

DECO: Digitally Enabled Cooperative Operations

Exploring a New Digitally Enabled Operating Mode to Complement VFR and IFR

April 2024

What is an Operating Mode?

Regulatory, procedural, and technical means for aircraft to operate safely within the airspace

aka "flight rules" as defined in regulations, policies, procedures, training materials, ...

Routine Operating Modes

<u>Widespread</u> use in most airspace classes <u>Routine</u> for pilots & controllers

- Visual Flight Rules (VFR)
- Instrument Flight Rules (IFR)

Specialized Operating Modes

<u>Limited</u> to certain operations and/or airspace incompatible with VFR & IFR <u>Routine</u> for pilots who use them; <u>Nonroutine</u> for controllers and other pilots

- State/Military Aircraft
- Moored Balloons / Kites / Amateur Rockets / Unmanned Free Balloons
- Ultralight Vehicles
- Parachute Operations
- Small Unmanned Aircraft Systems

Key Points:

An Operating Mode is a "must have" for all flights (safety requirement) All existing Operating Modes depend on <a href="https://www.human.com/human.

"Traffic Management" and
"Operating Mode"
are not the same thing

Coming Soon to an Airspace Near You

What Innovations are Coming?

What Operating Modes Can Be Used?

Increasing Ops Tempos, Volume, Density, Complexity =

• New Types of Propulsion ----

Existing Operating Mode

- New Missions and Business Models –▶
- Flight Operations in New Locations = ->
- Remotely Piloted Aircraft -----
- Increasingly Automated (e.g., m:N) _ _ _ ,
- Unknown Future Innovations _ _ _ _ _ _

Existing Operating Modes

Existing Operating Modes w/ waivers & special procedures at low operational tempos

Existing Operating Modes May Be Insufficient

Community Awareness:

"New and adapted flight rules and procedures will be required to efficiently manage these increasingly dynamic operations of differing priority and types." Airbus and Boeing, 2020

Airspace Integration Challenges with Increasingly Automated Flight

Situation awareness

- See and avoid other aircraft
- Localization and navigation
- Obstacle/Terrain avoidance
- Remaining clear of clouds
- Visual approaches

Ability to follow airspace procedures

- Visual and instrument procedures
- Traffic Patterns
- Interaction with Air Traffic Control (Vectors / Clearances)

Contingencies

- Weather
- Aircraft emergencies
- Novel situations
- Technology Maturity and Ability to Qualify Automation

Automated Process
Must Harmonize with
Human-Centric
Processes

Must Have Minimal Impact on Incumbent Operations

Must Co-exist with Incumbent Operations

Must Enable m:N
Operations

Must Operate in an Expected and Predictable Fashion

Do Nothing

Operating Modes of the 20th Century are

- Not adaptable to increasing flight diversity
- Not scalable to high tempos and density
- Not suited to self-piloted aircraft
- Not sufficiently predictable
- Not conducive to regional growth

Cannot be solved by Traffic Management alone

Not really an option

Add to Specialized Modes

Specialized Operating Modes

- State/Military Aircraft
- Moored Balloons etc. (Part 101)
- Ultralight Vehicles (Part 103)
- Parachute Operations (Part 105)
- sUAS (within visual) (Part 107)
- sUAS (beyond visual) (Part 108?)
- Another (Part 109?)
- And another
- And yet another

Proliferation of Solutions

- Divergent?
- Incompatible?
- Segregated?

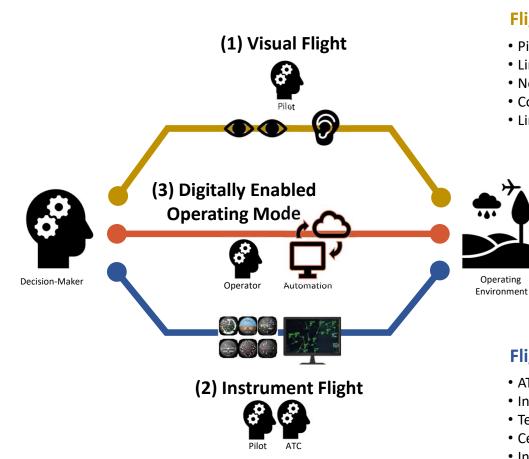
Starting to happen

Converge to One New Routine Mode

Routine Operating Modes

- Visual Flight Rules (VFR)
- Instrument Flight Rules (IFR)
- New Routine Operating Mode (digitally native & cooperative)

Convergent Aeronautics Solution


- Unifying
- Compatible
- Integrated
- Flexible
- Adaptable

Needs to happen!

