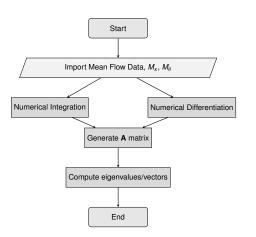
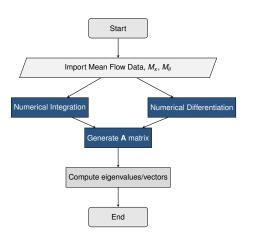

Beyond Guesswork: Code Verification for Acoustic Duct Mode Prediction

Jeffrey Severino

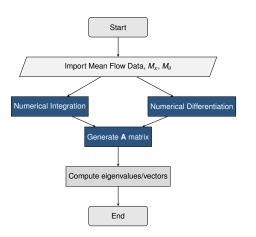
Spring 2024 NASA Acoustics Technical Working Group Dr. Ray Hixon Supported by AATT

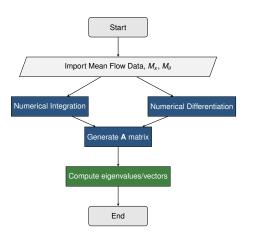

March 20, 2024

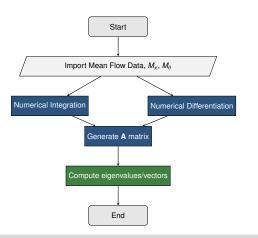
Section 1 Basis of Technical Work



The Swirl Code


► Code was first published by Kousen [1995]


- ► Code was first published by Kousen [1995]
- Contains three main numerical components:


- ► Code was first published by Kousen [1995]
- Contains three main numerical components:
 - 1. Numerical Integration

- Code was first published by Kousen [1995]
- Contains three main numerical components:
 - 1. Numerical Integration
 - 2. Finite Difference Approximation for Derivative

- Code was first published by Kousen [1995]
- Contains three main numerical components:
 - 1. Numerical Integration
 - 2. Finite Difference Approximation for Derivative
 - 3. Eigenvalue/vector calculation

The Swirl Code

- ➤ Code was first published by Kousen [1995]
- Contains three main numerical components:
 - Numerical Integration
 - Finite Difference Approximation for Derivative
 - 3. Eigenvalue/vector calculation

Goal: Code Verification by the Method of Manufactured and Exact Solutions (MMS/MES)

Whats the difference?

Often times, verification and validation are used interchangeably. Blottner has made an accepted distinction:

Whats the difference?

Often times, verification and validation are used interchangeably. Blottner has made an accepted distinction:

Verification

[Are we] solving the governing equations right?

Whats the difference?

Often times, verification and validation are used interchangeably. Blottner has made an accepted distinction:

Verification

[Are we] solving the governing equations right?

Validation

[Are we] solving the right governing equations?

Whats the difference?

Often times, verification and validation are used interchangeably. Blottner has made an accepted distinction:

Verification

[Are we] solving the governing equations right?

Code Verification

Concerned with error evaluation and correct algorithm implementation

Validation

[Are we] solving the right governing equations?

Whats the difference?

Often times, verification and validation are used interchangeably. Blottner has made an accepted distinction:

Verification

[Are we] solving the governing equations right?

Code Verification

Concerned with error evaluation and correct algorithm implementation

Validation

[Are we] solving the right governing equations?

Solution Verification

Concerned with error estimation that always occur in given numerical PDE solution

Whats the difference?

Often times, verification and validation are used interchangeably. Blottner has made an accepted distinction:

Verification

[Are we] solving the governing equations right?

Code Verification

Concerned with error evaluation and correct algorithm implementation

Validation

[Are we] solving the right governing equations?

Solution Verification

Concerned with error estimation that always occur in given numerical PDE solution

This work is focused code verification through the order-of-accuracy (OOA) test

Section 2 **Verification of Numerical Integration**

Defining Error and Order of Accuracy

Error for the speed of sound is defined as,

$$\epsilon = \left| \tilde{\mathsf{A}}_{\mathsf{analytic}} - \tilde{\mathsf{A}}_{\mathsf{numerical}} \right|.$$
 (1)

Defining Error and Order of Accuracy

Error for the speed of sound is defined as,

$$\epsilon = \left| \tilde{\mathsf{A}}_{\mathsf{analytic}} - \tilde{\mathsf{A}}_{\mathsf{numerical}} \right|.$$
 (1)

