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Abstract

In this paper, we demonstrate a high efficiency, Ka-band
(23.15 to 23.55 GHz) GaN HEMT MMIC based single-ended
high power amplifier (HPA). The measured Py, Gain, PAE,
RMS EVM for Offset-QPSK, 8PSK, 16APSK, and 32APSK
waveforms, 3rd-order IMD products, noise figure, and phase
noise are presented. The results indicate that the saturated
output power (Ps,) and the small signal Gain are on the order of
38.8 dBm (7.6 W) and 29.3 dB, respectively. The PAE at Pgy is
20.0%. At the 1-dB compression point, the RMS EVM and the
out-of-band spectral regrowth are less than 6% and —26 dBc
respectively, for all four waveforms. Additionally, the spectrum
is in compliance with the NTIA mask requirements for all four
waveforms. The output 3rd-order intercept point (OIP3) is on
the order of 42 dBm. The noise figure is less than 9.5 dB. The
SSB phase noise spectral density is compliant with the envelope
defined by the MIL-STD-188-164C. The HPA can enable
proximity forward links between the orbiting Gateway/relay
satellites and the lunar surface elements and cross links between
relay satellites.

Introduction

The vision for NASA’s Artemis mission is to enable
human/robotic exploration of the Moon’s surface/interior and
provide a long-term presence on the Moon. To achieve this
vision, NASA plans to develop a lunar Gateway to serve as an
outpost, human landing systems and ascent elements for
transporting the astronauts to and from the lunar surface, relay
satellites for communications, surface habitats, terrain vehicles,
and rovers for exploring the lunar landscape (Ref. 1).
Additionally, NASA plan to use the commercial lunar payload
services (CLPS) initiative for the transportation and
deployment of science instruments and other payloads on the
lunar surface (Ref. 2). In the above missions, to ensure
astronaut’s health and safety and for transferring science data
from surface instruments to Earth, NASA plans to deploy
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robust communication links between the lunar surface elements
such as, the landers, habitats, terrain vehicles, rovers, and the
orbiting Gateway/relay satellites and as illustrated in Figure 1.

This paper builds on our prior and ongoing efforts in the
development of Ka-band high efficiency gallium nitride (GaN)
monolithic microwave integrated circuit (MMIC) based high-
power amplifiers (HPAs). In these HPAs, the MMICs utilize
GaN high electron mobility transistor (HEMT) technology that
imparts several significant advantages over prior gallium
arsenide (GaAs), Silicon Germanium (SiGe) and Silicon (Si)
technologies. These include higher operating voltage, higher
output power density, higher channel operating temperatures,
and radiation hardness (Refs. 3 to 9). Additionally, the
technology, topology, device features, and RF performance
characteristics of recent K- and Ka-band GaN MMIC based
SSPAs presented in References 5 to 9 are summarized in Table 1.

NASA’s Projected Concept of Operation and Architecture
(PCOA) for Space Communication and Navigation (SCaN)
Networks for the next decade or two plans to use open and
international standards to ensure interoperability and link
connections that have potential to support cognitive for
optimizing throughput (Ref. 10). In view of the above, we
recently demonstrated a prototype of a switched wideband GaN
HEMT based MMIC HPA that operates across the 25.25 to
31 GHz frequency band for user spacecraft terminals to support
interoperability (Ref. 11). Additionally, we investigated the
benefits offered by GaN HPA'’s performance characteristics for
user spacecraft cognitive radio platforms (Ref. 12).

In this paper, we extend the above developments to the design
and demonstration of a 23.15 to 23.55 GHz GaN HEMT based
MMIC HPA. The HPA’s performance is demonstrated in the
context of future lunar proximity communication forward links
that are planned between assets located in the lunar orbit and
lunar surface, cross links between lunar relays, and links to
science mission spacecraft. The electromagnetic spectrum
requirements for these links are presented in Table II. The
performance of the 27 to 27.5 GHz HPA for the corresponding
return links is presented in Reference 11.
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TABLE I1.—ELECTROMAGNETIC SPECTRUM FOR LUNAR

PROXIMITY REGION
Links Forward link Return link
frequency, frequency,
GHz GHz

Lunar Orbit to Lunar 2315102355 | e
Surface
Lunar Surface to Lunar
ot | T 27t027.5
Lunar Orbit to Lunar
Orbit Relay Cross Link 23.15 to 23.55 271t027.5
Lunar Orbit to Lunar
Orbit Science Mission 23.15t0 23.55 27 to0 27.5
Link

