

A FRAMEWORK APPROACH FOR EVALUATION OF POTENTIAL DEGRADATION OF APIS FOR LONG-DURATION SPACEFLIGHTS

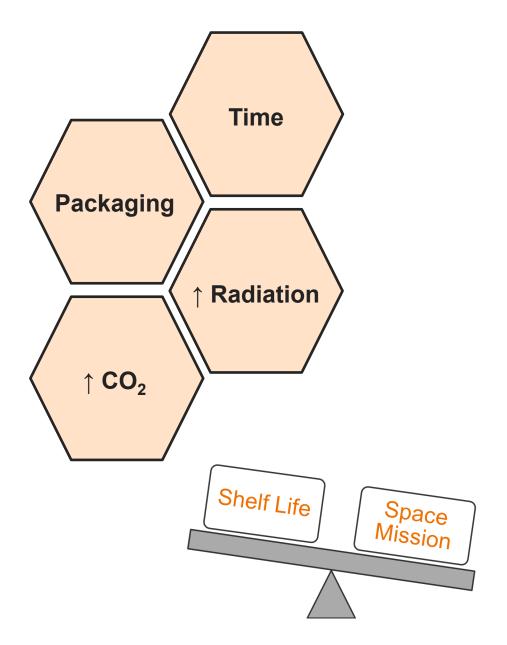
February 16, 2023 Andrey Massarsky, PhD

Context

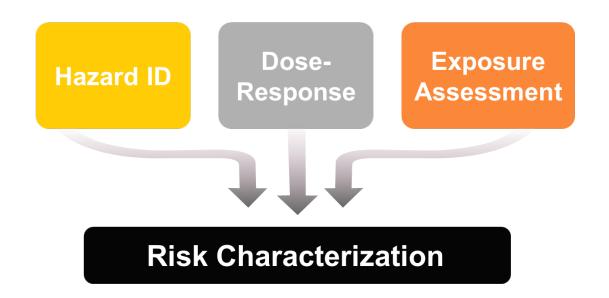
• HRP Risk:

- Ineffective or *Toxic* Medications during Long
 Duration Exploration Spaceflight
- HRP Roadmap Gap:
 - Pharm-401: We need to perform further research to understand and characterize the active pharmaceutical ingredient and *degradation profiles of medications* for which we have low to moderate confidence in their *safety* and effectiveness for exploration missions.
- Support:
 - Exploration Medical Capability (ExMC) Element

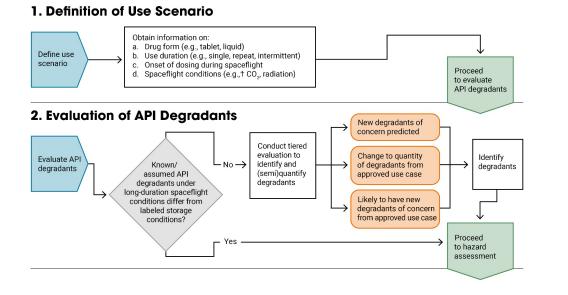
Exploration Medical Capability


Outline

- Problem formulation
- Framework development
- Framework application
- Results
- Conclusions & Next steps


Problem Formulation

- Active pharmaceutical ingredients (APIs) may contain impurities/degradants
- A degradant/impurity may pose a safety concern
 - E.g., Nitrosamines are associated with genotoxicity/carcinogenicity concerns
- Degradation rate in spaceflight is ~1.5x higher vs. on Earth
- Limited number of studies on API degradation in spaceflight



Framework Development

- Leveraging:
 - Considerations for degradant ID:
 - Known degradation pathways and API chemistry
 - Stability and forced degradation study results
 - In silico prediction tools
 - Available spaceflight studies
 - Principles of risk assessment

Framework Development (cont.)

