Polaris Project: Spaceflight Autonomous Multigenerational Microbial Sequencer (SAMMS)

Active Technology Project (2021 - 2025)

Project Description

Enabling Capabilities special project series: Polaris Project, small flight experiments or risk reduction projects to fulfill high-priority capabilities gaps.

Project Description & Objectives

In the SAMMS project we automated an Oxford Nanopore library preparation and sequencing method to a CubeSat payload system.

We developed and demonstrated a breadboard system in a 4U CubeSat payload form factor consisting of 3 modular components:

- 1. a multigeneration microbiological culture chamber,
- 2. a microfluidic charged info-storage polymer prep system (ChIPPS) sample extraction and purification device,
- 3. a microfluidic library prep device that interfaces with an Oxford Nanopore MinION sequencing device (COTS).

We aim to achieve full automation of the hardware to support a crew-free *in situ* sequencing capability for exploration.

Why this project is important & Tier 1 gap addressed.

The SAMMS capability can provide across-generation monitoring of microbes relevant to plant production, water purification processes or in-situ resource utilization under spaceflight conditions, including increased radiation and reduced gravity and is amenable to the spaceflight form factor (small, light and automated).

Anticipated Benefits

Four Tier 1 HEOMD Capability Gaps can be addressed:

06-117, Storing, processing, and analyzing of in-situ biological samples during Earth-independent operations;

06-118, Earth-independent food system;

06-08, In-flight water Quality Monitoring for Quantification and Identification;

06-29, Safe, Acceptable, and Nutritious Food System.

Major Milestones

- Build/procure and test the three modular components of the device in isolation.
- Combine the three modular components for in-line operation.
- Demonstrate autonomous operation of the complete system.

Technology infusion & innovation approach

SAMMS Fluidic System

Table of Contents

Project Description	1	
Anticipated Benefits	1	
Primary U.S. Work Locations		
and Key Partners	2	
Organizational Responsibility	2	
Project Management		
Technology Maturity (TRL)	2	
Images	3	
Technology Areas	3	
Target Destinations	3	
Views on TechPort	3	

Polaris Project: Spaceflight Autonomous Multigenerational Microbial Sequencer (SAMMS)

Active Technology Project (2021 - 2025)

We will target one or more of several technology-infusion mission opportunities for the 4U SAMMS payload:

- With a 2U lander-interface module, it can be delivered as a selfcontained 6U system suitable for operation on a commercial lunar lander, Gateway, or the ISS;
- With a 2U bus and spacecraft it can be deployed as a free-flying satellite in or beyond LEO, as a future Artemis secondary payload. SAMMS also will be adaptable to multiple flight-module habitats, including future space crop production hardware.

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
Kennedy Space Center(KSC)	Lead	NASA	Kennedy Space
	Organization	Center	Center, Florida
• Ames Research	Supporting	NASA	Moffett Field,
Center(ARC)	Organization	Center	California
Johnson Space	Supporting	NASA	Houston, Texas
Center(JSC)	Organization	Center	

Organizational Responsibility

Responsible Mission Directorate:

Exploration Systems
Development Mission
Directorate (ESDMD)

Lead Center / Facility:

Kennedy Space Center (KSC)

Responsible Program:

Mars Campaign Office

Project Management

Program Directors:

Lindsay T Aitchison Dayna S Ise

Principal Investigator:

Aubrie E Orourke

Co-Investigators:

Sarah L Wallace Antonio J Ricco

Technology Maturity (TRL)

Polaris Project: Spaceflight Autonomous Multigenerational Microbial Sequencer (SAMMS)

Active Technology Project (2021 - 2025)

Primary U.S. Work Locations		
California	Florida	
Texas		

Images

Builds of the three modular subcomponents

https://techport.nasa.gov/image/314614 Builds of the three modular subcomponents

CAD of the three modular subcomponents of SAMMS

https://techport.nasa.gov/image/314613 CAD of the three modular subcomponents of SA MMS

In-line assembly of the three modular components and use cases

https://techport.nasa.gov/image/314615
In-line assembly of the three modular compone nts and use cases

SAMMS FLAT-SAT fluidics schematic https://techport.nasa.gov/image/143318 SAMMS FLAT-SAT fluidics schematic

Technology Areas

Primary:

 TX06 Human Health, Life Support, and Habitation Systems

Target Destinations

Mars, Foundational Knowledge, Moon and Cislunar

Views on TechPort

15 views

Polaris Project: Spaceflight Autonomous Multigenerational Microbial Sequencer (SAMMS)

Active Technology Project (2021 - 2025)

SAMMS Fluidic System

https://techport.nasa.gov/image/143319 SAMMS Fluidic System