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ABSTRACT: Spaceborne microwave radiometers represent an important component of the Global

Precipitation Measurement (GPM) mission due to their frequent sampling of rain systems. Mi-

crowave radiometers measure microwave radiation (brightness temperatures, Tb), which can be

converted into precipitation estimates with appropriate assumptions. However, detecting shallow

precipitation systems using space-borne radiometers is challenging, especially over land, as their

weak signals are hard to differentiate from those associated with dry conditions. This study uses a

random forest model (RF) to classify microwave radiometer observations as dry, shallow, or non-

shallow over the Netherlands - a region with varying surface conditions and frequent occurrence

of shallow precipitation. The RF is trained on five years of data (2016-2020) and tested with two

independent years (2015, 2021). The observations are classified using ground-based weather radar

echo top heights. Various RF models are assessed, such as using only GPM’s Microwave Imager

(GMI) Tb values as input features or including spatially aligned ERA-5 2-meter temperature and

freezing level reanalysis and/or Dual Precipitation Radar (DPR) observations. Independent of the

input features, the model performs best in summer and worst in winter. The model classifies ob-

servations from high-frequency channels (≥85 GHz) with lower Tb-values as non-shallow, higher

values as dry, and those in between as shallow. Misclassified footprints exhibit radiometric charac-

teristics corresponding to their assigned class. Case studies reveal dry observations misclassified

as shallow are associated with lower Tb-values, likely resulting from the presence of ice particles in

non-precipitating clouds. Shallow footprints misclassified as dry are likely related to the absence

of ice particles.
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SIGNIFICANCE STATEMENT: Published research concerning rainfall retrieval algorithms36

from microwave radiometers is often focused on the accuracy of these algorithms. While shallow37

precipitation over land is often characterized as problematic in these studies, little progress has been38

made with these systems. In particular, precipitation formed by shallow clouds, where shallow39

refers to the clouds being close to the Earth’s surface, is often missed. This study is focused on40

detecting shallow precipitation and its physical characteristics to further improve its detection from41

spaceborne sensors. As such, it contributes to understanding which shallow precipitation scenes42

are challenging to detect from microwave radiometers, suggesting possible ways for algorithm43

improvement.44

1. Introduction45

The intensification of the water cycle due to global warming (Held and Soden 2006; Huntington46

2006) is expected to increase the frequency of droughts and extreme rainfall events (IPCC 2021).47

The consequences can be reduced through adaptation and mitigation measures but these require48

long-term forecast models, which in turn require accurate observations of precipitation on a49

global scale. Unfortunately, coverage from ground-based precipitation measurements is limited50

(Lorenz and Kunstmann 2012; Saltikoff et al. 2019) in locations where the impact of the intensified51

water cycle is expected to be large (Nath and Behera 2011; Winsemius et al. 2018; IPCC 2022).52

Precipitation estimates derived from spaceborne sensors with global coverage can complement53

ground-based sensors. However, precipitation estimates derived from space-based sensors are not54

of the same quality as those from ground-based sensors (Chen and Li 2016; Shen et al. 2020; Tang55

et al. 2020; Maggioni et al. 2022). Understanding the origins of this reduced quality for each sensor56

type is crucial to improve satellite-based estimates.57

Many studies have focused on improving estimates retrieved from spaceborne microwave ra-58

diometers (e.g. Petty and Li 2013; Shige et al. 2013; Klotz and Uhlhorn 2014; Yamamoto et al.59

2017; Petković et al. 2018, 2019). Compared to better performing spaceborne radars, microwave60

radiometers are often the preferred sensor for precipitation because they are less costly and their61

swath is typically wider (for instance shown in Fig. 2 from Hou et al. 2014), resulting in a better62

coverage of the Earth’s surface. Both radars and microwave radiometers are only available on low63

Earth orbit (LEO) satellites which, due to their swaths, have gaps between adjacent observations.64
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While visible (VIS) and infrared (IR) channels with good spatial resolution are available on both65

LEO and geostationary (GEO) satellites, only the latter provide frequent and regular temporal66

sampling.67

Sensors with visible (VIS) and infrared (IR) channels are mounted on geostationary satellites,68

which provide frequent and regular temporal coverage with good spatial resolution. However,69

sensors with IR and VIS channels only observe cloud top properties that are used to indirectly70

estimate surface precipitation intensities (e.g. Levizzani et al. 2001; Behrangi et al. 2009; Kidd and71

Levizzani 2011). Hence, the uncertainty and inaccuracy of spaceborne precipitation estimates de-72

rived from VIS/IR observations are larger than those derived from spaceborne radar and microwave73

radiometer observations (Lee et al. 2015; Iwabuchi et al. 2016; Maggioni et al. 2022).74

Radiometers measure the microwave radiation emitted by the Earth’s surface and other natural75

sources such as clouds and precipitation particles (Kummerow and Giglio 1994; Maggioni et al.76

2016; Kummerow 2020; Kidd et al. 2021). Water drops absorb and emit this radiation at their own77

thermal temperature, often increasing the observed microwave radiation (expressed as brightness78

temperatures, Tb) compared to the same situation without rainfall. This interaction between79

radiation and raindrops is exploited over areas with a constant and radiatively cold temperature80

(hence low emissivity), such as oceans (Wilheit et al. 1977; Spencer 1986; Kummerow and Giglio81

1994). Over land, the background surface emissivity is higher, and detecting emissions due82

to water drops is more challenging due to the greater variability in the background caused by83

changes in surface type and water content. Variation in surface type mostly affects the observations84

of the lower frequency channels. Retrieval schemes over land are therefore often based on the85

higher frequency channels (≥85 GHz), which rely on temperature depressions due to scattering of86

upwelling radiation caused by ice particles often present during precipitation (Wilheit et al. 1982;87

Kummerow and Giglio 1994; McCollum et al. 2002; Kummerow 2020).88

However, microwave radiometers measure radiation from the surface and along the vertical89

column of the intervening atmosphere. Consequently, radiometers cannot identify the height of the90

radiation source. In addition, a combination of Tb values retrieved from various channels could91

yield multiple solutions when converting these Tb’s into precipitation intensities (Anagnostou92

2004; Kummerow et al. 2011; Kidd et al. 2018; Kummerow 2020). Some precipitation regimes,93

such as warm rain, have a limited scattering signal due to the absence of ice (Liu and Zipser 2009;94
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Adhikari et al. 2019), resulting in a weak radiometric signature from light or shallow precipitation95

close to the Earth’s surface (Lin and Hou 2012; You et al. 2020; Hayden and Liu 2021). As a96

consequence, warm, light, and shallow precipitation are often missed by microwave radiometers97

(Behrangi et al. 2014; Adhikari and Behrangi 2022) over land surfaces.98

A recent effort to improve the detection and accuracy of light and shallow precipitation esti-99

mates observed by spaceborne microwave radiometers is the Global Precipitation Measurement100

(GPM) mission (GPM, Hou et al. 2014; Skofronick-Jackson et al. 2018). GPM consists of a101

constellation of satellites with radiometers aboard and a core-satellite carrying both a radiometer102

(the GPM Microwave Imager, GMI) and a radar (the Dual-frequency Precipitation Radar, DPR).103

The combination of simultaneous radiometer and radar observations provides the opportunity to104

study coupled Tb and vertical precipitation structures to better constrain the retrieval schemes that105

convert Tb values to precipitation estimates (e.g. Kummerow et al. 2015; Panegrossi et al. 2020;106

