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Abstract
In this paper, a simplified numerical approach for finite element dynamic anal-
ysis of an inelastic solid structure subjected to solid object impact is presented.
The approach approximates the impacting solid as the selected multiple nodes,
for which mass of the impactor is distributed. The node-to-segment contact
formulation with the penalty constraint technique incorporated is employed to
impose contact conditions between the nodes and the surface of the receiver
structure. The node-to-segment algorithm is integrated into Newton-Raphson
time integration scheme and the Lagrange multiplier technique is applied to
enforce the identical displacements for the selected nodes throughout the analysis
process. The approach is verified using two-dimensional plane strain mod-
els considering elastic-perfectly-plastic material behavior. The results obtained
using the proposed approach are in a good agreement with those simu-
lated using a commercial finite element code, ABAQUS Dynamic/Implicit, in
terms of displacements and stress distribution fields. The proposed approach
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is shown to be computationally superior to general finite element method-
based contact/impact analysis without significantly sacrificing the accuracy.

Keywords: Impact, Contact, Node-to-segment, Newton-Raphson method, Lagrange
multiplier, Elastic-plastic material

1 Introduction
Finite element method (FEM) is widely used to perform analysis of contact/impact
problems in solids (Laursen, 2013). Accurate simulations of contact problems require
accurate calculation of contact resistance between two contacting/colliding solids
discretized in finite elements (see Fig. 1a). The contact discretization and tracking
method that seek for numerical solution to resistance at the contact interface can be
classified into three groups: (i) node-to-node (NTN) contact formulation (ii) node-
to-segment (NTS) contact formulation and (iii) segment-to-segment (STS) contact
formulation (Neto et al, 2016). NTN formulation establishes the contact interaction
between the two pair nodes defined at the pre-processing stage. Despite having the
simplest formulation among the three methods, this approach has a drawback of not
being able to capture large deformations, as the initial pair of the nodes may change
under such large deflections (Francavilla and Zienkiewicz, 1975; Stadter and Weiss,
1979). NTS formulation defines a slave node on one side of the contact interface
and a master surface on the opposite side. At the contact interface, slave node inter-
acts with a point of projection on the master surface (Wriggers et al, 1990; Zavarise
and De Lorenzis, 2009b). In this formulation, several slave nodes are needed to rep-
resent the surface geometry, located at the opposite to the master surface. Finally,
STS formulation is the most elaborated formulation, in which the contact constraint
is imposed in an average sense over regions of the master and slave surfaces (Puso
and Laursen, 2004). The main feature of this technique is that it enforces the contact
conditions in the weak form integration, not directly in nodal points as done in the
other two methods (i.e., NTN and NTS). Typically, STS formulation provides more
accurate simulation than NTS formulation (Zavarise and De Lorenzis, 2009a).

Besides the contact formulations, material nonlinearity augments the complexi-
ties to the contact/impact problems. Many research work has investigated responses
associated with the deformations, and contact stresses and pressures resulting from
nonlinear material properties (Jackson and Green, 2005; Ghaednia et al, 2016, 2017).
Because of wide variations in nonlinear material constitutive behaviors, most of
studies have only focused on the responses with idealized elastic-plastic material
models, serving as the basis for understanding the contact characteristics in problems
of colliding/contacting solids. Typically, 2D finite element (FE) model, in which,
deformable 2D flat surface is in contact with (deformable or rigid) circle, was used
to study the effects of the parameters, including geometry, boundary conditions, and
material properties, on the contact stress (force), contact area, and initiation of plas-
tic deformation. A simple yield criterion, such as von Mises criterion, was adopted to
define the onset of plastic deformation. In some cases, experimental data supported
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Fig. 1. Schematic description of (a) typical FEM-based contact/impact analysis
approach (b) proposed contact/impact analysis approach

the findings from finite element analysis (FEA). Result from the aforementioned
numerical and experimental studies were often formulated in analytical expressions
for ease of use (Brake, 2012; Alves et al, 2015; Big-Alabo et al, 2015). However,
many of these analytical models are limited to “quasi-static” contact mechanisms.
In addition, impact problems (or dynamic transient contact problems) are problem-
oriented due to their various forms of material nonlinearities and irregular geometric
shapes as well as a wide range of impacting velocity, mass, and the associated iner-
tia effects. As such, many impact problems were individually analyzed by means of
FEM (Her and Liang, 2004; Zhang et al, 2006; Kumar and Shukla, 2012; Sha and
Hao, 2012).

