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Abstract—We present a decentralized control algorithm for
robots to aid in carrying an unknown load. Coordination occurs
solely through sensing of the forces on or movement of the
shared load. Robots prevent undesired motion of the load
while permitting movement in the task-relevant subspace, and
stabilize against unexpected events by a transient decrease in
compliance. The algorithm requires no direct communication
between agents, and minimal knowledge of the system or
task. We demonstrate the approach in simulation using a
commercially available compliant robotic platform.

I. INTRODUCTION

Collective transport is the phenomenon or task in which
an arbitrary number of independent agents move an object
too heavy or unwieldy for one to handle alone. In the natural
world, this activity is most commonly associated with ants
[1], [2]; in swarm robotics, it is a mechanism allowing
groups of small robots to move much larger items [3], [4].
A sub-category of this task might be termed “collaborative
transport”’: one informed agent has a destination in mind, and
the others aid in moving an object without necessarily having
knowledge of the goal or environment. Imagine needing to
move a large table: one person may have an intended target
location, and recruit a group of friends, who lift the table
and then follow the first person’s lead in moving it in the
horizontal plane. In such a scenario, the coordination between
carriers may take place without explicit communication;
each follower can feel the motion of the table and respond
accordingly.

In this work we present a decentralized control scheme that
allows independent autonomous robots to act as the followers
in this scenario. No direct communication is required, nor
knowledge of the number of other robots or geometric or
physical properties of the object being carried. The approach
can accommodate physical perturbations and changes in the
number of robots mid-task, and does not require specialized
gripping hardware that constrains the available degrees of
freedom to conform to theoretical assumptions.
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The approach involves decoupling the object’s motion
in the horizontal plane from movement out of plane; each
robot stabilizes the object against movement corresponding
to roll and pitch, while permitting and following horizontal
movement, which it uses as a proxy to gauge forces exerted
on the object by the leader. A key element of the approach
is to use active changes in compliance to respond to sudden
movements of the object. This strategy corresponds to that
intuitively used by the people in the table-moving analogy: in
response to an unexpected shift, a human temporarily stiffens
their muscles. Similarly, an adaptive stiffness term in the
robot control law stabilizes against large system unknowns
or disturbances.

The approach is generalizable to any robot platform with
sufficient degrees of freedom and actively compliant joint
control. Here we present the control algorithm and its the-
oretical basis, and demonstrate its operation in simulation
using a commercially available mobile manipulator.

II. RELATED WORK

Much of the past work in decentralised collective transport
using force as an implicit communication medium is con-
strained to two dimensions (i.e., pushing or pulling an object
along a flat surface) [5], [6], and often requires explicit com-
munication between agents [7] or a shared knowledge base
encompassing trajectory and/or payload information [8], [9].
Previous work on shared manipulation in three dimensions
requires knowledge of the inertial parameters of the payload
[10], [11]; these can be determined at run-time by the robots,
but doing so involves an extensive parameter estimation
phase, in which robot behavior is explicitly coordinated and
the number of agents is known beforehand [11].

When moving from theory or simulation to physical reality,
the control constraints of many collective transport algo-
rithms frequently assume restrictions on motion that then
require specialized gripper hardware to satisfy [12]-[14].
This need to limit the degrees of freedom in the interaction,
and the accompanying necessity for bespoke hardware or
specialised payload affordances, can restrict the ability of



robots using these approaches to spontaneously transport
objects, or to handle widely varying load types.

III. CHALLENGES AND APPROACH

For a single robot seeking to transport an unknown object,
lack of information about the inertial properties of the load is
one of the main impediments to developing stable and effec-
tive force-feedback control. Without an accurate full-system
model, calculating the appropriate joint control commands to
counteract internal and interaction wrenches on the payload
is challenging, especially if the load is heavy and/or has a
mass centroid far from the grasp point. Such a scenario can
easily lead to system instability. For a group of collaborative
robots without the ability to directly coordinate, the issue is
compounded by disturbances from the motion of other agents
which result in additional external forces transmitted through
the payload.

Assuming the requirements of a transportation task are
largely concerned with in-plane motion, we can expect most
out-of-plane torques and vertical forces to be due to the
mass and inertial properties of the load to be transported.
Hence, we can decompose the collective follower’s task
into two parts, firstly the identification of planar forces that
indicate a guiding impetus, and secondly the rejection of
out-of-plane torques and forces. We must accomplish the
latter without generating conflicts with guiding forces or the
other agents’ attempts at stabilisation of the same object. In
essence, the robots must be able to settle on a mutually agreed
force equilibrium at the end-effector. We can enable this by
allowing some degree of compliance in both the end-effector
and joint space of each robotic agent (Fig. 1), and tuning this
compliance according to the priorities of the collaborative
task. Hence, we must fully decouple each robot’s impedance
behaviour in the end-effector space, and project these force
and compliance constraints to torque and stiffness commands
in the joint space.

