

Thermal Inspection of Low Emissivity Surfaces Using a Pulsed Light Emitting Diodes (PLED) Heat Source

Joseph N. Zalameda, Peter W. Spaeth, and Samuel J. A. Hocker NASA Langley Research Center

SPIE Thermosense Conference April 21 – 25, 2024

Outline

- Introduction/Motivation
- Pulsed Light Emitting Diodes (PLED) Heat Source Description and Setup
- PLED Thermography Inspection Results
 - Unpainted Aluminum Sample with Material Loss
 - Unpainted Aluminum Sample with Circular Material Loss
 - Polished Ti-6Al-4V Disk Inspection
- Quantitative Single Side Model Fit
- Conclusions

Introduction

Nondestructive Evaluation Sciences Branch

- Objectives
- Develop heat source for reflective (low emissivity) surfaces and therefore remove requirement to paint or apply a stick-on emissivity enhancement layer
- Investigate the use of high-powered LED chips for thermal nondestructive evaluation
- Measure sample with known defects and compare to conventional flash thermography
- Investigate quantitative thermal NDE with PLED heat source

Payoffs

- Inspection of area "as is" saves inspection complexity, time and cost especially for large area inspections
- Improve model based quantitative single side thermal inspections

PLED Light Configuration and Spectral Output

Nondestructive Evaluation Sciences Branch

PLED Light Configuration

Wavelength (Nanometers)

Direct View Observation of Heat Source

Nondestructive Evaluation Sciences Branch

Direct View of Heat Source

Single Pixel Plot

PLED Thermal Inspection Setup

Nondestructive Evaluation Sciences Branch

PLED Thermal Inspection System

Drawing of PLED Thermal Inspection System

Emissivity Measurement of Inspected Samples

Nondestructive Evaluation Sciences Branch

Sample	Average Surface Temperature (Celsius)	Measured Emissivity
Unpainted Aluminum Sample with Material Loss	39.3	0.35 +/- 0.020
Unpainted Aluminum Sample with Circular Material Loss	44.3	0.21 +/- 0.012
Polished Additive Manufactured Ti-6Al-4V Disk	65.8	0.39 +/- 0.017
Painted Aluminum Sample	34.3	0.90 +/- 0.008

Inspection of Aluminum Sample with Material Loss

Nondestructive Evaluation Sciences Branch

Picture Front

Flash Thermal Inspection

Inspection of Aluminum Sample with Circular Material Loss

Picture Back

Nondestructive Evaluation Sciences Branch Picture Front

8.9 cm

Inspection of Unpainted Polished Ti-6AI-4V Additively Manufactured Disk

Nondestructive Evaluation Sciences Branch

Polished Disk

21.0 mm

Flash Inspection Reflections

21.0 mm

PLED Thermography Comparison to X-ray CT of Ti-6AI-4V Disk

Nondestructive Evaluation Sciences Branch

PLED Single Side Inspection of Ti-6AI-4V Disk with Model Fit

Nondestructive Evaluation Sciences Branch

 Quantitative Single Side Model-Based Thermal NDE is Possible with the PLED Heat Source, α = 0.022 cm2/sec, literature thermal diffusivity value for solid Ti-6AL-4V is 0.029 cm2/sec

Conclusions

- The PLED heat source has been demonstrated as a viable heat source for thermal inspection of low emissivity surfaces
- The PLED heat source advantage is the light is not observable with the mid-wave infrared camera
- Single sided model fit revealed good agreement to the data and therefore quantitative single side model-based thermal NDE is possible with the PLED heat source

Acknowledgements

- William P. Sommers of the Nondestructive Evaluation Sciences Branch for the X-ray CT measurements
- James B. Bly for the heat source fabrication
- William B. Bretton for sample fabrication
- NASA Transformational Tools and Technologies Project and the Transformative Aeronautics Concepts Program for support of this work