X-57 Structural Analysis, Wing Design, & Testing (Statics)

Jeffrey Viken, X-57 Wing IPT Lead Wesley Li, X-57 Static Structures Lead

Outline

- NASA AFRC Aircraft Structural Safety of Flight Guidelines
- X-57 Structural Design Criteria and Loads Requirements
- Mod II Modification
- Mod III Wing Airworthiness Approach
- Mod III Wing Design
- Mod III Wing Proof Test
- Documents and Publications
- Recommendations and Lesson Learned

Aircraft Structural Safety of Flight Guidelines

- X-planes and NASA research aircraft are not normally FAA or DOD certified aircraft
 - NASA provides own airworthiness
 - Organization which can determine airworthiness are FAA, DoD, and NASA
- NASA AFRC Aerostructures Branch has developed an Aircraft Structural Safety of Flight Guidelines (AFG-7123.1-001) publicly available
- Many approaches to design, test, and operate "one-of-a-kind" aircraft or to modify certified aircraft at AFRC
 - Consider combination of design, analysis, testing, monitoring techniques, and inspection plan
- This guidelines can be tailored based on the risk posture of an individual project

Composite Structures

- Mechanical performance VERY dependent upon materials and fabrication processes
- Building block approach is used
 - Requires time and money -> Impractical to test everything
 - − But reduces risk \rightarrow Balance between analysis and test
- X-57 Mod III Wing: performed coupon testing to support analysis, and proof testing for safety of flight

Temperature Requirements

- Thermal loads should be considered in assemblies with dissimilar coefficients of thermal expansion (CTE)
- Material properties (i.e., composite resins, polymer Tg) are impacted by the surface color of the component
 - Darker colors exposed to direct sunlight may reach temperatures over 200 °F on the Edwards AFB flightline
- Mod III Wing (White)
 - Designed to +165 °F
- Mod III/IV Cruise motor (Red --> reach over 200 °F)
 - Operation is limited by the adhesive strength of the magnet and the motor's surface at startup temperature

Cruse Motor Surface Startup Temp, °F	Operation Limit
> 203	Operation is not allowed
> 181	Up to idle RPM
< 181	No limit

X-57 Summary Workshop for ASTM Committee F44

Colour - Temperature relationship.

Load Factor Requirements

- Standard Tecnam P2006T is certified for 2712 lbs and +3.8 / -1.7g Nz
- X-57 is a retrofit aircraft (Mod II ~3000 lbs and Mod III/IV ~3200 lbs)
- The increase in gross weight required to reduce the maneuver and landing load factor by scaling the Nz and gross weight
 - Nz reduced +3.1/-1.4g (Mod III/IV)
- Gust load (3.4g due to 50 fps gust) is higher than the maneuver Nz
 - Limited the operation condition no more than to mitigate high gust load
 - Mitigation: Not allowed to operate in conditions of above "light" turbulence
- Further reduction in operational load factors is needed
 - Due to ~800 lbs concentrated weight of the battery installed on the fuselage, affected the load path and stress on the airframe, resulting in an impact on the structural limits of the wing, fuselage, and landing gear

Static Structures Airworthiness Approach

Component	Material Type	Factor of Safety	Notes							
Mod II exiting structure	Metallic	Metallic 1.50 Verified by analysis only								
	Metallic	2.25	Verified by analysis only							
Med II now and modified structure	Composito	2.00	Verified by analysis only							
Mod III cruise pacelle	composite	5.00	Required well established composite processes and materials							
Med IV/ high lift meter assembly			Verified by analysis and proof tested to >120% design limit loads							
Mod IV high lift rules and pacelle	Additive	2.00	20% material allowable knock down for B-Basis statistical reliability							
wood i'v nigh-in't pyron and nacelle	Additive	3.00	50% material allowable knock down if no material testing							
			All hardware are qualification tested to 105% operational loads							
	Metallic	2.25	Verified by analysis only							
			Required well established composite processes and materials							
Mod III Wing	Company's a	1.00	Poof tested to 120% design limit loads							
	Composite	1.80	Allowed to flight to 100% proof tested loads							
			Instrumented and loads calibrated for in-flight loads monitoring							

Loads for Floor and Equipment Support

- Documented in REQ-CEPT-007
- Inertial loads
 - Flight Maneuver Loads
 - Ground Loads
 - Taxi Bump
 - Landing
 - Crash Landing
 - Ground Handling
- Items within cabin that could injure the pilot will be secured to fuselage structure to withstand the crash loads conditions