Our approach implements an adaptive joint torque con-
troller on each robot that uses only local sensor information.
A human carrying an unknown load tends to adjust their joint
stiftness according to the weight and/or out-of-plane rotation
of the load [15]. Similarly, we introduce a variable stiffness
control in the joint space to compensate for errors in the task
space (estimated by a disturbance observer) which cannot be
compensated for by the internal system model of each robot
(e.g., a payload with significant weight or off-axis inertia).

Finally, in order to generate in-plane signals that can be
used for reaching a directional consensus during transport, we
decrease each robot’s end-effector stiffness in the X-Y plane
(as estimated from the robot’s local frame of reference). The
follower robots can obtain the needed information from the
load either by sensing forces exerted on the gripper, or by
registering movement of the load via that of the end-effector.
An advantage of the latter approach is that the signal from
planar motion is minimally affected by forces exerted in other
dimensions, and can be used to robustly detect the in-plane
forces exerted by a leader. These signals inform an outer
control loop (acting independently of the robot’s manipulator
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Fig. 1. System configuration and degrees of freedom. The end-effector space
comprises the 6DoF pose in the world frame. The joint space of the robot
comprises the rotational degrees of freedom of the manipulator (7 in this
example). We can decompose the end-effector space into a high-accuracy
“task space” and a low-priority “null space”, which also includes the joint
positions. Null-space control forces are de-prioritized until the desired task
space accuracy has been achieved. Information from the end-effector can be
used to control the motion of the mobile base.

linkages), which then drives the mobile base of the robot
along the environmental plane.

IV. CONTROL METHODOLOGY
A. Core assumptions

Each robot agent is assumed to have a full suite of joint
state sensors (position/velocity/acceleration), and a mod-
erately accurate internal model of its own dynamic and
kinematic parameters. For this paper, it is also assumed
that the robots are equipped with the necessary sensors and
analytical subsystems to negotiate a secure grasp on the
payload object. Finally, we assume that the transportation
task involves only lateral motion with no intentional out-of-
plane rotation imparted by the lead agent, and that the object
to be transported is rigid and can be grasped securely without
significant slippage.

TABLE I
KEY CONTROL VARIABLES
Variable Description Notation
Position of end-effector in robot base frame (z,y,2)
Orientation of end-effector in robot base frame (6, ¢,¢)
Joint state vector (angular position/velocity/acceleration) | (q,q,q)

Task space impedance gains B¢, K.
Null space impedance gains B, K,
Control gains for mobile robot base B, Km

B. Object stabilisation

We consider each individual robot agent to consist of a
multi-DoF manipulator mounted on a mobile base. To fully
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Fig. 2. A diagrammatical representation of the control system for each independent agent. Internal sensing enables accurate forward and inverse kinematic
and (unloaded) dynamic models of each robot’s manipulator. The mobile base control loop uses only position information fed to the system from the
manipulator. The leader (another independent agent) can apply a guiding force at any point on the load. Neither leader nor followers have any knowledge

of the number or location of the other collaborative agents.

control the task space impedance of the end effector, we
need to map the forces experienced in this task space to
the corresponding joint space torques, and differentiate the
torques resulting from forces we wish to reject (e.g., gravity,
disturbance forces) from those the robot should follow (e.g.,
forces applied by a leader). We adapt a method described in
[16] to decouple the force control of a redundant manipulator
by devolving the control law into task space vs. null space
elements, where the task space describes the end-effector
motion where high accuracy is desired, and the null space
includes all remaining degrees of freedom. This type of con-
trol is commonly used to absorb collisions via the compliant
joint space without affecting task space performance, thus
ensuring robot safety around human operators.

Assuming the transport task consists largely of motion in
the plane, and out-of-plane wrenches are likely to be from
payload inertia or external disturbances, we choose our task
space to comprise the vertical displacement and out-of-plane
rotation of the payload (z, 0, ¢), while the null space consists
of the robot’s n-dimensional joint space (q) and the end-
effector motion in the lateral world plane (x,y, v).

The decoupled control algorithm is formulated as follows.
The manipulator and the portion of the payload it grasps
can be considered as an independent subsystem, with the
following local system dynamics:

M(q)d+ C(q,4)q +g(q) + Tews =T 1)

where T,y is the (n x 1) vector of external torques resulting
from interaction with the environment (and which are likely
to include the distributed payload inertia and any forces
imparted by the actions of other robot agents). While these
torques can be directly measured via appropriately placed
sensors, we can also design a disturbance observer using
other signals from the workspace (Figure 2).