▶ If the numerical simulation was perfect, there is no error,

$$0 = \left| \tilde{\mathsf{A}}_{\mathsf{analytic}} - \tilde{\mathsf{A}}_{\mathsf{numerical}} \right|. \tag{2}$$

Defining Error and Order of Accuracy

Error for the speed of sound is defined as,

$$\epsilon = \left| \tilde{\mathsf{A}}_{\mathsf{analytic}} - \tilde{\mathsf{A}}_{\mathsf{numerical}} \right|.$$
 (1)

▶ If the numerical simulation was perfect, there is no error,

$$0 = \left| \tilde{\mathsf{A}}_{\mathsf{analytic}} - \tilde{\mathsf{A}}_{\mathsf{numerical}} \right|. \tag{2}$$

Solving for A
 ^Anumerical and expanding with a Taylor Series gives,

$$\tilde{\mathsf{A}}_{\mathsf{numerical}} = \tilde{\mathsf{A}}_{\mathsf{analytic}} + \mathcal{O}\left(\Delta r^{\alpha}\right) + H.O.T. \tag{3}$$

Defining Error and Order of Accuracy

Error for the speed of sound is defined as,

$$\epsilon = \left| \tilde{\mathsf{A}}_{\mathsf{analytic}} - \tilde{\mathsf{A}}_{\mathsf{numerical}} \right|.$$
 (1)

▶ If the numerical simulation was perfect, there is no error,

$$0 = \left| \tilde{\mathsf{A}}_{\mathsf{analytic}} - \tilde{\mathsf{A}}_{\mathsf{numerical}} \right|. \tag{2}$$

Solving for A
 ^Anumerical and expanding with a Taylor Series gives,

$$\tilde{\mathsf{A}}_{\mathsf{numerical}} = \tilde{\mathsf{A}}_{\mathsf{analytic}} + \mathcal{O}\left(\Delta r^{\alpha}\right) + H.O.T. \tag{3}$$

 α is the formal order-of-accuracy (OOA) of the numerical scheme which dictates the expected rate of convergence as grid spacing is decreased.

▶ In Swirl, the analytic speed of sound is,

$$\widetilde{A}_{\text{analytic}} = 1 - (\gamma - 1) \int_{\tilde{r}}^{1} \frac{M_{\theta}}{\tilde{r}} d\tilde{r}$$
 (4)

In Swirl, the analytic speed of sound is,

$$\widetilde{A}_{\text{analytic}} = 1 - (\gamma - 1) \int_{\tilde{r}}^{1} \frac{M_{\theta}}{\tilde{r}} d\tilde{r}$$
(4)

However, the integration is done with trapezoidal rule,

$$\int_{\tilde{r}}^{1} \frac{M_{\theta}}{\tilde{r}} d\tilde{r} \approx \frac{\Delta \tilde{r}}{2} \left[\frac{M_{\theta,1}^{2}}{\tilde{r}_{1}} + \frac{M_{\theta,n}^{2}}{\tilde{r}_{n}} + 2\Sigma_{i=1}^{n-2} \frac{M_{\theta,i}^{2}}{\tilde{r}} \right] + \mathcal{O}\left(\Delta r^{2}\right)$$
 (5)

In Swirl, the analytic speed of sound is,

$$\widetilde{A}_{\text{analytic}} = 1 - (\gamma - 1) \int_{\widetilde{r}}^{1} \frac{M_{\theta}}{\widetilde{r}} d\widetilde{r}$$
 (4)

However, the integration is done with trapezoidal rule,

$$\int_{\tilde{r}}^{1} \frac{M_{\theta}}{\tilde{r}} d\tilde{r} \approx \frac{\Delta \tilde{r}}{2} \left[\frac{M_{\theta,1}^{2}}{\tilde{r}_{1}} + \frac{M_{\theta,n}^{2}}{\tilde{r}_{n}} + 2\Sigma_{i=1}^{n-2} \frac{M_{\theta,i}^{2}}{\tilde{r}} \right] + \mathcal{O}\left(\Delta r^{2}\right)$$
 (5)

Code Verification by the MMS

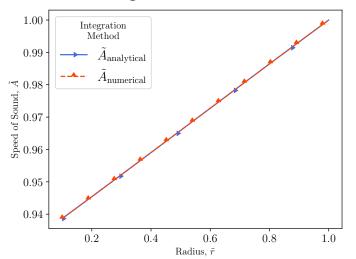
To verify the numerical integration an analytic function is chosen i.e. manufactured for $\emph{M}_{ heta}$

Manufacturing Solutions

▶ A Python library was written to generate summations of tanh symbolically for M_{θ} and then converted to FORTRAN for code compatibility.

