

THE STABILITY OF DRUGS EXPOSED TO IONIZING RADIATION

John Reichard, PharmD, PhD, DABT

Assistant Professor, Toxicology and Biomonitoring

ExMC Pharmaceutical Strategist

John.Reichard@uc.edu

Project Context

- HRP Risk:
 - Ineffective or Toxic Medications during Long-Duration Exploration Spaceflight
- HSRB Risk:
 - Contributing Factors: "Drug stability (unknown deep space environment effects on drug stability), shelf life, packaging, storage conditions, drug compound formulation, spaceflight radiation environment..."
 - LxC Risk Rationale: "Vehicle specifications and capabilities to protect medications from environmental assault (e.g. temperature, humidity, oxygen, radiation) have not been characterized and could increase risk of ineffectiveness and possible toxicity."
- HRP Roadmap Gap:
 - Pharm-401: We need to perform further research to understand and characterize the active pharmaceutical ingredient and *degradation profiles of medications* for which we have low to moderate confidence in their safety and effectiveness for exploration missions

University o

Research Questions

- Past radiostability studies have focused on solid state drugs
 - Can we assume drugs in all forms are the same?
 - Do we need to test each formulation of a drug substance?
- How do we prioritize drug products for future testing?
 - Which have the greatest uncertainty

ExMC Exploration Formulary

Dosage form	Number of APIs
Aerosol	3
Capsule	22
Cream	9
Gel	5
Gelcap	4
Lozenge	2
Ointment	5
Pad	5
Patch	4
Powder	15
Solution	92
Suspension	3
Tablet	92

Study Approach

- Objective: Quantify the sensitivity of drugs to ionizing radiation.
- Approach: Use existing published pharmaceutical radiostability studies:
 - Model risk of drug failure
- Methods:
 - Systematic literature of research articles 1950 to present.
 - Inclusion requirements:
 - Use of quantitative stability-indicating (Chromatographic) analytical data
 - Radiation dose-response
 - Ionizing radiation: EM [X-ray or γ -rays], β -radiation [e-beam], charged nucleons
 - Excluded: Ecological (surface water), drinking water or waste water treatment studies, undefined drug content, non-quantitative studies, indirect measure of drug content... etc.

Results: Collected data summary:

Criteria	Solid state	Aqueous Solutions	Mixtures	Total
Total tests	436	388	222	1046
Gamma radiation	314	381	202	897
Electron beam	122	7	20	149
API treatments	153	92	43	288
Gamma radiation	121	90	37	248
Electron beam	32	2	6	40
Irradiated dose (kGy)				
Max/Minimum dose	0.1 / 800	0.001 / 160	0.001 / 79.37	0.001/800
Mean dose	82.73	15	11.384	41.327
Median dose	25	5	5	15.9

Drug Content After Irradiation

- Pale blue dots: Drug in aqueous solution (water) without additives
- Dark blue dots: Mixtures (drug solutions with at least additive)
- Red dots: Solid state pharmaceuticals
- Observations:
 - Liquid formulations are more sensitive than solids
 - Solid have a MoE of ~ 4 to 6 orders relative to the upper limit of a Mars mission
 - Aqueous drugs have MoE of ~ 1 to 3 orders
 - Excipients increase radiostability of drug solutions

CONTENT OF IRRADIATED DRUGS

Formulation: • Solid State • Aq. Solution • Mixture sol.

Solids and Solutions

DRUGS IRRADIATED IN THE SOLID STATE

DRUGS IRRADIATED IN SOLUTION

Drug Failure Analysis

- Dichotomize radiation effect on drug content as pass / fail
 - Pass = Highest radiation dose with no observed effect (NOEL)
 - Fail = Lowest radiation dose where degradation *is* observed (LOEL)

Drug Failure Analysis: Assumption

- There is no accepted standard for a NOEL/LOEL threshold
- NOEL is a change (loss) of API \leq 5% of baseline API
- LOEL is the first dose that causes > 5% decrease in API content
- Justification
 - ½ the default USP lower acceptance criteria for API content (90%)
 - Pragmatic: We need to allow for experimental variability
 - 5% API loss is > 1.5 times the interquartile range (3.19) above the third quartile (2.32) of standard errors, which is 4.91