Exploring a Third Routine Operating Mode

Flight by Reference to Visual Cues

- Pilot is the separator (see and avoid)
- Limited to no intent sharing
- No conflict management technology required
- Cooperative through human interpretation & judgment
- Limited to no dependence on traffic management

Flight by Reference to Digital Capabilities

- Operator is the separator
- Required intent sharing
- <u>Technology-dependent</u> separation function
- **Encoded** cooperative practices
- Collaborative with traffic management

Flight by Reference to Instruments and ATC Services

- ATC is the separator
- Intent sharing with ATC, not with other IFRs
- Technology dependence (communications, navigation, surveillance)
- Centralized control
- Integrated with traffic management

Detailed Framework for a Digitally Enabled Operating Mode

Information Services

Maintains a digital model of the operating environment for use by decision-making automation

Cooperative Practices

Governs the behavior of DF operations to ensure harmonized use of the airspace

CP-A: Share and Update Intent

CP-E:

Navigate

Precision

with Intended

CP-B: Take Timely Action

Changing Intent CP-G: Respect Right-

of-Wav

Aircraft

Among DF

Respect Intent

CP-C:

When

CP-F: Apply Pair-Appropriate Separation

CP-I: Coordinate with ATC in Controlled Airspace

CP-J: Join in Appropriate Flow Management CP-K: Protected

Avoid Active Airspace

CP-L: Respect Established Operating **Procedures**

CP-D:

and IFR

Aircraft

CP-H:

Coordinate

Among DF

Aircraft

Maneuvering

Respect VFR

Essential Elements

FF-1: Info Services & Connectivity

EE-2: Shared Traffic & Intent Awareness

> EE-3: Cooperative **Practices**

EE-4: Automated Conflict Management Capabilities

Shared Traffic & Intent

Maintains awareness of relevant traffic information for use in conflict management

SI-1: Aircraft State

SI-2: Shared Operational Intent (Near, Intermediate, Destination)

SI-3: Intended Navigation Performance

Principal Capabilities

Automates the critical functions in conflict management

PC-1:

Operator Self-Separation

Collaborative Utilization of Constrained Resources

PC-2:

Cooperative Conflict Management

PC-3: **Adaptive Pairwise** Separation

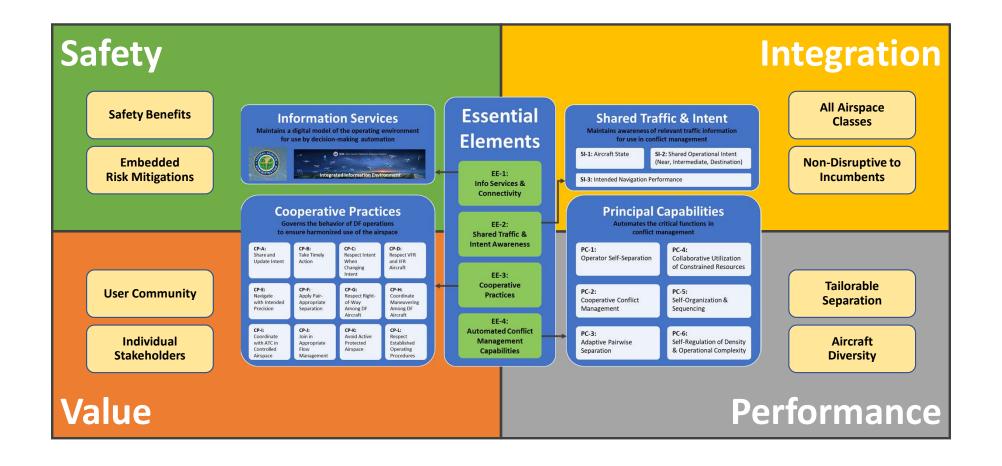
PC-5:

PC-4:

Self-Organization & Sequencing

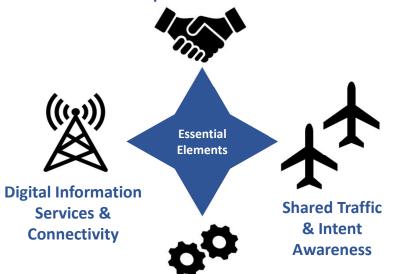
PC-6:

Self-Regulation of Density & Operational Complexity


ICAO Layers of Conflict Management

ICAO Conflict Management ¹	Visual Flight	Instrument Flight (ATM Services)	Digital Flight
Strategic Conflict Management "Achieved through the airspace organization and management, demand and capacity balancing and traffic synchronization components; Aim to reduce the need to apply the second layer — separation provision."	Procedures, Practices, and Airspace Structure Traffic Pattern Ordinal Altitudes Routes, Flyways	Traffic Flow Management & Airspace Structure • Executed via ATC	Traffic Flow Management & Airspace Structure • Cooperative compliance (PC-4) • Self organization (PC-5) • Self limiting (PC-6)
Separation provision "Tactical process of keeping aircraft away from hazards by at least the appropriate separation minima; Only used when strategic conflict management cannot be used efficiently."	Remain well-clear Airspace user is the separator for its activity in respect of one or more hazards Visual separation, assisted by technology CDTI FLARM	Separation Services Radar separation Procedural separation	Self-Separation Airspace user is the separator adhering to a defined minima in respect of one or more hazards Operator self-separation (PC-1) Cooperative conflict management (PC-2) Adaptive pair-wise separation (PC-3)
Collision avoidance "Must activate when the separation mode has been compromised; Not part of separation provision; Must be compatible with separation provision mode."	 "See" and Avoid Pilot vision CDTI – Traffic Alerting TCAS (in some cases) 	"See" and AvoidPilot visionTCAS/DAA (in most cases)	"See" and AvoidPilot vision (optional)TCAS/DAA (in all cases)

Asserted Attributes of the Framework



Essential Elements

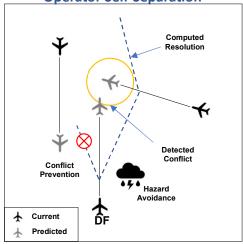
Cooperative Practices

Automated Conflict

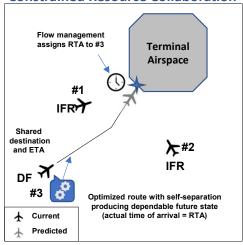
Management **Capabilities**

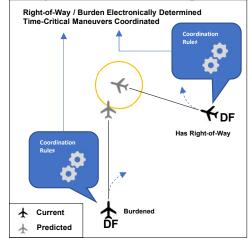
Essential Elements	Role		
Information Services and Connectivity	Maintains a digital model of the operating environment for use by decision-making automation		
Shared Traffic & Intent Awareness	Maintains awareness of relevant traffic for use in conflict management		
Cooperative Practices	Governs the behavior of digital flights to ensure harmonized use of the airspace		
Automated Conflict Management Capabilities	Automates the separation function through dynamic path planning		

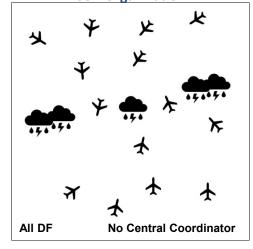
Operator Flexibility in Implementation:

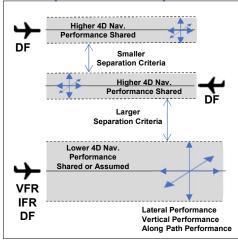


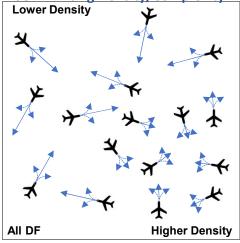
Self-Provision Services Provision


Envisioned Principal Capabilities


Operator Self-Separation


Constrained Resource Collaboration


Cooperative Conflict Management


Self-Organization

Adaptive Pairwise Separation

Self-Limiting Density/Complexity

Candidate Cooperative Practices

Intended Effect

Increase predictability, efficiency, stability, and safety

Minimize disruption to existing operations

Increase airspace capacity Reduce actionable conflicts

Distribute separation burden Increase safety

Facilitate airspace integration Minimize controller workload Minimize disruptions

Convergent Aeronautics Solutions (CAS) Project Thinking differently to revolutionize aviation

Explores the unknown – Converges disciplines & industries – Advances disruptive concepts

Desirable, Viable, and Feasible Solutions to Wicked Problems, proven by early Experimental Results cas Project is sponsoring exploratory research on Desirability, Viability, and Feasibility

- Scientific Discoveries
- Imagine desirable aviation futures
- Explore the most difficult problems of aviation
- Discover pathways to overcoming barriers
- Test these pathways via vanguard experiments
- Incubate transformative change in aviation
- Emerge new strategic thrusts in ARMD

CAS Execution Strategy Based on DVF

Desirability

- Community evidence shows a desire for new operating modes
- Does framework meet diverse community needs? What must change to achieve convergence?

Viability

- DF must be regulatorily and economically achievable, sustainable, and adaptable
- Is the framework sufficiently applicable to diverse operators and environments?

Feasibility

- We're building on substantial prior R&D into digitally enabled operations
- Will new operations be safe and efficient when integrated with existing operating modes?

No shortage of barriers to achieving a paradigm-shifting new operating mode!

CAS DECO Research Portfolio

	Activity	Framework Focus	Attributes Focus	D	V	F
CR-1	Boeing	All aspects	All aspects	0	0	0
CR-2	FAA & NATCA	Essential elements	Integration	0	0	0
CR-3	Flight Safety Foundation	PC6 - complexity	Safety	0	0	0
CR-4	Broad Community	All aspects	All aspects	0	0	0
MS-1	Lower E Airspace	Select PCs and CPs in different airspaces	Safety, Integration		0	0
MS-2	Upper E Airspace		Value, Performance	0	0	0
MS-3	Terminal Airspace	•	Integration		0	0
FE-2	Non-Towered Airport	PC5 – self-sequencing	Integration, Value	0	0	0

Concept Refinement (CR) Activities

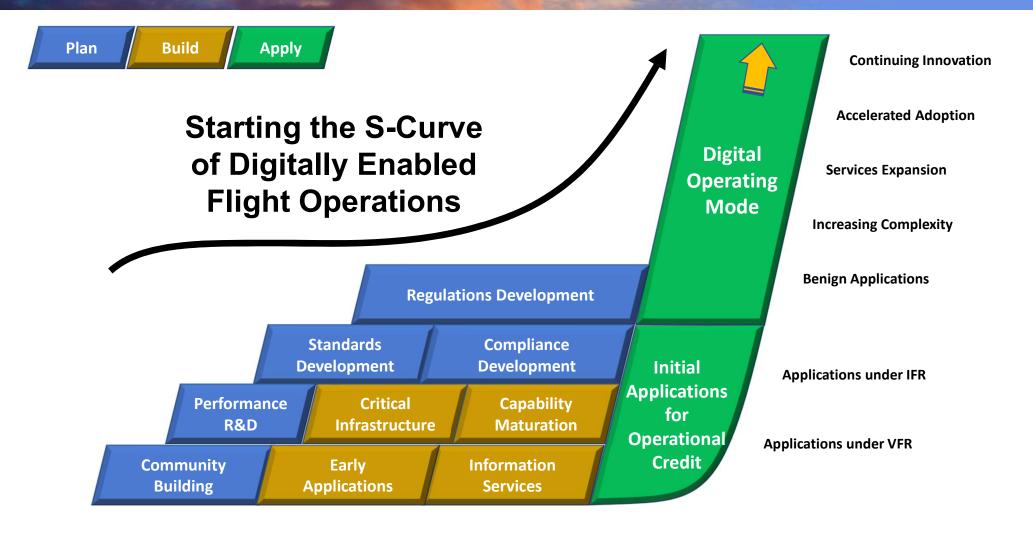
Engage with key stakeholders to clarify and refine the DF framework to achieve convergence