Typically, refined mesh in the vicinity of the contact/impact zone is inevitable to
simulate the progressive structural/material response over problem evolution. Accu-
racy of FEA result is closely dependent on the mesh quality. In some cases, such as
hail impact or drop weight impact on structures, the impact object is very small when
compared to the entire volume of a receiver structure, while it impacts with high
enough inertia (e.g., mass and speed) to create damage within the localized zone of
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a structure. As a result, creating finer FE mesh in accordance with small impacting
object all over the receiver structure could be computationally expensive. This study
was motivated by such cases to deal with the problems in a computationally efficient
way.

The present study aims at suggesting a numerical scheme for FE dynamic anal-
ysis of an inelastic solid structure subjected to “small” solid object impact. A 2D
NTS-based approach for formulating an impact problem is proposed, in which FE
modeling and meshing for the body of the impacting object is not required, unlike
the traditional FEM-based contact/impact analysis (Fig. 1a). Instead, the body of the
impactor is represented with one or more selected node(s) (Fig. 1b) and the mass of
the impactor is applied to the considered node(s) in a distributed fashion based on the
geometry of the impact body. The implicit time integration scheme, Newton-Raphson
method, is chosen for solving the equation of motion for the impact problem. The
proposed approach is verified by applying the method to 2D plane strain example
models and comparing with the corresponding results simulated with a commercial
FEA software, ABAQUS Dynamic/Implicit.

2 Methodology

2.1 Modeling Assumptions
Finite element contact/impact analysis requires refined mesh resolution for both an
impactor and a receiver in the vicinity of the contact/impact zone to provide accurate
results. This refined analysis is particularly needed when failure stresses and defor-
mations of the receiver structure is of the interest to investigate. When the impactor
is tiny relative to the volume of the receiver, say less than 1% of the receiver, a gener-
ally accepted modeling strategy is not to physically model the impactor and instead
to assume it as a concentrated point load. Such an approximation method can cause
less accurate and inconsistent responses.

A computationally efficient and robust FE formulation is suggested, effective to
the following impact problem cases: (i) the impacting body is sufficiently “small”
compared to the receiver structure, and (ii) the impact event causes only a localized
structural defect (i.e., localized material plasticity). For the numerical scheme to be
proposed, two prerequisite assumptions are made: (i) the size of the impact object is
smaller than that of one finite element size in the receiver structure, as shown in Fig.
1, and (ii) the impactor is assumed to be rigid.

2.2 Enforcement of Contact Constraints Using NTS Algorithm
The governing assumption is that the physical body of an impacting solid object can
be approximated by nodal point load. As such, to deal with the contact condition
between the nodal point load and the surface of the receiver structure (see Fig. 2a),
a well-known NTS contact algorithm is adopted, as it has shown its ability to prop-
erly simulate the actual contact mechanism in many engineering applications (Khoei
et al, 2013; Lee et al, 2016; Xing et al, 2019). For detailed information about the NTS
algorithm, see the work of Zavarise and De Lorenzis (2009b). Within the context of



185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230

Springer Nature 2021 LATEX template

5

12

s

��

�

�

�

�
��	

�	
�

�


12

s
��

master node

slave node

(node for an impactor)

master surface

master node

master segment

(receiver)(a)

(b)

Fig. 2. NTS contact approach: (a) contact geometry of a receiver element in contact
with an impactor node s (b) geometrical meanings of various scalar and vector vari-
ables defined in the NTS geometry.

NTS contact algorithm, enforcement of contact constraint between the contact sur-
face and the impactor node is typically carried out using the penalty method (Zavarise
and De Lorenzis, 2009b).

A schematic view of the NTS geometry is presented in Fig. 2b, in which the
impactor node, s (slave), is not perfectly aligned with one of the nodes (1 and 2) in
the receiver (master) surface in the normal direction. The normal distance between
the impactor (slave) node and the receiver (master) surface is called “gap”, gN , and
is given by: (Zavarise and De Lorenzis, 2009b)

gN = g · n = (xs − x1) · n (1)
where n is the normal unit vector orthogonal to the master surface, xs and x1 are
the vectors identifying the current positions, respectively, of nodes s and 1, and g is
the distance vector between the nodes s and 1.

As intuitively expected from Fig. 2, the contact between the impactor and receiver
is physically initiates when gN = 0 and it remains in active only if gN ≤ 0 (i.e.,
when indentation exists). Following the penalty method, the contact contribution to
the potential Φcon is defined as: (Zavarise and De Lorenzis, 2009b)

Φcon =
1

2
ϵNg2N (2)

where ϵN is the penalty parameter. The choice of penalty parameter, ϵN , should be
made carefully, as it can influence the contact-induced duration, force, and indenta-
tion (degree of penetration). Following the sensitivity analysis (see Appendix A for
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details), this study used the value of ϵN to be equal to the modulus of elasticity of the
receiver.

