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Abstract 
In this paper, we demonstrate a high efficiency, Ka-band 

(23.15 to 23.55 GHz) GaN HEMT MMIC based single-ended 
high power amplifier (HPA). The measured Pout, Gain, PAE, 
RMS EVM for Offset-QPSK, 8PSK, 16APSK, and 32APSK 
waveforms, 3rd-order IMD products, noise figure, and phase 
noise are presented. The results indicate that the saturated 
output power (Psat) and the small signal Gain are on the order of 
38.8 dBm (7.6 W) and 29.3 dB, respectively. The PAE at Psat is 
20.0%. At the 1-dB compression point, the RMS EVM and the 
out-of-band spectral regrowth are less than 6% and –26 dBc 
respectively, for all four waveforms. Additionally, the spectrum 
is in compliance with the NTIA mask requirements for all four 
waveforms. The output 3rd-order intercept point (OIP3) is on 
the order of 42 dBm. The noise figure is less than 9.5 dB. The 
SSB phase noise spectral density is compliant with the envelope 
defined by the MIL-STD-188-164C. The HPA can enable 
proximity forward links between the orbiting Gateway/relay 
satellites and the lunar surface elements and cross links between 
relay satellites. 

Introduction 
The vision for NASA’s Artemis mission is to enable 

human/robotic exploration of the Moon’s surface/interior and 
provide a long-term presence on the Moon. To achieve this 
vision, NASA plans to develop a lunar Gateway to serve as an 
outpost, human landing systems and ascent elements for 
transporting the astronauts to and from the lunar surface, relay 
satellites for communications, surface habitats, terrain vehicles, 
and rovers for exploring the lunar landscape (Ref. 1). 
Additionally, NASA plan to use the commercial lunar payload 
services (CLPS) initiative for the transportation and 
deployment of science instruments and other payloads on the 
lunar surface (Ref. 2). In the above missions, to ensure 
astronaut’s health and safety and for transferring science data 
from surface instruments to Earth, NASA plans to deploy 

robust communication links between the lunar surface elements 
such as, the landers, habitats, terrain vehicles, rovers, and the 
orbiting Gateway/relay satellites and as illustrated in Figure 1. 

This paper builds on our prior and ongoing efforts in the 
development of Ka-band high efficiency gallium nitride (GaN) 
monolithic microwave integrated circuit (MMIC) based high-
power amplifiers (HPAs). In these HPAs, the MMICs utilize 
GaN high electron mobility transistor (HEMT) technology that 
imparts several significant advantages over prior gallium 
arsenide (GaAs), Silicon Germanium (SiGe) and Silicon (Si) 
technologies. These include higher operating voltage, higher 
output power density, higher channel operating temperatures, 
and radiation hardness (Refs. 3 to 9). Additionally, the 
technology, topology, device features, and RF performance 
characteristics of recent K- and Ka-band GaN MMIC based 
SSPAs presented in References 5 to 9 are summarized in Table I. 

NASA’s Projected Concept of Operation and Architecture 
(PCOA) for Space Communication and Navigation (SCaN) 
Networks for the next decade or two plans to use open and 
international standards to ensure interoperability and link 
connections that have potential to support cognitive for 
optimizing throughput (Ref. 10). In view of the above, we 
recently demonstrated a prototype of a switched wideband GaN 
HEMT based MMIC HPA that operates across the 25.25 to 
31 GHz frequency band for user spacecraft terminals to support 
interoperability (Ref. 11). Additionally, we investigated the 
benefits offered by GaN HPA’s performance characteristics for 
user spacecraft cognitive radio platforms (Ref. 12).  

In this paper, we extend the above developments to the design 
and demonstration of a 23.15 to 23.55 GHz GaN HEMT based 
MMIC HPA. The HPA’s performance is demonstrated in the 
context of future lunar proximity communication forward links 
that are planned between assets located in the lunar orbit and 
lunar surface, cross links between lunar relays, and links to 
science mission spacecraft. The electromagnetic spectrum 
requirements for these links are presented in Table II. The 
performance of the 27 to 27.5 GHz HPA for the corresponding 
return links is presented in Reference 11.
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TABLE II.—ELECTROMAGNETIC SPECTRUM FOR LUNAR 
PROXIMITY REGION 

