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ABSTRACT
As electrified aircraft propulsion (EAP) systems continue

to mature, more sophisticated hardware and software are being
developed to balance operations among electric machines and
gas-turbine engines. In hybrid-electric propulsion systems, the
increased complexity resulting from integrating turbine-engine
shafts with electric machines necessitates control methodologies
to account for various physical domains. Ideal controllers for
hybrid-electric engines manage systems, subsystems, and their
interactions in a coordinated fashion, able to account for safety
and performance goals while being computationally efficient. In
a previous work, linear model predictive control (MPC) schemes
were implemented in centralized and distributed frameworks on a
nonlinear turbofan engine model as a proof of concept. However,
these schemes were not evaluated for computational complexity,
prompting further study. The research presented here develops
hierarchical MPC schemes to reduce the computational burden of
the previous MPC schemes. A two-tier framework is implemented,
where a slower sampling MPC controls electric machines and de-
termines fan-speed tracking goals for a faster sampling controller,
which is either a MPC or a proportional-integral (PI) controller.
The proposed designs are compared to the centralized MPC in-
vestigated previously, and performance is measured via fan speed
tracking error, energy storage state-of-charge, and computation
time. Results reveal that the hierarchical MPC scheme employ-
ing a lower-level PI controller improves computation time while
maintaining comparable tracking and state-of-charge regulation
to the centralized scheme.

Keywords: model predictive control, linear control, hierar-
chical control, turbomachinery, electrified aircraft propul-
sion

NOMENCLATURE
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Roman letters
𝐴 System state matrix.
𝑎 Washout filter variable for exponential decay.
𝐵 System input matrix.
𝐶 System output matrix.
𝐶𝑆𝐶 Capacitance of supercapacitor.
𝐷 System feedforward matrix.
𝑒 Error variable.
𝐸 Supercapacitor state-of-charge.
𝐽 Open-loop cost function.
𝐾 Gain value for proportional-integral controller.
𝑙 Stage cost function.
𝑀 Motor torque variable.
𝑚 Number of control inputs.
𝑁 Shaft speed variable.
𝑃𝑠3 Static high pressure compressor discharge pressure.
𝑄 Output weight matrix.
𝑟 Number of outputs.
𝑅 Control weight matrix.
𝑆𝑀 Stall margin.
𝑡 Simulation time.
𝑇,𝑇𝑢 Time horizon, time horizon for inputs variables.
𝑇𝑠 Sampling time.
𝑇45 Low pressure turbine inlet temperature.
𝑢 System control input.
U System control constraint set.
𝑉 Voltage.
VAFN Variable area fan nozzle variable.
VBV Variable bleed valve variable.
𝑊𝑓 Fuel flow rate variable.
𝑥 System states.
X System state constraint set.
𝑦 System outputs.
Y,Y𝑓 System output constraint and terminal constraint set.

Greek letters
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𝛼 Sampling time multiplier.
Δ Change between time steps.
𝛿 System perturbation variable.
𝜂 Energy efficiency variable.
𝜈 Prediction horizon variable.
Ω Augmented input vector.
𝜙 Acceleration threshold value.
𝜏 Time sequence over time horizon.
Superscripts and subscripts
·∗ Denotes optimal solution.
·0 Denotes initial variable value.
·𝑎𝑢𝑔 Denotes augmented vector.
·𝑐 Denotes corrected speed variable.
·𝐸 Denotes relation to energy storage.
·𝑓 Denotes relation to fuel.
·𝑓 𝑎𝑛 Denotes relation to fan variable.
·𝐻𝑃𝐶 Denotes relation to high pressure compressor.
·𝐻𝑃𝑆 Denotes relation to high pressure shaft.
·𝑖 Denotes index placeholder.
·𝐼 Denotes relation to integral error value.
·𝐿𝑃𝐶 Denotes relation to low pressure compressor.
·𝐿𝑃𝑆 Denotes relation to low pressure shaft.
·𝑚𝑎𝑥 Denotes maximum value.
·𝑛𝑜𝑟𝑚 Denotes normalized variable.
·𝑃 Denotes relation to proportional error value.
·𝑟𝑒 𝑓 Denotes reference parameter variable.
·𝑆𝐶 Denotes relation to supercapacitor.
·𝑆𝑆 Denotes operation at engine steady-state.
·𝑡𝑟𝑖𝑚 Denotes trim value.
·̃ Denotes error.
·𝑤𝑎𝑠ℎ𝑜𝑢𝑡 Denotes relation to washout filter.

1. INTRODUCTION
Under goals outlined by NASA’s Aeronautics Research Mis-

sion Directorate, sustainability and safety are drivers for current
and future aeronautics research [1]. This has increased focus
on the electrification of aviation technology, which includes the
development and testing of electrified aircraft propulsion (EAP)
systems. A result of integrating, supplementing, or replacing tra-
ditional gas-turbine based propulsors with electric components is
heightened system complexity due to coupled system dynamics
[2]. Thus, the sophisticated nature of EAP begets the need for
advanced control architectures to manage the increasingly inter-
connected systems [3].