Tiberia et al. 2021; D’Adderio et al. 2022).107

Despite the capabilities of the DPR, it has limited capabilities to detect shallow and light108

precipitation and, if detected, to accurately measure the intensity (Arulraj and Barros 2017; Casella109

et al. 2017; Watters et al. 2018; Liao and Meneghini 2019; Bogerd et al. 2023). Due to surface110

clutter, the DPR cannot retrieve near-surface precipitation below about 1000 m at nadir, increasing111

to about 1500 m at the outer scans of the DPR due to the slanted angle of observation (Awaka112

et al. 2016; Hirose et al. 2021). The lack of these observations inevitably results in missing some113

shallow precipitation. Coupling a high-quality ground-based reference is a better way to increase114

our understanding of the behavior of Tb’s during shallow precipitation events. Furthermore,115

exploiting the GMI’s entire swath instead of only the scans matched with the DPR increases the116

extent of the region covered.117

Here, we implement a random forest model (RF) to determine to what extent non-rainy conditions118

(referred to as dry in the remainder of this paper), shallow, and non-shallow precipitation can be119

classified from microwave radiometer observations and to gain understanding of the characteristics120

of misclassified observations. The focus of this study is to understand observations associated with121

shallow precipitation and not necessarily to improve their precipitation estimates. Each footprint122

is classified using a high-quality Echo Top Height (ETH) dataset based on two radars located in123

the Netherlands. This country is a highly suitable research area due to the frequent occurrence of124
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shallow and light precipitation events, both of which are difficult to detect with spaceborne sensors.125

Five years of data (2016-2020) are used to train the RF model and two independent years (2015126

and 2021) are used as test data. Additionally, ERA-5 reanalysis data and some DPR products are127

used to study whether additional input features improve the RF model.128

2. Measurement and methods129

a. Study Area: the Netherlands130

The Netherlands (50.78–53.68◦N, 3.38–7.38◦E; ∼45 000 km2) is a small country with low relief.131

Two ground-based C-band weather radars cover the entire country due to its small size and beam132

blockage related to orography is virtually absent. Germany borders the Netherlands on the east,133

Belgium on the south, and the North Sea on the west and north. In total, the length of the Dutch134

coastline is 523 km. The coast hampers radiometer-based precipitation retrieval as the varying135

background (both land and sea within one footprint) makes the surface emission very difficult to136

quantify. Additionally, shallow and light precipitation frequently occur over northern locations137

such as the Netherlands. These two characteristics in combination with high-quality reference data138

make the Netherlands an ideal location for this research.139

1) Climatological characteristics140

The Netherlands has a temperate maritime climate and experiences a pronounced annual cycle.141

While the total amount of precipitation is generally distributed evenly throughout the year, precipi-142

tation intensity and occurrence vary with season. Winter (DJF) experiences the highest occurrence143

of shallow and light precipitation, with occasional snowfall. In spring (MAM), precipitation is144

mostly liquid and the higher land surface temperatures enable higher precipitation intensities. The145

high surface temperatures during summer (JJA) result in a larger temperature difference with the146

colder upper levels of the atmosphere, which in combination with the presence of moist air promote147

the development of convective systems. Summer has the lowest occurrence of light and shallow148

rainfall. In fall (SON), both temperatures and rainfall intensities decrease. More information on149

the Dutch climate can be found in Daniels et al. (2014) and Overeem et al. (2009b). Addition-150

ally, Bogerd et al. (2021) analyzed precipitation data (both spaceborne and ground-based) in the151

Netherlands from 2015 to 2019, overlapping with the current research period.152
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2) Hydrological extremes during the research period153

A random forest (RF) model requires representative training data. Hence, we provide a brief154

overview of the characteristics of the input data (1 January 2015 to 31 December 2021). The driest155

June and July since the start of the Dutch meteorological records occurred in 2018. Spring 2020 (in156

particular April and May) and December 2016 were exceptionally dry. June 2016, February 2020,157

and March 2019 were three exceptionally wet months and November 2015 was wetter than average.158

Snow occurred in April 2016, February and December 2017, February 2018, January 2019, and159

January, February and April 2021. The years 2015 and 2021 were chosen as both experienced a160

small number of exceptionally wet or dry months, and we are interested in knowing the performance161

of the model in a “normal” year. The summaries of the weather during all months, seasons, and162

years can be found at https://www.knmi.nl/nederland-nu/klimatologie/gegevens/mow163

(in Dutch).164

b. Data165

1) Satellite-based data166

Observations from both the microwave radiometer and radar aboard the GPM core-satellite167

were selected and their spatial variables were used as input features. The GPM core-satellite was168

launched in 2014 and has an orbit between 65◦S and 65◦N (Hou et al. 2014). The satellite revisits169

the Netherlands at least once per day.170

(i) GPM Microwave Imager: GMI GMI is a radiometer equipped with thirteen channels at eight171

different frequencies. Five frequencies, 10.6, 18.7, 37, 89, and 166 GHz, are horizontally (H) and172

vertically (V) polarized channels, while the 23.8, 183±3 and 183±7 GHz frequencies are vertically173

polarized channels. Polarization differences (V-H) can provide information about the radiation174

source. Large differences are often associated with ocean surfaces, while small differences are175

often associated with land or hydrometeors (i.e. liquid cloud and precipitation) (Kidd 1998; Cecil176

and Chronis 2018). In general, the 10.6, 18.7, and 23 GHz channels are sensitive to heavy and177

moderate precipitation, the 37 and 89 GHz channels to precipitation mixtures (liquid, ice, snow),178

and the 166, 183±3 and 183±7 GHz channels to light rain and snowfall. More information about179

the GMI can be found in Hou et al. (2014); Draper et al. (2015); Petty and Bennartz (2017).180
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Tb values from lower-frequency channels were subtracted from those observed by higher-181

frequency channels to form input parameters of differences in brightness temperatures. Sub-182

sequently, the lower-frequency channels were excluded as independent parameters to reduce the183

number of input parameters. Hence, the lower frequency observations are indirectly included in184

all models, while the observations from low-frequency channels are only explicitly included in the185

“ALL” model.186

In this study, brightness temperatures (Tb) retrieved from all thirteen channels were used as input187

for the RF-model. One GMI scan consists of 221 pixels, but the seven outer pixels of the GMI188

swath (thus fourteen pixels per scan) were removed since the outer pixels are not sampled at the189

higher frequencies, yielding 207 pixels for each scan line. Higher frequency channels (>85 GHz)190

are emphasized due to the focus on retrievals over land. In addition to the single channels and191

polarization differences, the differences between three high-frequency (89V, 166V, 183±7 GHz)192

and two low-frequency (23.8V, 18.7V) channels were used since combining higher and lower193

frequency channels provides information on both the scattering and emission properties (Wilheit194

et al. 1994). More combinations were tested but were, due to their limited importance, not included195

for further analysis.196

(ii) GPM Dual-frequency Precipitation Radar: DPR The second instrument aboard the GPM197

core-satellite is the DPR. This dual-frequency radar operates with a Ku (13.6 GHz, suitable for198

heavier rain) and Ka band (35.5 GHz, suitable for lighter rain and snow). Combining the two bands199

allows the retrieval of more information regarding the microphysical properties, such as the melting200

layer and precipitation type (Iguchi et al. 2022). This study used level-2 DPR products, which are201

either attenuation-corrected reflectivity observations or precipitation characteristics derived from202

raw observations (level-1). More information about the DPR and associated algorithms to convert203

DPR’s raw observation data to precipitation products or corrected reflectivity profiles can be found204

in Toyoshima et al. (2015); Iguchi (2020); Masaki et al. (2020).205

The following 2D-DPR products were used as input feature: surface precipitation rate (pre-206

cipRateNearSurface), bright band flag (flagBB), height bright band (heightBB), shallow precipita-207

tion flag (flagShallowRain), and storm top height (heightStormTop). DPR’s vertical attenuation-208

corrected reflectivity observations from both the Ka and Ku band were used to analyze vertical209

reflectivity profiles. Although DPR’s performance is limited for shallow and light precipitation,210
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as mentioned in Section 1, its reflectivity observations can yield additional information about211