Links Forward link 
frequency, 

GHz 

Return link 
frequency, 

GHz 

Lunar Orbit to Lunar 
Surface 23.15 to 23.55 ------------ 

Lunar Surface to Lunar 
Orbit ------------------ 27 to 27.5 

Lunar Orbit to Lunar 
Orbit Relay Cross Link 23.15 to 23.55 27 to 27.5 

Lunar Orbit to Lunar 
Orbit Science Mission 
Link 

23.15 to 23.55 27 to 27.5 

HPA Design and Brief Set of 
Specifications 

The two-stage GaN MMIC driver and power amplifier chips 
used in the demonstration are shown in Figure 2(a) and (b), 
respectively. In these chips, the devices are fabricated with 
0.2 µm T-gates on GaN HEMT epitaxial layers that are grown 
on 4H-SiC wafers. The SiC wafers are thinned to 100 µm for 
efficient waste heat removal and their backside is gold plated 
for compatibility with eutectic bonding. A SiN passivation film 
is applied to the chip surface to reduce the effect of interface 
traps and improve reliability. To demonstrate microwave 
performance, the driver amplifier chip and the power amplifier 
chip are assembled into two separate modules. The modules are 
interconnected to realize a prototype single-ended HPA, as 
shown in Figure 3, and overall performance characterized. Brief 
set of specifications are: 

• Forward link frequency range: 23.15 to 23.55 GHz
• Output saturated power (Psat): 7.5 to10 W (CW)
• Power added efficiency at Psat (PAE): 20 to 25%
• Small signal Gain (drive & power amplifier): >25 dB
• RMS Error Vector Magnitude (RMS EVM): <6%
• Gain flatness: ±1 dB
• Input/output return loss: <10.0 dB

Ka-Band High Power Amplifier 
Performance Validation 

The performance of the HPA is characterized using Rohde & 
Schwarz (R&S) SMW200A Vector Signal Generator (VSG), 
R&S FSW Signal and Spectrum Analyzer, Micronetics Noise 
Source, and Keysight N6705C DC Power Analyzer. The driver 
amplifier was initially characterized to ensure linear operation 
throughout the experiments below. 

Figure 2.—GaN MMIC Chips. (a) Driver Amplifier 
(APN244) (Die size: 3.3 x 1.95 mm). (b) Power 
Amplifier (APN243) (Die size: 3.8 x 3.8 mm). 

Figure 3.—Prototype single-ended HPA with interconnected 
GaN MMIC driver and power amplifier modules. The GaN 
MMIC driver and power amplifier chips are Northrop 
Grumman APN244 and APN243, respectively.   
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Driver Amplifier Output Power, Gain, and PAE 

The measured Pout, Gain, and PAE of the driver amplifier 
module at the center frequency (f0) of 23.35 GHz are presented 
in Figure 4(a) and (b), respectively. The saturated output power 
(Psat) and the small signal Gain are on the order of 31.81 dBm 
(1.52 W) and 17 dB, respectively. The PAE at Psat is 17%. A 
similar set of results have been obtained at the lower and upper 
band edge frequencies and summarized in Table III. 

TABLE III.—DRIVER AMPLIFIER MODULE MEASURED Psat, GAIN, 
AND PAE AS A FUNCTION OF FREQUENCY 

Frequency, 
GHz 

Psat, 
dBm 

Small signal 
gain, 
dB 

PAE, 
percent 

23.0 31.64 17.25 17.03 

23.35 31.81 17.0 17 

23.6 31.69 17.8 16.8 

Figure 4.—(a) Measured Pout and Gain versus Pin of the driver 
amplifier (APN244) module at f0 of 23.35 GHz. Vd1 = Vd2 = 
23.1 V, Id1 = 0.070 A, Id2 = 0.344 A, and Vg1 = Vg2 = –3.9 V. 
(b) Power added efficiency versus Pin. T = 25 °C (Note: The
above curent values are at saturation and no attempts were
made to optimize the drain/gate voltages).

HPA Output Power, Gain, and PAE 

The measured Pout, Gain, and PAE at the carrier or center 
frequency (f0) of 23.35 GHz for the interconnected driver and 
power amplifier modules are presented in Figure 5(a) and (b), 
respectively. The Psat and the small signal Gain are on the order 
of 38.8 dBm (7.6 W) and 29.3 dB, respectively. The PAE 
at Psat is 20.0%. A similar set of results have been obtained at 
the lower and upper band edge frequencies of 23.15 and 
23.55 GHz, respectively. To obtain Psat greater than 38.8 dBm, 
two power amplifiers and a driver amplifier can be arranged in 
a balanced configuration as demonstrated in Reference 12. 

Figure 5.—(a) Measured Pout and Gain versus Pin of the 
interconnected driver (APN244) and power amplifier 
(APN243) modules at f0 of 23.35 GHz. Driver amplifier: Vd1 = 
Vd2 = 23.1 V, Id1 = 0.069 A, Id2 = 0.321 A, and Vg1 = Vg2 =  
–3.9 V. Power amplifier: Vd1 = Vd2 = 23 V, Id1 = 0.23 A, Id2 =
1.03 A, and Vg1 = Vg2 = –4.5 V. (b) Power added efficiency
versus Pin. T = 25 °C (Note: The above current values are at
saturation and no attempts were made to optimize the
drain/gate voltages).
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Figure 6.—Measured RMS EVM versus Pin at f0 of 23.35 GHz. 

The symbol rate is 180 Msymbols per second and square 
root raised cosine (SRRC) filter is set to 0.35. 

