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Abstract: In this paper, we propose an adaptive shape servoing method to deform a soft object
into a desired 3-D shape. The high dimensional representation and the unknown deformation
properties of the soft object pose a challenge to actively manipulate its shape. To address
this issue, we develop a method to compute the deformation Jacobian matrix in real-time.
The Jacobian is estimated using a set of basis functions and its corresponding parameters to
capture the dynamics of the system and relate the applied input motion to changes in the soft
object’s shape. An integral concurrent learning (ICL) based adaptive update law is derived
using Lyapunov analysis to estimate the deformation parameters and prove its convergence. A
physics-based simulation is used to validate the proposed method and controller by performing
manipulation tasks with different desired configurations. The performance is compared with a
standard gradient update law to demonstrate the accuracy and robustness of our approach.

1. INTRODUCTION

Shape servoing refers to the problem of controlling or
servoing the shape of a deformable object to a desired
shape by externally providing inputs to the robot. Shape
servoing is useful in many applications such as robotic au-
tomation of food processing, manipulation of soft robots,
and manipulation of soft tissues for medical applications.
In shape servoing, typically the shape of the deformable
object is measured using an external stationary camera
sensor and an external input is provided using a robot
to change the shape of the object based on current and
desired configuration of the object.

For shape control of the deformable objects, point-based
representation is commonly used where the object is rep-
resented as a grid of points on the object (Aranda et al.
(2020)). The shape servoing task then becomes matching
the current features on the deformable object to the de-
sired features. Other representations of the object shape
such as the object contour measured in the images have
also been studied in literature, for example, Navarro-
Alarcon and Liu (2017); Wang et al. (2018); Xu et al.
(2022). The contours are represented using a truncated
Fourier series in Navarro-Alarcon and Liu (2017), Bezier
curve in Xu et al. (2022), B-splines in Li et al. (2005),
nonuniform rational B-spline (NURBS) in Wang et al.
(2018). These methods require contour estimation in the
images which is often a challenging task. Other represen-
tations of the flexible object shape are also developed in
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terms of extended objects using a collection of ellipses or
image moment features, see, Yao et al. (2020a,b); Yao and
Dani (2017).

A deformation model is required to design a feedback con-
troller for servoing the robot such that the desired shape of
the deformable object is achieved. The deformation model
provides a relationship between the change in the features
as a function of the external velocity input provided at
a point or in a small region of the deformable object.
Estimating a global deformation model of the entire shape
is very challenging due to high dimensional representa-
tion of soft objects. In Navarro-Alarcon and Liu (2017),
a local linear deformation model is learned by solving a
least squares type problem for a given object configuration
and deformation model recalibration is achieved by itera-
tive learning at various different configurations. In Wang
et al. (2018) the relationship between the control points
of Bezier curves and NURBS curve and the velocity is
computed by adaptive estimation of the parameters in an
adaptive controller loop. A multi-layer neural network is
used in Hu et al. (2019) to relate the end-effector move-
ment to the object’s deformation with an online learning
process to improve model accuracy. In Lagneau et al.
(2020), the deformation Jacobian is estimated based on
a least-squares minimization, which is further updated
based on a user specified confidence threshold. Estimat-
ing the deformation Jacobian is a common approach to
address this problem however, the control of such systems
is difficult due to the limited number of inputs used to
control the high dimensional object Yu et al. (2022). In
Berenson (2013) a diminishing rigidity-based method is
used to compute the Jacobian matrix, which is used to
drive the deformable object to a desired configuration.



Fig. 1. Shape servoing setup.

A tangent space mapping algorithm is presented in Tang
et al. (2016) for the manipulation of deformable objects.