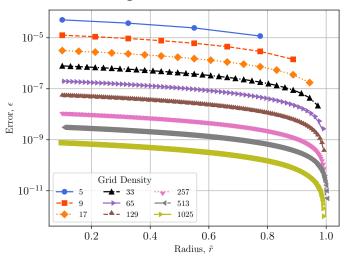
Manufacturing Solutions

- ▶ A Python library was written to generate summations of *tanh* symbolically for M_{θ} and then converted to FORTRAN for code compatibility.
- ▶ Once plugged into Eqn (4), the speed of sound is

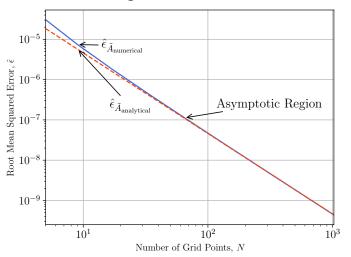

$$\tilde{A}_{MS} = \frac{1}{24} \begin{pmatrix} \tanh\left(\frac{\tilde{r}}{3} - \frac{1}{3}\right) + \tanh\left(\frac{\tilde{r}}{3} - \frac{31}{120}\right) + \\ \tanh\left(\frac{\tilde{r}}{3} - \frac{11}{60}\right) + \tanh\left(\frac{\tilde{r}}{3} - \frac{13}{120}\right) + \tanh\left(\frac{\tilde{r}}{3} - \frac{1}{30}\right) \end{pmatrix} + \frac{853}{880}$$
 (6)

Manufacturing Solutions

- ightharpoonup A Python library was written to generate summations of *tanh* symbolically for M_{θ} and then converted to FORTRAN for code compatibility.
- ▶ Once plugged into Eqn (4), the speed of sound is


$$\tilde{A}_{MS} = \frac{1}{24} \begin{pmatrix} \tanh\left(\frac{\tilde{r}}{3} - \frac{1}{3}\right) + \tanh\left(\frac{\tilde{r}}{3} - \frac{31}{120}\right) + \\ \tanh\left(\frac{\tilde{r}}{3} - \frac{11}{60}\right) + \tanh\left(\frac{\tilde{r}}{3} - \frac{13}{120}\right) + \tanh\left(\frac{\tilde{r}}{3} - \frac{1}{30}\right) \end{pmatrix} + \frac{853}{880}$$
 (6)

This is one possible analytic solution to the speed of sound, but this solution is *manufactured*, hence the subscript *MS*


Visually looks identical..

The first step of the OOA test is to compute the error

Value of error indicates accuracy

The root mean square of the error, $(L_2 \text{ norm})$ is then used to compute the observed OOA

A straight line of expected slope is superimposed

Convergence starts in the asymptotic region at \approx 100 grid points

The observed rate of convergence (OOA) approaches the formal value

The numerical integration is now verified via MMS

Section 3 Verification of Numerical Differentiation

The Governing Equations

► A given mean flow is used to establish an eigenvalue problem with the Linearized Euler Equations

$$[A]\chi = \lambda[B]\chi \tag{7}$$

where χ and λ contain the eigenvalues (axial wavenumbers) and vectors (radial pressure modes)

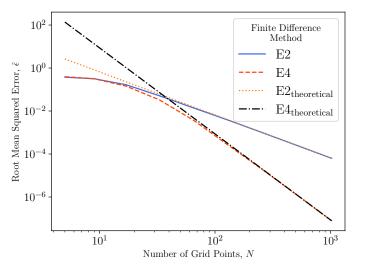
The Governing Equations

► A given mean flow is used to establish an eigenvalue problem with the Linearized Euler Equations

$$[A]\chi = \lambda[B]\chi\tag{7}$$

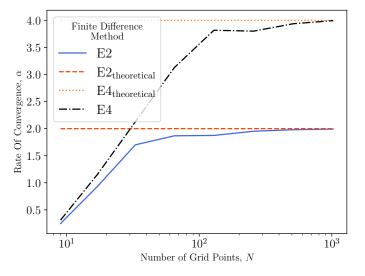
where χ and λ contain the eigenvalues (axial wavenumbers) and vectors (radial pressure modes)

A requires finite difference approximations of the mean flow are needed for the A matrix construction.