(in)correctly classified footprints.212

2) Reanalysis data: ERA-5 moisture and temperature data213

2-meter temperature and freezing level height ERA-5 reanalysis data (hourly, 0.25◦× 0.25◦) were214

included as additional input features. ERA-5 combines real observations (e.g. from radiosondes,215

aircraft and satellites) with physics-based model data to generate a global analysis field. More216

information about ERA-5 and the models it employs can be found in Hoffmann et al. (2019);217

Hersbach et al. (2020); Muñoz-Sabater et al. (2021). ERA-5 is used as it is also implemented in218

GPROF’s scheme that generates precipitation estimates from the GPM Tb values (Randel et al.219

2020).220

3) Ground-based data: echo top heights (ETH) and precipitation intensities221

The ground-based radars mentioned in Section 2.a and their products are operated by the Royal222

Netherlands Meteorological Institute (KNMI). The Echo Top Height (ETH) (1×1 km, 5 min)223

dataset was used to classify the footprints into shallow, non-shallow, or dry. ETH is based on a224

composite of the two C-band radars retrieved from fifteen vertical elevation scans (ranging from225

0.3◦ to 25.0◦). ETH is defined as the maximum height where a predefined reflectivity threshold226

is exceeded. The KNMI uses a low detection threshold of 7 dB𝑍 which, together with residual227

clutter, might result in unrealistically low (i.e. too close to the surface) or high ETH. Consequently,228

individual extremely low (below 0.5 km) and high (above 16 km) ETH pixels or those associated229

with precipitation intensities below 0.1 mm hr−1 were removed before further analysis. To assess230

the model’s sensitivity to these thresholds, two thresholds for both precipitation intensity (0.075231

mm hr−1 and 0.1 mm hr−1) and ETH (0.5 km or 1 km) were tested. More information about the232

ETH product and its quality can be found in Holleman (2008) and Aberson (2011).233

The same radars combined with gauges served as an indication for the precipitation intensity234

(1×1 km, 5 min). These measurements were only used to filter marginal cases as mentioned in the235

previous paragraph and to investigate the relation between precipitation intensity and misclassified236

footprints. A summary of the dataset can be found in Bogerd et al. (2021), while more detailed237

information is available in Overeem et al. (2009a,b, 2011).238
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c. Spatiotemporal matching and classification procedure239

The ground-based ETH dataset was used to classify the data while both the GMI Tb values and240

the 2D-DPR variables were used as feature data. The DPR, KNMI, and ERA-5 datasets were241

matched with the GMI’s resolution at 89 GHz. Each GMI footprint was matched to the closest242

ERA-5 gridbox or DPR footprint. The ETH observations (1 km×1 km) that exceeded the thresholds243

defined in Section 2.b.3 were averaged using Gaussian weights over the 89 GHz channel footprint244

dimensions (along-scan 4.4 km and along-track 7.2 km). The effect of sampling ETH values over245

various footprint dimensions using different weights is evaluated in Bogerd et al. (2023).246

The averaged value is used to classify a footprint as dry (rainfall < 0.1 mm/h), shallow (ETH247

≤3 km), or non-shallow (ETH >3 km). This implies not all native ETH pixels within a GMI248

footprint necessarily have the same classification, which is especially the case for convective249

events. For instance, a convective event that only covers 35% of the total footprint would still be250

included if the averaged amount of rainfall exceeds the 0.1 mm/h threshold. The sensitivity of the251

model to the percentage of pixels that exceeded the threshold at their native resolution was also252

assessed.253

d. Random Forest254

A Random Forest (RF) ensemble scheme was used to classify the microwave radiometer obser-255

vations. RF employs multiple decision trees during training and merges their predictions through256

bootstrapping and majority voting, thereby addressing individual trees’ limitations (such as over-257

fitting) and increasing the robustness of the results (Breiman 2001; Segal 2004; Hastie et al. 2009).258

The use of decision trees results in a relatively interpretable classification procedure, which gener-259

ates the possibility of understanding why a footprint is allocated to a certain class. Furthermore,260

RF can retrieve the importance of each feature for the final decision, referred to as “permutation261

importance”.262

The permutation importance is calculated by randomly perturbing one feature and calculating263

its impact on the model’s performance. The higher the score of a feature, the higher the model’s264

dependency on this feature. However, these outcomes are only representative for the evaluated265

RF model. Additionally, correlated features may receive low scores as the model can access them266

through each other (Gregorutti et al. 2017). Therefore, the permutation importance is only used as267
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an indication. More information about RF and its implementation in weather-related studies can268

be found in the aforementioned references and Biau and Scornet (2016); Herman and Schumacher269

(2018); Wolfensberger et al. (2021).270

1) Model settings271

This section elaborates on the training and validation procedure of the RF model, based on five272

years of data (2016–2020). The results discussed in (Section 3) are based on the independent test273

data (2015, 2021).274

The RandomizedSearchCV from scikit-learn (Pedregosa et al. 2011) was used to find the best275

values of the following four hyperparameters: number of decision trees, maximum depth of276

each tree, minimal number of samples required to split a node (“decision point”), and minimum277

number of samples required to create a “leaf” node (final node determining the classification).278

Instead of examining all combinations, RandomizedSearchCV randomly samples hyperparameter279

combinations within a specified range to advance the tuning process. The training data is split280

into multiple subsets during the cross-validation. Subsequently, the RF model is trained (training)281

with a set of hyperparameters on one data subset, while its performance is evaluated (validated) on282

another subset.283

The choice of parameter settings had a smaller impact on the performance than other choices.284

These choices involved: coast inclusion, excluding single lower frequency channels (<85GHz),285

percentage of ETH observations at their native resolution that could deviate from the footprint clas-286

sification (Section 2.c), inclusion of ancillary information (DPR and/or ERA-5), and combinations287

of these choices. All models were optimized using RandomizedSearchCV. The abbreviation of the288

models as used in this manuscript and the input features are specified in Table 1.289
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Table 1. The five RF models evaluated in this study. The “basic” model was evaluated twice: on a balanced

(BASIC) and imbalanced dataset (IM-BASIC). The other models were only evaluated on a balanced dataset.

Henceforth, the models are denoted by their respective abbreviations.

290

291

292

Name Model Input features

BASIC Basic All frequency channels above 85 GHz

IM-BASIC Imbalanced basic BASIC but tested on imbalanced dataset

ALL All frequencies All frequency channels (10-183 GHz)

ERA Basic+ERA5 Basic plus ERA5 (freezing level, temperature)

ERA+DPR Basic+ERA5+DPR ERA5 plus DPR (flagBB, heightBB, flagShallowRain, precipRateNearSurface)

STORMTOP Basic+ERA5+DPR+Stormtop ERA5+DPR plus DPR retrieved stormtopheight

The Netherlands experiences rainfall on average 7% of the time, with approximately 93% of the293

studied footprints being dry according to the reference dataset (not shown). As a consequence,294

the dataset is highly imbalanced when considering the three targeted classes (dry, shallow, and295

non-shallow). To prevent any category occurrence bias, the model is trained on a balanced dataset.296

The number of dry observations was reduced to match the number of the shallow category using297

random sampling. The test dataset was also balanced to give a more accurate overview of the298

model performance. However, data will be imbalanced in operational applications. Hence, the299

model is also tested on an imbalanced dataset (i.e. using all observations of 2015 and 2021) to300

show how balancing affects the model’s score, referred to as IM-BASIC (Tab. 1).301

As mentioned in Section 2.a.1, the seasonal cycle influences precipitation characteristics (also302

shown in Fig. 1). Additionally, the seasonal cycle can affect both background radiation and303

characteristics, such as temperature differences between land and sea. Consequently, the model304

was trained and tested on seasonal datasets (winter: DJF, spring: MAM, summer: JJA, and fall:305

SON).306

Figure 1 shows the number of observations within each class for the (imbalanced) test dataset us-307

ing different input features and seasons. As expected, the summer season has the lowest occurrence308

of shallow precipitation, while the occurrence is highest in winter. Furthermore, Fig. 1 indicates309
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the number of observations remaining after: 1. excluding the coast, 2. including DPR observations310