Modelling and Simulation (MS) Activities

Conduct studies to assess technical feasibility and to substantiate or refine the DF framework and attributes

Flight Evaluation (FE) Activity

Conduct real-world evaluations of select DF capabilities to assess operational feasibility


- **CP** Cooperative Practices
- **PC** Principal Capabilities

NATCA - National Air Traffic Controllers Association

- **D** Desirability Barriers
- V Viability Barriers
- **F** Feasibility Barriers
- Significant focus
- O Contributing focus

A Path Forward

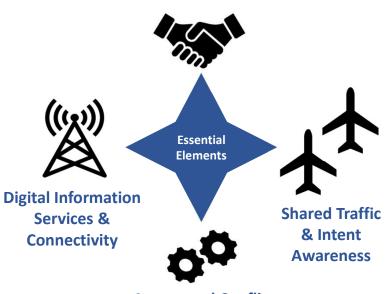
DECO: Digitally Enabled Cooperative Operations

Exploring a New Digitally Enabled Operating Mode to Complement VFR and IFR

Thank You!

Andrew.R.Lacher@nasa.gov David.Wing@nasa.gov

Use this QR code to access a 2022 NASA publication describing the concept framework in greater detail.

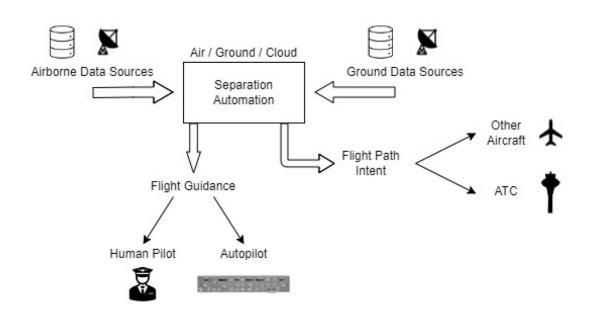


Detailed Material

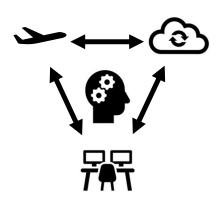
Essential Elements

Cooperative Practices

Essential Elements	
Information Services and Connectivity	Maintains a digital model of the operating environment for use by decision-making automation • Shared situation awareness • Current and future states • Traffic, environment, constraints • Must meet integrity criteria
Shared Traffic & Intent Awareness	Maintains awareness of relevant traffic for use in conflict management • Aircraft state, flight path intent, navigation performance
Cooperative Practices	Governs the behavior of digital flights to ensure harmonized use of the airspace
Automated Conflict Management Capabilities	 Automates the separation function through dynamic path planning Tool for detecting and resolving conflicts while conforming to constraints

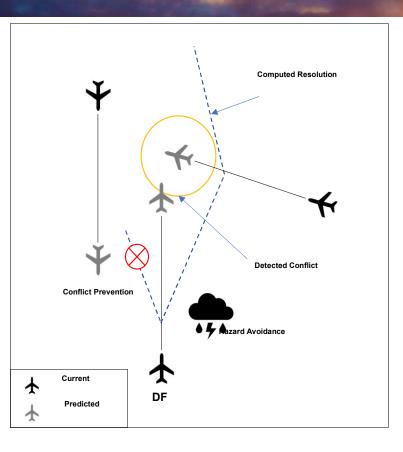



Envisioned Architecture Flexibility



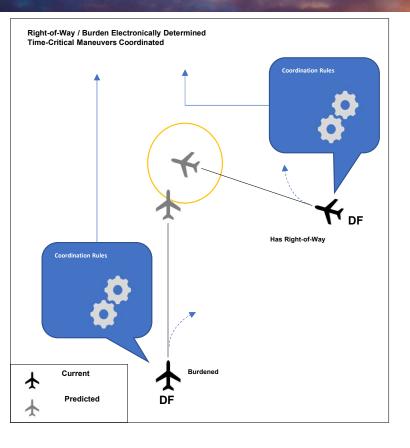
Automated Conflict Management may be

- Provided by the operator or by a third party
- •Based in the air, ground, the cloud, or a combination



