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MOTIVATION

Earth system models indicate that the Subarctic Atlantic

biological productivity is particularly sensitive to global warming

Simulated export at 50 m in CESM/RCP8.5: 2090s minus 2020s
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On the Role of the Gulf Stream in the Changing Atlantic
Nutrient Circulation During the 21st Century

Daniel B. Whitt
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sloping isopycnals and are eventually advected into the
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Slower nutrient stream suppresses Subarctic Atlantic
Ocean biological productivity in global warming
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How will marine biogeochemistry and

ecosystems evolve in a changing climate?




How does the ocean physics influence marine

biogeochemistry and ecosystems?




SUBARCTICATLANTIC OCEAN

Seasonal cycle

Phytoplankton require light and
nutrients such as nitrate (NO5) to
grow.

NOj; is low at the surface and
replete at depth during summer.

Wintertime vertical mixing
replenishes NO5

Spring solar radiation shoals the
mixing layer, and phytoplankton
draw down NOj5-

Sinking detrital material is
remineralized back to NOj5™ in the
seasonal thermocline or deeper

chlorophyll
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SUBARCTICATLANTIC OCEAN

Annual mean
(B) Observed meridional section

Export & subduction to 0
depths below the winter
mixed layer is replenished
by meridional circulation

-500 ¢

Subduction
0.18 Mmol/s

Depth (m)
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1 000 * Export in
Global Anthropogenic N fixation ~ .475 Mmol/s B organic form

To put these numbers in perspective:

0.17 Mmol/s
(Fowler et al. 2013)

Advective replenishment timescale
for Subpolar North Atlantic NO3 above 1 km:
(200 Gmol) /(0.3 Mmol/s) ~ 20 years

NO;, (mmol/m?)
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How does the MOC participate in North Atlantic biogeochemistry?

We can only understand it after we can model it.




Evaluation of ECCO-Darwin
Zonal-mean Atlantic Nitrate

Annual mean

Below 500 m:
Nitrate > 18 mmol/m3
Trends ~0.1-1 mmol/m3/decade

Biases ~1-3 mmol/m3 are small

Patterns are qualitatively
reasonable in the upper ocean,
but exhibit large biases and trends
compared to low reference
concentrations.

Zonal mean nitrate trend 0-100 m avg.
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Evaluation of ECCO-Darwin

zonal-meanAtianticNirate — Seasonal cycle in the Subarctic Atlantic
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Evaluation of ECCO-Darwin
Zonal-mean Atlantic Nitrate

State estimates qualitatively capture climatological open-ocean chlorophyll

Coast Mask (1 deg) over Satellite Chl Climatology (Apr-Sep) Coast Mask (1 deg) over ECCO-Darwin Chl Climatology (Apr-Sep)
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Zonal-mean Atlantic Nitrate

DS 0BT el Nitrate Tendencies integrated 0-100 m V4r5-LLC90 vs LLC270
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Dynamics of ECCO-Darwin
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DS 0BT el Nitrate Tendencies integrated 0-100 m V4r5-LLC90 vs LLC270

Zonal-mean Atlantic Nitrate
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Dynamics of ECCO-Darwin Vmix (+220 kmol/s) ~ New Prod. (-220 kmol/s)
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