

NG/O₂ Burner Rig

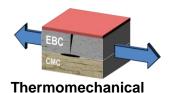
 $P(H_2O) = 0.1 - 0.5 atm$ V ~ 100 - 250 (est.) m/s $P_{total} = 1 atm$

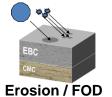
Combustion Rig

 $P(H_2O) = >6 \text{ atm}$ V ~ 30 m/s $P_{total} = 10 - 30 \text{ atm}$

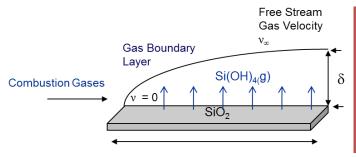


Environmental Testing - Thermochemistry




Thermochemistry

 $P(H_2O) = N/A$ V = N/A $P_{total} = N/A$



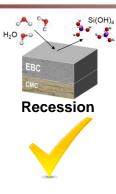
- Fundamental high temperature material behavior from thermodynamics, chemistry, and kinetics.
- Experimental / computational methods.
- Comprehensive suite of instruments
- Measure thermodynamic properties and identify potential gaseous species

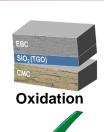
Instrument	Measurements
KEMS Mass Spectrometry (2000°C)	Products, activities, vapor pressure, enthalpy of vaporization
TGA (1650°C air, 3000°C vacuum)	Wt. change, oxidation, reduction, vaporization
DTA, DSC (2400°C)	Enthalpy of fusion, heat capacity
Drop Calorimetry (>3000°C)	Enthalpy of formation, reaction, and mixing
XRD, EDS, Raman (1600°C)	Crystal structure, phase, composition, bonding

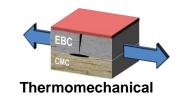
GRC identified Si(OH)₄ product for reaction of SiC with moisture – reaction is life limiting to SiC/SiC durability in turbine engines.

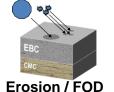
KEMS

Thermo-gravimetric Analysis (air/water/vacuum)

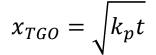

Calorimeter

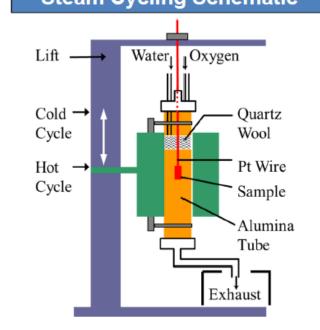

Environmental Testing – Steam Cycling

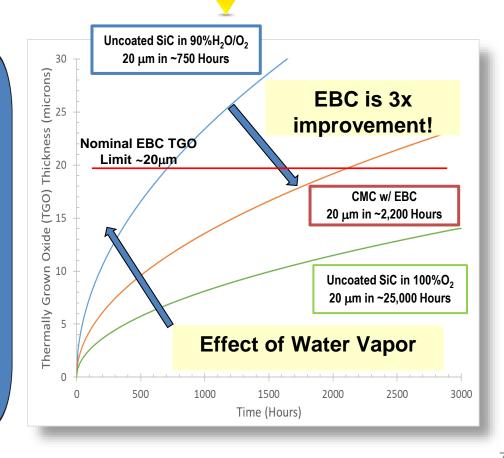



Steam Cycling

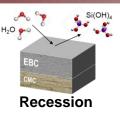
 $P(H_2O) = 0.9atm$ V = 10 cm/s $P_{total} = 1$ atm



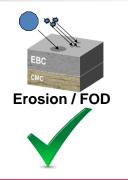




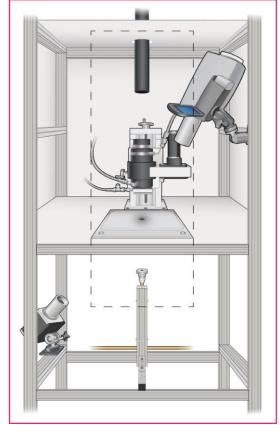
- Continuous cycling of samples at temperature forms thermally grown oxides (TGO) like SiO₂.
 - TGO is the weak EBC interface/life-limiting factor!
- Cycling in 90% H₂O/O₂ is akin to 9atm combustion environment!
- Steam oxidation provides 10x increase in TGO versus air.