No New Concern; No Risk Assessment Document lack of new hazards; API is of low risk for use in NASA formulary for long-duration spaceflight; Assess Degradant Degradant Degradant Re-evaluate API if new information is available hazards acutely toxic? genotoxic? a sensitizer? Proceed to exposure Yes assessment 4. Exposure Assessment Perform (semi)guantitative dose analysis using Yes, with ___ maximum estimated degradant formation assumptions Dose Assess calculation Perform quantitative dose analysis Yes \rightarrow exposure possible? Perform stability & forced degradation testing under Proceed to risk spaceflight relevant conditions. Repeat hazard assessment characterization 5. Risk Characterization Low risk for API use in NASA Is MoS Yes -> formulary for long-duration spaceflight >1.0? Re-evaluate API if new information Characterize Calculate No is available risk MoS Yes, exceedance(s) noted for some usage scenarios Is MoS <1.0? API stability testing may be warranted Yes, exceedance(s) noted

for all usage scenarios

3. Hazard & Dose-Response Assessment

Step 1. Definition of Use Scenario

- Aims to define API use scenario
- Several characteristics considered:
 - Clinical indication
 - Form (e.g., tablet, capsule, solution)
 - Labeled strength
 - Known or anticipated onset of dosing during spaceflight
 - Frequency of use
 - Labeled expiration date
 - Long-duration spaceflight conditions

Step 2. Evaluation of API Degradants

- Aims to identify degradants
- If specific API degradants differ from labeled storage conditions, proceed to Step 3
- If no known/assumed API degradants identified, conduct tiered evaluation, then proceed to Step 3

Tier	Resource
1	FDA Stability Testing FDA SLEP EMC Database
2	Lhasa Zeneth Moiety-based expert predictions
3	Peer reviewed literature

Step 3. Hazard Assessment

- Aims to assess acute toxicity, genotoxicity, and sensitization potential
- Empirical data (if available) along with *in silico* predictions
 - OECD QSAR Toolbox
 - Lhasa DEREK/SARAH Nexus
 - Etc.
- If hazards identified, proceed to Step 4
- If no hazards identified, API considered safe and no need to proceed further

GHS Classification	LD ₅₀ (mg/kg)
Category 1	≤5
Category 2	>5 to ≤50
Category 3	>50 to ≤300
Category 4	>300 to ≤2000
Category 5	>2,000 to ≤5,000

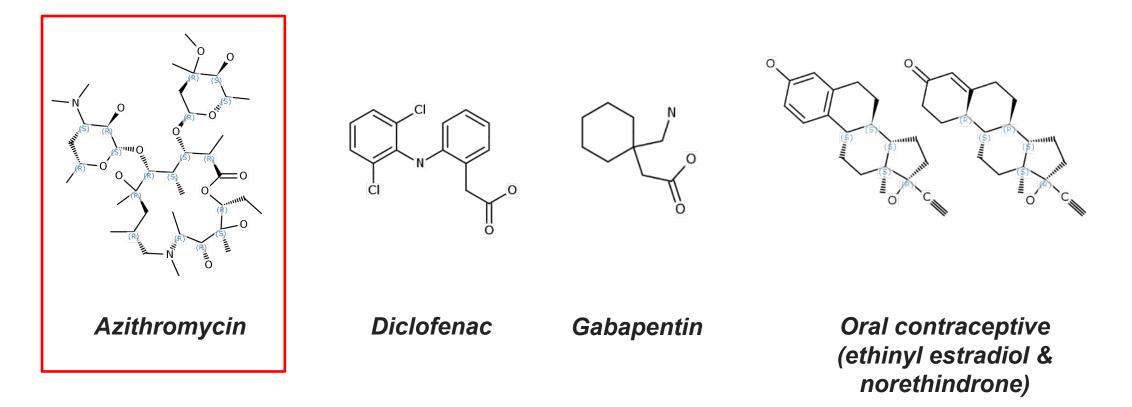
		Is degradant genotoxic?		
		Yes	No	
dant a cer?	Yes	Conduct Risk Assessment	Conduct Risk Assessment	
ls degradan sensitizer?	No	Conduct Risk Assessment	No New Concern; No Risk Assessment	