The Governing Equations

► A given mean flow is used to establish an eigenvalue problem with the Linearized Euler Equations

$$[A]\chi = \lambda[B]\chi \tag{7}$$


where χ and λ contain the eigenvalues (axial wavenumbers) and vectors (radial pressure modes)

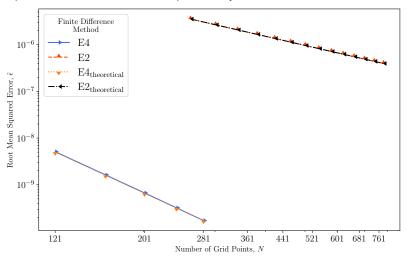
- ➤ A requires finite difference approximations of the mean flow are needed for the A matrix construction.
- Manufactured solutions were generated using a summation of tangents to verify OOA of a second and fourth order scheme

Two straight lines of expected slope for each scheme is superimposed

Similarly, convergence is observed the asymptotic region at \approx 100 grid points

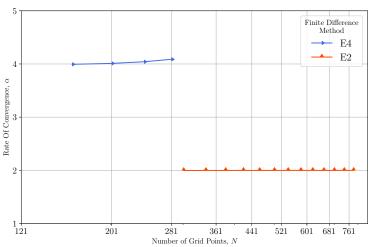
The observed rate of convergence (OOA) approaches the formal value

The finite differencing scheme and matrix construction have been verified with MMS

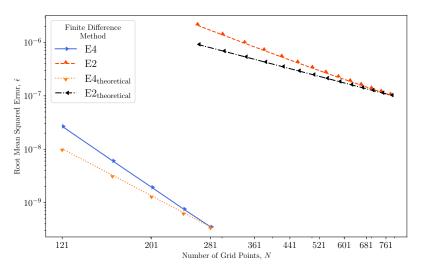

Section 4 **Verification of Eigenvalues and vectors**

Verification of Eigenvalues and vectors

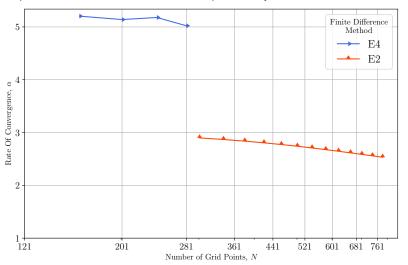
Verification by the Method of Exact Solutions


- There are exact solutions for the modal content in simplified mean flows.
- Code verification by the MES was performed using a uniform axial flow in a hard-walled annular duct

Eigenvalue (Axial Wavenumber) Comparison

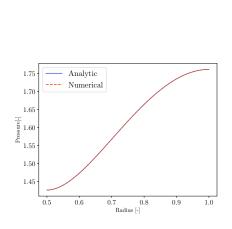

Both fourth and second order schemes perform as expected. The rate of decrease in error coincides with the exponent of the leading error terms

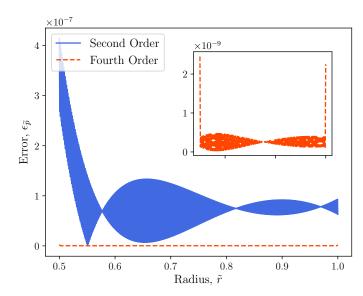
Eigenvalue (Axial Wavenumber) Comparison


Both fourth and second order schemes perform as expected. The rate of decrease in error coincides with the exponent of the leading error terms

Eigenvector (Radial Pressure Mode) Comparison

The imposed lines are not parallel to the computed norms..


Eigenvector (Radial Pressure Mode) Comparison



The computed slopes are higher than expected

Is Swirl converging to the right solution?

Examining the Error in the Radial Pressure Mode

Nonphysical oscillations and boundary errors are dominating the solution

Will filters/artificial dissipation yield the expected OOA?

► Filters (also known as artificial dissipation operators) can eliminate the unresolved oscillations in the solution

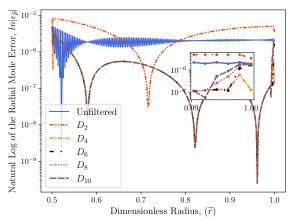
Will filters/artificial dissipation yield the expected OOA?