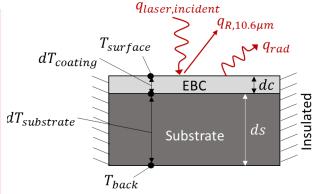


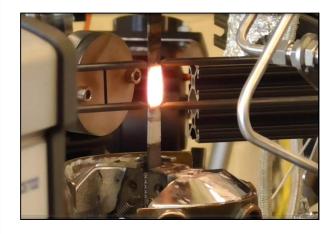
Environmental Testing – High Heat Flux Laser


High Heat Flux Laser

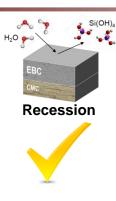
P(H₂O) = 0.1atm V = none P_{total} = 1 atm

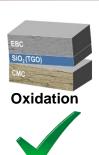


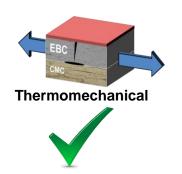


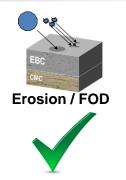


- High-powered Carbon Dioxide (CO₂) lasers
 - − 10.6µm wavelength = high absorption EBC materials
- Thermal or combined thermal-mechanical testing capabilities, backside cooling for ΔT testing
- Surface temperatures > 3,000° F (1650° C) are achievable
- Incident heat flux up to 300 W/cm² (assuming 1 inch diameter spot size)
- Heat transfer properties (thermal conductivity)

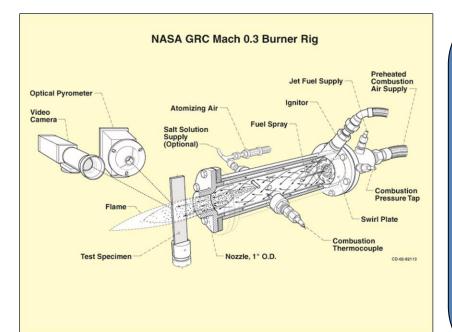


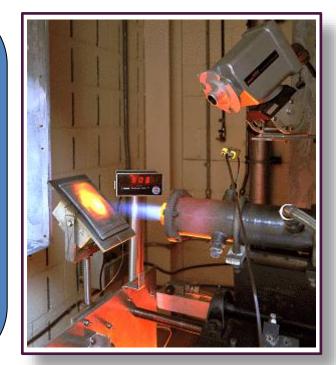

Environmental Testing – Jet-A Burner Rig

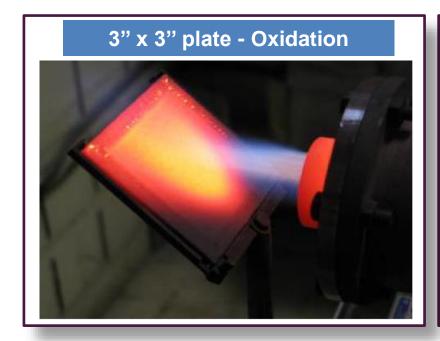



Jet-A Burner Rig


 $P(H_2O) = 0.1 atm$ V ~ 100 - 340 m/s $P_{total} = 1 atm$







- Simulates a variety of gasturbine conditions
- Jet-A/pre-heated air burner rig
- Coupon to sub-component scale testing
- Multiple mechanisms can be studied simultaneously



Jet-A Burner Rig – Oxidation, Corrosion, Thermomechanical

Jet-A Burner Rigs


- Sample temperature: ~600 2500° F
- Mach 0.3 Mach 1.0 gas velocity (~100 340 m/s)
- ~10% water vapor (atmospheric pressure 1atm)