(smaller swath compared to GMI), and 3. increasing the threshold for classifying a certain footprint311

as shallow, non-shallow or dry from majority to 50% (thin pluses) or 80% (crosses) of valid native312

ETH pixels (Section 2.c, footprints not exceeding the majority threshold are not included in further313

analysis).314

13



DJF MAM JJA SON

102

103

104

105

Nu
m

be
r o

f o
bs

er
va

tio
ns

All observations

DJF MAM JJA SON

Coast observations excl.

exl. DPR incl. DPR 50% 80%
dry shallow non-shallowdry shallow non-shallow
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is logarithmic. The colors indicate the classification according to the majority of the individual reference pixels

within a footprint (dry, shallow, non-shallow). Changing the threshold from the majority of native pixels to either

50% (plusses) or 80% (crosses) reduces the number of observations. The left panel considers all observations

while the right panel excludes those located within 20 km of the coast. The markers on the left of the vertical

lines refer to the number of observations when including only GMI, while the markers on the right correspond

to the number of observations when the DPR is included as well.
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2) Model evaluation322

While accuracy is a common metric to assess machine learning models, it is more suitable for323

balanced datasets. As an imbalanced test dataset was included as well (IM-BASIC), all models324

were evaluated using the less intuitive F1-score, which is suitable for both balanced and imbalanced325

datasets. The F1-score is defined as:326

F1 score =
2·precision·recall
precision+recall

, (1)

with precision defined as:327

precision =
true positives

true positives+false positives
, (2)

and recall (also called sensitivity) as:328

recall =
true positives

true positives+false negatives
. (3)

The F1-score varies between 0 and 1, where 1 indicates the model is perfect.329

Furthermore, confusion matrices were used to assess the model. A confusion matrix presents330

the model predictions by sorting them into categories, such as true positives or true negatives, and331

is closely related to precision and recall. Hence, a confusion matrix gives insight into the model’s332

performance per class (dry, shallow, non-shallow), resulting in a 3×3 matrix for this study.333

In addition to these evaluations, which all focus on the RF model, the characteristics of the334

classified footprints were analyzed. Three groups were generated: correctly classified footprints,335

footprints misclassified as class 1, and footprints misclassified as class 2. For instance, if the336

correct class is “dry”, class1 would be “shallow” and class 2 would be “non-shallow”. Cumulative337

distribution functions (CDF) and the 25th, 50th, and 75th percentiles were used to identify the338

characteristics of each group. Furthermore, three overpasses were examined as case studies, to339

unravel the performance of the model.340
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3. Results341

The F1-score (Fig. 2) is lowest during winter (between 0.65 and 0.82) and highest during summer342

(between 0.81 and 0.95). Excluding the coast (lower panel) only slightly increases the F1-score.343

Testing on an imbalanced dataset (Section 2.d.2) increases the performance in all seasons, with the344

smallest increase in summer. The increased F1-score when the test dataset is imbalanced is most345

likely related to the correct classification of the majority class, which are dry footprints. Increasing346

the threshold to 80% (crosses) of the native pixels that should belong to one class improves the F1347

score, as those cases fill (almost) the entire footprint and are associated with stronger radiometric348

signals. This increase in threshold increases the performance of the model in all seasons, with349

the most notable improvements in summer and the smallest in winter. However, note the limited350

number of observations, especially during summer (Fig. 1). The scores for BASIC, ALL, and351

ERA, are comparable, except for ERA during spring over the entire land surface (upper panel).352

This indicates that the addition of the single low frequencies and ERA parameters has a limited353

positive impact. Including all 2D-DPR variables (thick plusses) improves the model during all354

seasons, but this effect is reduced when excluding the stormtopheight parameter (stars).355
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Fig. 2. The F1-scores for the RF model grouped by input features as specified in Tab. 1. The colors represent

the different seasons. The upper panel considers all observations over land and the lower panel only those at least

20 km from the coast. Similar to Fig. 1, the effect of changing the threshold from the majority of native pixels

to either 50% (plusses) or 80% (crosses) is also included.

356

357

358

359

The confusion matrices provide insight into the model’s performance per class (Fig. 3). The360

upper panel of Fig. 3 shows the matrices using BASIC input features and the lower panel using361

STORMTOP. Distinguishing between dry and shallow is more difficult in winter (left panels)362

compared to summer (right panels). In summer, however, almost half of the shallow footprints are363
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misclassified as non-shallow (right-upper panel). Including ERA5 and DPR improves the correct364

classification of dry and shallow in winter from 50.7% to 58.8%, but only slightly improves the365

correct detection of non-shallow footprints in both seasons (0.8% in winter, 4.3% in summer) and366

shallow in summer (1.3%). Furthermore, including the STORMTOP increases the “misses” of367

shallow observations (lower panel), especially in winter.368
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Fig. 3. The confusion matrices for winter (left panel) and summer (right panel) for BASIC (upper panel)

and STORMTOP (lower panel). The x-axis shows the predicted class according to the RF model, the y-axis

shows the class according to the reference. Hence, the diagonal from top left to bottom right shows the correctly

classified footprints. Each row adds up to 100%, i.e. the percentage indicates how many footprints of class 1

are classified correctly, wrongly as class 2, and wrongly as class 3. Note the lower panel is based on a reduced

number of observations (Fig. 1).
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The results of the permutation importance (Section 2.d.2) are summarized in Tab. 2. The scores381

remained 0.11 or lower, suggesting limited dependency on individual input features likely caused382

by cross-correlation between the input features. In general, the 166 GHz channel (either horizontal,383

vertical, or in relation to a lower frequency channel) is found to be important. The polarization384

difference between the 89 GHz channels is prominent in winter, 166V GHz-23V GHz during all385

seasons, the 183+/-7 GHz channel in spring, winter, and one time in fall. Excluding the stormtop386

(ERA+DPR) shows the importance of the other 2D-DPR products is limited, as the differences are387

either minimal or Tb channels are the most important, except for fall (heightBB).388

Table 2. Most important input features according to the permutation importance, distinguished by season

and input of the RF model (as defined in Tab. 1). “Minimal differences” is mentioned when the highest

permutation importance is below 0.025. 166V GHz-23V GHz represents subtracting 23.7V observations from

166V observations, 183+/-7 GHz-23 GHz subtracting 23.7V observations from 183+/-7 observations. Note the

‘ALL’ and ‘BASIC’ models have the same important parameters. The last row represents the model trained and

tested on all seasons.

375

376

377

378

379

380

BASIC and ALL ERA ERA+DPR STORMTOP

DJF 183+/-7, 166V-23V 183+/-7, 89V-H (166V-23V excl. coast) Minimal differences heightStormTop

MAM 166V-23V, 183+/-7 183+/-7, 166V-23V (166H excl. coast) 166V, 166H heightStormTop, 166V

JJA 166V-23V, 166H 166H, 166V-23V Minimal differences heightStormTop

SON 166V-23V, 183+/-7 166V, 166H (166V-23V excl. coast) 166V, heightBB heightStormTop

All seas. 166V-23V, 183+/-7-23 166V-23V, T2M (166H excl. coast) Minimal differences heightStormTop

The next three figures (Figs. 4–6) focus on winter, the season with the most frequent shallow389

precipitation (Fig. 1) and aim to identify shared characteristics among the three classes. The390

top four panels of Fig. 4 illustrate the Tb distribution obtained from individual high-frequency391

channels (the other seasons are shown in Figs. S1-S3). The bottom panel shows the combination392

of a high-frequency channel (166V, representing the interaction with precipitation particles) and a393

low-frequency channel (23.8V, representing the background emissions). Although the value range394

of the three classes often overlaps, non-shallow footprints are typically characterized by lower395

Tb values, dry footprints by higher Tb values and shallow in between. This result is expected,396

as ice decreases Tb values observed by higher frequency channels and non-shallow precipitation397
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is associated with more ice than shallow precipitation. The distributions of accurately classified398

footprints and those that are misclassified to the same class are similar, especially in the upper399

three rows. For instance, the distribution of Tb associated with dry footprints classified as shallow400

is similar to the distribution of “true” shallow footprints.401
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Fig. 4. Cumulative density functions (CDF) of the Tb observed by the high-frequency channels. Note that

not all were marked as important according to the permutation importance (Tab. 2). Each panel represents

one channel, except for the bottom panel, which shows 166V GHz-23V GHz values that were often marked

as important. The darker colors represent the true and correctly classified footprints (blue shallow, green non-

shallow and purple dry). The lighter wrongly classified footprints (light-blue dry classified as shallow, light-green

shallow classified as non-shallow, and salmon shallow classified as dry). Only the winter season is considered.