Equipment Support Structure										
Con	Design Limit Load Factor (G's)									
Maneuver loads	Upward, Nz	+3.4								
Maneuver loads	Downward, Nz	-1.4								
Crash loads	Forward, Nx	-18.0								
Crash loads	Sideward, Ny	+/- 4.5								
Crash loads	Downward, Nz	-6.0								

Loads Requirements for Floor and

Fuselage - Battery Integration

- Several modifications were made to the aircraft to accommodate the integration of a battery system
 - Two battery trays added at cargo and rear passenger area for all battery modules
 - Lockout/Tagout (LOTO) box installed on the front battery tray
 - Mounted Battery Control Modules (BCM) and Contactor pallet mounted on the side of the fuselage
 - Co-pilot seat removed to make room for instrumentation and other necessary equipment Equipment Pallet

X-57 Summary Workshop for ASTM Committee F44

Contactor pallet (left and right)

Aft Battery Tray

Battery Venting Assembly

Battery Venting (3" dia)

Image Reference:

Fwd Battery Tray

https://ntrs.nasa.gov/api/citations/20190026541/downloads/20190026541.pdf

High-Lift Blade Proof Test

- Injection molding
- 40% Chopped fiber (~0.2 lbs)
- Good balance of strength and mass
- Design meets FOS (3.0) requirements at 5460 RPM load condition
- Static pull test completed on early chopped fiber blade prototype
- Tested assembly
- Max Load
 - 6,047.7 N (1359.6 lb)
 - 171% load @ 5500 RPM
 - Failure occurred in fixture

X-57 Wing Proof Test Instrumentation

X-57 Mod III/IV Wing Design, Analysis, & Testing

X-57 Wing Area Perspective

Tecnam P2006T $W_{G} = 2700 \text{ lbs}$ $S = 158.9 \text{ ft}^{2}$ AR = 8.8 $W/S = 17 \text{ lb/ft}^{2}$

X-57 Maxwell $W_{G} = 3000 \text{ lbs}$ $S = 66.7 \text{ ft}^{2}$ AR = 15 $W/S = 45 \text{ lb/ft}^{2}$

IF1 – Formula One (Nemesis Reno racer) $W_G = 770 \text{ lbs}$ S = 66.6 ft² AR = 6.8 W/S = 11.6 lb/ft²

X-57 V-N Diagram

X-57 Summary Workshop for ASTM Committee F44

Wing Design Load Criteria – 14CFR Part23 Airworthiness Standards: Normal Category Airplanes

	Fignt Loads – Part 23 Amendment 45													
	SYMMETRICAL §	23.331		UNSYMMETRICAL § 23.347										
	Clean Airplane Discrete Vertical Gusts [§ 23.333(c), § 23.341]	High Lift Der [§ 23.345] ± 25 ft/sec ver	vices rtical	Vertical Surfaces Lateral gust: ± 50 fps @ V _C [§ 23.443(a)]										
sт	± 50 fps @ V _c and ± 25 fps @ V _p	25 ft/sec head	-on	Commuter category [§ 23.443(b)] Gusts normal to plane of symmetry @ V _B , V _C , V _D clean airplane										
ß	± 66 tps @ V _B (commuter category only)	[§ 23.457	(a)]			@V _F high lift devices								
	Horizontal Stabilizing and Balancin [§ 23.425] Clean airplane and with high lift d	ng Surfaces levices	[§ 23.	373]	[§ 23.445]	Horizontal Stabilizing and Balancing Surfaces [§ 23.427] Loads from gusts combined with yawing and slipstream effects, clean airplane and with high lift devices								
	Limit Load Factor [§ 23.337] Tail Load [§§ 23 [§ 23.337]	3.331, 23.4 21]	Spe	ed	[§ 23.445(d)]	Vertical Surfaces [§ 23.441] - @ V_A Yaw, sideslip, and rudder deflection								
VER	Utility Category $n = 4.4$ Acrobatic Category $n = 6.4$	4)	Con Devi	trol ices	Fins or Winglets	Ailerons [§ 23.445] Abrupt maximum control movement $@V_A$. Control deflection requirements $@V_C$ and V_D								
NEU	*May reduce for W > 4,118 lbs.	High Lift Dev	ices	Rolling Conditions [§ 23.349] – Wing and wing bracing Category Condition (See § 23.333) Airload Distribution Normal, Utility, Commuter A 100%/70% to 75% Acrobatic A and F 100%/60% Wing loads due to aileron deflections § 23.445 S 2.345 S 2.345 S 2.345										
WM	Pitching: Checked and Unchecked Applies to horizontal stabilizing and balancing surfaces [§ 23.423] Abrupt maximum control input @ V _A	[§ 23.345] n = 2.0 g Wing Fla [§ 23.457	ips (a)]											
				Engine Torque [§ 23.361] – Combined with symmetrical limit loads @ VA										
BINE				Side Load on Engine Mount [§ 23.363]										
ENC				Gyroscopic and Aerodynamic Loads [§ 23.371] – Pitching and yawing, applies only to turbine installations										
				Unsymmetrical Loads Due to Engine Failure [§ 23.367] – Turboprops only										
IER	Wing Flaps Slipstream Effects, n = 1	.0 [§ 23.457(b)]	J	Pressurized Cabin Loads, combined with flight loads [§ 23.365]										
oTe	Rear Lift Truss, reverse air flow	[§ 23.369]		Canard or Tandem Wing Configurations [§ 23.302]										