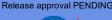
Location of automation and decision-making

Operator Self-Separation

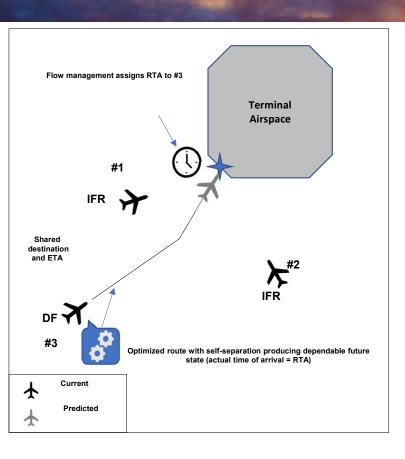


- Primarily focuses on traffic separation but includes all hazards
 - E.g., Weather, terrain, obstructions, protected airspace
- Applies cooperative practices
- Remains "well clear" from VFR (digitally)
- Remains greater than IFR separation mins from IFR traffic
 - Communicates intent to ATC

Cooperative Conflict Management

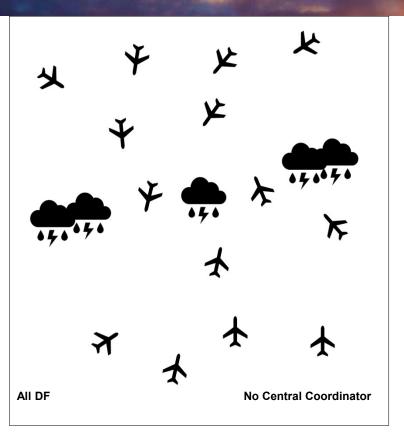

- Distributes the burden of separation provision among themselves
- Shares airspace with minimal impact
- Applies cooperative practices
- Shares intent with other DF operations
 - Enables early detection of potential conflicts
 - Reduces unnecessary maneuvers
- Avoids creating conflict when changing intent
- Follows DF right-of-way rules
- Coordinates maneuvers when appropriate
 - Explicit maneuvers require communications

Adaptive Pairwise Separation



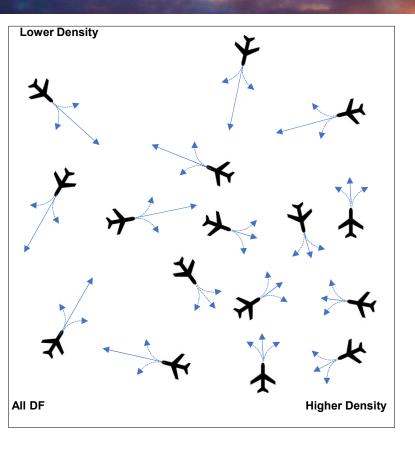
- Automation enables tailoring separation criteria to specific situation
 - VFR Well clear
 - IFR IFR separation standards
 - DF Pair-specific separation standards
- Derived from information sharing
 - Intent
 - Navigation precision (self-proclaimed commitment to intent)
- Enables reduced DF v DF separation
 - Higher traffic density

Collaborative Utilization of Constrained Resources



- Directly engages with strategic conflict management (e.g., demand capacity balancing, traffic synchronization)
 - Capacity-limited resources
 - Enabled by time-based flow management
- Shares and updates intent
- Conforms to scheduled times
- Continues to self-separate through cooperative conflict management