The matrix-form of the nonlinear equation of motion represented by the FE dis-
cretization of the receiver coupled with the discretized contact area can be written as:
(Suwannachit et al, 2012)

Mü+Cu̇+ f int + f con = fext (3)
where M is the mass matrix and C is the damping matrix. u is the displacement
vector, with the overdot (·) denoting the time derivative. f represents the nodal force
vector. The superscripts int, con, and ext on f are the abbreviations for internal,
contact, and external forces.

The residual (or called the out-of-balance) force vector, which will be used for
time integration scheme to be presented in the following section, is constructed using
the foregoing force vectors such that:

R = fext − f int − f con (4)
The mass matrix is constructed as:

M =

[
M rec 0

0 M imp

]
(5)

where M rec is the mass matrix of a receiver structure only and M imp is the mass
matrix or scalar value depending upon the number of nodal points representing the
impacting solid.

Similarly, displacement vector u is set up such that:

u =

{
urec

uimp

}
(6)

where urec = {u1
x, u

1
y, . . . , u

n
x , u

n
y}T is the displacement vector for the receiver

structure, in which the subscripts x and y stand for the x-direction and y-direction,
respectively, and n is total number of nodes for the receiver structure. uimp =
{us

x, u
s
y}T is the displacement vector of the impactor, in which the superscript s rep-

resents the impactor’s node, and as intuitively expected, it follows that in this case,
s = n+ 1.

Solving Eq. 3 using the Newton-Raphson method requires the stiffness matrix
given by the exact Jacobian of R for each iteration j (Laursen, 2013). At the current
time step t+∆t with ∆t being the simulation time increment, the nonlinear equation,
Eq. 3, is linearized as Eq. 7 presented below.

M t+∆tüj+C t+∆tu̇j+
t+∆tKTj−1

∆uj =
t+∆t

fext−t+∆t
f con
j−1−

t+∆t
f int
j−1 (7)

where KT is the algorithmic tangent operator.
Using the time integration scheme to be discussed in the following section, Eq.

7 is iteratively solved within a time step t + ∆t until the convergence tolerance is
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satisfied; e.g., the out-of-balance force Reff
j or the displacement increment ∆uj is

sufficiently small (Suwannachit et al, 2012; Bathe, 2016).
In Eq. 7, KTj−1

is evaluated using the force and state variables of the previous
iteration j − 1, that is,

KTj−1
= Kint

Tj−1
+Kcon

Tj−1
=

∂f int
j−1

∂uj−1
+

∂f con
j−1

∂uj−1
(8)

with KT0
= K, in which K is the initial stiffness matrix, and Kint

T and Kcon
T

denote the tangent stiffness matrices contributed by both the impactor and receiver
themselves and from the contact interaction, respectively.

For the case of employing a consistent tangent stiffness matrix, it follows that
Kint

T = K and thus, Kint
T can be kept constant throughout the simulation. The

contributions of the contact interaction to Kcon and to f con must be known and can
be implicitly defined as follows when the effect of tangential friction is neglected
(Zavarise and De Lorenzis, 2009b).

Kcon
Tj

= ϵNNSN
T
S −

ϵNg2Nj−1

l2m
N0N

T
0 (9)

and
f con
j−1 = ϵNgNj−1

NS (10)
where

N0 = {0,−n,n}T (11)
NS = {−n,−(1− ξ)n, ξn}T (12)

In the above equations , n = {0, 1}T and 0 = {0, 0}T . ξ is the tangential projec-
tion of g, normalized to the master segment length lm as shown in Fig. 2b. When gN
is sufficiently small to be negligible, Eq. 9 can be simplified by dropping the second
term in the right hand side of the equation.

2.3 Time Integration of Nonlinear Equation of Motion Using
Newton-Raphson Method

The classical Newton-Raphson method (Cook et al, 2001) is used to solve the non-
linear equation of motion described in the previous section. In this method, the
velocity and acceleration at the iteration j within a time step t + ∆t are approxi-
mated by means of Taylor series expansion. According to Newmark method, these
approximates become

uj = uj−1 +∆tu̇j−1 +
1

2
∆t2 [2βüj + (1− 2β)üj−1] (13)

u̇j = u̇j−1 +∆t [γüj + (1− γ)üj−1] (14)
with

t+∆tu0 = tu
t+∆tu̇0 = tu̇
t+∆tü0 = tü

(15)
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where β and γ are the numerical factors that control characteristics of the algorithm
in terms of numerical accuracy, stability, and damping.

