

### Packaging for Improved Pharmaceutical Protection in Space

Lindsay Woodard, PhD 2024 NASA HRP Investigators' Workshop

16 February 2024 | lunalabs.us

## We develop products that increase the productivity of mission-driven organizations



#### **Relevant Capabilities**

```
PHARMACEUTICAL STABILITY
TESTING
```

#### PACKAGING DESIGN AND DEVELOPMENT

#### MATERIALS SCIENCE AND ENGINEERING

Luna Labs is developing **antibiotics formulated as chewable gummies**. The pharmaceuticals are taste-masked and stabilized within a chewable matrix to appeal to children.

Luna Labs is developing a **low-cost, mechanical cap** designed to reduce biospecimen container failure caused by user mishandling.

Luna Labs is developing a biomechanically informed skin simulant. The **aramid nanofiber-reinforced composite material** is expected to enable standardized testing of non-lethal weapon safety.

## A state-of-the-art pharmaceutical packaging solution for exploration missions is needed

- The availability of necessary pharmaceuticals to spaceflight crews is critical to mission success, and this need becomes more significant for long-duration exploration missions.
- The data available shows that the median risk of drug failure (USP acceptance thresholds) is approximately 59% for a 2-year exploration mission and about 82% for a 3-year mission.
- There is an **operationally derived need to repack several crew medications** to reduce costs to mass and volume, and **exposure to spaceflight conditions** may add additional risk.



# Luna Labs is developing a protective packaging system to improve pharmaceutical stability in space

The comprehensive packaging system includes two components:

- **High-efficiency blister packages** provide protection of repackaged solid doses without the typical costs to mass and volume.
- A protective **boron-containing**, **aramid-based composite material** will *reduce the expected radiation exposure* during spaceflight.



### High Efficiency Blister Packages



### Representative pharmaceutical tablets were identified and studied to support packaging development

- Solid dose medications were identified based on (1) category of medication, (2) medications commonly flown and administered in space, and (3) demonstrated stability concerns in flight studies:
  - Promethazine (PMZ)
  - Levofloxacin (LVF)
  - Acetaminophen (ACT)
  - Zolpidem (ZPM)

- Ibuprofen (IBU)
- Levothyroxine (LVT)
- Amoxicillin/Clavulanate (AMC)

Identify mechanisms of instability (e.g., moisture, oxygen)





Demonstrate efficacy of the packaging



# Initial blister cards were designed and prototyped for tablet repackaging and evaluation

- A barrier film material was identified to enable **protection of a broader range of pharmaceutical products** due to low permeability to moisture *and* oxygen.
- Initial blister card designs included round and oblong cavities in a layout that allowed for maximized loading of medications compared to standard blister card formats.





#### Pharmaceutical stability within the packages was studied under accelerated conditions

- To demonstrate the ability of the packages to provide solid dose protection, accelerated thermal (60, 70, 80 °C) and hydrolytic (75% relative humidity) – studies were performed for 'No Barrier' samples and 'High 'Barrier', repackaged <u>PMZ</u> tablets.
- After the exposure, tablets removed from Luna Labs' blister cards exhibited fewer physical changes, and greater PMZ content was maintained at each condition.



#### Pharmaceutical stability within the packages was studied under accelerated conditions

- To demonstrate the ability of the packages to provide solid dose protection, accelerated **oxidative (approximately 0.64 mg H<sub>2</sub>O<sub>2</sub>)** studies were performed for 'No Barrier' samples and 'High 'Barrier', repackaged <u>PMZ</u> tablets.
- Tablets removed from Luna Labs' blister cards exhibited fewer physical changes and greater remaining PMZ content after the exposure.





Chamber to generate  $H_2O_2$  exposure.



### Ongoing work is expanding development to support repackaging implementation

- Additional blister card formats have been designed to support a wider range of pharmaceuticals with maintained efficiency.
- **Repackaging processes** are under development.
- Baseline and 6-month testing has been performed within an ongoing two-year efficacy study (25 °C, 60% relative humidity) evaluating expanded solid dose properties.



Additional blister card formats to improve versatility.



Representative two-year study sample set.



Benchtop heat-seal press.

### Space Radiation Barrier



# Boron-containing composite materials are also under development

- <u>Aramid-based materials</u> have demonstrated **shielding against heavy ion radiation exposure** comparable to polyethylene (PE).
- Materials containing <u>boron</u> have shown the ability to **absorb the low energy neutrons** produced during shielding.
- Various materials and layered constructs (20 mm) have been fabricated for evaluation.



NALABS

Film with boron incorporated.



Aramid pulp board.



#### Collaboration with Prof. Jeff Chancellor supported evaluation of space radiation shielding potential

- Radiation shielding was evaluated via <u>simulation of the non-homogenous space radiation environment</u> with the shielding approximately equivalent to crew vehicles (e.g., the SpaceX Dragon capsule) for two scenarios:
  - Spacecraft in the Low Earth Orbit environment (LEO) -
    - The dose measured in the scoring volume for Luna Labs' material was 16.8% less than a baseline with no protective barrier.
  - Spacecraft in the cisLunar -
    - The dose measured in the scoring volume for Luna Labs' material was 11.5% less than a baseline with no protective barrier.



Geometry for Monte Carlo calculations.





# Upcoming work will include experimental evaluation of space radiation shielding potential

- Additional fabrication techniques are being evaluated to allow scaled production.
- Simulation of the non-homogenous space radiation environment is being utilized to optimize material formulation and construction (e.g., thickness, layers), and the final protective casing will be established.
- Capabilities at the NASA Space Radiation Laboratory will be utilized to:
  - Experimentally evaluate shielding potential.
  - Demonstrate the protective effects on:
    - Representative solid dosage forms
    - Additional dosage forms





Vacuum-assisted resin transfer (VARTM) lay-up.



### Acknowledgements

- Luna Labs USA, LLC, Charlottesville, VA
  - Lindsay Woodard, PhD
  - Melissa Wright
  - Kelsey Broderick
  - Eric Shuler, MS
  - Sara McBride
- iCenter, kp, Charlottesville, VA
  - Seth Stewart

🗾 klöckner pentaplast

- Ryan Carter
- Louisiana State University, Baton Rouge, LA
  - Jeff Chancellor, PhD







This material is based upon work supported by NASA under SBIR Contract Nos. 80NSSC22PB075 (Phase I) & 80NSSC23CA112 (Phase II).

SBIR

POWERED BY NASA

Lindsay Woodard, Ph.D. (PI) Principal Scientist Biotech

434.220.7696 lindsay.woodard@lunalabs.us



Lindsay Woodard, PhD (PI) lindsay.woodard@lunalabs.us 434.220.7696