Flight Load Cases for Wing FEA

- Load Case Table applicable to all fuselage configurations ٠
 - Forces in Newtons (N), Moments/Torque in Newton-Meters (Nm), Load Factors (g's)
- One additional load case, asymmetric thrust at take-off ٠
 - Applicable to Mod III/IV only

Case #	Airspee	d	Load Factor	Weight	CG position	Altitude		Descript	ion			
1	89kEAS (Vs)	+1.0	13351N	4044.81mm	Oft	Vs – 1g	Vs – 1g ASL				
2	152kEAS(Vc)	+2.91	13351N	4044.81mm	nz due stall	due stall ASL					
3	164kEAS(Va)	+3.42	13351N	4044.81mm	sitive maneu	uver ASL					
4	190kEAS(Vd)	+3.42	13351N	4044.81mm	Oft	Vd – po	sitive maneu	uver ASL			
5	190kEAS(Vd)	-1.71	13351N	4044.81mm	Oft	Vd – ne	gative gust A	ASL			
6	89kEAS (Vs)	+1.0	13351N	4044.81mm	4044.81mm 15000ft Vs – 1g high altitud						
7	152kEAS(Vc)	+2.91	13351N	4044.81mm	15000ft	15000ft Vc max nz due stall h					
8	164kEAS(Va)	+3.42	13351N	4044.81mm	15000ft	Va – po	Va – positive maneuver hig				
9	190kEAS(Vd)	+3.42	13351N	4044.81mm	15000ft	Vd – po	Vd – positive maneuver hig				
10	190kEAS(Vd)	-1.71	13351N	4044.81mm	15000ft	Vd – ne	Vd – negative gust high alt.				
11	164kEAS(Va)	+2.99	13351N	4044.81mm	Oft	Asym –	Asym – 100/75				
12	164kEAS(Va)	+2.28	13351N	4044.81mm	at Va						
13	164kEAS(Va)	+2.28	13351N	4044.81mm	Oft	Rolling	roll rate				
14	190kEAS(Vd)	+2.28	13351N	4044.81mm	Oft	Rolling	at Vd				
15	190kEAS(Vd)	+2.28	13351N	4044.81mm	Oft	Rolling	Rolling at Vd – max roll rate				
16	130kEAS(Vf)		130kEAS(Vf) +2.00		4044.81mm	Oft	Flap					
6		1		66 1111111111111								
Case #	Airspeed	Load	weight	CG position	Alt	FX 1027	MX	My	IVI Z			
17	164	+2.565	13351N	4044.81mm	Utt	1927	376.25	0	U			
18	164	+3.42	13351N	4044.81mm	Oft	1400	318.75	0	0			

Oft

1542

0

261.5

104.6

Propeller Thrust (LL)										
Cruise Motor	2450 N (550 lb)									
High-Lift Motor	490 N (110 lb)									

Engine Torque Loads (LL)										
SCEPTOR										
Cruise Motor (max take-off)	470 Nm									
Cruise Motor (max continuous)	400 Nm									
High-Lift Motor	100 Nm or TBD6									