Parametric Failure Analysis

Failure Probability					
Radiation dose	Solid State	Aqueous			
1 Gy (0.001 kGy)	0%	0%			
10 Gy (0.01 kGy)	0.06%	25.7%			
1000 Gy (1 kGy)	3.3%	95%			

Drug Concentration Influences Radiation Stability

SENSITIVITY OF AQUIOUS DRUG SOLUTIONS BY CLUSTER

- Unsupervised cluster analysis of aqueous solutions
- Low concentration is associated with greater sensitivity to ionizing radiation.

Cluster	Mean Concentration (mg/mL)	Median Concentration (mg/mL)	Mean kGy	Median kGy
1	16.6	10	27.5	25
2	1.52	0.0206	0.927	0.29

Radiostability Increases with Concentration

- Stability of drug solutions at different concentrations
 - All drugs exposed to 25 kGy gamma or β radiation
 - Increasing stability is observed over similar concentration range.

CONCENTRATION VS. RADIOSTABILITY

Preliminary Conclusions

- Drugs in solid state have a very low risk of degradation in the range of radiation exposures that are also acceptable for human health.
- Aqueous drug formulations also have a low risk but the margin of exposure is much narrower – *less room for uncertainty*!
- Sensitivity of other non-solid drug formulations (creams, ointments) are unknown.
- Future studies should prioritize
 - Non-solid drug formulations over solid state drugs
 - Low concentration liquid formulations
 - Factors that can improve the stability of the most sensitive drugs, ie. excipients, temperature, protective packaging

Acknowledgments

- Drs. Emily Stratton & Shane Clark
- Arron Allcorn & Philip Augustine
- University of Cincinnati Libraries
- ExMC

Backup slides

A Risk Factor For Spaceflight Drug Stability?

- Ionizing radiation damages important stuff, like DNA
- UV radiation degrades drugs ("Protect from light")
- Ionizing radiation interacts with matter: directly (scission, excitation) and indirectly (reactive intermediates).
- Ionizing radiation degrades most drugs to some degree at a high enough absorbed dose
- Speculated to have contributed to degradation of some drugs in the only longitudinal pair-matched study by Du et al. 2011
 - Discussed in several published reviews
- No comprehensive NASA investigation of how ionizing radiation interacts with drugs

Loss of Drug Content with Radiation Dose

CONTENT OF IRRADIATED DRUGS

Uncertainty

- "The radiation environment in space is not like the environment on Earth!"
 - It doesn't need to be
 - Experimental radiation doses can be orders of magnitude higher than GCR
 - Dose-effect relationship is monotonic
 - Margin of exposure
 - Mechanisms are essentially the same
- Mechanism:
 - Chemistry in space is the same as on earth
 - TEMPERATURE (energy)
 - TIME (Artemis is not that fast!)
 - Moisture (hydrolysis)
 - Oxidation
 - Amorphous-crystal transitions

Effect of Slowly Delivering Radiation Dose

- Clavulanate: Du et al. (2011) control (red) degradation
- Assume:
 - 80 day mission
 - 10x clavulanate degradation rate
 - Hypothetically, radiation pulse increases degradation 500%
 - Same radiation as a TWA over mission
- Conclusions:
 - Terrestrial pulse studies using elevated radiation doses are likely protective.
 - Spaceflight studies necessary only to evaluate specific drug uncertainties

Comparison to NASA Formulary Drugs

Percentile ranking of starting drug concentration

- Cluster 1: high conc. (red)
 Mean conc.: red arrow
- Cluster 2 low conc. (blue)
 Mean conc: blue arrow
- NASA formulary
 - Mean drug conc.: Gold dashes line)
 - Lowest drug conc.: red arrow

Non-parametric Survival Analysis

'SURVIVAL' OF IRRADIATED DRUGS