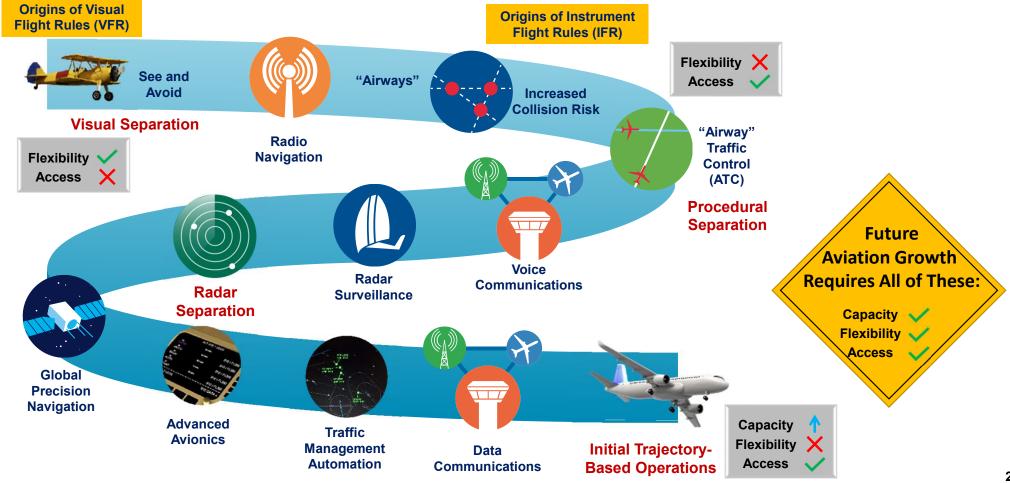
Self-Organization

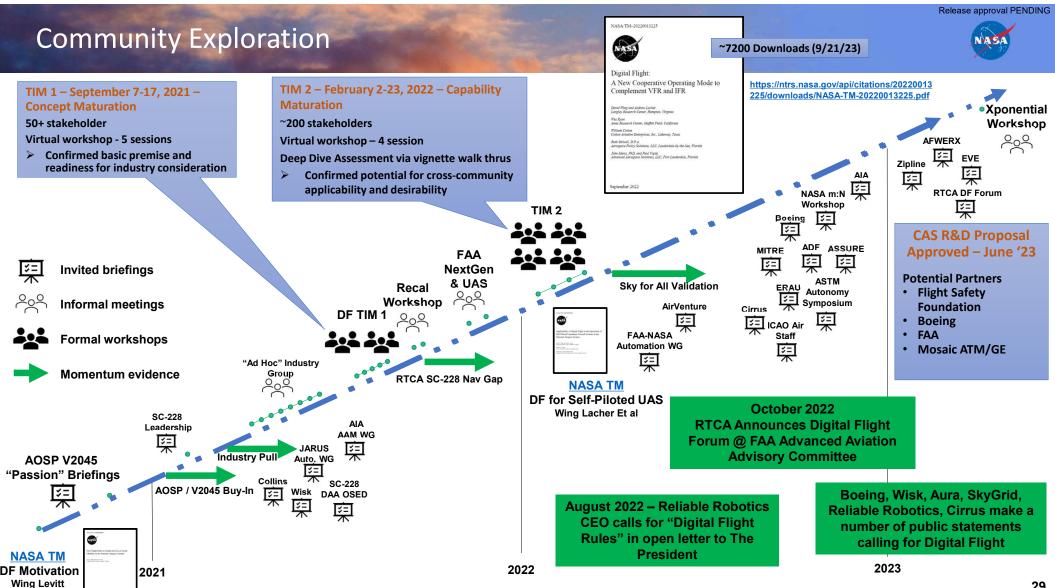


- Creates order from distributed interactions
 - Shared operational objective (e.g., sequencing and spacing to land)
 - Without central authority
 - Similar to VFR at uncontrolled airfields
- Adheres to cooperative procedures which establish priority
 - Enabled by information sharing

Self-Limiting Density & Operational Complexity

- Applies appropriate mitigations to ensure traffic volume remains at a safe scale
- Ensures that self-separation remains feasible
 - Not simply a max count of aircraft in a sector
 - Not dependent upon human workload