Jet-A Burner Rig – Erosion / Foreign object Damage

Solid Particle Erosion Rig

Erosion in Field

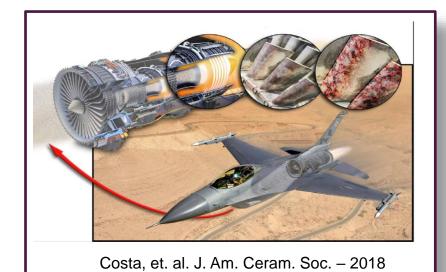
Presby, et. al. J. Eng. Gas Turbine Power – 2020

- TBC erosion well characterized, but limited research on EBCs and CMCs.
- Rig damage observed like in-service components.

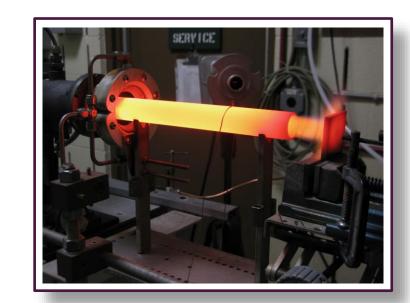
Fox, et. al. NASA/TM - 2011-216986

Erosion Testing

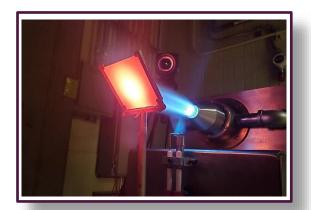
- Particle velocities: ~100 400 m/s
- Particle sizes: ~27 150 μm
- Eroding media: Al₂O₃
- Temperature: 1500 2400 ° F
- Impingement angle: 30 90°

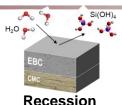

- Limited research on FOD for EBCs.
- EBCs protect CMCs from impact damage.

FOD Testing


- 1/16-in. steel ball projectile
- Ambient and high temperature
- Velocity = $\sim 100 400 \text{ m/s}$
- Impingement angle: ~10 -90°

Jet-A Burner Rig Facility – CMAS Attack and Infiltration

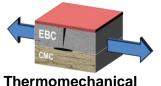

- Ingested particles melt into Calcium-Magnesium-Alumino Silicate (CMAS) glass at temperatures >1200°C.
- Thermomechanical Dissimilar CTEs and densification produce stresses.
- Thermochemical Interactions with coatings form unwanted phases.
- Most testing uses static loadings (tapes, air-spray, etc.), better test methods needed.
- Burner rigs a more 'realistic' test method for CMAS research compared to applying CMAS and melting/reacting in an isothermal environment (furnace).
- Complicated analysis mass CMAS injected may not always equal mass CMAS deposited.
- Combined SPE and CMAS damage likely, transitions need identified.

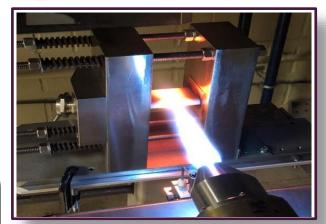


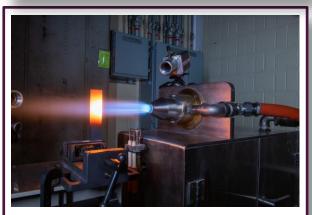
Environmental Testing - Natural Gas / Oxygen Burner Rig

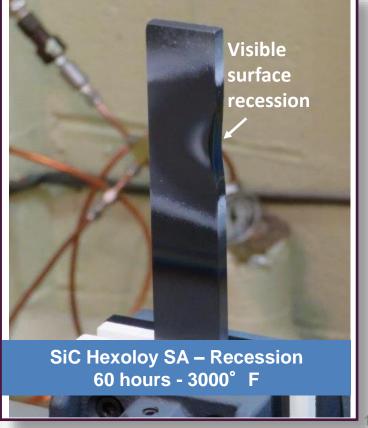
NG/O₂ Burner Rig

 $P(H_2O) = 0.1 - 0.5$ atm $V \sim 100 - 300$ (est.) m/s $P_{total} = 1$ atm



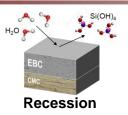




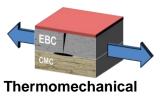


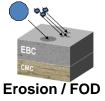
Chemical Equilibrium Analysis (CEA)