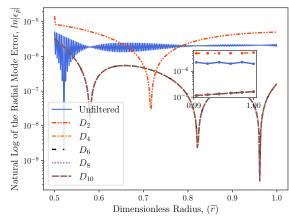
- ► Filters (also known as artificial dissipation operators) can eliminate the unresolved oscillations in the solution
- ▶ The higher the order of the filter, the less impact it will have on the original solution

Will filters/artificial dissipation yield the expected OOA?

- ► Filters (also known as artificial dissipation operators) can eliminate the unresolved oscillations in the solution
- ▶ The higher the order of the filter, the less impact it will have on the original solution
- Eriksson proposed a method for conservative operators near boundaries (tested by Kennedy and Carpenter)

Will filters/artificial dissipation yield the expected OOA?

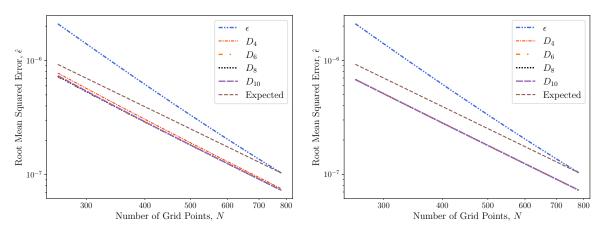

- ► Filters (also known as artificial dissipation operators) can eliminate the unresolved oscillations in the solution
- ► The higher the order of the filter, the less impact it will have on the original solution
- Eriksson proposed a method for conservative operators near boundaries (tested by Kennedy and Carpenter)
- Rigby proposed a method where the operators were designed to match the performance of the interior instead


Will filters/artificial dissipation yield the expected OOA?

- ► Filters (also known as artificial dissipation operators) can eliminate the unresolved oscillations in the solution
- ▶ The higher the order of the filter, the less impact it will have on the original solution
- Eriksson proposed a method for conservative operators near boundaries (tested by Kennedy and Carpenter)
- Rigby proposed a method where the operators were designed to match the performance of the interior instead

The OOA was recomputed after applying Kennedy and Carpenter (K&C) and Rigby filters (D2-D10)

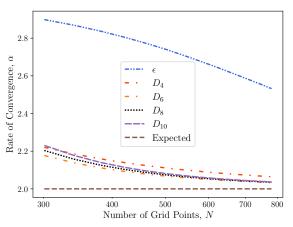
Eigenvector (Radial Pressure Mode) Error With Various Orders of Filters - Second Order Study

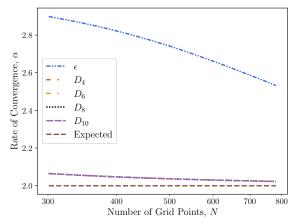


Kennedy and Carpenter

Rigby

Both filters mitigate oscillations, Rigby is more aggressive on the boundaries

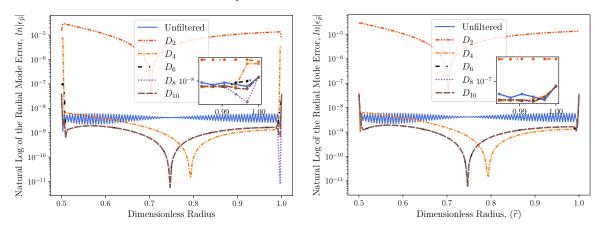

Eigenvector (Radial Pressure Mode) Error With Various Orders of Filters - Second Order Study



Kennedy and Carpenter

Rigby

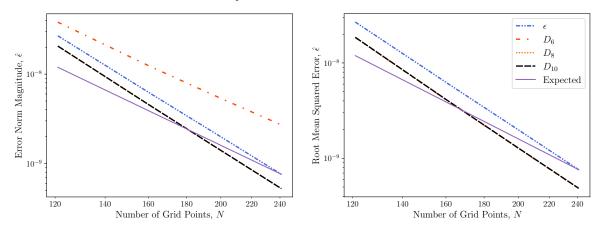
Eigenvector (Radial Pressure Mode) Error With Various Orders of Filters - Second Order Study



Kennedy and Carpenter

Rigby

Eigenvector (Radial Pressure Mode) Error With Various Orders of Filters - Fourth Order Study