Solving Eq. 14 for üj and substituting it into Eq. 13, respectively, yield

üj =
1

β∆t2
(∆uj −∆tu̇j−1)−

(
1

2β
− 1

)
üj−1 (16)

u̇j =
1

β∆t
∆uj −

(
γ

β
− 1

)
u̇j−1 −∆t

(
γ

2β
− 1

)
üj−1 (17)

with
∆uj = uj − uj−1 (18)

in which, ∆uj is the increment in the displacements.
Now, after plugging Eq. 16 and Eq. 17 into Eq. 7, bringing the terms with ∆uj

to the left-hand side and the others to the right-hand side of the equation gives

Keff
j−1∆uj = Reff

j−1 (19)
where

Keff
j−1 =

1

β∆t2
M +

1

β∆t
C +KTj−1

(20)

Reff
j−1 =



fext − f int
j−1 − f con

j−1 +M

[
1

β∆t
u̇j−1 +

(
1

2β
− 1

)
üj−1

]
+C

[(
γ

β
− 1

)
u̇j−1 +∆t

(
γ

2β
− 1

)
üj−1

] for j = 1

fext − f int
j−1 − f con

j−1 −Müj−1 −Cu̇j−1 for j ≥ 2
(21)

Once Keff
j−1 and Reff

j−1 are computed, the displacement increment ∆uj can be
obtained using Eq. 19 as given by

∆uj = (Keff
j−1)

−1Reff
j−1 (22)

Then, displacement uj is updated as

uj = uj−1 +∆uj (23)
Lastly, velocity and acceleration are updated via Eq. 16 and Eq. 17, respectively.

2.4 Multiple Nodes Representation of Impacting Solid
As mentioned earlier, approximating the entire body of the impacting object as a sin-
gle nodal point and applying its inertia properties (object mass and speed) to this
node can lead to significant stress concentration on the localized impact zone of the
receiver structure. This is obvious since the nodal point representing the impactor
ignores the effect of contact area and the associated resistance. To overcome this lim-
itation, multiple nodes parallel to the contact surface, are used to exert the equivalent
inertia force of the impactor in a distributive way to the receiver structure. At the
same time, the mass of the impactor is distributed at these selected nodes based on
the impactor geometry.
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Fig. 3. Nodal points distribution based on the impactor’s geometry

As an example, one can consider a circle-shape impactor to be substituted with
three nodal points, s1 (for center), s2 (for left), and s3 (for right), positioned in par-
allel to the contact or receiver surface, as shown in Fig. 3. The impactor body is
geometrically sectioned into three vertical parts or sections (γs1 : γs2 : γs3) perpen-
dicular to the contact surface with the width of the left and the right sections being
the same (i.e., γs2 = γs3). The mass distribution ratio for the selected nodes is deter-
mined based on the relative area proportion of each part. For example, in the case of
γs1 : γs2 : γs3 = 1 : 1 : 1, the mass distribution ratio for nodes, s1, s2, s3, becomes
about 0.42 : 0.29 : 0.29. Finally, the position of the left/right nodal point is defined as
αR, in which R is the circle radius and α is the ratio factor determining the position.
The factor α is bounded by the left/right part of the impactor geometry: the lower
bound is the x-direction distance from the center of the impactor to the boundary
of the left (or right) node, normalized by R, and the upper bound is the left/right-
end distance normalized by R, that is 1.0(= R/R). Since the method approximates
the physical geometry of the impactor and α is the key parameter that accounts for
such approximation, appropriate α has to be determined. This can be done using a
trial-and-error approach within the suggested range (upper/lower bounds). However,
based on comprehensive analyses as will be seen in Sections 3.1.2 and 3.2, α that
gives accurate results is found as about 0.90 for practical impactor geometries, such
as circle and square, when γs1 : γs2 : γs3 = 1 : 1 : 1. Effect of α on the receiver
displacements and stresses will be addressed in those sections.

2.5 Displacement Adjustment Using Lagrange Multiplier
Technique

Since the impactor is represented by the selected multiple nodes, these nodes are
assumed to have the identical displacements over the impact process. However,
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applying the NTS algorithm to each of these nodes and solving Eq. 7 by means of
the Newton-Raphson iteration scheme does not guarantee that the displacements of
all these nodes would be identical throughout the simulation, as they are assigned
different distributions of mass depending on different geometrical partitions. There-
fore, to impose the identical displacements between those nodes, Lagrange multiplier
equation is introduced to the nonlinear time integration scheme described above.
This is done following the technique suggested by Leon et al (2012) and it is briefly
described below for the particular case considered in this study.

For the impactor represented by three nodes shown in Fig 3, an additional
constraint equation for the displacement increment ∆uj is given by:

aT∆uj = 0 (24)
where

a = { 0, 0, ..., 0, 0︸ ︷︷ ︸
corresp. to∆urec

, 0, 2, 0,−1, 0,−1︸ ︷︷ ︸
corresp. to∆uimp

}T (25)

Thus, Eq. 24 yields

2∆us1
yj
−∆us2

yj
−∆us3

yj
= 0 (26)

Introducing this constraint condition gives rise to the additional force term in the
residual force vector Reff , such that Eq. 19 is amended as:

Keff
j−1∆uj = R

eff

j−1 +∆λjf
ref (27)

in which, λ is the Lagrange (multiplier) parameter, which controls the increment of
the reference force vector fref . R

eff

j−1 is the “new” residual (out-of-balance) force
incorporating the contribution from fref .