The classification is retrieved using BASIC.
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The distributions of the reference data are shown (Fig. 5) to analyze whether the misclassified409

observations are associated with values near the boundary of two classes. Precipitation intensity410

and ETH of footprints wrongly classified as non-shallow (dry) are higher (slightly lower) compared411

to those correctly classified as shallow.412
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Fig. 5. Cumulative density functions (CDF) of the precipitation intensity (upper panel) and ETH (lower panel)

in winter. The settings are similar to Fig. 4. Note that this information is not provided to the RF model as it

involves reference characteristics. Additionally, note that only wet footprints were included.
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Figure 6 shows the attenuation-corrected vertical profiles retrieved from the DPR associated with416

GMI footprints. The higher sensitivity of the Ka-band makes it more susceptible to attenuation,417

reducing the number of valid observations (the number of observations is shown in the legend).418

The reflectivity values of the non-shallow events in winter are higher than those associated with419

shallow footprints (both correctly and most of the incorrectly classified). Shallow footprints420

wrongly classified as dry were not detected by the DPR, indicating a weak reflectivity signal421

observed by spaceborne sensors. These results are in agreement with those shown in Fig. 4:422

adding DPR observations does not increase the RF’s capability to detect shallow precipitation423

wrongly classified as dry. Additionally, less than half of the shallow footprints are captured by the424

Ku-band, and only a third by the Ka-band, indicating that shallow events are often missed by the425

DPR.426
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Fig. 6. The 25th, 75th percentiles (dashed) and mean (solid) of the vertical reflectivity profiles corresponding

to GMI footprints in winter. The horizontally polarized radar reflectivity factor values are retrieved from matched

DPR observations. The number of observations retrieved by the Ka-channel is lower than those retrieved from

the Ku-band. The number of observations above 3000 m for shallow footprints wrongly classified as non-shallow

is limited. Classification retrieved using STORMTOP. Note that this information is not provided to the RF model.

427

428

429

430

431

Shallow footprints classified as dry are associated with relatively high Tb values (Fig. 4) and are432

not detected by the DPR (5), indicating weak signatures or associated cloud height is below 1 km433

(or 1.5 km at the edges of the DPR swath). Conversely, dry footprints misclassified as shallow are434

associated with lower Tb values. Two cases are selected to further unravel why those footprints are435

allocated to another class.436

Case studies are used to gain some additional insight. The first case (Fig. 7) is relatively437

well classified, although dry footprints at the precipitation system border are wrongly labeled as438
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shallow. Footprints associated with non-shallow precipitation correspond to relatively low Tb439

values observed by the 166H and 183.31±7 (especially at the northern and western edges) channels440

compared to the Tb values associated with correctly classified dry footprints. As shown in Fig. 4,441

observations associated with Tb values in between non-shallow and dry are classified as shallow.442

“Dry footprints” that are incorrectly classified as shallow show values similar to those correctly443

classified as shallow, especially at the northern and southern edges of the precipitation system.444

As previously explained, precipitating clouds are often associated with ice particles, which445

lower the Tb values measured at higher frequencies. However, ice could also be present in non-446

precipitating clouds. Geostationary satellite observations from MSG-SEVIRI (third panel Fig. 7)447

indeed suggest the presence of ice particles over the Netherlands, except north of 53◦N where the448

RF model correctly classified the observations as dry. The presence of ice is indicated by the cyan449

color in the data obtained from channels associated with the visible spectrum (upper right panel,450

Fig. 7) and by the reddish color indicated by the microphysics algorithm (middle right panel, Fig.451

7). More information about the two algorithms can be found at EUMETSAT (2023c), EUMETSAT452

(2023a), and references therein.453
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Water clouds

Mixed phase clouds

Thick ice clouds w. large ice 
crystals in higher levels

Snow and ice on the ground

Thick ice clouds w. 
large particles
Thick ice clouds w. 
small ice crystals
Snow/ice on 
ground

Semi transparent 
ice clouds
Low/mid water clouds w. 
large water droplets
Low/mid water clouds w. 
small water droplets

Fig. 7. Case study 1: 19 January 2021. The left two upper panels show the reference values at the native

resolution (1×1 km), the two left middle panels the classification according to the reference (left) or the RF model

(middle), and the two lower left panels the Tb values for two of GMI’s high-frequency channels. Footprints are

not classified if the reference precipitation and ETH observations did not exceed the thresholds as defined in

Section 2.c or if one of the GMI frequency channels lacked observations. The right panel shows two images of

the geostationary MSG-SEVIRI satellite, which are provided by EUMETview (EUMETSAT 2023b). The upper

right panel makes use of three solar channels: NIR1.6, VIS0.8 and VIS0.6. The lower right panel shows the

results of the microphysics algorithm based on three channels: VIS0.8, IR3.9, and IR10.8.

454

455

456

457

458

459

460

461

The second case involves an overpass almost completely classified as shallow instead of dry462

(middle panels, Fig. 8). Similar to the previous case, the values observed by the two high frequency463

channels are in the value range associated with shallow precipitation (Fig. 4). In agreement with464

the previous case, clouds with ice particles are present according to the SEVERI-MSG observations465

(right panels, Fig. 8).466
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Fig. 8. Case study 2: 6 January 2021, dry footprints classified as shallow. The settings are similar to Fig. 7,

except for the color scale of the upper panel. The reference labels cover a larger area than the model labels due

to the absence of high-frequency observations at the edges of the GMI swath.
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468

469

A third case study involves a narrow band of shallow precipitation with a limited scattering signal470

(lower panel, Fig. 9). Right of the IJsselmeer (approximately 42.5◦N, 6.0◦E), the narrow band of471

shallow precipitation is only partly classified correctly, while left of the IJsselmeer (approximately472

42.75◦N, 5.75◦E) the footprints are classified as dry. Both algorithms based on the MSG-SEVERI473

data indicate the presence of mixed phase clouds (right upper panel, Fig. 9), which might confuse474

the algorithm as a result of a limited decrease in Tb values (lower panel, 9).475

4. Discussion476

This study is the first to classify microwave radiometer observations as dry, shallow, or non-477

shallow using a random forest model over such a northern location. We tested the model’s478

sensitivity to input features and the implemented thresholds on the reference data. Adjusting479
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the thresholds, as specified in Section 2.b.3, only slightly affected the F1-scores (max. ±0.1),480

independent of the input features, and did not significantly affect the important features according481

to the permutation difference (not shown). Although other models might yield better results, such482

as a neural network, the RF model was chosen for reasons given in Section 1.483
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Fig. 9. Case study 3: 13 January 2021. A narrow precipitation event that is partly correctly detected and partly

missed (left of the IJsselmeer). The settings are similar to Fig. 8, except for the color scale of the upper panel.