HPA Design and Brief Set of
Specifications

The two-stage GaN MMIC driver and power amplifier chips
used in the demonstration are shown in Figure 2(a) and (b),
respectively. In these chips, the devices are fabricated with
0.2 um T-gates on GaN HEMT epitaxial layers that are grown
on 4H-SiC wafers. The SiC wafers are thinned to 100 pm for
efficient waste heat removal and their backside is gold plated
for compatibility with eutectic bonding. A SiN passivation film
is applied to the chip surface to reduce the effect of interface
traps and improve reliability. To demonstrate microwave
performance, the driver amplifier chip and the power amplifier
chip are assembled into two separate modules. The modules are
interconnected to realize a prototype single-ended HPA, as
shown in Figure 3, and overall performance characterized. Brief
set of specifications are:

e Forward link frequency range: 23.15 to 23.55 GHz

e Output saturated power (Psy): 7.5 tol0 W (CW)

e Power added efficiency at Ps,: (PAE): 20 to 25%

e Small signal Gain (drive & power amplifier): >25 dB
e RMS Error Vector Magnitude (RMS EVM): <6%

e QGain flatness: =1 dB

e Input/output return loss: <10.0 dB

Ka-Band High Power Amplifier
Performance Validation

The performance of the HPA is characterized using Rohde &
Schwarz (R&S) SMW200A Vector Signal Generator (VSG),
R&S FSW Signal and Spectrum Analyzer, Micronetics Noise
Source, and Keysight N6705C DC Power Analyzer. The driver
amplifier was initially characterized to ensure linear operation
throughout the experiments below.
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Figure 2.—GaN MMIC Chips. (a) Driver Amplifier
(APN244) (Die size: 3.3 x 1.95 mm). (b) Power
Amplifier (APN243) (Die size: 3.8 x 3.8 mm).

Figure 3.—Prototype single-ended HPA with interconnected
GaN MMIC driver and power amplifier modules. The GaN
MMIC driver and power amplifier chips are Northrop
Grumman APN244 and APN243, respectively.



Driver Amplifier Output Power, Gain, and PAE

The measured Poy, Gain, and PAE of the driver amplifier
module at the center frequency (fy) of 23.35 GHz are presented
in Figure 4(a) and (b), respectively. The saturated output power
(Psar) and the small signal Gain are on the order of 31.81 dBm
(1.52 W) and 17 dB, respectively. The PAE at Py is 17%. A
similar set of results have been obtained at the lower and upper
band edge frequencies and summarized in Table II1.

TABLE III.—DRIVER AMPLIFIER MODULE MEASURED Pg,, GAIN,
AND PAE AS A FUNCTION OF FREQUENCY

Frequency, Psat, Small signal PAE,
GHz dBm gain, percent
dB
23.0 31.64 17.25 17.03
23.35 31.81 17.0 17
23.6 31.69 17.8 16.8
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Figure 4.—(a) Measured Poutand Gain versus Pin of the driver
amplifier (APN244) module at fo of 23.35 GHz. Vg1 = Va2 =
23.1V, la1=0.070 A, laz = 0.344 A, and Vg1 = Vg2 =-3.9 V.
(b) Power added efficiency versus Pin. T = 25 °C (Note: The
above curent values are at saturation and no attempts were
made to optimize the drain/gate voltages).
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HPA Output Power, Gain, and PAE

The measured Poy, Gain, and PAE at the carrier or center
frequency (fo) of 23.35 GHz for the interconnected driver and
power amplifier modules are presented in Figure 5(a) and (b),
respectively. The Py, and the small signal Gain are on the order
of 38.8 dBm (7.6 W) and 29.3 dB, respectively. The PAE
at P 1s 20.0%. A similar set of results have been obtained at
the lower and upper band edge frequencies of 23.15 and
23.55 GHz, respectively. To obtain Py, greater than 38.8 dBm,
two power amplifiers and a driver amplifier can be arranged in
a balanced configuration as demonstrated in Reference 12.
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Figure 5.—(a) Measured Poutand Gain versus Pin of the
interconnected driver (APN244) and power amplifier
(APN243) modules at fo of 23.35 GHz. Driver amplifier: Va1 =
Va2 =23.1V, la1 = 0.069 A, laz2 = 0.321 A, and Vg1 = Vg2 =
—3.9 V. Power amplifier: Vg1 = Va2=23 V, lg1 = 0.23 A, lg2=
1.03 A, and Vg1 = Vg2 =—4.5 V. (b) Power added efficiency
versus Pin. T =25 °C (Note: The above current values are at
saturation and no attempts were made to optimize the
drain/gate voltages).
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Figure 6.—Measured RMS EVM versus Pin at fo of 23.35 GHz.
The symbol rate is 180 Msymbols per second and square
root raised cosine (SRRC) filter is set to 0.35.