Recent studies have considered model predictive control
(MPC) as a viable approach to controlling EAP systems [4–
10]. MPC is an advanced, model-based control method that
determines an optimal control effort along a time horizon for
a dynamic system while adhering to imposed constraints [11].
Widely applied in the process control industry, MPC is known
for its ability to control complex, multivariable systems while
balancing multiple system goals. This makes the method attrac-
tive for EAP systems, as it can command the coupled compo-
nents and their interactions in a holistic and beneficial manner.
This was highlighted in a recent work in which centralized and
distributed MPC architectures were introduced for control of a
hybrid-electric EAP system [12]. The proposed controllers im-

plemented the Turbine Electrified Energy Management (TEEM)
concept to improve transient operability by exploiting electric ma-
chines during system acceleration and deceleration. While shown
comparable to a baseline control scheme, these architectures did
not consider energy storage components and thus included no
battery state-of-charge regulation.

Although effective, a common pitfall of traditional MPC
schemes is their computational intensity, requiring significant
computing time to determine an optimal solution [13]. A source
of this computing strain is the use of one sampling frequency
which scales with system complexity given horizon time and
number of decision variables. As a result, methods to reduce
computational burden while maintaining system performance are
warranted. To combat the computational load of MPC, hierar-
chical MPC (HMPC) has been proposed, in which an MPC acts
in a supervisory manner to oversee system and subsystem con-
trollers at various layers or tiers to address goals and constraints
[14]. By managing the system in tiers, the overall control archi-
tecture can incorporate multiple timescales and reduce control
problem complexity [15, 16]. This approach helps to decrease
the computational footprint of centralized, distributed, or decen-
tralized MPC schemes that scale with system complexity, time
horizon duration, and sampling frequency. HMPC has precedent
in EAP system applications where energy, power, and thermal
management were examined [17–21].

In this paper, two linear HMPC schemes are developed in
which a supervisory centralized MPC (CMPC) is used to set
optimal setpoints for a lower-level controller. The lower-level
controller is either another CMPC or a proportional-integral (PI)
controller, resulting in a MPC-MPC or MPC-PI hierarchy. The
supervisory CMPC operates at a slower sampling speed while the
lower-tier controllers operate at the sampling rate of the plant. The
supervisory control for the HMPCs expands on the framework
developed in [12] by including energy storage components. The
controllers are simulated on a nonlinear, hybrid-electric engine
system for performance comparison to a CMPC based on closed-
loop performance and algorithm execution times.

The remainder of this manuscript is organized as follows:
Section 2 reviews the nonlinear engine system, its linear repre-
sentation, and a previous MPC implementation. The hierarchical
MPC architectures are detailed in Section 3, followed by a dis-
cussion of simulated case study results in Section 4. Finally, the
primary conclusions of the study are summarized in Section 5.

2. OVERVIEW OF ENGINE MODEL AND TEEM
2.1 System Model

This section details an electrified version of the Advanced
Geared Turbofan 30,000lbf (AGTF30) engine, the dynamic sys-
tem of interest. Figure 1 displays a generalized block diagram of
the closed-loop control system for the propulsion system, where a
controller receives environmental information and provides out-
put commands to the engine and electric machine (EM) actuators.
The AGTF30 is a conceptual turbofan engine capable of produc-
ing 30klbf of thrust at sea-level static conditions [22]. The engine
was developed with the Toolbox for the Modeling and Analysis
of Thermodynamic Systems in the MATLAB/Simulink environ-
ment. Electrification was added in [23], integrating components
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FIGURE 1: GENERALIZED BLOCK DIAGRAM OF THE SYSTEM.

from the Electrical Modeling and Thermal Analysis Toolbox [24]
to include electric machines and energy storage devices (ESDs).
In this study, two electric machines are coupled to the engine,
with one EM connected to the low pressure spool (LPS) and the
other to the high pressure spool (HPS).

In the literature, the EMs are used to implement the TEEM
concept by injecting or extracting power from the engine shafts
during acceleration and deceleration transients [25]. Note that
although TEEM is implemented in this work, the focus of the
paper will be on comparing the MPC architectures rather than
the TEEM operability outcomes. Power extraction can be used
to charge the ESDs, which are supercapacitors responsible for
absorbing and supplying impulsive power loads during transients.
The EMs responsible for this task can vary depending on the
configurations outlined in [26]. This study considers a variant of
the dual-spool configuration, in which the LPS EM is responsible
for charging the ESDs using power extraction. Any excess power
that cannot be transferred to the ESD is dissipated with a resistor
bank to prevent overcharging the supercapacitors.

For control design purposes, a piece-wise linear model is
used to represent the nonlinear dynamics of the propulsion sys-
tem:

𝛿�̇�(𝑡) = 𝐴𝛿𝑥(𝑡) + 𝐵𝛿𝑢(𝑡) (1)
𝛿𝑦(𝑡) = 𝐶𝛿𝑥(𝑡) + 𝐷𝛿𝑢(𝑡) (2)

where 𝑥(𝑡) ∈ R𝑛 is the state vector, 𝑢(𝑡) ∈ R𝑚 is the input
vector, 𝑦(𝑡) ∈ R𝑟 is the output vector, and 𝐴, 𝐵, 𝐶 and 𝐷 are the
dynamic system state space matrices. The model is linearized
at specific operating points denoted by combinations of altitude
(Alt), and Mach number (MN), and the power lever angle (PLA)
of the throttle command. The terms 𝛿𝑥, 𝛿𝑢, and 𝛿𝑦 represent
perturbations around the value of the state, input, or output vectors
at engine steady-state, denoted with the subscript ·𝑡𝑟𝑖𝑚, and are
defined as:

𝛿𝑥(𝑡) = 𝑥(𝑡) − 𝑥𝑡𝑟𝑖𝑚(𝑡) (3a)
𝛿𝑢(𝑡) = 𝑢(𝑡) − 𝑢𝑡𝑟𝑖𝑚 (𝑡) (3b)
𝛿𝑦(𝑡) = 𝑦(𝑡) − 𝑦𝑡𝑟𝑖𝑚(𝑡) (3c)

The dynamic equation for the ESDs with time argument 𝑡 omitted
is:

�̇� = 𝜂[−(𝑀𝐿𝑃𝑆𝑁𝐿𝑃𝑆) − (𝑀𝐻𝑃𝑆𝑁𝐻𝑃𝑆)] (4)

where 𝐸 represents the energy of the supercapacitor, 𝜂 repre-
sents an efficiency term, 𝑁𝐿𝑃𝑆 and 𝑁𝐻𝑃𝑆 are the LPS and HPS
speeds, and 𝑀𝐿𝑃𝑆 and 𝑀𝐻𝑃𝑆 are the motor torques of the electric
machines on the low and high pressure shafts. Equation 4 is a
linear approximation of energy used by the EMs in the nonlinear
propulsion system, encapsulating contributions from the electric
machines, power electronics, ESDs, and other elements in the
electric powertrain. Further, the sign conventions used in Eq.
4 indicate the impact of the EMs on the state-of-charge. 𝑀𝐿𝑃𝑆

produces negative torque via power extraction and is leveraged
to charge the ESD. 𝑀𝐻𝑃𝑆 produces positive torque via power
injection and depletes the ESD.

The states, inputs, and outputs for the propulsion system in
this work are:

𝑥𝑎𝑢𝑔 =
[︁
𝑁𝐿𝑃𝑆 𝑁𝐻𝑃𝑆 𝐸

]︁𝑇
=
[︁
𝑥 𝐸

]︁𝑇 (5)

𝑢 =
[︁
𝑊𝑓 𝑀𝐿𝑃𝑆 𝑀𝐻𝑃𝑆 𝑉𝐴𝐹𝑁 𝑉𝐵𝑉

]︁𝑇 (6)

𝑦 =
[︁
𝑃𝑠3 𝑇45 𝑁𝑓 𝑎𝑛 𝑁𝐻𝑃𝑆

]︁𝑇 (7)

Equation 5 is an augmented state vector stacking the LPS and HPS
speeds with the ESD state-of-charge. The inputs in Eq. 6 include
the fuel flow rate, LPS and HPS electric machine torques, variable
area fan nozzle (VAFN) area, and variable bleed valve (VBV)
setting. Equation 7 denotes the static high pressure compressor
discharge pressure, the low pressure turbine inlet temperature, the
uncorrected fan speed, and the uncorrected high pressure shaft
speed. Note fan speed is used as a proxy for thrust and is related
to the LPS speed by a gear ratio expressed as 𝑁𝐿𝑃𝑆 = 3.1𝑁𝑓 𝑎𝑛

for the given propulsion system.

2.2 MPC Implementation
Previously, Ref. [12] proposed a CMPC formulation for the

AGTF30 system with the following optimal control problem:

Problem 1 (Centralized MPC Optimal Control Problem)

min
𝑢

𝐽 (𝛿𝑦, 𝛿𝑢) (8a)

subject to 𝛿𝑦(𝑡) = 𝛿𝑦0 (8b)
𝛿�̇�(𝜏) = 𝐴𝛿𝑥(𝜏) + 𝐵𝛿Ω(𝜏), (8c)
𝛿𝑦(𝜏) = 𝐶𝛿𝑥(𝜏) + 𝐷𝛿Ω(𝜏), (8d)
𝛿𝑥(𝜏) ∈ X− 𝑥𝑡𝑟𝑖𝑚, (8e)
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𝛿Ω(𝜏) ∈ U− 𝑢𝑡𝑟𝑖𝑚, (8f )
𝛿𝑦(𝜏) ∈ Y− 𝑦𝑡𝑟𝑖𝑚, (8g)
𝛿𝑦(𝑡 + 𝑇) ∈ Y𝑓 − 𝑦𝑡𝑟𝑖𝑚, (8h)
𝜏 ∈ [𝑡, 𝑡 + 𝑇]

where the open-loop cost function is:

𝐽 (𝛿𝑦, 𝛿𝑢) =
∫ 𝑡+𝑇

𝑡

𝑙 (𝛿�̃�(𝜏))𝑑𝜏

+
∫ 𝑡+𝑇𝑢

𝑡

𝑙 (Δ𝑢(𝜏), 𝛿𝑢𝑤𝑎𝑠ℎ𝑜𝑢𝑡 (𝜏))𝑑𝜏
(9)

and where 𝑇,𝑇𝑢 are the time horizons for the outputs and inputs
respectively with 𝑇𝑢 ≤ 𝑇 . In Problem 1, 𝜏 is the time variable
over the horizon, 𝑦0 is the initial condition of the output, and
X, U,Y, and Y𝑓 are the state, input, output, and terminal con-
straint sets, respectively. The term Ω is an input vector described
as:

Ω(𝜏) =
[︁
𝑊𝑓 (𝜏) 𝑀𝐿𝑃𝑆 (𝜏) 𝑀𝐻𝑃𝑆 (𝜏) 𝑉𝐴𝐹𝑁 (𝑡) 𝑉𝐵𝑉 (𝑡)

]︁𝑇
(10)

Ω combines the decision variables as a function of the horizon 𝜏
and the open-loop scheduled inputs as a function of the initial time
instant 𝑡. The stage costs 𝑙 (·) are quadratic and represented by the
weighted Euclidean norm ∥ · ∥2

Π
with symmetric, positive-definite

weighting matrix Π. The stage costs in Eq. 9 are:

𝑙 (𝛿�̃�(𝜏)) = ∥𝛿�̃�∥2
𝑄 (11)

𝑙 (Δ𝑢(𝜏), 𝛿𝑢𝑤𝑎𝑠ℎ𝑜𝑢𝑡 (𝜏)) = ∥Δ𝑢∥2
𝑅 + ∥𝛿𝑢𝑤𝑎𝑠ℎ𝑜𝑢𝑡 ∥2

𝑅𝑤𝑎𝑠ℎ𝑜𝑢𝑡
(12)

where 𝑄, 𝑅, and 𝑅𝑤𝑎𝑠ℎ𝑜𝑢𝑡 are weighting matrices. The compo-
nents of the stage costs include:

�̃� =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
�̃�1,1 = 𝑁𝑓 𝑎𝑛 − 𝑁𝑓 𝑎𝑛,𝑟𝑒 𝑓

�̃�2,1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑁𝐿𝑃𝑆 − 𝑁𝐿𝑃𝑆,𝑆𝑆 𝑖 𝑓 �̇�𝑓 𝑎𝑛 < −𝜙
𝑁𝐻𝑃𝑆 − 𝑁𝐻𝑃𝑆,𝑆𝑆 𝑖 𝑓 �̇�𝑓 𝑎𝑛 > 𝜙

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(13)

Δ𝑢 = 𝛿𝑢(𝜏) − 𝛿𝑢(𝜏 − 𝑇𝑠) (14)

𝑢𝑤𝑎𝑠ℎ𝑜𝑢𝑡 = (−𝑎𝑒−𝑎𝑡 )−1 [︁𝑀𝐿𝑃𝑆 𝑀𝐻𝑃𝑆

]︁
(15)

where the subscript ·𝑆𝑆 represents a steady-state value, �̇�𝑓 𝑎𝑛 is
fan acceleration, 𝜙 is a threshold value, 𝑎 ≥ 0 is a non-negative
value, and 𝑇𝑠 is the sampling time. The piecewise logic in Eq.
13 permits only one steady-state setpoint to be tracked in �̃� at a
time, with the LPS setpoint tracked during deceleration and the
HPS setpoint tracked during acceleration in accordance with the
TEEM strategy. These setpoints are not tracked during steady-
state operation, indicated by the otherwise condition. The output
of Problem 1 is the optimal open-loop control sequence over the
time horizon 𝑢∗ (·; 𝑥(𝑡)), where ·∗ denotes the optimal solution.
This is accompanied by the resultant optimal state trajectory,
𝑥∗ (·; 𝑥(𝑡), 𝑢∗ (·; 𝑥(𝑡))).

Under the dual-spool configuration, 𝑀𝐿𝑃𝑆 in Eq. 4 is re-
sponsible for charging the ESDs. As opposed to the prior imple-
mentation in [12], the LPS EM is now permitted to activate during

steady-state operation to charge the supercapacitor. While acti-
vated at steady-state, 𝑀𝐿𝑃𝑆 does not engage in the tracking goal
outlined in �̃�2,1 as that goal is restricted to deceleration transients.
To permit charging of energy storage devices, an additional stage
cost is added to Eq. 9. This stage cost includes a penalty on
an inverted washout filter term to regulate 𝐸 to a setpoint 𝐸𝑟𝑒 𝑓

during engine steady-state conditions:

∥(−𝑎𝐸 (𝐸𝑟𝑒 𝑓 + 𝑒−𝑎𝐸 𝑡 )−1𝐸 ∥2
𝑄𝐸

(16)

where the values 𝑎𝐸 ≥ 0 and𝑄𝐸 control the speed and magnitude
of the response. To restrict, but not necessarily eliminate, poten-
tial overcharging, a term is used to penalize LPS EM activation
in instances where 𝐸 ≥ 𝐸𝑟𝑒 𝑓 :

∥𝑀𝐿𝑃𝑆 ∥2
𝑅𝐸

(17)

Combining Eqs. 16 and 17 into a stage cost using piecewise logic
forms:

𝑙 (𝛿𝑥𝑎𝑢𝑔, 𝛿𝑢) =
{︄
∥𝑀𝐿𝑃𝑆 ∥2

𝑅𝐸
𝑖 𝑓 𝐸 ≥ 𝐸𝑟𝑒 𝑓

∥(−𝑎𝐸 (𝐸𝑟𝑒 𝑓 + 𝑒−𝑎𝐸 𝑡 )−1𝐸 ∥2
𝑄𝐸

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(18)
The updated CMPC optimal control problem now reads as:

Problem 2 (Updated CMPC Optimal Control Problem)

min
𝑢

𝐽 (𝛿𝑦, 𝛿𝑥𝑎𝑢𝑔, 𝛿𝑢) (19a)

subject to 𝛿𝑦(𝑡) = 𝛿𝑦0 (19b)
𝐸 (𝑡) = 𝐸0, (19c)
𝛿�̇�(𝜏) = 𝐴𝛿𝑥(𝜏) + 𝐵𝛿Ω(𝜏), (19d)
�̇� (𝜏) = 𝑓 ((𝛿𝑥(𝜏) + 𝑥𝑡𝑟𝑖𝑚), (𝛿𝑢(𝜏) + 𝑢2:3,𝑡𝑟𝑖𝑚)),

(19e)
𝛿𝑦(𝜏) = 𝐶𝛿𝑥(𝜏) + 𝐷𝛿Ω(𝜏), (19f )
𝛿𝑥𝑎𝑢𝑔 (𝜏) ∈ X𝑎𝑢𝑔 − 𝑥𝑎𝑢𝑔,𝑡𝑟𝑖𝑚, (19g)
𝛿Ω(𝜏) ∈ U− 𝑢𝑡𝑟𝑖𝑚, (19h)
𝛿𝑦(𝜏) ∈ Y− 𝑦𝑡𝑟𝑖𝑚, (19i)
𝛿𝑦(𝑡 + 𝑇) ∈ Y𝑓 − 𝑦𝑡𝑟𝑖𝑚, (19j)
𝜏 ∈ [𝑡, 𝑡 + 𝑇]

where Eq. 19e is equivalent to Eq. 4 in terms of the perturbation
values and the open-loop cost function is:

𝐽 (𝛿𝑦, 𝛿𝑥𝑎𝑢𝑔, 𝛿𝑢) =
∫ 𝑡+𝑇

𝑡

𝑙 (𝛿�̃�(𝜏))𝑑𝜏

+
∫ 𝑡+𝑇𝑢

𝑡

𝑙 (Δ𝑢(𝜏), 𝛿𝑢𝑤𝑎𝑠ℎ𝑜𝑢𝑡 (𝜏))𝑑𝜏

+
∫ 𝑡+𝑇

𝑡

𝑙 (𝛿𝑥𝑎𝑢𝑔 (𝜏), 𝛿𝑢(𝜏))𝑑𝜏

(20)

3. CONTROLLER DESIGN
This section describes the proposed hierarchical MPC archi-

tectures. In HMPC schemes, the top-most controller is an MPC
and subsequent tier controllers can be any control scheme. In
this paper, a 2-tier, one subsystem layout is considered where
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Plant

(a) Centralized MPC architecture.

Plant

(b) Hierarchical MPC architecture.

FIGURE 2: SIMPLIFIED CENTRALIZED AND HIERARCHICAL MPC ARCHITECTURES.

the highest tier controller (𝐶11) is a CMPC and the lowest tier
controller (𝐶21) is a PI controller or another CMPC. These two
configurations are referred to as MPC-PI and MPC-MPC, re-
spectively. Figure 2 illustrates the difference between CMPC and
HMPC implementations. In Fig. 2a, 𝐶11 is a CMPC sampled at
the discretization rate of the plant, 𝑇𝑠 = Δ𝑡, commanding the first
instance of the optimal open-loop input sequence to and receiving
feedback from the plant. In contrast, the HMPC scheme depicted
in Fig. 2b features two sample rates: 𝑇𝑠 = 𝛼Δ𝑡 for the first tier, in-
dexed with 𝑖, and 𝑇𝑠 = Δ𝑡 for the second tier, indexed with 𝑘 . The
term 𝛼 is a positive integer used to alter the sample time at higher
tiers. The control 𝐶11 tracks the reference trajectory and sets the
optimal setpoint for 𝐶21 when the sample times coincide from its
resultant optimal state trajectory. The control 𝐶21 then produces
an input to be applied to the plant, whose outputs are sent to
𝐶21 and 𝐶11 when the sample rates sync. The propulsion system
permits a two-subsystem layout, where one subsystem is actu-
ated by the engine inputs and the second subsystem is actuated
by the electric machines. This would result in two second-tier
controllers: 𝐶21 and 𝐶22. However, this paper only considers the
gas turbine engine components as a subsystem, actuated by the
fuel flow rate 𝑊𝑓 and controlled by 𝐶21. This decision removes
the need for 𝐶22 and results in 𝐶11 bearing responsibility for de-
termining the remaining active control variables, i.e. the motor
torques, depicted in Fig. 2b as communicated to the plant when
𝑖 = 𝑘 .