Maximum Take-off Torque Maximum Continuous Torque **Gyroscopic Moment**

+2.5X-57 Summary Workshop for ASTM Committee F44

13351N

4044.81mm

19

164

FEM of Mod III/IV Wing

X-57 FEA wing Displacement Max displacement identified at limit pull-up maneuver (3.42 g) 7.31 6.82 6.34 5.85 5.36 4.87 4.39 3.90 3.41 Max deflection (3.42g) = 7.31 in 2.92 2.44 Cruise Deflection (1g) = 2.14 in 1.95 1.46 0.97 0.49 0.00

•

X-57 Summary Workshop for ASTM Committee F44

Wing Construction Materials

Prepreg Resin system (spars)

Patz F4

- Cure at 250° F (Tg 320° F)
- Inside and outside autoclave
- Interlaminar Shear Strength > 50MPa (up to 70MPa)

Wet Lay-up Resin System (skins) MGS L285

- Approved by the German Federal Aviation Authority for sailplanes
- Multi hardener system 10min to 7h of pot life
- Post cure at 175° F (Tg 212° F)
- Interlaminar Shear Strength 47 to 55MPa

Fibers

IM2C/UDP – Uni directional tape for spar caps IM2A/2T – Bias fabric for shear web CMH12K – HM63 – Non crimped biaxial fabric for skin

Hexcel 282 – fairings and small components

<u>Core</u>

Divinycell PVC foam H60 (1/4")

<u>Glue</u>

Hysol 9359.3

- Shear strength of 4500psi at 77F
- Shear strength of 2000psi at 180F
- Peel strength 60lb/in
- 5mil glass beads for thickness control

Comparison of Composite Fiber Strength and Modulus

X-57 Wing Construction Features

Internal Ducts for Power and Instrumentation Wiring (Lower Surface View)

Wing Center Section

Aileron Control System

Differential Aileron Travel Down: 17.5° Up: -25.0°

Linear bearings through ribs so aileron and flap push rods won't bind with wing bending (Typical high-span sail plane construction)

Flap Control System

Flap Actuator

X-57 Mod III Wing Before Closing

X-57 Wing Proof Test Setup

HL Simulator load + cruise motor thrust load

X-57 Proof Load Test Armstrong Flight Loads Lab

X-57 Summary Workshop for ASTM Committee F44

Miller, et al. X-57 Wing Structural Load Testing, AIAA 2020-3090, 2020 35

Lessons Learned

- High aspect ratio wings with tip masses can have a different modal distribution than typical wings. There can be flutter concerns.
- The following construction techniques allowed for an efficient structure to make the Mod III/IV wing possible:
 - All uni-directional plies in spar cap were layed-up adjacent to each other, not interspersed with bidirectional plies
 - The main spar was fabricated without any physical hard points. The spar was bonded to the wing center section assembly. This minimized the weight and maximized the structural efficiency.

Recommendations

- Challenges with modifying a retrofit aircraft especially when it comes to changes in the load path. Any modification that affects the load path must be analyzed and validated to ensure the structural integrity and safety of the aircraft.
- Increasing component weight consider starting off with conservative load requirements such as higher maneuvering load factor and adjust as needed.
- Challenges with using composite materials and additive manufacturing Mechanical performance very dependent upon materials and fabrication processes. Verify the material properties through testing rather than relying on the spec especially when used outside of spec.
- Consider the color of the aircraft components Both the color of the components and the environmental temperature can impact material properties such as composite resins, and the glass transition temperature (Tg) of a polymer.
- Use multiple discipline analyses in preliminary design for new concept configurations (CFD, static structures, and aeroelasticity)

Backup-Topics

Backup-Performance

Effect of Cruise Power on Drag

 C_{D}

- FUN3D CFD isolated wing + stabilator
- Cruise conditions 150 KTAS at 8,000 feet and $C_L = 0.75$
 - Unpowered tip propeller: $C_D = 0.03290$
 - Cruise powered tip propeller: $C_D = 0.03006$
 - 117.38 hp at 2250 RPM (both motors)
 - 28 count induced drag reduction
 - This is a 18.6% reduction in calculated induced drag
 - 4.9% of total target configuration drag
 - ΔD_i reduction of 11.2 lbs. (44% of penalty of X-57 reduced span & increased gross weight)