484

485

The GMI sensor is equipped with high-frequency channels to improve the detection of light-486

intensity events in comparison to its predecessor that served during the Tropical Rainfall Measuring487

Mission (TRMM), the TMI (TRMM Microwave Imager). As shallow precipitation over the488

Netherlands is often associated with light precipitation, we also hypothesized these channels to be489

important for the RF model. The higher frequency channels were indeed important for the RF490

model, but it remained difficult to accurately separate dry and shallow events. Various explanations491

are discussed below.492
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Firstly, the algorithm might be overly sensitive. This sensitivity is likely induced by the relatively493

weak scattering signal associated with (stratiform) shallow events (Weng and Grody 2000; Kida494

et al. 2009, 2018). As a consequence, the random forest model learns to identify even the smallest495

decreases in brightness temperatures as shallow precipitation. However, as a drawback of this496

sensitivity, slight decreases in brightness temperatures related to non-precipitating ice clouds, such497

as thick cirrus clouds or multi-layered clouds, are also subjective to be classified as shallow, as498

shown in the two case studies (Figs. 7 and 8).499

Secondly, as expected, the presence of ice particles seems to be a condition for the RF model500

to detect (shallow) precipitation. However, due to the limited vertical extent associated with501

shallow precipitation, the cloud top might be located below the freezing level. As a consequence,502

scattering related to ice particles is absent and only the emission of liquid water can be detected503

(Lebsock et al. 2010). These “warm” rain processes over land surfaces are hard to distinguish504

from non-precipitating clouds by spaceborne microwave radiometers (Stephens and Kummerow505

2007). Another source resulting in a limited scattering signal is the presence of liquid water above506

the freezing level (Matrosov and Turner 2018). Both the absence of and limited scattering signal507

related to ice particles might result in shallow footprints being classified as dry (Fig. 9).508

The difference in results with, for instance, the overview paper of Turk et al. (2021) might be509

related to our regional approach and focus on distinguishing dry, shallow, and non-shallow footprints510

instead of characterizing background surfaces. Our focus enhances the relative importance of higher511

frequency channels due to the interaction with water vapor and scattering of ice particles. However,512

including observations from low-frequency channels through subtraction from high-frequency513

channels demonstrated a slightly higher F1-score, ranging between 0.1 to 0.3 higher depending on514

the season, compared to when low frequencies were included separately (not shown).515

Another hypothesis that has been discussed is the possibility that lower Tb values are product516

of wet surface conditions, which the RF misinterprets as colder clouds. We found consistently517

lower Tb values measured by the 18.7 GHz channel over water-saturated areas such as rivers518

and low-laying land (not shown). However, these areas did not overlap with the locations of dry519

footprints wrongly classified as shallow. Additionally, higher frequency channels did not observe520

lower values over these areas (Figs. 7, 8, lower panels). Furthermore, the sky was often cloudy521

when dry footprints were classified as shallow (Figs. 7, 8, right panels). In general, our algorithm522
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seems less affected by background radiation due to the limited importance of lower frequency523

channels. This limited role of the lower frequency channels and the relatively small footprint size524

of the GMI could also explain the limited influence of the coast, which contrasts the results of525

previous research (Bennartz 1999; Munchak and Skofronick-Jackson 2013).526

Unfortunately, at least three cases with numerous shallow footprints classified as dry occurred527

during nighttime when geostationary VIS observations are unavailable. Although algorithms solely528

based on IR observations can also deduce cloud-phase information, their accuracy is lower than529

those including VIS observations (Costa et al. 2007; Iwabuchi et al. 2016; Escrig et al. 2013).530

Additionally, interpreting IR images is more complex than those based on IR/VIS observations531

and is considered out of scope for the current analysis. We also explored matched observations532

with ATMS, SSMIS, and TROPICS (radiometers equipped with higher frequency channels), but533

the number of matched footprints with GMI was limited.534

The performance of geostationary cloud-phase retrieval algorithms that combine IR/VIS obser-535

vations is only qualitative and may not work well over snow covered surfaces or low solar zenith536

angles (Lensky and Rosenfeld 2008; EUMETRAIN 2023), but the impact of these limitations is537

expected to be limited as there was no snow cover during the considered case studies. Since the538

areas flagged as (thick) ice clouds by both algorithms considered in this study appear to correlate539

well with errors in the RF algorithm (Figs. 7, 8, right panels), it seems beneficial to include the540

geostationary satellites to separate between dry, shallow, and non-shallow footprints.541

The authors are aware that the spatial coverage of the current study could be extended globally if542

DPR observations were used as a reference. However, as mentioned in Section (1) and confirmed543

in the results of this study (Section 3), the performance of DPR regarding shallow precipitation544

is limited. This result again amplifies the need for reliable calibration and validation data. At545

the same time, our results suggest that DPR observations could improve the classification between546

shallow and non-shallow precipitation systems.547

The frequent occurrence of convective events in summer results in an overrepresentation of548

non-shallow footprints (Fig. 3). This overrepresentation is reduced when using the ALL model549

(Fig. 10). Although this improves the classification between dry and rainy footprints (i.e. shallow550

and non-shallow) in summer, the “ALL” model showed a decreased performance in classifying dry551

and rainy footprints in winter, when most shallow events occur.552
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Fig. 10. Same as Fig. 3, but applying the model based on the entire year on DJF (left) and JJA (right) Upper

panel is without inclusion of the DPR, lower panel with inclusion of the DPR. The tested dataset was balanced.

553

554

The F1-scores corresponding to the “ALL” model distinguished by season and various input555

parameters are shown in Fig. 11. Compared to the seasonal models (Fig. 2), the F1-scores of the556

ALL, BASIC, and ERA models decreased for all seasons (Fig. 11). These results again confirm557

the limited importance of ERA parameters, even when applying a more general model in the time558

aspect. In contrast, Fig. 11 also demonstrates the added value of DPR observations, despite DPR’s559

limitations detecting shallow precipitation.560
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Fig. 11. Same as Fig. 2, but applying the model based on the entire year on the four different seasons.

The limited importance of ERA-5 parameters, which is contrary to findings in prior studies,561

is attributed to the regional focus. Seasons implicitly provide environmental information, for562

instance due to the clustering of temperature. Table 2 demonstrates that ERA-5 temperature is563

more important when training the model on all seasons. Additionally, we included ERA5 moisture564

data to mitigate the impact of varying moisture levels (above the cloud top) on Tb values retrieved565
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from higher frequency channels. However, we found a limited impact of atmospheric moisture on566

the model’s performance, likely due to relatively modest moisture levels over the Netherlands.567

More accurate input could in principle be retrieved using 3D data. However, this study aimed568

to find more general relations through the use of a longer period. The amount of data when569

considering 3D observations would be prohibitive over such a time frame. Instead, we would aim570

to study 3D radar fields (i.e. coupling microwave radiometer observations to ground-based radars)571

in relation to case studies, preferably from a vertically pointing rain radar, to unravel the vertical572

structure of the atmosphere and to confirm our earlier hypotheses related to the presence/absence573

of ice particles.574

Sections 3 and 4 both focus on the wrongly classified shallow and dry footprints, while only little575

attention is paid to the non-shallow footprints. As previously stated, this study aims to improve the576

detection of (shallow) precipitation with radiometers. Non-shallow precipitation is almost always577

detected: even if wrongly classified, non-shallow footprints are almost never classified as dry (Fig.578

3, 10). The reason to still include the separation between shallow and non-shallow was to point579

out that missed precipitation mostly involved shallow precipitation.580

5. Conclusions581

The retrieval of light and/or shallow precipitation estimates from spaceborne microwave radiome-582

ter observations is challenging, especially over land. This study implemented a random forest (RF)583

model that used microwave radiometer observations from the Global Precipitation Measurement584

(GPM) mission as input to distinguish dry, shallow, and non-shallow footprints over a high-latitude585

region. The RF model, trained on five years of data and tested on two independent years, performed586

worst in winter (F1-score ranging from 0.68 to 0.75) and best in summer (F1-score ranging from587