HPA RMS Error Vector Magnitude (RMS EVM)

To demonstrate high data rate and bandwidth efficiency, the
RMS EVM is measured at a fixed rate of 180 Msymbols per
second for the Offset-QPSK, 8PSK, 16APSK, and 32APSK
waveforms that are typically used in the transmission of data in
satellite communications. The results achieved are presented in
Figure 6. At the 1-dB compression point, all waveforms can
achieve RMS EVM of <6%. The measured spectrum for all four
waveforms, when Pj, is close to the 1-dB compression point, are
presented in Figure 7. The results indicate that the spectral
efficiency for a fixed bandwidth (225 MHz) increases from 2 to
5 bits/s/Hz. Additionally, the spectrum is compliant with the
NTIA mask (Ref. 13). Furthermore, the out-of-band spectral
regrowth measured at 1-symbol rate (180 MHz) away from the
carrier or center frequency (fo = 23.35 GHz) for all four
waveforms is less than —26 dBc, which shows that the adjacent
channel interference or adjacent channel power ratio (ACPR) is
small.

HPA 3rd-order Intermodulation Distortion (IMD)

In Figure 8, the measured 3rd-order intermodulation
distortion products are presented to demonstrate good linearity.
The data indicates that the output 3rd-order intercept point
(OIP3) is on the order of 42 dBm.

HPA Noise Figure (NF) and Associated Gain

The measured NF and associated gain are presented in
Figure 9. The NF and the associated gain are on the order of <9.5
and 29 dB, respectively, across the 23.15 to 23.55 GHz range.
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HPA Single Sideband (SSB) Phase Noise

The measured SSB phase noise spectral density is presented
in Figure 10. The SSB phase noise spectral density is compliant
with the envelope defined by the MIL-STD-188-164C. When
compared with the carrier signal from the R&S VSG, the phase
noise of the amplified signal near the carrier is not degraded by
the HPA.

Conclusions and Discussions

The advantages of GaN HPAs for NASA’s lunar proximity
communication applications are highlighted. The design and
brief specifications for a 23.15 to 23.55 GHz GaN HEMT
MMIC based HPA is presented. The design is validated by
characterizing the prototype single-ended HPA. The measured
Psa, Gain, PAE, RMS EVM for Offset-QPSK, 8PSK, 16APSK,
and 32APSK waveforms, spectrum, out-of-band spectral
regrowth, 3rd-order IMD intercept point, NF, and phase noise
are presented and summarized in Table IV. No de-rating of the
GaN MMIC chips is done. However, preliminary thermal
analysis to estimate junction temperature and projected lifetime
are provided in References 3 and 14. The above HPA
development is at technology readiness level of 4 (TRL 4). GaN
HEMTS enable higher power density, higher PAE resulting in
lighter, smaller, and more efficient RF/microwave systems in
contrast with Si, SiGe, and GaAs based systems.

TABLE IV.—SUMMARY OF HPA TEST RESULTS

Parameter Measured value
Carrier or Center Frequency (GHz) 23.35
Saturated Output Power (Psar) (dBm) 38.8 (7.6 W)
Small Signal Gain (dB) 29.3
Peak PAE (%) 20.0
Return Loss (dB) <-10.0

RMS EVM for Offset-QPSK, 8PSK,
16APSK, and 32APSK waveforms (Pin <6
is at the 1-dB compression point) (%)

Out-of-Band Spectral Regrowth (dBc) <-26.0
OIP3 (dBm) 42.0
Noise Figure (dB) <9.5

SSB Phase Noise Spectral Power
Density (dBc/Hz) (Pin is at the 1-dB
compression point)

Compliant with MIL-STD
Mask
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