The addition of ∆λjf
ref can be regarded as the addition of external force and it

is accumulated throughout the iteration process. It follows that

fLag ← fLag +∆λjf
ref (28)

As such, the effective residual force vector of Eq. 21 is amended such that

R
eff

j−1 = Reff
j−1 + fLag (29)

Since the displacement change due to the enforcement of Eq. 26 directly affects
the associated contact force, fref has to be set up using the contact force relation
between the receiver and the impactor NS (Eq. 12), given by:

fref = 2N s1
S −N s2

S −N s3
S (30)

where the coefficients for each NS of the three nodes are determined to be the same
as those in Eq. 26.

Combining Eq. 24 and Eq. 27 gives a well-known matrix-form equation incorpo-
rated with constraint equation, as follows.[

Keff
j−1 −f

ref

aT 0

]{
∆uj

∆λj

}
=

{
R

eff

j−1

0

}
(31)
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To solve this nonsymmetric system of equations, Batoz and Dhatt (1979) pre-
sented a technique, which decomposes the iterative displacement vector into two
parts.

∆uj = ∆λj∆ulj +∆urj (32)
where

∆urj = (Keff
j−1)

−1R
eff

j−1 (33)

∆ulj = (Keff
j−1)

−1fref (34)
With some further manipulation, detailed in Leon et al (2012), ∆λj is derived as

given by.

∆λj =
−aT∆urj

aT∆ulj

(35)

with ∆λ1 = 0.
To summarize, for an iteration j at a given time step, ∆urj and ∆ulj in Eq. 33

and Eq. 34 are computed. Then, ∆λj is computed via Eq. 35. Finally, the displace-
ment increment with the Lagrange constraint condition imposed is obtained by means
of Eq. 32.

2.6 NTS-Based Multi-Nodes Contact/Impact Newton-Raphson
Scheme

Up to now, it has been discussed how the NTS method, Newton-Raphson method,
and Lagrange method are coupled among each other to solve the contact/impact
problems considered. The integrated solution scheme is illustrated step-by-step in
the flow chart in Fig. 4. The scheme describes the iterative procedure for solving the
so-called nonlinear NTS-based multi-nodes contact/impact Newton-Raphson scheme
at a given time step only. Finally, the scheme is repeated for each time step, as the
simulation time increases.

3 Verification
Two-dimensional plane strain models were used to test the verification of the pro-
posed approach for dynamic analysis of impact problems. An in-house FEA code was
written in MATLAB language (MATLAB, 2020) to implement the NTS-based multi-
nodes contact/impact Newton-Raphson scheme discussed earlier. The verification of
the proposed modeling approach was done by comparison with the commercial FEA
software code, ABAQUS (Dassault Systèmes, 2014). In the following sections, the
proposed approach will be applied to each of the two different impact problem cases:
(i) indentation model, in which a rigid object hits a deformable flat (receiver), and
(ii) simply-supported beam model, subjected to transverse impact loading due to
rigid object. It should be noted that the indentation model, in which translations at
three sides of the receiver structure are restrained (see Fig. 5a), is an idealized model
designed to investigate pure elastic-plastic behavior of the structure subjected to rigid
impact object, found in many of the published models (Ghaednia et al, 2017). On the
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Fig. 4. NTS-based multi-nodes contact/impact Newton-Raphson scheme at a given
time step

other hands, the beam model can be regarded as a simple representation for a more
realistic behavior of the (receiver) structure that actual overall motion and deflection
are accounted for.

3.1 Indentation Model
To build the indetation example shown in Fig. 5, both models (in-house FE model
and ABAQUS FE model) used the 8-nodes (quadratic) elements (Q8 elements) with
the mesh size of 0.05m for the receiver, consisting of a total number of 400 elements.
The boundary conditions were modeled such that all sides of the flat structure except
the impact side were constrained in the x and y directions (i.e., pinned support).
The deformable flat receiver was modeled with an J2 isotropic hardening elastic-
perfectly-plastic material model. The following material properties were assumed:
E = 200GPa, ρ = 7700kg/m3, µ = 0.3, and σy = 350MPa, in which E, ρ, µ, and
σy are, respectively, Elastic modulus, mass density, Poison’s ratio, and yield strength.
No damping was applied to the model. The circle-shape impactor body with its radius
of 0.025m was considered, whose mass and initial velocity was assumed as 0.5kg
and 500m/s, respectively. The velocity of 500m/s was chosen as the applied veloc-
ity of the impactor, as it is high enough to generate the material plastic behavior. In
the ABAQUS model, the Dynamic/Implicit solver with the Newton-Raphson method
adopted was chosen as the solution solver. The impactor was geometrically mod-
eled and were meshed with Q8 elements with the mesh size of 0.01m (Fig. 5b), and
the surface-to-surface contact formulation (identical to STS formulation discussed
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1m by 1m

