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ABSTRACT: Spaceborne microwave radiometers represent an important component of the Global
Precipitation Measurement (GPM) mission due to their frequent sampling of rain systems. Mi-
crowave radiometers measure microwave radiation (brightness temperatures, Tb), which can be
converted into precipitation estimates with appropriate assumptions. However, detecting shallow
precipitation systems using space-borne radiometers is challenging, especially over land, as their
weak signals are hard to differentiate from those associated with dry conditions. This study uses a
random forest model (RF) to classify microwave radiometer observations as dry, shallow, or non-
shallow over the Netherlands - a region with varying surface conditions and frequent occurrence
of shallow precipitation. The RF is trained on five years of data (2016-2020) and tested with two
independent years (2015, 2021). The observations are classified using ground-based weather radar
echo top heights. Various RF models are assessed, such as using only GPM’s Microwave Imager
(GMI) Tb values as input features or including spatially aligned ERA-5 2-meter temperature and
freezing level reanalysis and/or Dual Precipitation Radar (DPR) observations. Independent of the
input features, the model performs best in summer and worst in winter. The model classifies ob-
servations from high-frequency channels (=85 GHz) with lower Tb-values as non-shallow, higher
values as dry, and those in between as shallow. Misclassified footprints exhibit radiometric charac-
teristics corresponding to their assigned class. Case studies reveal dry observations misclassified
as shallow are associated with lower Tb-values, likely resulting from the presence of ice particles in
non-precipitating clouds. Shallow footprints misclassified as dry are likely related to the absence

of ice particles.
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SIGNIFICANCE STATEMENT: Published research concerning rainfall retrieval algorithms
from microwave radiometers is often focused on the accuracy of these algorithms. While shallow
precipitation over land is often characterized as problematic in these studies, little progress has been
made with these systems. In particular, precipitation formed by shallow clouds, where shallow
refers to the clouds being close to the Earth’s surface, is often missed. This study is focused on
detecting shallow precipitation and its physical characteristics to further improve its detection from
spaceborne sensors. As such, it contributes to understanding which shallow precipitation scenes
are challenging to detect from microwave radiometers, suggesting possible ways for algorithm

improvement.

1. Introduction

The intensification of the water cycle due to global warming (Held and Soden 2006; Huntington
20006) is expected to increase the frequency of droughts and extreme rainfall events (IPCC 2021).
The consequences can be reduced through adaptation and mitigation measures but these require
long-term forecast models, which in turn require accurate observations of precipitation on a
global scale. Unfortunately, coverage from ground-based precipitation measurements is limited
(Lorenz and Kunstmann 2012; Saltikoff et al. 2019) in locations where the impact of the intensified
water cycle is expected to be large (Nath and Behera 2011; Winsemius et al. 2018; IPCC 2022).
Precipitation estimates derived from spaceborne sensors with global coverage can complement
ground-based sensors. However, precipitation estimates derived from space-based sensors are not
of the same quality as those from ground-based sensors (Chen and Li 2016; Shen et al. 2020; Tang
et al. 2020; Maggioni et al. 2022). Understanding the origins of this reduced quality for each sensor
type is crucial to improve satellite-based estimates.

Many studies have focused on improving estimates retrieved from spaceborne microwave ra-
diometers (e.g. Petty and Li 2013; Shige et al. 2013; Klotz and Uhlhorn 2014; Yamamoto et al.
2017; Petkovi¢ et al. 2018, 2019). Compared to better performing spaceborne radars, microwave
radiometers are often the preferred sensor for precipitation because they are less costly and their
swath is typically wider (for instance shown in Fig. 2 from Hou et al. 2014), resulting in a better
coverage of the Earth’s surface. Both radars and microwave radiometers are only available on low

Earth orbit (LEO) satellites which, due to their swaths, have gaps between adjacent observations.
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While visible (VIS) and infrared (IR) channels with good spatial resolution are available on both
LEO and geostationary (GEO) satellites, only the latter provide frequent and regular temporal
sampling.

Sensors with visible (VIS) and infrared (IR) channels are mounted on geostationary satellites,
which provide frequent and regular temporal coverage with good spatial resolution. However,
sensors with IR and VIS channels only observe cloud top properties that are used to indirectly
estimate surface precipitation intensities (e.g. Levizzani et al. 2001; Behrangi et al. 2009; Kidd and
Levizzani 2011). Hence, the uncertainty and inaccuracy of spaceborne precipitation estimates de-
rived from VIS/IR observations are larger than those derived from spaceborne radar and microwave
radiometer observations (Lee et al. 2015; Iwabuchi et al. 2016; Maggioni et al. 2022).