In this paper, a point-based representation of the de-
formable object such as a cloth is used. It is assumed
that the 3D locations of the points on the object are
measured by a camera sensor. The Jacobian relationship
between the velocity provided to the object and the object
deformation measured in terms of the motion of the points
is approximated using a Fourier series-based regression
Williams and Rasmussen (2006). Since the parameters
of the Jacobian are unknown, an adaptive controller is
developed, which estimates the parameters of the Jaco-
bian along with regulating the positions of the points
to their desired positions. The adaptive law uses integral
concurrent learning (ICL) proposed in Parikh et al. (2019),
which guarantees the estimation of the parameters along
with the regulation of the shape estimation error. The
local exponential stability of the adaptive controller can
be concluded which provides robustness properties to the
controller against the uncertainties in the modeling. The
proposed controller is implemented in a simulation task
of regulating the shape of a cloth from its current shape
to a desired shape. The simulation results of ICL-based
adaptive shape regulation controller show good tracking
performance against the standard gradient-based adaptive
law. The contributions of this paper are as follows:

(1) A new adaptive deformation model approximation is
proposed to compute the deformation matrix in real-
time without requiring any prior knowledge about the
deformation parameters.

(2) An ICL-based adaptive update law is designed to
eliminate the need of an estimator for the state
derivative while also improving the model estimation
accuracy by collecting data during manipulation.

(3) The ICL-based update law is used to prove parameter
convergence as well as prove stability of the system.

The rest of the paper is structured as follows. The problem
formulation and shape representation are discussed in
Section 2. The system dynamics, and control design is
stated in Section 3. The Lyapunov stability proof is given
in Section 4, followed by a validation of the controller in
Section 5 using a simulator platform.

2. SHAPE REPRESENTATION AND PROBLEM
DEFINITION

Let us define a deformable object such as a cloth using
feature points, which are used to describe the shape and
position of the cloth in 3D; and control points, which are
used to control the cloth and carry out the regulation task.

As shown in Fig. 1, a resting configuration represents the
initial state of the soft object before any input is applied. In
this paper, the object deformation is defined as the change
in feature points on the soft object as a result of an applied
velocity input to the control point. A visual illustration of
the model is shown in Fig. 1 and a block diagram of the
shape servoing system is shown in Fig. 2.
Assumption 1. The control points are selected such that
the desired configuration is reachable.

3. SHAPE SERVOING CONTROL DEVELOPMENT

3.1 System Dynamics

Consider the following system representing the evolution
of the points on the deformable object as a function of
the velocity applied to a point on the object. The system
model can be written as

ṡ = J(s)v (1)
where s(t) = [sT1 , ..., s

T
n ]

T ∈ R3n denotes the set of features
used to describe the deformable object with si(t) =
[xi, yi, zi]

T denoting the ith feature point’s position with
respect to a fixed frame, v(t) ∈ Rm represents the input
velocity vector, where m denotes the number of DOF. The
deformation Jacobian matrix J(s) ∈ R3n×m is expressed
by

J(s) = [θ1Y1(s), θ2Y2(s), . . . , θ3nY3n(s)]
T (2)

where Yi(s) ∈ Rd×1 represents a vector of basis functions
and θi ∈ Rm×d represents its corresponding unknown
parameter matrix. Since deriving the Jacobian matrix an-
alytically is challenging, a Fourier series-based regression
is used to approximate the deformation Jacobian matrix
where each basis function vector Yi(s) is constructed as
follows

Yi(s) =
1√
d
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the vector wk ∈ R3n denotes a vector of frequencies with
k ∈ {1, ..., d

2}. To have equal number of basis functions,
d ≥ 2 and even, τ is a constant selected based on the size of
the basis vector. The trade-off between the model accuracy
and computational requirements can be adjusted using the
parameter d, see, Williams and Rasmussen (2006).

Fig. 2. Block diagram of the adaptive deformation estima-
tion model.