Mass=0.5 ��

Vel.=500�/�

(a)

(b)

Fig. 5. FE mesh of indentation model and its boundary conditions: (a) In-house FE
model, in which the impactor is represented by node(s) (b) ABAQUS model, in which
the impactor is modeled using finite element mesh

earlier) was applied at the potential contact interface to account for the contact inter-
action between the discretized mesh of the receiver and impactor. The rigid body was
applied to the impactor of the ABAQUS model. For all the analyses, the simulation
time increment was set as 10−6 s.

3.1.1 Analysis Using Single Node Representation of Impacting Solid

The first numerical analysis was performed using the proposed approach with a sin-
gle nodal point impactor and the ABAQUS FEA software. As shown in Fig. 6, the
comparison of the results from the two analyses shows that the computed impact
forces were reasonably in agreement, while the displacement of the node in contact
was overpredicted by the approach using a single-node impactor. The discrepancy in
the displacement was attributed to the fact that in the proposed approach, the entire
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Fig. 6. Comparison of results simulated with ABAQUS subjected to circle-shape
impactor and with in-house FEA code subjected to single-node-impactor: (a) Impact
force and (b) y-direction (vertical) displacement of the receiver node in impact

impact force was concentrated on the one nodal point in impact, whereas in the
ABAQUS, the impact force was exerted on the surface of the receiver in a distributed
fashion during the contact interaction.

Fig. 7 presents the von Mises stress (Svm) field distribution developed within the
ABAQUS model, at the time of the maximum vertical (i.e., y-dir.) displacement of the
center node at the top surface occurring. The corresponding stress distribution fields
with respect to four stress components, S11, S22, S33, and S12, are shown in Fig. 8.
Fig. 7 can be compared with Fig. 9, in which stress distribution field of Svm devel-
oped within the in-house FEA code is depicted. It should be noted that the brightness
and saturation used in the colorbar schemes of the ABAQUS and the MATLAB are
slightly different. As expected, the maximum stress of the in-house FEA model was
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Fig. 7. von Mises stress (Svm) field distribution simulated with ABAQUS

(a) (b)

(c) (d)

Fig. 8. Stress field distribution simulated with ABAQUS: (a) S11 (b) S22 (c) S33 and
(d) S12

higher than that of the ABAQUS model, due to the stress concentration resulting from
the single node impact load.

For further investigation, an additional ABAQUS analysis was performed by
applying the user-defined impact force-time history, that was obtained from the in-
house FEA code for the single-node impact analysis, directly on the receiver without
modeling the physical body of impactor with finite element mesh. As shown in Fig.
10b, the results of ABAQUS model and in-house FE model were in a good agree-
ment in terms of the vertical displacement of the node in impact with respect to the
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Fig. 9. von Mises stress (Svm) field distribution from in-house FEA code with a
single node of impactor

simulation time, when subjected to the identical impact force-time history (see Fig.
10a). This verifies the formulations of the in-house FEA code, giving the confidence
of the developed code.

3.1.2 Analysis Using Three Nodes Representation of Impacting Solid

To incorporate the effects of the geometry of the impactor body into the node-based
approach, three nodes of impactor were applied to the receiver structure. As described
in Section 2.4. The circle-shape impactor depicted in Fig. 3 were partitioned into
three parts having the identical widths, γs1 : γs2 : γs3 = 1 : 1 : 1, resulting in the
mass distribution ratio of 0.42 : 0.29 : 0.29 for the three nodes. This geometry parti-
tion ratio gave rise to α that can range from 0.33 to 1. Thus, the following analyses
were carried out using three different α values, i.e., 0.33, 0.9, 1.0. α of 0.33 and α of
1.0 were, respectively, the lower and upper bounds for the given geometry partition.
Based on the trial-and-error method, α = 0.9 was determined to give a match to the
ABAQUS results.

Fig. 11 shows the comparison of the impact force-time history obtained using the
ABAQUS and the in-house FEA with the aforementioned three different α values. It
was found that the three nodes of impactor approach produced the impact force time
profile comparable to ABAQUS analysis, with little effect of α. In Fig. 12b through
Fig. 12d, displacement histories with respect to time are presented for the nodes from
the top to the bottom shown in Fig. 12a. The comparisons indicate that use of α = 0.9
gave a good agreement with ABAQUS analysis results, while slight discrepancy was
observed with increasing time and being far away from the impact zone. Overall,
considering severe transient dynamic response, such differences seemed reasonable.