Radiometers measure the microwave radiation emitted by the Earth’s surface and other natural
sources such as clouds and precipitation particles (Kummerow and Giglio 1994; Maggioni et al.
2016; Kummerow 2020; Kidd et al. 2021). Water drops absorb and emit this radiation at their own
thermal temperature, often increasing the observed microwave radiation (expressed as brightness
temperatures, Tb) compared to the same situation without rainfall. This interaction between
radiation and raindrops is exploited over areas with a constant and radiatively cold temperature
(hence low emissivity), such as oceans (Wilheit et al. 1977; Spencer 1986; Kummerow and Giglio
1994). Over land, the background surface emissivity is higher, and detecting emissions due
to water drops is more challenging due to the greater variability in the background caused by
changes in surface type and water content. Variation in surface type mostly affects the observations
of the lower frequency channels. Retrieval schemes over land are therefore often based on the
higher frequency channels (>85 GHz), which rely on temperature depressions due to scattering of
upwelling radiation caused by ice particles often present during precipitation (Wilheit et al. 1982;
Kummerow and Giglio 1994; McCollum et al. 2002; Kummerow 2020).

However, microwave radiometers measure radiation from the surface and along the vertical
column of the intervening atmosphere. Consequently, radiometers cannot identify the height of the
radiation source. In addition, a combination of Tb values retrieved from various channels could
yield multiple solutions when converting these Tb’s into precipitation intensities (Anagnostou
2004; Kummerow et al. 2011; Kidd et al. 2018; Kummerow 2020). Some precipitation regimes,

such as warm rain, have a limited scattering signal due to the absence of ice (Liu and Zipser 2009;
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Adhikari et al. 2019), resulting in a weak radiometric signature from light or shallow precipitation
close to the Earth’s surface (Lin and Hou 2012; You et al. 2020; Hayden and Liu 2021). As a
consequence, warm, light, and shallow precipitation are often missed by microwave radiometers
(Behrangi et al. 2014; Adhikari and Behrangi 2022) over land surfaces.

A recent effort to improve the detection and accuracy of light and shallow precipitation esti-
mates observed by spaceborne microwave radiometers is the Global Precipitation Measurement
(GPM) mission (GPM, Hou et al. 2014; Skofronick-Jackson et al. 2018). GPM consists of a
constellation of satellites with radiometers aboard and a core-satellite carrying both a radiometer
(the GPM Microwave Imager, GMI) and a radar (the Dual-frequency Precipitation Radar, DPR).
The combination of simultaneous radiometer and radar observations provides the opportunity to
study coupled Tb and vertical precipitation structures to better constrain the retrieval schemes that
convert Tb values to precipitation estimates (e.g. Kummerow et al. 2015; Panegrossi et al. 2020;
Tiberia et al. 2021; D’Adderio et al. 2022).

Despite the capabilities of the DPR, it has limited capabilities to detect shallow and light
precipitation and, if detected, to accurately measure the intensity (Arulraj and Barros 2017; Casella
et al. 2017; Watters et al. 2018; Liao and Meneghini 2019; Bogerd et al. 2023). Due to surface
clutter, the DPR cannot retrieve near-surface precipitation below about 1000 m at nadir, increasing
to about 1500 m at the outer scans of the DPR due to the slanted angle of observation (Awaka
et al. 2016; Hirose et al. 2021). The lack of these observations inevitably results in missing some
shallow precipitation. Coupling a high-quality ground-based reference is a better way to increase
our understanding of the behavior of Tb’s during shallow precipitation events. Furthermore,
exploiting the GMI’s entire swath instead of only the scans matched with the DPR increases the
extent of the region covered.

Here, we implement a random forest model (RF) to determine to what extent non-rainy conditions
(referred to as dry in the remainder of this paper), shallow, and non-shallow precipitation can be
classified from microwave radiometer observations and to gain understanding of the characteristics
of misclassified observations. The focus of this study is to understand observations associated with
shallow precipitation and not necessarily to improve their precipitation estimates. Each footprint
is classified using a high-quality Echo Top Height (ETH) dataset based on two radars located in

the Netherlands. This country is a highly suitable research area due to the frequent occurrence of



125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

shallow and light precipitation events, both of which are difficult to detect with spaceborne sensors.
Five years of data (2016-2020) are used to train the RF model and two independent years (2015
and 2021) are used as test data. Additionally, ERA-5 reanalysis data and some DPR products are

used to study whether additional input features improve the RF model.

2. Measurement and methods

a. Study Area: the Netherlands

The Netherlands (50.78-53.68°N, 3.38-7.38°E; ~45 000 km?) is a small country with low relief.
Two ground-based C-band weather radars cover the entire country due to its small size and beam
blockage related to orography is virtually absent. Germany borders the Netherlands on the east,
Belgium on the south, and the North Sea on the west and north. In total, the length of the Dutch
coastline is 523 km. The coast hampers radiometer-based precipitation retrieval as the varying
background (both land and sea within one footprint) makes the surface emission very difficult to
quantify. Additionally, shallow and light precipitation frequently occur over northern locations
such as the Netherlands. These two characteristics in combination with high-quality reference data

make the Netherlands an ideal location for this research.