The optimal control problem for 𝐶11 of both the MPC-PI
and MPC-MPC architectures is identical to Problem 2. The PI
portion of MPC-PI is defined as:

𝑢𝑃𝐼 = 𝐾𝑃𝑒(𝑡) + 𝐾𝐼

∫
𝑒(𝜏)𝑑𝑡 (21)

where 𝐾𝑃 , 𝐾𝐼 are proportional and integral gains. The error is

𝑒 = 𝑁𝑐, 𝑓 𝑎𝑛 − 𝑁𝑐, 𝑓 𝑎𝑛,𝑟𝑒 𝑓 where the subscript ·𝑐 refers to the
corrected shaft speed. For details on the PI formulation, refer
to [22]. The optimal control problem for the 𝐶21 portion of
the MPC-MPC is identical to Problem 1 but uses a different
augmented input and cost function:

Ω =
[︁
𝑊𝑓 (𝜏) 𝑀𝐿𝑃𝑆 (𝑡) 𝑀𝐻𝑃𝑆 (𝑡) 𝑉𝐴𝐹𝑁 (𝑡) 𝑉𝐵𝑉 (𝑡)

]︁𝑇
(22)

𝐽 (𝛿𝑦, 𝛿𝑢) =
∫ 𝑡+𝑇

𝑡

𝑙 (𝛿�̃�1,1 (𝜏))𝑑𝜏 +
∫ 𝑡+𝑇𝑢

𝑡

𝑙 (Δ𝑢𝑊𝑓
(𝜏)) (23)

In contrast to Eq. 10, Eq. 22 includes a decision variable, open-
loop scheduled variables, and the optimal motor torques 𝑀∗

𝐿𝑃𝑆

and 𝑀∗
𝐻𝑃𝑆

supplied by 𝐶11. The stage costs in Eq. 23 use the
weight matrices 𝑄𝑒 for the tracking penalty and 𝑅𝑒 for the input
penalty.

4. CASE STUDIES
The developed controllers are verified on the nonlinear model

with a simulated burst-chop transient at sea-level-static conditions
(Alt = 0kft, MN = 0) with a PLA change from 48° to 80° to 48°.
The simulation time is 65s with the burst starting at 10s and
the chop starting at 40s. All controllers are tuned to achieve a
five-second rise time across the burst-chop transient and to main-
tain a normalized supercapacitor state-of-charge above a user-
selected value of 90%. Simulations are implemented in MAT-
LAB/Simulink using direct multiple shooting with CasADi for
MPC optimization. CasADi includes the nonlinear optimization
library iPOPT [27]. The discretization rate is set to Δ𝑡 = 0.015𝑠
with 𝛼 = 35 for the MPC-PI and 𝛼 = 10 for the MPC-MPC.
Note for CMPC, 𝑇𝑠 = Δ𝑡. There is currently no direct guideline
for selecting 𝛼, however the parameter is often selected based
on the speed of the dynamic system and must be manipulated
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to ensure closed-loop stability [18]. In each controller, the time
horizons are set by the relationship 𝜈 = 𝑇

𝑇𝑠
, with 𝜈 = 5 for 𝑇 and

𝜈𝑢 = 2 for 𝑇𝑢. To account for computational delay, traditionally
assumed to be negligible in MPC implementation, the second,
rather than first, element in the optimal input sequence is applied
to the plant. As a result, 𝐶21 receives the third element in the
optimal state trajectory from 𝐶11. Closed-loop performance is
evaluated with uncorrected fan speed, normalized supercapacitor
state-of-charge, and electric machine data. Further, computation
time among the control approaches is compared based on the
normalized average block execution and total execution times in
Simulink. The normalized state-of-charge is a percentage deter-
mined as outlined in [26]:

𝑉𝑛𝑜𝑟𝑚 =
𝑉𝑆𝐶

𝑉𝑆𝐶,𝑚𝑎𝑥

∗ 100 (24)

where 𝑉𝑛𝑜𝑟𝑚 is the normalized voltage, 𝑉𝑆𝐶 is the voltage across
the supercapacitor bank, and 𝑉𝑆𝐶,𝑚𝑎𝑥 is the voltage at which the
supercapacitor bank is considered to be at full charge. Please
note that the value at which the supercapacitor is considered to
be at the desired maximum charge is below the maximum voltage
capability of the supercapacitor. 𝑉𝑆𝐶,𝑚𝑎𝑥 is used to determine
the setpoint 𝐸𝑟𝑒 𝑓 . The voltage across the supercapacitor bank is
related to energy via the relationship 𝐸 = 0.5𝐶𝑆𝐶𝑉

2 where 𝐶𝑆𝐶

is the capacitance of the supercapacitor. The following constraint
sets are used:

X𝑎𝑢𝑔 = {0rpm ≤ 𝑁𝐿𝑃𝑆 ≤ 7130rpm,
0rpm ≤ 𝑁𝐻𝑃𝑆 ≤ 22500rpm,
0J ≤ 𝐸 ≤ 5.4 × 107J}

Y= Y𝑓 = {0psi ≤ 𝑃𝑠3 ≤ 790psi, 0°R ≤ 𝑇45 ≤ 2414°R,
0rpm ≤ 𝑁𝑓 𝑎𝑛 ≤ 2300rpm,
0rpm ≤ 𝑁𝐻𝑃𝑆 ≤ 22500rpm}

U = {𝑊𝑓 ,𝑙𝑏 (𝑡)pps ≤ 𝑊𝑓 ≤ 𝑊𝑓 ,𝑢𝑏 (𝑡)pps,
− 600ft-lbf ≤ 𝑀𝐿𝑃𝑆 ≤ 0ft-lbf,
0ft-lbf ≤ 𝑀𝐻𝑃𝑆 ≤ 200ft-lbf}

where the subscripts ·𝑙𝑏, ·𝑢𝑏 indicate lower and upper bounds and
the fuel flow rate constraints are time-varying functions defined
in the engine model. These constraints are based on safety factors
related to fan acceleration, shaft speed, pressure, and temperature
for the engine system and span the engine’s entire flight envelope.
The electric motor constraints are selected based on maximum
power and torque capabilities for the electrified engine system.
Further, their definitions restrict 𝑀𝐻𝑃𝑆 to power injection dur-
ing acceleration transients and 𝑀𝐿𝑃𝑆 to power extraction during
deceleration transients and at steady-state. The remainder of the
section presents simulation results for the following cases:

1. Performance Comparison of HMPCs to CMPC

2. Effect of Sampling Time on HMPC

4.1 Performance Comparison of HMPCs to CMPC
Figure 3 displays the closed-loop performance of the con-

trollers, with several magnified insets to highlight noticeable out-
comes. Further, Fig. 4 presents relevant parameters that are

important for engine safety and life maintenance. All controllers
meet the fan speed rise requirement, with various degrees of
steady-state error present, while not violating critical tempera-
ture or stall margin restrictions. In terms of responsiveness, both
HMPCs lag the CMPC and have elements of steady-state error
and undershoot with respect to the reference signal. Further, the
hierarchical controllers diverge slightly from the fan speed refer-
ence trajectory prior to burst, as displayed in the inset of the first
10s of the response in Fig. 3. Such an outcome is undesirable, as
thrust response is the priority objective of engine control. Subse-
quent investigation revealed the resultant behavior of the HMPCs
to be impacted by 𝛼, to be discussed in the next section. How-
ever, potential solutions to curb this response include adding an
integral term to the cost function or by implementing rate-based
MPC, which is known for its ability to mitigate steady-state error.
Thus, these options should be explored in future work.

The controllers respond to the state-of-charge tracking goal
included in the cost function, resulting in ESD charging during
steady-state as shown in the plot of the normalized voltage. In-
deed, after actuating 𝑀𝐻𝑃𝑆 during burst, all controllers begin
to charge the ESDs once the system has reached steady-state
at high power PLA. Charging continues when 𝑀𝐿𝑃𝑆 actuates
during chop, resulting in sharp voltage depletions in 𝑉𝑛𝑜𝑟𝑚 at
𝑡 > 40s across the controllers where the supercapacitors reach
full charge and the resistor bank dissipates excess power. The
final value of 𝐸 is static across controllers due to the deactivation
of 𝑀𝐿𝑃𝑆 , causing each controller to hold the state-of-charge at
the ending voltage of the resistor bank dissipation. This behav-
ior can be combatted by manipulating the related washout filter
variables (𝑎, 𝑅𝑤𝑎𝑠ℎ𝑜𝑢𝑡 ) to permit the motor to be active longer
or by manipulating the energy charging variables (𝑎𝐸 , 𝑄𝐸) to
better emphasize the charging objective. Prior to the burst, the
state-of-charge appears to diverge slightly from the reference in
some controllers, displayed in the magnified inset. The graph
of 𝑀𝐻𝑃𝑆 shows minor actuations on the HPS EM during this
time. As actuation of 𝑀𝐻𝑃𝑆 consumes energy, 𝑀𝐿𝑃𝑆 activates
to restore the energy. For example, the CMPC inadvertently acti-
vates the HPS EM at 𝑡 < 2s, forcing the state-of-charge below the
setpoint. The state-of-charge soon begins to move towards the
setpoint due to activation of 𝑀𝐿𝑃𝑆 after 𝑡 = 2s. Similar behavior
is observed in MPC-PI, where minor fluctuations can be observed
on the LPS EM in response to HPS EM actuations. While these
responses show that the current logic for state-of-charge tracking
is feasible, it also illustrates the stage cost should be refined to
remove this behavior. This is especially true as the HPS EM
should not be active at steady-state in accordance with the TEEM
strategy. Further, although the fluctuating behavior is observed
across all controllers, the influence of 𝛼 on the behavior should be
explored in the HMPCs, as the sampling time parameter affects
the transient response.

In addition to system performance, computational burden is
also used as an evaluation metric. Figure 5 presents normal-
ized average execution times for the controllers relative to the
CMPC for both the total Simulink file execution time and the
total controller execution time. These values were determined
by running ten repeated simulations of each controller, averaging
the execution times, and then normalizing the execution times
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FIGURE 3: RESULTANT CLOSED-LOOP PERFORMANCE ACROSS CONTROLLERS FOR FAN SPEED (Nf an ), NORMALIZED VOLTAGE OF THE
SUPERCAPACITOR STATE-OF-CHARGE (Vnorm ), LPS EM MOTOR TORQUE (MLP S ), AND HPS EM MOTOR TORQUE (MHP S ).