As shown in Fig. 13, the von Mises stress field distribution obtained for α = 0.9 at
the maximum displacement of the first top node presented reasonably accurate results
compared with Fig. 7. The stress distribution fields of the four stress components of
the plane strain model is depicted in Fig. 14, which showed good consistency with
the ABAQUS analysis results presented in Fig. 8.

In order to check whether the ratio parameter α = 0.9 found above is also valid
for different impactor geometry, an identation model subjected to the square-shape
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Fig. 10. Comparison of results simulated with ABAQUS and with in-house FEA
code (both subjected to single-node-impactor): (a) Impact force and (b) y-direction
(vertical) displacement of the receiver node in impact

impactor was built and studied. In the ABAQUS model, the impactor was built as a
square-shaped plate with its side 0.0443m long, of which dimension was determined
to have the same area as its circle-shaped counterpart. In the corresponding in-house
FE model, the impactor was again treated as three-nodes and their mass distribution
ratio was made as 1 : 1 : 1, assuming the square-shape impactor divided into three
equal parts. Effect of α on displacements was studied by taking three values: 0.33,
0.9, 1.0, where 0.33 and 1.0 are the lower and upper bounds, respectively. The results
presented in Fig. 15 show that results with α = 0.9 are in good agreement with the
corresponding ABAQUS results for the nodal displacement histories measured at the
same three different positions shown in Fig. 12a. This indicates that there is a no need
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Fig. 11. Impact force simulated with ABAQUS and in-house FEA code considering
three nodes representation of impactor, each with different α values, 0.33, 0.9, and
1.0
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Fig. 12. Comparison of displacements simulated with ABAQUS subjected to circle-
shape impactor and with in-house FEA code subjected to three-nodes-impactor: (a)
nodes for which displacement were measured (b) vertical displacement of the first
node from the top (c) vertical displacement of second node (d) displacement of the
third node
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Fig. 13. von Mises stress (Svm) field distribution from in-house FEA code with three
nodes representation of impactor and α = 0.9
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Fig. 14. Stress field distribution from in-house FEA code considering three nodes
representation of impactor with α = 0.9: (a) S11 (b) S22 (c) S33 and (d) S12

for additional calibration for α and only the redistribution of mass as per the consid-
ered impactor geometry is needed when there is a change in impactor geometry. A
reason for this is that the impact inertia is applied through the individual masses at
the nodal positions considered.
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Fig. 15. Comparison of displacements from the ABAQUS model with a square-shape
impactor and in-house FEA code with impactor represented by three-nodes: (a) FE
mesh (b) vertical displacement of the first node from the top (c) vertical displacement
of the second node (d) displacement of the third node (nodes positions presented in
Fig. 12a)

3.2 Simply-Supported Beam Model
A simply-supported beam model with 3m long and 0.3m depth, shown in Fig. 16,
was analyzed for additional verification to account for the realistic situation incorpo-
rating the deflection of the receiver. As with the previous indentation model, the beam
was created using 8-nodes quadratic elements (Q8) with the mesh size of 0.05m and
J2 elastic-perfectly-plastic material behavior. Material properties and applied mass
and velocity were the same as those of indentation model. No damping was consid-
ered. To serve as reference, ABAQUS model was created using the aforementioned
geometric and material properties in addition to modeling a physical impact object
and applying the surface-to-surface formulation (i.e., STS formulation) at the con-
tact interface. Then, an in-house FEA model with the three nodes impact approach
was created and was simulated for different α values: 0.3, 0.9, and 1. Note that α of
0.9 was the value found from the above verification example. Fig. 17 compares the
analysis results obtained using the ABAQUS and the in-house FEA code. As shown
in Fig. 17a, the impact force-time histories computed using in-house FEA code with
α = 0.9 reasonably matches the force obtained using ABAQUS analysis, similarly
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Fig. 16. Finite element mesh of beam model and its boundary conditions, created
using in-house FEA code
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Fig. 17. Comparison of displacements simulated with ABAQUS and in-house FEA
code: (a) Impact force (b) vertical displacement of the first node from the top (c)
vertical displacement of second node (d) displacement of the third node