We can write a generalised impedance control law of the
following form:

@)

where My, B, K describe the desired impedance behaviour
of the end-effector. Let My; = M, then the desired
impedance behaviour can be achieved via the following joint
torque control:

Mg(dq — q) + Ba(qa — q) + Ka(qa — q) = Tex

7 =M(a)4. + C(a,q)a + g(q) + Teu (©)
where q. is the command joint acceleration
Ge = Ga+M ™ (Baq + K@ — Ten) “)

and q = q4 — q is the joint space error.
Using this control formulation, we decompose the com-
mand torque into task-space and null-space elements:

)

where T, is the joint space torque command that satisfies
the task space motion requirements, and 7,,; is the torque
controlling the impedance behaviour of the remaining (null)
degrees of freedom, including the joint impedance.

1) Task space control torque: We choose a task space
acceleration control of the form:

T = Tiask + Toull + C(qa q)q + g(q)

Xe = %4+ Box + KX (6)

where B., K, describe the desired task space impedance,
X = xg — x describes the task error, and X, is the task-space
command acceleration. To project this control law into the
joint space, so it can be substituted into (5), we need to devise
a suitable m X n task Jacobian J(q) such that

x=J(q)q (N



where x is the m x 1 task state trajectory vector (in this
transport scenario, m = 3), and n is the length of the joint
state vector q.

We note that the standard Jacobian transpose mapping
between torques and forces is incomplete for redundant
manipulators in motion. Because of the system redundancy,
at any given configuration there is an essentially infinite set
of joint torque vectors that could theoretically be applied
without affecting the resulting end-effector forces. However,
for a real robot with non-zero inertia, only one generalised
Jacobian inverse is consistent with the system dynamics [17]:

J#(q) =M I (IM 1) ®)

By calculating a corresponding task inertia matrix A, [16],
the required task space acceleration can now be projected to
a joint torque command:

T =37 (A, (%0 + BX+ K %) +3#77.) O

where 7. is an estimate of the external torque.

2) Disturbance observer: We use the task space error
and (controllable, known) joint impedance to calculate an
estimate of the external torque:

7. = K, J#x (10)

3) Null space control: For controlling the null dimensions,
we choose a low-stiffness impedance control law:

v.=—-AY(p, +B,)v —ZTK,q) (1

The null space stiffness K, is equivalent to the internal
stiffness on the joint impedance drivers, and B, describes a
suitable null-space damping matrix [18]. A,, p,, are the null-
space inertia matrix and Coriolis matrix [16]. The null space
state velocity vector v must be derived from the task space to
joint space decomposition. For a task-space command with
m control dimensions, the impedance behaviour projected
into the null space gives us n equations with r = n —m
dimensions, meaning that the null space equations are not all
independent. To overcome this, we introduce an (n X r) ma-
trix Z [18] such that JZ = 0. We choose Z = [J7J,.7 1]
where J,,,J, are the submatrices of a Jacobian partition
J =[J,, J,] such that J,, is full rank and invertible. We
can now establish a set of null space variables v and an
extended Jacobian matrix Jg(q) such that

( x ) — Iu(a)a = ( z"é‘({;) >q

The joint control torque corresponding to the desired null
space impedance behaviour can now be calculated:

(12)

Tnull = _Z#T (Auz#q + (lJ’V + Bu)’/ - ZTKVQ) (13)

C. State observer and adaptive stiffness control

For a system with a highly accurate internal dynamic
model handling a known load, and with only constant ex-
ternal disturbance forces, the above control law would be
stable and sufficient. However, we find that if the robot’s
inertial estimates are inaccurate (e.g., when the robot is

asked to manipulate an unknown load), or the disturbance
is dynamic (e.g., the number of agents in the system varies
during the task), this control law may have suboptimal task-
space accuracy and convergence speed (see Results, Figure
5). Taking advantage of the variable stiffness tuning offered
by modern force-sensitive manipulators, we can implement
an adaptive stiffness control that adjusts the compliance in
the null space according to the task space performance.
Consider equation (13). We see that joint space impedance
is chiefly driven by the joint space error term q (modulated
by the desired joint stiffness K, ). A task-state observer can
be used to estimate and update the goal joint state according
to the instantaneous system dynamics and goal task state:

qq = q+ aJ#x (14)

(q is the current joint state, v is some small scaling constant
proportional to the control loop time step, ( is a scalar gain
term). We now replace the constant stiffness matrix K, with
an adaptive diagonal joint stiffness matrix K, (¢):

- 2
Kipl) = b, + (22
1+ qi(t)
where ¢; represents the projected state error for joint ¢ and
k, is a minimum equilibrium stiffness (corresponding to the
null state stiffness chosen earlier).