FIGURE 4: TEMPERATURE (T45) AND HIGH/LOW COMPRESSOR
STALL MARGIN (SMHPC , SMLPC ) RESULTANT TRAJECTORIES.

relative to the CMPC data. In the cases of the HMPCs, the con-

troller time was calculated as a sum of the 𝐶11 and 𝐶21 execution
times. Simulations were executed on a laptop computer with an
Intel® Core™ i7-118500H CPU @ 2.50GHz Processor. Compu-
tation times were computed with the Performance Advisor tool in
Simulink. The data show that of the HMPCs, MPC-PI executes
in the shortest amount of time, reducing total execution time and
controller execution time by over 80% compared to the CMPC.
Comparatively, using MPC-MPC results in only ∼15% time re-
ductions. HMPC execution times are heavily dependent on 𝛼, as
this changes the sampling rate of the top-level MPC component
of the architectures. As 𝛼 approaches 1, the computation time
lengthens, resulting in an execution time akin to the CMPC. The
computational data highlight the advantage of HMPC schemes
over non-HMPC architectures. By exploiting different sampling
rates at each tier in the hierarchy, an HMPC can execute at a
faster rate than a non-HMPC controller. In this case, both HM-
PCs exhibit execution time reductions to varying degrees. When
taken in concert with the closed-loop performance, the outcomes
emphasize the viability of HMPC as an alternative to non-HMPC
controllers. These designs can be tuned to perform comparably
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FIGURE 6: IMPACT OF SAMPLING TIME PARAMETER α ON HIER-
ARCHICAL MPC SCHEMES.

and can be executed at faster speeds, thus combating the compu-
tational intensity pitfall of typical MPC schemes.

4.2 Effect of Sampling Time on HMPC
Sampling time plays a significant role in the design of MPCs,

which are traditionally applied on slow dynamic systems. As
such, the impact of the sampling time multiplier, 𝛼, on the closed-
loop response of the HMPCs is evaluated. Neither HMPC was
retuned for the evaluation but tuning over varying 𝛼 profiles is
a potential path for future research. Figure 6 shows the MPC-
PI and MPC-MPC fan speed responses for values of 𝛼 ranging
from one to thirty-five. At 𝛼 = 1, both closed-loop responses
exhibit the poorest tracking performance and at higher values of
𝛼, both HMPCs exhibit limited improvement in the response. As
mentioned in Section 4.1, 𝛼 contributes to steady-state error in
the fan speed tracking response. This is clearly displayed in the
figure, where both HMPCs have increasing levels of steady-state
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FIGURE 7: HIERARCHICAL MPCS IMPLEMENTED WITH TRUE
REFERENCE VALUE, Nf an,r ef , AT α = 1 AND TUNED α VALUES.

error prior to the burst and after the chop with change in the sam-
pling time multiplier. For both controllers, as 𝛼 increases, the
acceleration response hastens, leading to significant overshoot at
the largest 𝛼 for MPC-MPC. In this controller, the deceleration
response degrades, leading to varying levels of undershoot and
steady-state error, the worst seeming to occur at𝛼 = 25. Degrada-
tion is present, but not as severe, in the MPC-PI responses, where
increasing 𝛼 similarly quickens the rise response and impacts
settling after the chop.

Investigation revealed that performance deterioration at 𝛼 =

1 is caused by the control design of 𝐶21. In both HMPCs, 𝐶21 is
tuned to respond to large error signals indicative of a step input,
rather than small error signals indicative of a reference trajectory.
At 𝛼 = 1, the optimal fan speed trajectory 𝑁∗

𝑓 𝑎𝑛
produced by 𝐶11

is a smooth trajectory profile whereas at larger 𝛼 values 𝑁∗
𝑓 𝑎𝑛

mimics step-like behavior due to the sampling time discrepancy.
This leads to the resultant trajectories observed in Fig. 6, where
small sampling time multipliers inhibit the response and large
sampling time multipliers improve the response. However, the
performance discrepancy across 𝛼 vanishes if the true fan refer-
ence value, 𝑁𝑓 𝑎𝑛,𝑟𝑒 𝑓 , is tracked by 𝐶21 in place of 𝑁∗

𝑓 𝑎𝑛
. Figure

7 demonstrates this behavior for both MPC-PI and MPC-MPC.
Steady-state error, undershoot, and other poor performance char-
acteristics are now absent due to tracking 𝑁𝑓 𝑎𝑛,𝑟𝑒 𝑓 . This outcome
highlights the design considerations needed surrounding selec-
tion of the sampling time multiplier 𝛼 and the tuning of lower
tier controllers in the hierarchy. To achieve a desirable response
via optimal setpoint tracking, 𝛼 must be selected such that the
sampling time of 𝐶11 is acceptably slower than that of 𝐶21. Fur-
ther, each 𝛼 value necessitates retuning or redesign of 𝐶21 to best
respond to reference trajectory, rather than reference point, track-
ing. Thus, as 𝛼 has significant impact on the steady-state and
transient characteristics of a response, it should be selected based
on the dynamic needs of the system and the desired controller
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composition.

5. CONCLUSIONS
This paper presented two hierarchical MPC architectures for

control of a hybrid-electric propulsion system. Both designs used
a two-tier, one subsystem layout, combining a CMPC at the high-
est tier with either a CMPC or PI controller at the lowest tier.
Case studies illustrated that the HMPCs maintained comparable
closed-loop performance to CMPC, tracking fan speed and regu-
lating energy storage devices, at reduced computational intensity.
This outcome promotes HMPC as a feasible alternative to non-
HMPC designs when computation time is a practical limitation.
More importantly, the study revealed the sampling parameter 𝛼
to warrant careful consideration in HMPC design. As shown in
the case studies, 𝛼 plays an influential role in the closed-loop
performance of HMPC, emphasizing that its selection is critical
in the design process. Potential directions for continued research
have been highlighted in the case studies, but additional avenues
include exploring multi-tier, multi-subsystem hierarchical archi-
tectures, incorporating additional MPC designs into HMPC, and
implementing mission-preview with HMPC.
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