to the previous indentation case. Fig. 17b through Fig. 17d show the displacements
of the nodes at the midspan, that are, the first, second, and third nodes from the
top surface. The comparison results indicate that the displacements obtained using
the proposed approach with α = 0.9 reasonably agreed with those obtained using
ABAQUS analysis. More discrepancies occurred in the third node from the top with
increasing time. This is attributed to the accumulation of discrepancies as a node gets
far away from the impact location.
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3.3 Discussion on the Proposed Approach
In short, although it is simple and straightforward to implement, the presented impact
analysis approach achieves an excellent accuracy on the analysis of the impactor
hitting a deformable (elastic-perfectly-plastic) body. Based on the presented verifi-
cation examples with a circle-shaped or square-shaped impact solid, it was found
that α value of about 0.9 gave best matching results to the corresponding ABAQUS
Dynamic/Implicit analysis results. The presented approach has the advantage of
being computationally efficient over classical finite element impact analysis. Further-
more, in the classical approach, creating finer element mesh over a receiver body, as
needed owing to the small size of an impacting object, could be not only computa-
tionally expensive but also create unforeseen modeling challenges, and thus can take
significant time and effort to achieve desirable results. In fact, the computational time
between the classical approach and the proposed approach, measured from the inden-
tation model example with a circle-shape impactor, was compared. To run the total
simulation time of 0.002 s, the proposed approach took 147 s, while the classical
approach taking 562 s; thus, showing the proposed approach almost four times faster.

4 Conclusions
This study presents a simplified finite element approach for the analysis of impact
problems, which requires less computational effort than typical finite element con-
tact/impact analysis and is straightforward to implement. The approach approximates
the impacting solid as the selected multiple nodes placed in parallel to the contact
surface, at which mass of the impactor is distributed in certain proportion according
to the sectioned geometry of the impacting solid. The proposed numerical solu-
tion scheme is based on Newton-Raphson time integration method that is integrated
with the node-to-surface contact algorithm incorporating penalty constraint method
and Lagrange multiplier technique, which allows to account for contact interaction
between the selected nodes and the surface of the receiver structure. The proposed
approach is verified using 2D plane strain models considering elastic-perfectly-
plastic material behavior for two specific cases: (i) indentation model and (ii) beam
model, each subjected to impacting solid. The simulation results obtained using the
approach are in good agreement with ABAQUS Dynamic/Implicit analysis results,
e.g., in terms of the impact force, displacements, and stress distribution fields.

In the proposed formulation, the parameter α determines the positions of addi-
tional nodes, which are used to approximately represent the contact area resulting
from an impact solid. The sensitivity analysis results on varying α values indicated
that α has a significant impact on the simulated results. However, for most of the
practical purpose, the impactor geometry can be assumed as a circle, oval (with two
similar length diameters), or square, and α value of 0.9 is found to be a good esti-
mate that can represent those impactor geometries. When the impactor geometry was
changed, for example, from a circle-shape to a square-shape, the only parameter that
needs to be adjusted for this change is the mass distribution ratio to the selected
nodes, which can be explicitly determined based on the geometrical partition ratio.
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The proposed approach is computationally much more superior to the typical
finite element contact analysis, without significantly sacrificing the accuracy. This
is possible made by omitting physical modeling of the impactor and the associated
mesh discretization. In particular, the present approach is expected to be efficient for
case where there are multiple impact events to the receiver.
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Appendix

A Sensitivity Analysis of Penalty Parameter
Many studies (for example, Asano, 1986; Goudreau and Hallquist, 1982; Hallquist
et al, 1985; Kulak, 1989; Pham et al, 2018) have been extensively conducted to
find the optimum value or range for the penalty parameter (in Eq. 2) that ensures
reliable and accurate analysis results. Comparison of the suggested ranges for the
penalty parameter in these studies shows the penalty parameter can differ by at
most the order of magnitude 107 times depending upon the used materials, contact
geometries, element types, etc. Unfortunately, no universal analytical expression for
determining appropriate penalty parameter value exists. Therefore, this study carried
out sensitivity analysis for the choice of penalty stiffness.

The penalty stiffness values were adjusted proportional to the Young’s modulus
of the receiver material, as ϵN = κErec, where Erec is the Young’s modulus of
the receiver material and κ is the associated scale factor. A wide range of κ was
considered. To this end, κ was set to increase 10 times for each individual run from
10−2 to 10+2. The indentation model (Section 3.1.2) was used for this sensitivity test.
Fig. A1 shows results of the computed impact force and displacement of the node in
impact for different κ values considered. As expected, both the impact force and the
local nodal displacement were very sensitive to variation in the penalty parameter.
Out of the five simulation runs, the run with κ = 1 (i.e., ϵN = Erec) provided
the force and displacement histories the most comparable to the ABAQUS results. It
should be mentioned that a more accurate result was obtained with κ = 1.1 but the
difference was not significant when compared with κ = 1.
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Fig. A1. Sensitivity analysis results of the penalty parameter ϵN : (a) Impact force
and (b) y-direction (vertical) displacement of the receiver node in impact
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