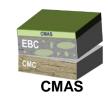
- Peak flame temperature 4,986° F
- $P(H_2O) \sim 0.1 0.4 \text{ atm} \rightarrow P(\text{total}) = 1 \text{ atm}$
- Gas velocity estimated: ~100 300 m/s
- High heat flux (up to ~200 W/cm²)
- 1000's of hrs. at 3000F completed

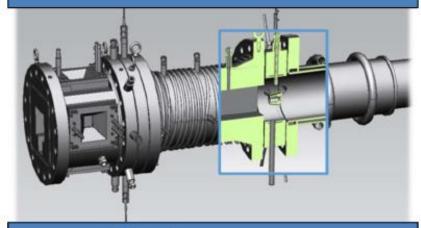


Environmental Testing – NASA Combustion Rig

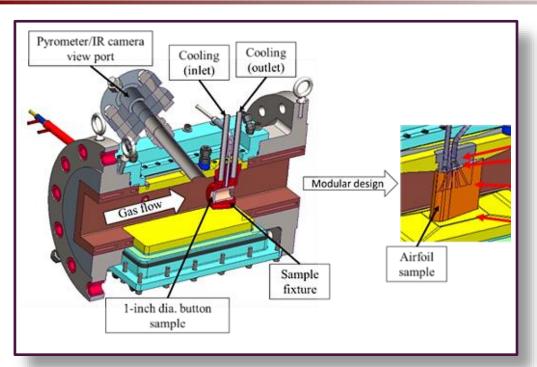



Combustion Rig

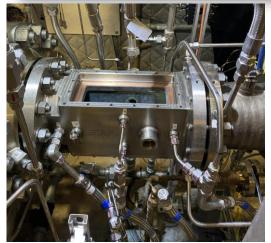

 $P(H_2O) = >6 \text{ atm}$ V ~ 30 m/s $P_{total} = 10 - 30 \text{ atm}$

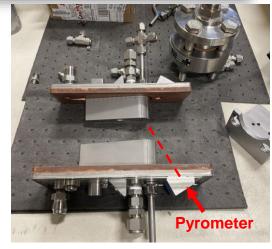


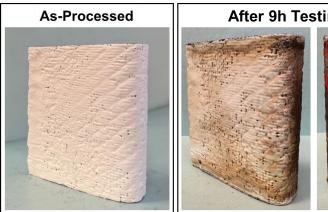
NASA GRC CE-5 Test Stand



30 atm pressure >1650°C gas temperature Maximum 20 lb/s Mass Flow


- GRC asset....collaborate with Propulsion.
- Best test for material performance with actual engine / combustion environment.
- CE-5 provides realistic environment with temperature, pressure, etc.
- Fixtures to scale testing from coupon to component level test articles.
- Expensive! ... but necessary!


NASA Combustion Rig – Materials Test Section



- Test Conditions
 - Combustion gas temperature: 3000+ °F
 - Pressure / Velocity: 270 psi / ~40 m/s
 - Backside cooling temperature: 900 °F
 - LE /backside/sidewall TCs, pyrometers, and IR camera
- NASA EBC/CMC systems tested at 1,650°C
 (3,000°F) EBC surface temperature, and 1,482°C
 (2,700°F) interface temperature.

Summary

- Advanced materials, such at those in ARPA-E ULTIMATE, have challenges that include thermal, mechanical, AND environmental effects.
- It is critical to identify the potential failure mechanisms for materials systems and test under relevant conditions.
- Individual mechanisms must be well understood before evaluating synergies between extrinsic failure modes that determine material lifetime and design requirements.
- NASA GRC has a complete suite of environmental test capabilities for today's most common failure mechanisms, and open to external collaborations thru NASA Space Act Agreements.