3.2 Controller Objective

The control objective is to regulate the shape of the
deformable object given the current measurements of a



collection of points si(t), ∀i = 1, · · · , n on the object and
the desired collection of points representing the desired
shape of the object. Since the Jacobian of the deformation
model (1) is unknown, the system dynamics are re-written
in the following linearized form

ṡ = Y T (s)V T (v)θ̄ (4)
the parameter vector θ̄ ∈ R3nmd is constructed by stacking
the columns of the unknown parameter matrix θi as follows

θ̄ =
[
θT11, θ

T
12, . . . , θ

T
21 . . . θ

T
3nd

]T
(5)

where the vector θij represents the ith matrix’s jth column.
The regressor matrix Y (s) ∈ R3nd×3n is created such that

Y (s) =

Y1(s) 0 0

0
. . . 0

0 0 Y3n(s)

 (6)

and a matrix V (v) ∈ R3nmd×3nd is constructed using the
control input vector v(t) as follows

V (v) =

v 0 0

0
. . . 0

0 0 v

 (7)

For the control design, the shape regulation error e(t) ∈
R3n is defined as

e(t) ≜ s(t)− sd (8)
where sd ∈ R3n are the feature points on the deformable
object at the desired configuration and the parameter
estimation error ˜̄θ ∈ R3nmd is defined as

˜̄θ ≜ θ̄ − ˆ̄θ. (9)
Taking the time derivative of (8) and using (1) and (4)
yields

ė(t) = ṡ(t)

= J(s)v = Y T (s)V T (v)θ̄

= Y T (s)V T (v)˜̄θ + Ĵ(s)v (10)
where the last equation is obtained by adding and sub-
tracting Ĵ(s)v

3.3 Controller Design

To achieve the desired control objective, the velocity
controller is designed as

v = −αvĴ(s)
†e (11)

where Ĵ(s)† = (ĴT Ĵ)−1ĴT denotes the Moore-Penrose
pseudo-inverse of Ĵ(s) and αv ∈ Rm×m is a constant
positive-definite diagonal gain matrix. By substituting the
controller into (10), the closed-loop error dynamics can be
written as

ė = −αvĴ(s)Ĵ(s)
†e+ Y T (s)V T (v)˜̄θ (12)

The Jacobian Ĵ is estimated by designing an update law
for the parameters ˆ̄θ using integral concurrent learning.

To simplify notations, let us define the integral of the
product Y TV T ∈ R3n×3nmd as

Q(s(t), v(t), t) =

∫ t

max{t−△t,0}
Y T (s(τ), τ)V T (v(τ), τ)dτ

(13)

The ICL-based parameter update law is designed as

˙̄̂
θ = Γ−1

θ {V Y e+Kcl

N∑
i=1

QT
i (s(ti)−s(ti−△t)−Qi

ˆ̄θ)} (14)

where Γ−1
θ ∈ R3nmd×3nmd and Kcl ∈ R3nmd×3nmd are

constant, positive definite diagonal gain matrices, Qi ∈
R3n×3nmd is the integral as defined in (13) where i ∈
1, · · · , N , and ∆t ∈ R is a positive constant representing
the size of the window of integration.

Taking the integral on both sides of (4) we obtain∫ t

t−△t

ṡ(τ)dτ =

∫ t

t−△t

Y T (s(τ), τ)V T (v(τ), τ)θ̄dτ (15)

Using (13) and the fundamental theorem of calculus, (15)
can be written as

s(t)− s(t−△t) = Q(t)θ̄ (16)
Since θ̄ is a constant, it can be taken out of the integral.
Substituting the result from (16) into the ICL-based
update law in (14) results in

˙̄̂
θ = Γ−1

θ {V Y e+Kcl

N∑
i=1

QT
i Qi

˜̄θ} (17)

Using the parameter estimation error (9), the parameter
estimation error dynamics can be written as

˙̄̃
θ = −Γ−1

θ {V Y e+Kcl

N∑
i=1

QT
i Qi

˜̄θ}. (18)