When the task error becomes large, the joints “stiffen” until
the robot returns to a controllable state, in the same way a
human performing a carrying task might stiffen their joints
in response to slippage or disturbance, until reaching a more
controllable configuration.

(15)

D. Leader-follower collective transport

Once multiple agents following the above control schema
have a secure grasp on a shared load, we can examine how
this system can be used for collaborative transport.

The leader applies a force on the shared load in the
direction of a goal position in the plane. Through the body of
the load, this force is imparted to the manipulators at the grip
points. Appropriate force-sensing at the grip points (e.g., thin-
film resistive force sensors) could disambiguate the direction
and type of the resultant localised forces. Alternatively, by
permitting the grippers to move freely in the lateral plane, a
robot can use the relative distance traveled by the robot end
effector as a proxy to estimate forces (F,; = ken % Ax). The
latter method significantly reduces the processing required,
as extracting reliable and relevant force data from contact
sensors is not always trivial. The inertia of the load itself
also acts as a low-pass filter on the transmitted signal.

E. Mobile base outer control loop

The mobile base control algorithm seeks to maintain a
constant relative position between end-effector and base cen-
troid, by moving the base in accordance with force or position
error signals relayed by the manipulator. In simulation, we
assume we have full control over the mobile base trajectory
and implement this control as a simple position-based PID
loop:

Fm = Kme + Bm.é (16)



where F,, is the force driving the mobile base, K,,, By,
are the chosen PID gains, e = (x(t),y(t)) — (z0,%0), and
(z0,yo) represents a starting or neutral position of the end-
effector in the mobile base frame. Choosing high damping
and low displacement gains minimises overshoot which could
lead to oscillatory behaviour at the end-effector.

V. EXPERIMENTAL PLATFORM

The experimental platform used for validation and testing
was the 7DoF active compliant manipulator Franka Emika
Panda [19]. We created a simulation of this platform in
the Unity engine, including accurate dynamic and kinematic
models and active impedance drivers on all joints [20]. To
test the transport algorithm, multiple instances of the Panda
manipulator were mounted on planar mobile bases.

The individual agent control was validated on a single
robot with (a) a holding task (Section VI-A), where the
goal was to maintain a task space position in the presence
of external disturbances, and (b) a trajectory-following task
(Section VI-B), where the robot attempted to move along
a predefined task-space trajectory while supporting an un-
known mass, near the payload limit of the manipulator.

Finally, to demonstrate how this decoupling of manipulator
compliance can be used to effect collective transport, we
implemented a transportation task using four robots and a
load represented by a heavy (20 kg) dining table with struts
suitable for secure grasping (Fig. 3, Section VI-C). The
simulation is initialized with the table already in the robots’
grasp. Each robot seeks to hold the task-space variables
(2,0, ¢) steady, and transmit any end-effector motion in the
(z,y) plane to the mobile platform controller. The leader
does not apply any stabilising forces, but adds a lateral force,
bounded at 40N, in the direction of a target destination, in ac-
cordance with the proportional-distance controller described
earlier. The robots stabilising the load have no knowledge of
each other’s poses or the waypoint position, nor any direct
communication with the leader.

All experiments were undertaken using the following con-
trol parameter values (where appropriate): B, = diag|[1, 1, 1],
K. = diag[80,80,80], B, = diag[0.4,0.4,0.4,0.4], K, =
diag [15,5,5,5,5,5,5], B, = 20, K,,, = 2000.

VI. RESULTS
A. Validation: Selective control of the end-effector space

Disturbance forces during transportation may include dy-
namic or abrupt external torques. Fig. 4 shows the re-
sponse of the manipulator to (top) smoothly varying and
(bottom) stochastic and abrupt external disturbances at the
end-effector. In both cases, the robot’s task space consists of
the (z, 6, ¢) end-effector dimensions. The disturbance forces
induce motion in the other (null-space) dimensions, but the
robot maintains task space accuracy even with the application
of sudden and unpredictable forces.