0.81 to 0.92), independent of the input features. The model had difficulties to distinguish shallow588

and non-shallow in both seasons, but more in summer (48.2% of the shallow events classified as589

non-shallow) than winter (36.8%). In contrast, distinguishing between shallow and dry footprints590

was more challenging in winter, when 12.5% shallow footprints were wrongly classified as dry591

and 15.3% of the dry footprints were wrongly classified as shallow. Shallow footprints associated592

with a limited scattering signal were wrongly classified as dry, while dry footprints associated with593
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relatively low brightness temperatures observed by higher frequency channels (>85 GHz) were594

wrongly classified as shallow.595

This study confirmed the importance of high-frequency channels for spaceborne precipitation596

retrieval over land, while at the same time the added value when combining these observations with597

those retrieved from low frequency channels was demonstrated. Furthermore, the implementation598

of the RF model and analysis of the wrongly identified footprints improved our understanding of599

the difficulties associated with distinguishing between shallow and dry footprints in a moderate600

maritime climate. This method could be extended to other regions as well to further unravel the601

difficulties associated with precipitation retrieval from spaceborne microwave radiometers. This602

study also indicated the potential to improve spaceborne precipitation detection by merging obser-603

vations retrieved from both geostationary and LEO orbiting satellites. For future studies concerning604

spaceborne precipitation retrieval over northern latitudes, we recommend to use vertically pointing605

radars to study the microphysics associated with shallow events.606
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D’Adderio, L. P., D. Casella, S. Dietrich, P. Sanò, and G. Panegrossi, 2022: GPM-CO observations670

of Medicane Ianos: Comparative analysis of precipitation structure between development and671

mature phase. Atmospheric Research, 273, 106 174, https://doi.org/10.1016/j.atmosres.2022.672

106174.673

Daniels, E. E., G. Lenderink, R. W. A. Hutjes, and A. a. M. Holtslag, 2014: Spatial precipitation674

patterns and trends in the Netherlands during 1951–2009. International Journal of Climatology,675

34 (6), 1773–1784, https://doi.org/10.1002/joc.3800.676

Draper, D. W., D. A. Newell, F. J. Wentz, S. Krimchansky, and G. M. Skofronick-Jackson, 2015:677

The Global Precipitation Measurement (GPM) microwave imager (GMI): instrument overview678

and early on-orbit performance. IEEE Journal of Selected Topics in Applied Earth Observations679

and Remote Sensing, 8 (7), 3452–3462, https://doi.org/10.1109/JSTARS.2015.2403303.680

Escrig, H., F. J. Batlles, J. Alonso, F. M. Baena, J. L. Bosch, I. B. Salbidegoitia, and J. I. Burgaleta,681

2013: Cloud detection, classification and motion estimation using geostationary satellite imagery682

for cloud cover forecast. Energy, 55, 853–859, https://doi.org/10.1016/j.energy.2013.01.054.683

EUMETRAIN, 2023: SEVIRI day microphysics RGB quick guide. URL https://www-cdn.684

eumetsat.int/files/2020-04/pdf rgb quick guide day micro.pdf.685

37



EUMETSAT, 2023a: Day microphysics RGB - MSG - 0 degree. URL https://data.eumetsat.int/686

product/EO:EUM:DAT:MSG:DMRGB#.687

EUMETSAT, 2023b: EUMETSAT productviewer. URL https://view.eumetsat.int/productviewer?688

v=default.689

EUMETSAT, 2023c: Natural colour RGB - MSG - 0 degree. URL https://data.eumetsat.int/product/690

EO:EUM:DAT:MSG:NCL#.691

Gregorutti, B., B. Michel, and P. Saint-Pierre, 2017: Correlation and variable importance in random692

forests. Statistics and Computing, 27 (3), 659–678, https://doi.org/10.1007/s11222-016-9646-1.693

Hastie, T., R. Tibshirani, and J. Friedman, 2009: Random forests. The Elements of Statistical694

Learning: Data mining, inference, and prediction, Springer New York, New York, NY, 587–695

604, https://doi.org/10.1007/978-0-387-84858-7 15.696

Hayden, L., and C. Liu, 2021: Differences in the diurnal variation of precipitation estimated by697

spaceborne radar, passive microwave radiometer, and IMERG. Journal of Geophysical Research:698

Atmospheres, 126 (9), e2020JD033 020, https://doi.org/10.1029/2020JD033020.699

Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming.700

Journal of Climate, 19 (21), 5686–5699, https://doi.org/10.1175/JCLI3990.1.701

Herman, G. R., and R. S. Schumacher, 2018: Money doesn’t grow on trees, but forecasts do:702

forecasting extreme precipitation with random forests. Monthly Weather Review, 146 (5), 1571–703

1600, https://doi.org/10.1175/MWR-D-17-0250.1.704

Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quarterly Journal of the Royal705

Meteorological Society, 146 (730), 1999–2049, https://doi.org/10.1002/qj.3803.706

Hirose, M., S. Shige, T. Kubota, F. A. Furuzawa, H. Minda, and H. Masunaga, 2021: Refinement707

of surface precipitation estimates for the dual-frequency precipitation radar on the GPM core708

observatory using near-nadir measurements. Journal of the Meteorological Society of Japan.709

Ser. II, 99 (5), 1231–1252, https://doi.org/10.2151/jmsj.2021-060.710

38



Hoffmann, L., and Coauthors, 2019: From ERA-Interim to ERA5: the considerable impact of711

ECMWF’s next-generation reanalysis on Lagrangian transport simulations. Atmospheric Chem-712

istry and Physics, 19 (5), 3097–3124, https://doi.org/10.5194/acp-19-3097-2019.713

Holleman, I., 2008: Echotops for annotation on radar imagery. Tech. rep. URL https://cdn.knmi.714

nl/knmi/pdf/bibliotheek/knmipubTR/TR299.pdf.715

Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement Mission. Bul-716

letin of the American Meteorological Society, 95 (5), 701–722, https://doi.org/10.1175/717

BAMS-D-13-00164.1.718

Huntington, T. G., 2006: Evidence for intensification of the global water cycle: review and719

synthesis. Journal of Hydrology, 319 (1), 83–95, https://doi.org/10.1016/j.jhydrol.2005.07.003.720

Iguchi, T., 2020: Dual-frequency Precipitation Radar (DPR) on the Global Precipitation Mea-721

surement (GPM) mission’s core observatory. Satellite Precipitation Measurement: Volume 1,722

V. Levizzani, C. Kidd, D. B. Kirschbaum, C. D. Kummerow, K. Nakamura, and F. J. Turk,723

Eds., Advances in Global Change Research, Springer International Publishing, Cham, 183–192,724

https://doi.org/10.1007/978-3-030-24568-9 11.725

Iguchi, T., and Coauthors, 2022: GPM/DPR Level-2 Algorithm Theoretical Basis Document726

(ATBD). URL https://gpm.nasa.gov/sites/default/files/2022-06/ATBD DPR V07A.pdf.727

IPCC, 2021: Climate change 2021 – the physical science basis: working group I contribution728

to the sixth assessment report of the Intergovernmental Panel on Climate Change (IPCC). 1st729

ed., Cambridge University Press, https://doi.org/10.1017/9781009157896, URL https://www.730

cambridge.org/core/product/identifier/9781009157896/type/book.731

IPCC, 2022: Climate Change 2022 – impacts, adaptation and vulnerability: working group II732

contribution to the sixth Assessment report of the Intergovernmental Panel on Climate Change733

(IPCC). 1st ed., Cambridge University Press, https://doi.org/10.1017/9781009325844, URL734

https://www.cambridge.org/core/product/identifier/9781009325844/type/book.735

Iwabuchi, H., M. Saito, Y. Tokoro, N. S. Putri, and M. Sekiguchi, 2016: Retrieval of radiative and736

microphysical properties of clouds from multispectral infrared measurements. Progress in Earth737

and Planetary Science, 3 (1), 32, https://doi.org/10.1186/s40645-016-0108-3.738

39



Kida, S., T. Kubota, S. Shige, and T. Mega, 2018: Chapter 12 - development of a rain/no-739

rain classification method over land for the microwave sounder algorithm. Remote Sensing of740