To implement the update law in (17), data collected
from the system is stored in a history stack, denoted by
{s (tj) , s (tj −∆t) ,Qi (tj)}Nj=1, which is recorded at the
increasing time sequence {tj}Nj=1. To study the stability of
the controller (11) along with the parameter update law
(17), consider the combined error vector ζ = [eT ˜̄θT ]T ∈
R3n(1+md). The error dynamics then can be written using
(12) and (18) as

ζ̇ (t) =

 −αvĴ Ĵ
† Y TV T

−Γ−1
θ V Y −Γ−1

θ Kcl

N∑
i=1

QT
i Qi

 ζ (t) . (19)

4. STABILITY ANALYSIS

To facilitate the analysis of the controller and parameter
estimation law, the following assumption about the history
stack is made.
Assumption 2. The system in (1) is sufficiently exciting
over a finite duration of time, which implies that ∃δ > 0,
∃T > ∆t : ∀t ≥ T , λmin

{∑N
i=1 Q

T
i Qi

}
> δ, where λmin

denotes the minimum eigenvalue of the matrix.
Remark 1. Due to the high dimension of ˆ̄θ, the history
stack is recorded up to time T > 0, such that Assumption
2 is satisfied. After time T the history stack is either
not changed or updated sequentially because updating the
history stack based on a singular value maximization is
computationally expensive.
Remark 2. Assumption 2 is weaker than the typical
persistence of excitation condition required in traditional
adaptive control, see, Parikh et al. (2019).



Consider following candidate Lyapunov function V : R3n×
R3nmd → R+

V
(
e, ˜̄θ
)
=

1

2
eT e+

1

2
˜̄θTΓθ

˜̄θ = ζTPζ (20)

where P = blkdiag 1
2 {I3n,Γθ}. The candidate Lyapunov

function can be bounded as
c∥ζ∥2 ≤ V

(
e, ˜̄θ
)
≤ c̄∥ζ∥2 (21)

where c̄ = λmax {P} = 1
2 max {1, λmax(Γθ)} and c =

λmin {P} = 1
2 min {1, λmin(Γθ)}. Also define the ϵ-open

ball of dimension 3n around the origin as B3n (0, ϵ) ={
x ∈ R3n

∣∣∥x∥ < ϵ
}
.

Assumption 3. The matrix Ĵ is full column rank that
is rank

(
Ĵ
)

= m and for an appropriate ϵ > 0 if e ∈

B3n (0, ϵ), the feature error e /∈ Null
(
ĴT
)
.

Remark 3. Assumption 3 requires the construction of Ĵ
using suitable basis functions and parameter values ˆ̄θ so
that the full column rank condition is satisfied. The second
condition requires that the feature motion is realizable and
no local minima should exist in the local region defined
by B3n (0, ϵ). This condition can be achieved by shrinking
ϵ appropriately as outlined in Chaumette and Hutchinson
(2006) and Chaumette (1998).

Taking the time derivative of (20) and substituting (10)
and (17) yields

V̇ = eT ė+ ˜̄θTΓθ
˙̄̃
θ

= eT Ĵv + eTY T (s)V T (v)˜̄θ

− ˜̄θTΓθ(Γ
−1
θ {V Y e+Kcl

N∑
i=1

QT
i Qi

˜̄θ})

= eT Ĵv + eTY TV T ˜̄θ − ˜̄θTV Y e− ˜̄θTKcl

N∑
i=1

QT
i Qi

˜̄θ

(22)
Substituting the controller (11) yields

V̇ = −αve
T Ĵ Ĵ†e− ˜̄θTKcl

N∑
i=1

QT
i Qi

˜̄θ. (23)

In the subsequent theorems the stability of the controller
and parameter estimation scheme are proven when As-
sumption 2 is not satisfied and is satisfied.
Theorem 1. If only Assumption 3 is satisfied then for
t ∈ [0, T ), the feature and parameter estimation errors
generated by the closed loop dynamics in (19) remain
bounded.

