

X-57 Subproject Overview and Evolution

Heather Maliska, X-57 Subproject Manager Sean Clarke, X-57 Subproject Principal Investigator

X-57 Subproject Need

Advance the Nation's ability to design, test, and determine airworthiness of distributed electric and aero-propulsive coupling technologies, which are a critical enabler of emerging, advanced air mobility markets.

The value of X-57 lies in advancing the Nation's ability to design, test, and certify electric aircraft, which will enable entirely new markets Mod III/IV explores the benefits of Distributed Electric Propulsion which will revolutionize aircraft architecture and performance

Meet "Maxwell"

Mod I: Baseline performance of gasoline-powered aircraft

Mod IV low-speed: High-lift propeller takeoff, landing, handling qualities

Together: Comprehensive impact of electric propulsion technologies on aircraft design, performance, efficiency, acoustic signature, and operations

Mod II: High-voltage powertrain integration, impact of electric retrofit

Mod III : Impact of cruise-sized wing, wingtip propellers

The X-57 Maxwell Team

Our Origin: A Convergence of NASA Research

Our Origin: Leading Edge Asynchronous Propeller Tech Demo

State of Industry Over X-57's Lifetime

X-57 Subproject Goals and Objectives

Goals	Share NASA X-57 design & airworthiness process with regulators and standards organizations to further development of distributed electric propulsion (DEP) airworthiness certification approaches and procedures.		Establish a reference platform for integrated approaches of distributed electric propulsion technologies, including best practices and lessons learned, to advance the Nation's science and industrial base.	
	Objectives	Success Criteria	Objectives	Success Criteria
	OBJ-1: Develop distributed electric propulsion (DEP) airworthiness standards with industry.	Actively influence civil airworthiness standards development to address the critical DEP-related gaps related to public certification rules.	OBJ-3: Share X-57 integrated DEP design & lessons learned with industry and academic stakeholders.	Conduct yearly technical progress sessions at key aviation conferences and workshops. Provide access to technical reports, major design reviews, and flight results on the X-57 technical data website.
	OBJ-2: Increase regulators' proficiency in the development of airworthy electric aircraft and distributed electric propulsion systems.	Complete a Flight Readiness Review of an aircraft with a complex, integrated DEP system. Publish X-57 "Airworthiness Validation Plan," which maps NASA FRR artifacts to FAA airworthiness documents.	OBJ-4: Provide a reference vehicle for DEP technology advancement.	Publish X-57 design artifacts such as analyses, instrumented flight data, outer mold line data file, in-flight DEP acoustic profile.

X-57 Technology Challenges

- X-planes typically advance a handful of key technologies from the 5/6 to 6/7 level
 - Subsystems not related to the technologies being demonstrated are typically at a Technology Readiness Level (TRL) of 8 or 9
- For X-57, nearly all aircraft subsystems were at a lower TRL or impacted by the new subsystems
 - Significant challenges arose while developing and integrating lower TRL hardware for a flight project
- X-57 embarked on subsystem development efforts to advance the key technologies to the TRL 5/6

X-57 Key Technology Advancements from Kickoff to Closeout

X-57 Programmatic History Overview

Integration and unplanned subsystem development challenges hindered ability to maintain steady progress to first flight. Mod II was a year from flight for six years of the subproject.

X-57 Sumn

Lessons in the Journey to Flight

- Despite not achieving flight, the focus on achieving flight enabled the team to gather and share relevant lessons and data with industry and regulators
 - Maintaining flight as an objective drove testing and analysis rigor that leads to more discovery
- The success of the X-57 lies not in what was originally set out to achieve, but that we have identified and addressed gaps in industry that needed to be filled
 - Lessons learned were foundational to electrified propulsion
- Lessons shared early and often with industry and standards bodies
- Built up electrified aircraft US small businesses
 - Enabled commercial products
- X-57 has advanced the Nation's ability to design, test, and determine airworthiness of distributed electric and aero-propulsive coupling technologies, which are a critical enabler of emerging, advanced air mobility markets

Subproject had impact on industry and standards/regulations despite the absence of flight

X-57 Contributions

Airworthiness rule for use of propellers as high-lift device [14 CFR §23.2110(b)]

Airworthiness standards for electric motors [ASTM F3338]

First auto-coded safety-critical flight software for NASA Aeronautics [High-lift motor controllers] SS rule opellers evice [14 C(b)]

A

Extensive CFD database for blown-wing configurations [Electra.aero]

Whirl flutter research for distributed propulsion configurations [University of Alabama]

Commercialized battery system capable on several flying electric aircraft [Bye, Ampaire, Archer, Regent, Diamond, Harbour Air, Aurora, others] High-lift laminar flow airfoil and flap [Mod III Wing]

Cruise motor controller design [NASA EPFD, NASA SUSAN]

U.S. electrified aviation small business growth [ESAero, Joby Aviation, Electric Power Systems] New material for EMI chokes [NASA GRC]

Overall Impact to Electrified Aviation

- X-57 contributions have been substantial, especially compared to level of investment
 - Elevated electric propulsion TRL of components leading to integration with flight performance specs
 - X-57 publishing approach has been "early and often," includes sharing of design tools, component and subsystem test data, and operational lessons learned with academia and industry
- Contractor/Subcontractors grew, in part, because of X-57
 - Joby Aviation working through certification full scale flight demonstrations now
 - EP-Systems commercialized X-57-series battery systems and continues to advance product line
 - ESAero grew substantially during execution and has integrated QA practices (AS9100 certification)
- Wider impact across the electrified aviation space (industry, regulators, academia)
 - Published architecture is a principal reference for academia and standards development
 - Design and test standards and lessons learned are being adopted
 - Impact on regulations and standards ongoing as operational constraints drive further learning

X-57 <u>HAS</u> advanced the Nation's ability to design, test, and determine airworthiness of electrified aircraft technologies