Aerosols, Clouds, and Precipitation, T. Islam, Y. Hu, A. Kokhanovsky, and J. Wang, Eds.,741

Elsevier, 249–265, https://doi.org/10.1016/B978-0-12-810437-8.00012-8.742

Kida, S., S. Shige, T. Kubota, K. Aonashi, and K. Okamoto, 2009: Improvement of rain/no-rain743

classification methods for microwave radiometer observations over the ocean using a 37 GHz744

emission signature. Journal of the Meteorological Society of Japan. Ser. II, 87A, 165–181,745

https://doi.org/10.2151/jmsj.87A.165.746

Kidd, C., 1998: On rainfall retrieval using polarization-corrected temperatures. International747

Journal of Remote Sensing, 19 (5), 981–996, https://doi.org/10.1080/014311698215829.748

Kidd, C., G. Huffman, V. Maggioni, P. Chambon, and R. Oki, 2021: The global satellite precipi-749

tation constellation: current status and future requirements. Bulletin of the American Meteoro-750

logical Society, 102 (10), E1844–E1861, https://doi.org/10.1175/BAMS-D-20-0299.1.751

Kidd, C., and V. Levizzani, 2011: Status of satellite precipitation retrievals. Hydrology and Earth752

System Sciences, 15 (4), 1109–1116, https://doi.org/10.5194/hess-15-1109-2011.753

Kidd, C., J. Tan, P.-E. Kirstetter, and W. A. Petersen, 2018: Validation of the Version 05 Level754

2 precipitation products from the GPM core observatory and constellation satellite sensors.755

Quarterly Journal of the Royal Meteorological Society, 144 (S1), 313–328, https://doi.org/756

10.1002/qj.3175.757

Klotz, B. W., and E. W. Uhlhorn, 2014: Improved stepped frequency microwave radiometer tropical758

cyclone surface winds in heavy precipitation. Journal of Atmospheric and Oceanic Technology,759

31 (11), 2392–2408, https://doi.org/10.1175/JTECH-D-14-00028.1.760

Kummerow, C., and L. Giglio, 1994: A passive microwave technique for estimating rainfall and761

vertical structure information from space. Part I: algorithm description. Journal of Applied Me-762

teorology and Climatology, 33 (1), 3–18, https://doi.org/10.1175/1520-0450(1994)033⟨0003:763

APMTFE⟩2.0.CO;2.764

Kummerow, C. D., 2020: Introduction to passive microwave retrieval methods. Satellite Precipi-765

tation Measurement: Volume 1, V. Levizzani, C. Kidd, D. B. Kirschbaum, C. D. Kummerow,766

40



K. Nakamura, and F. J. Turk, Eds., Advances in Global Change Research, Springer International767

Publishing, Cham, 123–140, https://doi.org/10.1007/978-3-030-24568-9 7.768

Kummerow, C. D., D. L. Randel, M. Kulie, N.-Y. Wang, R. Ferraro, S. Joseph Munchak, and769

V. Petkovic, 2015: The evolution of the Goddard profiling algorithm to a fully parametric770

scheme. Journal of Atmospheric and Oceanic Technology, 32 (12), 2265–2280, https://doi.org/771

10.1175/JTECH-D-15-0039.1.772

Kummerow, C. D., S. Ringerud, J. Crook, D. Randel, and W. Berg, 2011: An observationally773

generated a priori database for microwave rainfall retrievals. Journal of Atmospheric and Oceanic774

Technology, 28 (2), 113–130, https://doi.org/10.1175/2010JTECHA1468.1.775

Lebsock, M. D., T. S. L’Ecuyer, and G. L. Stephens, 2010: Detecting the ratio of rain and cloud776

water in low-latitude shallow marine clouds. Journal of Applied Meteorology and Climatology,777

50 (2), 419–432, https://doi.org/10.1175/2010JAMC2494.1.778

Lee, Y.-R., D.-B. Shin, J.-H. Kim, and H.-S. Park, 2015: Precipitation estimation over radar gap779

areas based on satellite and adjacent radar observations. Atmospheric Measurement Techniques,780

8 (2), 719–728, https://doi.org/10.5194/amt-8-719-2015.781

Lensky, I. M., and D. Rosenfeld, 2008: Clouds-Aerosols-Precipitation Satellite Analysis Tool782

(CAPSAT). Atmos. Chem. Phys.783

Levizzani, V., J. Schmetz, H. J. Lutz, J. Kerkmann, P. P. Alberoni, and M. Cervino, 2001: Precipi-784

tation estimations from geostationary orbit and prospects for METEOSAT Second Generation.785

Meteorological Applications, 8 (1), 23–41, https://doi.org/10.1017/S1350482701001037.786

Liao, L., and R. Meneghini, 2019: Physical evaluation of GPM DPR single- and dual-wavelength787

algorithms. Journal of Atmospheric and Oceanic Technology, 36 (5), 883–902, https://doi.org/788

10.1175/JTECH-D-18-0210.1.789

Lin, X., and A. Y. Hou, 2012: Estimation of rain intensity spectra over the continental United States790

using ground radar–gauge measurements. Journal of Climate, 25 (6), 1901–1915, https://doi.org/791

10.1175/JCLI-D-11-00151.1.792

41



Liu, C., and E. J. Zipser, 2009: “Warm Rain” in the tropics: seasonal and regional distributions793

based on 9 yr of TRMM Data. Journal of Climate, 22 (3), 767–779, https://doi.org/10.1175/794

2008JCLI2641.1.795

Lorenz, C., and H. Kunstmann, 2012: The hydrological cycle in three state-of-the-art reanalyses:796

Intercomparison and performance analysis. Journal of Hydrometeorology, 13 (5), 1397–1420,797

https://doi.org/10.1175/JHM-D-11-088.1.798

Maggioni, V., C. Massari, and C. Kidd, 2022: Chapter 13 - Errors and uncertainties associated with799

quasiglobal satellite precipitation products. Precipitation Science, S. Michaelides, Ed., Elsevier,800

377–390, https://doi.org/10.1016/B978-0-12-822973-6.00023-8.801

Maggioni, V., P. C. Meyers, and M. D. Robinson, 2016: A review of merged high-resolution satellite802

precipitation product accuracy during the Tropical Rainfall Measuring Mission (TRMM) era.803

Journal of Hydrometeorology, 17 (4), 1101–1117, https://doi.org/10.1175/JHM-D-15-0190.1.804

Masaki, T., T. Iguchi, K. Kanemaru, K. Furukawa, N. Yoshida, T. Kubota, and R. Oki, 2020: Cali-805

bration of the dual-frequency precipitation radar onboard the global precipitation measurement806

core observatory. IEEE Transactions on Geoscience and Remote Sensing, 1–16, https://doi.org/807

10.1109/TGRS.2020.3039978.808

Matrosov, S. Y., and D. D. Turner, 2018: Retrieving mean temperature of atmospheric liquid809

water layers using microwave radiometer measurements. Journal of Atmospheric and Oceanic810

Technology, 35 (5), 1091–1102, https://doi.org/10.1175/JTECH-D-17-0179.1.811

McCollum, J. R., W. F. Krajewski, R. R. Ferraro, and M. B. Ba, 2002: Evaluation of biases of812

satellite rainfall estimation algorithms over the continental United States. Journal of Applied813

Meteorology and Climatology, 41 (11), 1065–1080, https://doi.org/10.1175/1520-0450(2002)814

041⟨1065:EOBOSR⟩2.0.CO;2.815

Munchak, S. J., and G. Skofronick-Jackson, 2013: Evaluation of precipitation detection over816

various surfaces from passive microwave imagers and sounders. Atmospheric Research, 131,817

81–94, https://doi.org/10.1016/j.atmosres.2012.10.011.818

42
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