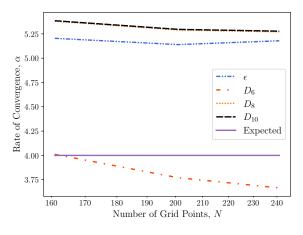


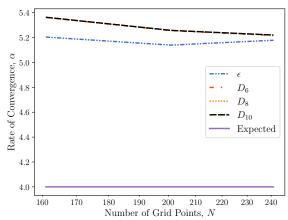
Kennedy and Carpenter

Rigby

Both filters mitigate oscillations, Rigby is more aggressive on the boundaries

Eigenvector (Radial Pressure Mode) Error With Various Orders of Filters - Fourth Order Study




Kennedy and Carpenter

Rigby

Rigby operators show the most promise for an artificial dissipation operator

Eigenvector (Radial Pressure Mode) Error With Various Orders of Filters - Fourth Order Study

Kennedy and Carpenter

Rigby

Rigby operators show the most promise for an artificial dissipation operator

In summary, MMS/MES offers a means for robust code verification and assessing the performance of various integration, differencing, and artificial dissipation schemes and their BC implementation.

In summary, MMS/MES offers a means for robust code verification and assessing the performance of various integration, differencing, and artificial dissipation schemes and their BC implementation.

Pros and Cons of MMS

In summary, MMS/MES offers a means for robust code verification and assessing the performance of various integration, differencing, and artificial dissipation schemes and their BC implementation.

Pros and Cons of MMS

Provides a way of "manufacturing" solution

In summary, MMS/MES offers a means for robust code verification and assessing the performance of various integration, differencing, and artificial dissipation schemes and their BC implementation.

Pros and Cons of MMS

- Provides a way of "manufacturing" solution
- For Swirl, MMS can't be used to verify the eigenvalue/vectors

In summary, MMS/MES offers a means for robust code verification and assessing the performance of various integration, differencing, and artificial dissipation schemes and their BC implementation.

Pros and Cons of MMS

- Provides a way of "manufacturing" solution
- For Swirl, MMS can't be used to verify the eigenvalue/vectors

Pros and Cons of MES

In summary, MMS/MES offers a means for robust code verification and assessing the performance of various integration, differencing, and artificial dissipation schemes and their BC implementation.

Pros and Cons of MMS

- Provides a way of "manufacturing" solution
- For Swirl, MMS can't be used to verify the eigenvalue/vectors

Pros and Cons of MES

▶ If solutions are available, they can be used for OOA testing

In summary, MMS/MES offers a means for robust code verification and assessing the performance of various integration, differencing, and artificial dissipation schemes and their BC implementation.

Pros and Cons of MMS

- Provides a way of "manufacturing" solution
- For Swirl, MMS can't be used to verify the eigenvalue/vectors

Pros and Cons of MES

- If solutions are available, they can be used for OOA testing
- For Swirl, MES showed issues that MMS can't due to boundary condition agreement being a requirement for the MS

In summary, MMS/MES offers a means for robust code verification and assessing the performance of various integration, differencing, and artificial dissipation schemes and their BC implementation.

Pros and Cons of MMS

- Provides a way of "manufacturing" solution
- For Swirl, MMS can't be used to verify the eigenvalue/vectors

Pros and Cons of MES

- If solutions are available, they can be used for OOA testing
- For Swirl, MES showed issues that MMS can't due to boundary condition agreement being a requirement for the MS
- Exact solutions are limited to idealized flows

In summary, MMS/MES offers a means for robust code verification and assessing the performance of various integration, differencing, and artificial dissipation schemes and their BC implementation.

Pros and Cons of MMS

- Provides a way of "manufacturing" solution
- For Swirl, MMS can't be used to verify the eigenvalue/vectors

Pros and Cons of MES

- If solutions are available, they can be used for OOA testing
- For Swirl, MES showed issues that MMS can't due to boundary condition agreement being a requirement for the MS
- Exact solutions are limited to idealized flows

By using both MMS/MES on multiple code components, a path to improvements to the numerical approximations and BC implementation are outlined

Questions?

References I

K. A. Kousen. Eigenmode analysis of ducted flows with radially dependent axial and swirl components. In CEAS/AIAA Joint Aeroacoustics Conference, 1 st, Munich, Germany, pages 1085–1094, 1995.