Step 4. Exposure Assessment

- Aims to calculate degradant dose
- Five cases considered

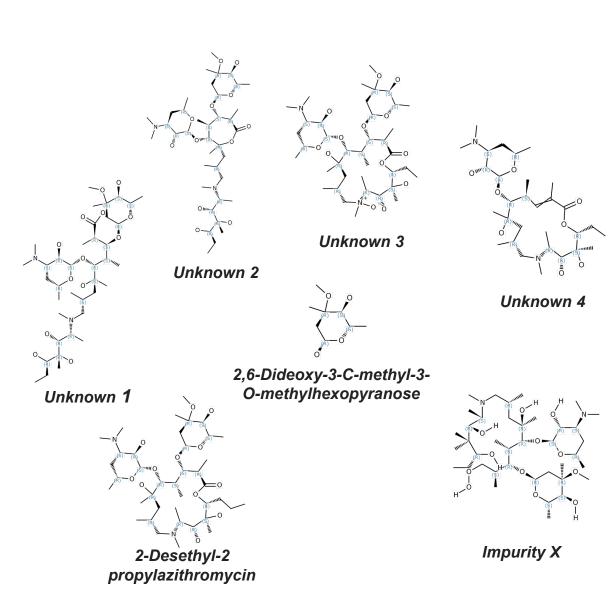
Cas	se	Equation(s)		
1	Long-duration spaceflight scenario-relevant data	Eq. 1. Degradant (%) = $\frac{Degradant Amount (mg)}{Labeled API Amount in Study (mg)} \times 100$ Eq. 2. Degradant (mg/dose) = Labeled API Content on NASA Formulary (mg/dose) × Degradant (%)		
2	Short-duration spaceflight scenario-relevant data	Eq. 3. $Slope(\%/year) = \frac{Degradant(\%) at T_{Sample} - [100\% - Labeled API(\%) at T_0]}{T_{Sample} - T_0}$ Eq. 4. $Degradant(\%) = Slope(\%/year) \times 3 years$		
3	Spaceflight scenario- relevant data from read- across	Eq. 5. Degradant (%) = $\frac{Degradant Amount (mg) \times F_{RA}}{Labeled API Amount in Study (mg)} \times 100$		
4	Stability study data	Eq. 6. Degradant (%) = $\frac{Estimated Degradant Amount at 3 Years (mg) \times 1.5}{Labeled API Amount in Study (mg)} \times 100$		
5	Forced degradation study data	Eq. 7. $Slope(\%/year) = \frac{Degradant(\%) at T_{Shelf life} - [100\% - Labeled API(\%) at T_0]}{T_{Shelf life} - T_0}$ Eq. 8. $Degradant(\%) = Slope(\%/year) \times 3 years \times 1.5$		

Step 5. Risk Characterization


- Aims to characterize risk
- Degradant doses compared to:
 - Health-based exposure limits (HBELs)
 - Thresholds of toxicological concern (TTCs)

$$MoS = \frac{HBEL \ or \ TTC}{Dose}$$

MoS > 1.0 (no concern); MoS < 1.0 (concern)


Framework Application

• Framework applied to four APIs on the NASA exploration candidate formulary (ECF):

Use and Degradants

- Step 1 (Definition of Use Scenario)
 - Dosage forms listed on NASA ECF:
 - 250 and 500 mg oral tablets
 - 500 mg lyophilized powder for intravenous injection
- Step 2 (Evaluation of API Degradants)
 - 8 impurities measured in samples from spaceflight but were not different from ground control
 - Not considered for hazard assessment
 - 7 degradants considered for hazard assessment:
 - 5 predicted degradants
 - 2 degradants from peer-reviewed studies

Hazards

• Step 3 (Hazard Assessment)

Table A12. Hazard assessment summary for azithromycin degradants.

Degradant Name	Acute Toxicity	Sensitization	Genotoxicity ¹
Unknown 1	-	+	+ (C)
Unknown 2	-	+	+ (C)
Unknown 3	-	+	-
Unknown 4	-	+	-
2,6-Dideoxy-3-C-methyl-3-O-methylhexopyranose	-	+	-
2-Desethyl-2 propylazithromycin	-	+	-
Impurity X	-	+	+ (C)

¹ Letter C in parenthesis indicates a carcinogenicity concern

Color codes: Light orange: Hazard (+); Gray: No hazard (-)

Doses

• Step 4 (Exposure Assessment)

Table A13. Daily doses of a single azithromycin degradant.

Dosing Regimen	Degradant Amount (Treatment Course Duration in Days)	Average Degradant Daily Dose over Treatment Course	Time-Weighted Degradant Daily Dose over 3 Years
Scenario 1: a 500 mg tablet on Day 1 followed by a 250 mg tablet once daily on Days 2-5 ¹	2.1 mg (5 days)	0.43 mg/day	2.0 µg/day
Scenario 2: (1) a 500 mg tablet on Day 1 followed by a 250 mg tablet once daily on Days 2-5 or (2) a 500 mg tablet once daily for 3 days ²	(1) 2.1 mg (5 days) or (2) 2.9 mg (4 days)	(1) 0.43 mg/day or (2) 0.71 mg/day	(1) 2.0 μg/day or (2) 2.6 μg/day
Scenario 3: a 500 mg tablet once daily for 3 days ³	2.1 mg (3 days)	0.71 mg/day	2.0 µg/day
Scenario 4: a single dose of 500 mg administered by IV for at least two days ⁴	1.4 mg (2 days)	0.71 mg/day	1.3 µg/day