B. Adaptive stiffness

Fig. 5 shows the utility of dynamic stiffness, plotting the
accuracy of a trajectory-following task when the robot is

Fig. 3. Four simulated robots hold and transport a 20kg table, not modified
to facilitate manipulation by robots. See accompanying video.
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Fig. 4. Non-constant external forces applied to the Panda end-effector. Left:
external Cartesian forces applied; right: the corresponding end-effector pose
(z,y,2,0,9).

supporting an unknown load of significant mass. Without
knowledge of the inertial properties of the payload or any
compensatory adaptive behaviour, the accuracy of the task-
following is impaired. Adding a dynamic stiffness term not
only improves the task space accuracy, it also reduces the
overall torque exerted by the joint actuators. Although the
stiffness term is quadratic (so that higher internal joint forces
might be expected), the corresponding improvement in task
space error means that the total joint forces resulting from
both task- and null-space control torques are significantly
lower with the adaptive term in place, and also converge
more speedily to a stable steady-state force application.

C. Collective transport

To test the performance of the described algorithm in a
collaborative transport task, we examine the motion of a
heavy payload (Fig. 3) being transported by four autonomous
robotic agents, following guidance forces imparted by a
(disembodied) leader. The leader applies a force at one end
of the table in the direction of a goal whose location is
not known to the follower agents. The followers attempt
to stabilize the load in the local task space (z,6,¢), while
using sensed motion of the end-effector in the (z,y) plane
to control the motion of the mobile base.
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Fig. 6 and the video show the behaviour of the centre of
mass of the payload table under different transport conditions.
In the first, no external disturbances are introduced, and we
see the payload move smoothly to the goal location. In the
second, an external force of 50N is applied for a short time
to the end-effector of one of the follower agents, in the
horizontal plane and perpendicular to the direction of motion,
to simulate an impact or collision. Some minor out-of-plane
rotation is experienced at the centre of the table during the
force application, but it quickly returns to the initial pose
after the force is removed. Part 2 of the video attachment also
shows the performance of the system with transient planar
perturbation of a single robot in both perpendicular and
parallel directions, and with an in-plane torque. In the third
demonstration, an agent fails its initial grasp on the table.
This disturbance entails brief spurious forces on the load
during the first ~1 second and then, after the robot’s grasp
slips away entirely, a loss of 25% of the carrying capacity
of the system, resulting in a very uneven load distribution
for the remaining agents. While the loss of an agent has a
noticeable effect on both in-plane and out-of-plane rotation,
the payload pose remains within controllable bounds and
the transportation task is still accomplished quickly and
smoothly.

VII. DISCUSSION AND FUTURE WORK

We present a framework for collaborative transport, in
which an arbitrary number of independent robots help an
informed agent move a shared load in a desired way, while
requiring minimal system knowledge on the part of indi-
vidual agents. Force sensitivity (whether directly sensed, or
inferred from movement of the load) and adaptive stiffness
allow implicit communication and fast, intuitive handling of
disturbances in a process analogous to that seen in physical
human collaboration.

The ability to decouple compliance in the end-effector
operational space means that as long as the broad parameters
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Fig. 6. The motion of the centre of mass of a large payload during a
collective transport task with four independent agents and an external guiding
force (represented by a hand at the force application point), with target
location shown by a red X. Top: Start state and end state of the given
transport task. Middle left: Motion of the table with no external disturbance
on the system. Middle right: Motion of the table when one agent has a large
(50N) force exerted on the end-effector for 2s (shaded area). Bottom left:
Motion of the table when one agent fails to grasp the table. Bottom right:
A closer examination of the out-of-plane rotations experienced by the table
under different transport conditions. Solid lines: no disturbance; dashed line:
external force for 2s; dotted line: missing agent. See also video attachment.

of the task are known in advance (i.e., in which task-
space dimensions the agent can expect to receive a guiding
force signal), disturbances and inertial wrenches from the
payload can be successfully rejected, while guiding signals
can be sensed at the end-effector and transmitted to an outer
navigational control loop. We also show that in the case
of a heavy payload, one which causes significant mismatch
between the robot’s internal model and the real system
behaviour, an adaptive stiffness control at the joint level will
enable the robot to rectify its performance without needing
to explicitly estimate the inertial payload parameters. To-
gether, these control elements result in a robust collaborative
transport algorithm which can cope with significant system
disturbances.

We note that for this work, each task domain is explicitly
declared in the individual robots’ control algorithm. However
the inherent force sensitivity of the manipulators opens the
way for a task encoding framework which could allow the
leader to signal a switch between constrained dimensions
via force application, particularly if tactile force sensing is
added to the follower’s grippers (eg. a vibrational signal
transmitted through the collective load). Immediate future
research includes developing such a framework, including
a real-world system demonstration on a realistic problem
scenario, and providing the leader with a control algorithm
which incorporates force sensing at the payload as well as
position feedback, allowing adaptive trajectory generation for
energy-optimal navigation of complex environments.
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