Proof. Since Assumption 2 is not satisfied
∑N

i=1 Q
T
i Qi ⪰

0. Then derivative of the Lyapunov function in (20) can
be upper bounded as

V̇ ≤ −αve
T Ĵ Ĵ†e. (24)

Since eT Ĵ Ĵ†e ≥ 0, it can be concluded that ∥ζ(t)∥ ≤√
c̄
c∥ζ(0)∥ using Theorem 8.4 of Khalil (2002).

For the next theorem, which analyzes the stability of the
error dynamics when the history stack is full, define the
set D ≜ B3n(1+md) (0, r), where r = (cϵ/c̄). From the

definition of the set D it can be concluded that if ζ(T ) ∈ D
implying that e(T ) ∈ B3n (0, ϵ)
Theorem 2. If Assumptions 2 and 3 are satisfied, then
for ζ(T ) ∈ D, the system in (19) is exponentially stable.

Proof. If Assumption 2 is satisfied, then
λmin

{∑N
i=1 Q

T
i Qi

}
> δ. Let λ1(t), · · · , λm(t) be the

nonzero eigenvalues of Ĵ Ĵ† in descending order. Since,
e /∈ Null

(
ĴT
)
, the derivative of the Lyapunov function

in (20) can be upper bounded as

V̇ ≤ −λmin {αv} inf
t≥0

λm∥e∥2 − λmin {Kcl} δ
∥∥ ˜̄θ∥∥2

≤ −min

{
λmin {αv} inf

t≥0
λm, λmin {Kcl} δ

}
∥ζ∥2 (25)

Denote k1 = min {λmin {αv} inft≥0 λm, λmin {Kcl} δ} > 0,
using the bounds on the Lyapunov function, (25) can be
further upper bounded as

V̇ ≤ −k1
c̄
V. (26)

Using the Comparison Lemma of Khalil (2002), the solu-
tion to the differential inequality in (26) can be obtained
as

V (e(t), ˜̄θ(t)) ≤ V (e(T ), ˜̄θ(T ))e−
k1
c̄ t, ∀t ∈ [T,∞) , (27)

which leads to the following bound on the error

∥ζ(t)∥ ≤
√

c̄

c
∥ζ(T )∥e−

k1
2c̄ (t−T ), ∀t ∈ [T,∞) . (28)

From (28), ζ(t) ∈ L∞ and the feature and parameter
estimation error is exponentially stable using Theorem
4.10 of Khalil (2002).

In general Ĵ Ĵ† ≻ 0 is very hard to achieve when the
dimension of s(t) is larger than the dimension of v(t). In
this case the error dynamics is not GES. Similar to the
stability analysis for the IBVS shown in Chaumette and
Hutchinson (2006) a local exponential stability of the error
dynamics can be concluded.

5. SIMULATION RESULTS

5.1 Simulation Setup

A particle based simulation library NVIDIA Flex is used to
evaluate the proposed method on a Lenovo Intel-i7 laptop
with Intel(R) Iris(R) Xe Graphics and 16-GB RAM. A
cloth of size 30 x 30 and mass 1 is chosen to model a
deformable 3D object as shown in Fig. 3(a). A total of
n = 17 points are sampled from the cloth to represent
its 3D position and configuration in the world frame. To
manipulate the shape of the soft object, we chose one point
on the corner of the cloth to apply the computed velocity
inputs. Flex allows control over each point’s position as
well as its linear velocities. The vector sd is collected
by storing the positions of each point at a reachable
desired configuration. Each iteration, the control input is
computed and applied to the control point to drive the
cloth to the desired configuration shown in Fig. 3(c).



(a) (b) (c)

Fig. 3. Simulation results showing (a) Initial Configuration of the cloth. (b) Intermediate configuration. (c) Desired
configuration of the cloth.