X-57 Summary Workshop for ASTM Committee F44

Cruise Wing with High-Lift Nacelles

Drag Estimation from CFD Analysis X-57 Cruise Configuration

- Cruise speed goal: aircraft drag is D = 216.5lbs (plus a margin of 29.9 lbs)
- CFD cruise drag: $D = 201.1 \ lbs$ at $C_{L,total} = 0.75 \ (\alpha = 0.91^{\circ})$
- Some drag reduction expected from sources not modeled in the fully turbulent/unpowered CFD solution (ref. 2)
 - Induced drag reduction with cruise power: -11.2 lbs
 - Laminar flow on wing at cruise: -13.2 lbs (USM3D LM transition model)
 - High-lift propeller stored drag: + 6.0 lbs
- Revised CFD cruise drag + corrections: 182.8 lbs (Margin = 33.4 lbs 15%)
- Real aircraft deformities, like rivets and surface intersections on fuselage/tail not modeled in smooth computational geometry
- This results in about a 24% reduction in configuration drag compared to the baseline aircraft

X-57

²Deere et al.: AIAA 2017-3923

Stall Speed Comparison Replace Wing: Tecnam P2006T \rightarrow X-57 Tecnam P2006T Stall Speed at W_g = 3,000 lbs Wing Planform Area V = 58 KEASX-57: 58% reduction X-57 Stall Speed • Cruise C_{L.max} = 1.7 89 KEAS flap $C_{L,max} = 2.5$ • Unpowered 30° 73 KEAS Powered High-Lift Stall Speed • 58 KEAS \rightarrow C_{L.max} = 3.95 Tecnam P2006T $S = 158.9 \text{ ft}^2$ X-57 S = 66.7

Comparison of CFD High-Lift Analysis

Three different grid topologies and solvers used in the analysis

- ARC LAVA solver with structured overset grid
- AFRC StarCCM+ solver with unstructured polyhedral grid
- LaRC USM3D and Kestrel solvers with unstructured tetrahedral grids

Airfoil Performance Comparison – Free Transition X-57, GAW215, and NACA 5415 Airfoils

- X-57 Airfoil
- $c_{l,max} = 2.05$ (free transition)
- Drag of 55 counts at $c_1 = 0.9$
- Low drag bucket for maneuvering capability w/o large increase in drag

Backup – Ride Quality

Backup – Material Testing

Coupon Test

NASA

- ASTM D3039 Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials
- ASTM D6641 Standard Test method for Compressive Properties of Polymer Matrix Composite Materials Using a Combined Loading Compression (CLC) Test Fixture
- ASTM D5379 Shear Properties of Composite Materials by the V-Notched Beam Method
- ASTM D5766 Open-Hole Tensile Strength of Polymer Matrix Composite Laminates

	Material	PM	T-F4/IN UDP	/12C	PMT-F4/IM2C UDP		PMT-F4/IM2C UDP		⁻ 4/IM2C JDP PMT-F4/IM2-2T		PMT-F4/IM2-2T			CHM12K		CHM12K			Hex	Force			
	Cure	2	50F 00	A	2	50F OC	A	250F OOA		250F OOA		Wet Lay		Wet Lay		y	Wet Lay		у				
	Condition	RT	D 70±1	0F	ET	D 165±	:5F	RT	D 70±1	LOF	ETD 165±5F		RTD 70±10F		ETD 165±5F		±5F	RTD 70±10F		LOF	NAS		
Method Reference	Test	Batch	Panel	Sample	Batch	Panel	Sample	Batch	Panel	Sample	Batch	Panel	Sample	Batch	Panel	Sample	Batch	Panel	Sample	Batch	Panel	Sample	
ASTM D3039	0° (warp) Tensile Modulus, Strength, and Poisson's Ratio	1	1	1 2 3 4 5	1	1	1 2 3 4 5	1	1	1 2 3 4 5	1	1	1 2 3 4 5	1	1	1 2 3 4 5	1	1	1 2 3 4 5				
ASTM D3039	90° (fill) Tensile Modulus & Strength	1	1	1 2 3 4 5	1	1	1 2 3 4 5	1	1	1 2 3 4 5	1	1	1 2 3 4 5	1	1	1 2 3 4 5	1	1	1 2 3 4 5				
ASTM D6641	0° (warp) Compressive Modulus, Strength, and Poisson's Ratio	1	1	1 2 3 4 5	1	1	1 2 3 4 5	1	1	1 2 3 4 5	1	1	1 2 3 4 5	1	1	1 2 3 4 5	1	1	1 2 3 4 5	1	1	1 2 3	
ASTM D6641	90° (fill) Compressive Strength	1	1	1 2 3 4 5	1	1	1 2 3 4 5	1	1	1 2 3 4 5	1	1	1 2 3 4 5	1	1	1 2 3 4 5	1	1	1 2 3 4 5	1	1	1 2 3	
ASTM D5379	V-Notch Beam Shear Strength and Modulus – G12Plane	1	1	1 2 3 4 5	1	1	1 2 3 4 5	1	1	1 2 3 4 5	1	1	1 2 3 4 5	1	1	1 2 3 4 5	1	1	1 2 3 4 5				
ASTM D5379	V-Notch Beam Shear Strength and Modulus – G21Plane	1	1	1 2 3 4 5	1	1	1 2 3 4 5	1	1	1 2 3 4 5	1	1	1 2 3 4 5	1	1	1 2 3 4 5	1	1	1 2 3 4 5				NASA
ASTM D5766	0° (warp) Open Hole Tension							1	1	1 2 3 4 5	1	1	1 2 3 4 5	1	1	1 2 3 4 5	1	1	1 2 3 4 5				X-57