¹ Scenario 1 calculations: Degradant amount: $0.71mg + 4 \times 0.36mg = 2.1mg$, Average degradant daily dose: $2.1mg \div 5d = 1000$

0.43mg/d, Time-weighted degradant daily dose: $2.1mg \div 1095d \times 1000 = 2.0\mu g/d$

² Scenario 2 calculations: (1) same as Scenario 1; (2) Degradant amount: $0.71mg \times 4 = 2.9mg$, Average degradant daily dose:

 $2.9mg \div 4d = 0.71mg/d$, Time-weighted degradant daily dose: $2.9mg \div 1095d \times 1000 = 2.6\mu g/d$

³ Scenario 3 calculations: Degradant amount: $0.71mg \times 3 = 2.1mg$, Average degradant daily dose: $2.1mg \div 5d = 0.43mg/d$, Time-weighted degradant daily dose: $2.1mg \div 1095d \times 1000 = 2.0\mu g/d$

⁴ Scenario 4 calculations: Degradant amount: $0.71mg \times 2 = 14.3mg$, Average degradant daily dose: $1.4mg \div 2d = 0.71mg/d$, Time-weighted degradant daily dose: $1.4mg \div 1095d \times 1000 = 1.3\mu g/d$

Risks

• Step 5 (Risk Characterization)

Table A14. Risk characterization for azithromycin degradants.

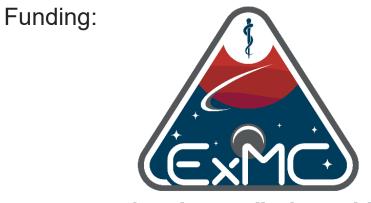
Degradant Name	Daily Limit (Reason) ¹	Highest Time- Weighted Daily Dose	MoS ²
Unknown 1	5 µg/day (sensitization)	2.6 µg/day	1.9
Unknown 2	5 µg/day (sensitization)	2.6 µg/day	1.9
Unknown 3	5 µg/day (sensitization)	2.6 µg/day	1.9
Unknown 4	5 µg/day (sensitization)	2.6 µg/day	1.9
2,6-Dideoxy-3-C-methyl-3-O-methylhexopyranose	5 µg/day (sensitization)	2.6 µg/day	1.9
2-Desethyl-2 propylazithromycin	5 µg/day (sensitization)	2.6 µg/day	1.9
Impurity X	5 µg/day (sensitization)	2.6 µg/day	1.9

¹ The TTC of 5 µg/day for sensitizers is based upon the qualification threshold developed for orally inhaled and nasal drug products developed by PQRI (https://pqri.org/wp-content/uploads/2022/03/PQRI-PDP-Recommendation-2022.pdf)

 2 MoS is the daily limit divided by the daily dose (i.e., 5 µg/day divided by 2.6 µg/day)

Results

- No additional stability testing was recommended for:
 - Azithromycin (hazards identified for degradants but MoS values >1.0)
 - Gabapentin (no hazards identified for degradants)
 - Diclofenac (hazards identified for degradants but MoS values >1.0
- Additional testing was warranted for oral contraceptive
 - Hazards identified for ethinyl estradiol but MoS values >1.0
 - Hazard identified for norethindrone (sensitization) and MoS values <1.0
 - Testing for norethindrone degradants could be warranted


Conclusions & Next Steps

- Framework enables "toxicity" evaluation of degradants and quantitative analysis of API degradant formation in long-duration spaceflights
- Framework flexibility accommodates evaluation of any drug form or use scenario, application to APIs or drug products with excipients, and utilization in unique environments outside of long-duration spaceflights
- Apply framework to additional APIs on NASA ECF
 - Particularly APIs that may contain/generate nitrosamines
 - A nitrosamine-specific framework needed?

Acknowledgements

- NASA personnel:
 - Dr. John Reichard
 - Aaron Allcorn
- Stantec personnel:
 - Dr. Andrew Maier
 - Dr. Ernest Fung
 - Dr. Amanda Buerger
 - Dr. Veneese Evans
 - Lisa Yang
 - Dr. Keegan Rogers
 - Tom Welch

Exploration Medical Capability

Questions?

andrey.massarsky@stantec.com