Regulation Basis and Separation / Avoidance Responsibilities



	Civil Air Traffic							
	Enabling Regulation		Operating Modes			Separation/Avoidance Responsibility		
Routine	121: Operating and Sup 135: Operating	Requirements: Domestic, Flag, plemental Operations Requirements: Commuter and on I Operations	IFR	VFR		Pilot / ATC based on flight rules and airspace class		
	101: Moored Balloons, Kites, Amateur Rockets, and Unmanned Free Balloons		Subject to operating limitations in Part 101			None, limitations on conduct of operations		
	103: Ultralight Vehicles		Operating rules as defined in Subpart B of Part 101			See and avoid		
Specialized	105: Parachute Operations		Operating rules as defined in Subpart B of Part 105		Aircraft	Pilot / ATC based on flight rules		
eci					Jumper	none		
Sp	107: Small Unmanned Aircraft Systems 108: (future)		Operating rules as defined in Subpart B of Part 107		Visual Line of Sight - VLOS	See and avoid		
					Beyond VLOS (future) - BVLOS	to be defined		
		Additional Prov	visions available to S	State/Military Air Tr	affic			
	description		definition		Separation Responsibility			
Specialized	Military Assumes Responsibility MARSA for Separation of Aircraft		A condition whereby the military services involved assume responsibility for separation between participating military aircraft in the ATC system		Military - for aircraft engaged in MARSA			
					ATC - between MARSA flights and non- participating aircraft			
	Due Regard	Exercise of sovereign authority under provisions of ICAO treaty	A phase of flight wherein an aircraft commander of State-operated aircraft assumes responsibility to separate his/her aircraft from all other aircraft		Aircraft commander			

20th Century Evolution of Operating Modes

NASA Tech is Already Building Toward Digital Flight

Prototyping the Building Blocks of DF Essential Elements

TASAR: Traffic Aware
Strategic Aircrew Requests

NASCENT: NAS Constraint Sevaluation & Notification Tool

- NASA technologies for flight optimization
- Validated in airline operations
- Now commercially available

Exploring Desirability, Viability, and Feasibility

NASA Convergent Aeronautics Solutions (CAS) Project

Industry Workshops Identified Critical Barriers...

... and Paths Forward / "Chisels"

Concept Refinement and Analytics

Describe the DF concept in greater detail to reduce identified uncertainties

Engage with key stakeholders to get input on desired DF policy

Modelling and Simulation

Conduct studies to quantify performance, safety impacts, and benefits resulting from DF

Flight Evaluations

Conduct real-world evaluations of DF capabilities to assess operational feasibility

DVF Barriers

Barrier: Lack of community consensus or evidentiary data regarding Desirability

- For desirability, a new operating mode must
 - Be recognized as an <u>indispensable component</u> of any new "airspace operations" or "traffic management" concept.
 - Be shown to <u>enable new operations</u> (types, volumes, tempos) that are not otherwise achievable and sustainable by the existing operating modes.
 - Be <u>desired by a critical mass</u> of the operational community to overcome the emerging compartmentalization of new operations development.

Barrier: Lack of community consensus or evidentiary data regarding Viability

- For viability, a new operating mode must
 - Be <u>regulatorily and economically achievable</u>, sustainable, and adaptable for the long term as the industry grows and flexes in unpredictable ways.
 - Be enabled by a <u>minimalist regulatory framework</u> sufficient to establish the basic principles and performance-based requirements but without constraining its <u>adaptability to novel and diverse applications</u>.
 - Have <u>bounded economic costs</u> to warrant long-term industry investment far beyond normal ROI cycles.

Barrier: Lack of community consensus or evidentiary data regarding Feasibility

- For feasibility, a new operating mode must
 - Be capable of supporting <u>significantly disparate operations</u> with differences only in the tailoring of performance requirements.
 - Be capable of <u>sharing airspace and airports</u> with VFR and IFR operations <u>without disruption</u> (e.g., imposing inefficiencies, new equipage, undue workload, degraded safety).
 - Produce the <u>desired system-level attributes</u> of airspace operations (e.g., safety, efficiency, predictability, scalability).
 - Be supported by <u>technology that exists</u> or be able to be developed and qualified for its intended function.
 - Improve or not disrupt the "safe, orderly, and expeditious" flow of legacy air traffic.