5.2 Simulation 1

The parameters used in the simulation are as follows,
m = 3, d = 20, αv = 0.7 I3,Γ

−1
θ = 0.8 I3nmd,Kcl =

1.5 I3nmd,∆t = 0.16 s. The input vector is initialized as
v = [1, 1, 1]T and θ is initialized using a random vector
uniformly distributed from [−1, 1]. The weights wk, where
k ∈ 1, . . . , d, are initialized from a normal distribution
with zero mean and unit variance. The size of the history
stack is computed using the inequality N ≥ d∗3∗n∗m

3∗n and is
selected as N = 70. For this simulation, the history stack is
filled once according to Assumption 2. The results from the
simulation are summarized in Fig. 4(a) - 4(c) and visually
in Fig. 3(a) - 3(c). Fig. 4(a) compares the performance
of the ICL based controller with the performance of a
gradient-based controller by measuring the error between
the object’s current shape and the desired shape at each
time step. The gradient-based method reaches its lowest
error around 25 seconds however, this is caused by an
overshoot, resulting in the cloth to eventually converge
to a steady state error of 1.3 units. On the other hand,
the ICL-based adaptive update law, utilizes the history
stack for better adaption of the parameters, which allows
it to converge to a smaller steady state error of 0.28 units.
Fig. 4(b) shows the computed linear velocities at each time
step to drive the cloth to the desired configuration using
the gradient-based controller. The volatility in the velocity
is caused due to the steady state error of 1.3 units as well
as simulation limitations. Note that since this algorithm
is implemented on a physics-based simulation, the control
point has to over come the simulation gravity as well as
bear the weight of other points as it is reaching its desired
configuration. In theory, the velocity would go to 0 as the
system converges since the end-effector is assumed to be
able to overcome the weight of the cloth and maintain
a specific pose. Fig. 4(c) shows the computed velocities
using the ICL approach and as expected, the velocities are
significantly less volatile and converge close to zero due to
the small steady state error of 0.28 units.

5.3 Simulation 2

For this simulation, the history stack is updated sequen-
tially as long as Assumption 2 is valid. The ICL-based
adaptive controller is implemented and compared with the
standard gradient-based adaptive controller for a different
desired configuration. The parameters used are d = 40 and
Kcl = 1.875 I3nmd All the system parameters remained
the same with the exception of Kcl and d, which affect the
influence of the history stack and improve the approxima-
tion of the model. The results as seen from Fig. 5(a) show
a clear advantage of using the ICL-based adaptive update

law compared to the standard gradient-based method. The
gradient-based controller converges at an error of around
12.5 units whereas the proposed method converges to 0.5
units. The quality of the points stored in the history stack
determine the rate of convergence. Unlike simulation 1,
where the history stack only contained the first N data
points, simulation 2 builds on this approach by sequen-
tially replacing the old points with new incoming points.
This allows the stack to evolve and adapt to unexpected
disturbances that may be exhibited at a time after the
stack is full. The velocity graph in Fig. 5(b) approaches
zero as the error reaches a steady state value, however,
since the error did not converge to zero, the input continues
to compensate for the steady state error. The velocity
graph for the ICL-based adaptive update law in Fig. 5(c)
shows that the velocity is adjusted based on the evolving
stack such that the velocity converges to zero along with
the error.

6. CONCLUSION

In this paper, an adaptive controller is designed to control
the shape of a deformable object. The unknown Jacobian
relationship between the external velocity applied to the
deformable object and change in positions of points, is
approximated using a Fourier series-based regression. An
ICL-based parameter update law is designed to estimate
the parameters and regulate the shape of the object to
a desired shape. Lyapunov analysis is performed, which
shows exponential stability and Lyapunov stability of the
error system when the history stack is full and not full,
respectively. A comparison between a gradient parameter
update law and an ICL-based law is provided, which
shows better convergence of the shape regulation error
using the ICL-based update law. Future work will include
performing the deformation task using a robot.
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