A

Backup-Final

Cruise Nacelle Loads Cases

Load	Description	Aerodynamic &	Inc	ertial Loads (g	's)	Thermal	Motor Loads (Right Nacelle) (lbs, in-lbs)								
Case	Description	External Loads	Nx	Ny	Nz	Stress	Fx	Fy	Fz	Mx	My	Mz			
1	Vs-1g ASL	х	-1.0	+/-1.33	-1.00	х	-531	-171	185	2820	-690	1250			
2	Vc max nz due to stall	х	-1.0	+/-1.33	-2.91	x	-531	-171	185	2820	-690	1250			
3	Va - Positive maneuver ASL	х	-1.0	+/-1.33	-3.00	х	-531	-171	185	2820	-690	1250			
4	Vd - Positive maneuver ASL	х	-1.0	+/-1.33	-3.00	x	-531	-171	185	2820	-690	1250			
5	Vd - Negative maneuver ASL	х	-1.0	+/-1.33	1.37	х	-531	-171	185	2820	-690	1250			
6	Vs-1g high altitude	х	-1.0	+/-1.33	-1.00	x	-531	-171	185	2820	-690	1250			
7	Vc max nzdue to stall high altitude	х	-1.0	+/-1.33	-2.91	х	-531	-171	185	2820	-690	1250			
8	Va - Positive maneuver high altitude	х	-1.0	+/-1.33	-3.00	x	-531	-171	185	2820	-690	1250			
9	Vd - Positive maneuver high altitude	х	-1.0	+/-1.33	-3.00	х	-531	-171	185	2820	-690	1250			
10	Vd - negative gust high altitude	х	-1.0	+/-1.33	1.71	х	-531	-171	185	2820	-690	1250			
11	Asym - 100/75	х	-1.0	+/-1.33	-3.48	х	-531	-171	185	2820	-690	1250			
12	Rolling at Va	х	-1.0	+/-1.33	-2.98	х	-531	-171	185	2820	-690	1250			
13	Rolling at Va - max roll rate	х	-1.0	+/-1.33	-2.98	х	-531	-171	185	2820	-690	1250			
14	Rolling at Vd	х	-1.0	+/-1.33	-2.98	х	-531	-171	185	2820	-690	1250			
15	Rolling at Vd - max roll rate	х	-1.0	+/-1.33	-2.98	х	-531	-171	185	2820	-690	1250			
16	Flap	х	-1.0 Ho	orizontal (Val	ue) Axis Majo	or Gridlines	-531	-171	185	2820	-690	1250			
	Max Takeoff+P-Factor														
17	(23.361.a.1)+Taxi Bump	х	-1.0	+/-1.00	-2.57	x	-590	-171	185	2820	-690	1250			
18	Max Continuous+P-Factor (23.361.a.2)	х	-1.0	+/-1.33	-3.00	x	-531	-171	185	2820	-690	1250			
	Max Continuous+P-Factor+Gyroscopic														
19	(23.371)	х	0.0	0.0	-2.50	х	-531	150	150	2820	2315	925			
20	Ground Loads (Landing)		-3.0	+/-1.33	-3.00	х									
21	Ground Loads (Landing)		-3.0	+/-1.33	2.75	х									

High-Lift Motor/Controller/Prop – Initial Structure

X-57 Summary Workshop for ASTM Committee F44

NASA