HPA RMS Error Vector Magnitude (RMS EVM) 

To demonstrate high data rate and bandwidth efficiency, the 
RMS EVM is measured at a fixed rate of 180 Msymbols per 
second for the Offset-QPSK, 8PSK, 16APSK, and 32APSK 
waveforms that are typically used in the transmission of data in 
satellite communications. The results achieved are presented in 
Figure 6. At the 1-dB compression point, all waveforms can 
achieve RMS EVM of <6%. The measured spectrum for all four 
waveforms, when Pin is close to the 1-dB compression point, are 
presented in Figure 7. The results indicate that the spectral 
efficiency for a fixed bandwidth (225 MHz) increases from 2 to 
5 bits/s/Hz. Additionally, the spectrum is compliant with the 
NTIA mask (Ref. 13). Furthermore, the out-of-band spectral 
regrowth measured at 1-symbol rate (180 MHz) away from the 
carrier or center frequency (f0 = 23.35 GHz) for all four 
waveforms is less than –26 dBc, which shows that the adjacent 
channel interference or adjacent channel power ratio (ACPR) is 
small. 

HPA 3rd-order Intermodulation Distortion (IMD) 

In Figure 8, the measured 3rd-order intermodulation 
distortion products are presented to demonstrate good linearity. 
The data indicates that the output 3rd-order intercept point 
(OIP3) is on the order of 42 dBm. 

HPA Noise Figure (NF) and Associated Gain 

The measured NF and associated gain are presented in  
Figure 9. The NF and the associated gain are on the order of <9.5 
and 29 dB, respectively, across the 23.15 to 23.55 GHz range. 

 
Figure 7.—Measured spectrum for 8PSK, 16APSK, 32APSK, 

and Offset-QPSK, waveforms at f0 of 23.35 GHz. Symbol 
rate is 180 Msymbols per second, SRRC filter is set to 0.35, 
and bandwidth is 225 MHz. The red solid line is the NTIA 
emission mask.  
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Figure 8.—Measured 3rd-order intermodulation distortion 

(IMD) versus input power per tone. Tone frequencies are  
f0 = 23.35 GHz ±2.5 MHz. Tone spacing is 5 MHz. 

 

 
Figure 9.—Measured noise figure and associated gain versus 

frequency. 
 

 
Figure 10.—Measured SSB Phase Noise spectral power 

density versus the frequency offset from the carrier 
frequency. The carrier frequency is 23.35 GHz. The red solid 
line is the MIL-STD-188-164C. The superimposed blue and 
orange traces are the SSB Phase Noise characteristics of 
the HPA and R&S VSG, respectively. 

HPA Single Sideband (SSB) Phase Noise 

The measured SSB phase noise spectral density is presented 
in Figure 10. The SSB phase noise spectral density is compliant 
with the envelope defined by the MIL-STD-188-164C. When 
compared with the carrier signal from the R&S VSG, the phase 
noise of the amplified signal near the carrier is not degraded by 
the HPA. 

Conclusions and Discussions 
The advantages of GaN HPAs for NASA’s lunar proximity 

communication applications are highlighted. The design and 
brief specifications for a 23.15 to 23.55 GHz GaN HEMT 
MMIC based HPA is presented. The design is validated by 
characterizing the prototype single-ended HPA. The measured 
Psat, Gain, PAE, RMS EVM for Offset-QPSK, 8PSK, 16APSK, 
and 32APSK waveforms, spectrum, out-of-band spectral 
regrowth, 3rd-order IMD intercept point, NF, and phase noise 
are presented and summarized in Table IV. No de-rating of the 
GaN MMIC chips is done. However, preliminary thermal 
analysis to estimate junction temperature and projected lifetime 
are provided in References 3 and 14. The above HPA 
development is at technology readiness level of 4 (TRL 4). GaN 
HEMTS enable higher power density, higher PAE resulting in 
lighter, smaller, and more efficient RF/microwave systems in 
contrast with Si, SiGe, and GaAs based systems. 
 

TABLE IV.—SUMMARY OF HPA TEST RESULTS 
Parameter Measured value 

Carrier or Center Frequency (GHz) 23.35  

Saturated Output Power (Psat) (dBm) 38.8 (7.6 W) 

Small Signal Gain (dB) 29.3 

Peak PAE (%) 20.0 

Return Loss (dB) < –10.0 

RMS EVM for Offset-QPSK, 8PSK, 
16APSK, and 32APSK waveforms (Pin 
is at the 1-dB compression point) (%) 

<6 

Out-of-Band Spectral Regrowth (dBc) < –26.0 

OIP3 (dBm) 42.0 

Noise Figure (dB) <9.5 

SSB Phase Noise Spectral Power 
Density (dBc/Hz) (Pin is at the 1-dB 
compression point) 

Compliant with MIL-STD 
Mask 
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