1) CLIMATOLOGICAL CHARACTERISTICS

The Netherlands has a temperate maritime climate and experiences a pronounced annual cycle.
While the total amount of precipitation is generally distributed evenly throughout the year, precipi-
tation intensity and occurrence vary with season. Winter (DJF) experiences the highest occurrence
of shallow and light precipitation, with occasional snowfall. In spring (MAM), precipitation is
mostly liquid and the higher land surface temperatures enable higher precipitation intensities. The
high surface temperatures during summer (JJA) result in a larger temperature difference with the
colder upper levels of the atmosphere, which in combination with the presence of moist air promote
the development of convective systems. Summer has the lowest occurrence of light and shallow
rainfall. In fall (SON), both temperatures and rainfall intensities decrease. More information on
the Dutch climate can be found in Daniels et al. (2014) and Overeem et al. (2009b). Addition-
ally, Bogerd et al. (2021) analyzed precipitation data (both spaceborne and ground-based) in the

Netherlands from 2015 to 2019, overlapping with the current research period.
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2) HYDROLOGICAL EXTREMES DURING THE RESEARCH PERIOD

A random forest (RF) model requires representative training data. Hence, we provide a brief
overview of the characteristics of the input data (1 January 2015 to 31 December 2021). The driest
June and July since the start of the Dutch meteorological records occurred in 2018. Spring 2020 (in
particular April and May) and December 2016 were exceptionally dry. June 2016, February 2020,
and March 2019 were three exceptionally wet months and November 2015 was wetter than average.
Snow occurred in April 2016, February and December 2017, February 2018, January 2019, and
January, February and April 2021. The years 2015 and 2021 were chosen as both experienced a
small number of exceptionally wet or dry months, and we are interested in knowing the performance
of the model in a “normal” year. The summaries of the weather during all months, seasons, and
years can be found at https://www.knmi.nl/nederland-nu/klimatologie/gegevens/mow

(in Dutch).

b. Data
1) SATELLITE-BASED DATA

Observations from both the microwave radiometer and radar aboard the GPM core-satellite
were selected and their spatial variables were used as input features. The GPM core-satellite was
launched in 2014 and has an orbit between 65°S and 65°N (Hou et al. 2014). The satellite revisits

the Netherlands at least once per day.

(i) GPM Microwave Imager: GMI GMI is a radiometer equipped with thirteen channels at eight
different frequencies. Five frequencies, 10.6, 18.7, 37, 89, and 166 GHz, are horizontally (H) and
vertically (V) polarized channels, while the 23.8, 183+3 and 183+7 GHz frequencies are vertically
polarized channels. Polarization differences (V-H) can provide information about the radiation
source. Large differences are often associated with ocean surfaces, while small differences are
often associated with land or hydrometeors (i.e. liquid cloud and precipitation) (Kidd 1998; Cecil
and Chronis 2018). In general, the 10.6, 18.7, and 23 GHz channels are sensitive to heavy and
moderate precipitation, the 37 and 89 GHz channels to precipitation mixtures (liquid, ice, snow),
and the 166, 183+3 and 183+7 GHz channels to light rain and snowfall. More information about
the GMI can be found in Hou et al. (2014); Draper et al. (2015); Petty and Bennartz (2017).
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Tb values from lower-frequency channels were subtracted from those observed by higher-
frequency channels to form input parameters of differences in brightness temperatures. Sub-
sequently, the lower-frequency channels were excluded as independent parameters to reduce the
number of input parameters. Hence, the lower frequency observations are indirectly included in
all models, while the observations from low-frequency channels are only explicitly included in the
“ALL” model.

In this study, brightness temperatures (Tb) retrieved from all thirteen channels were used as input
for the RF-model. One GMI scan consists of 221 pixels, but the seven outer pixels of the GMI
swath (thus fourteen pixels per scan) were removed since the outer pixels are not sampled at the
higher frequencies, yielding 207 pixels for each scan line. Higher frequency channels (>85 GHz)
are emphasized due to the focus on retrievals over land. In addition to the single channels and
polarization differences, the differences between three high-frequency (89V, 166V, 183+7 GHz)
and two low-frequency (23.8V, 18.7V) channels were used since combining higher and lower
frequency channels provides information on both the scattering and emission properties (Wilheit
etal. 1994). More combinations were tested but were, due to their limited importance, not included

for further analysis.

(ii) GPM Dual-frequency Precipitation Radar: DPR The second instrument aboard the GPM
core-satellite is the DPR. This dual-frequency radar operates with a Ku (13.6 GHz, suitable for
heavier rain) and Ka band (35.5 GHz, suitable for lighter rain and snow). Combining the two bands
allows the retrieval of more information regarding the microphysical properties, such as the melting
layer and precipitation type (Iguchi et al. 2022). This study used level-2 DPR products, which are
either attenuation-corrected reflectivity observations or precipitation characteristics derived from
raw observations (level-1). More information about the DPR and associated algorithms to convert
DPR’s raw observation data to precipitation products or corrected reflectivity profiles can be found
in Toyoshima et al. (2015); Iguchi (2020); Masaki et al. (2020).

The following 2D-DPR products were used as input feature: surface precipitation rate (pre-
cipRateNearSurface), bright band flag (flagBB), height bright band (heightBB), shallow precipita-
tion flag (flagShallowRain), and storm top height (heightStormTop). DPR’s vertical attenuation-
corrected reflectivity observations from both the Ka and Ku band were used to analyze vertical

reflectivity profiles. Although DPR’s performance is limited for shallow and light precipitation,
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as mentioned in Section 1, its reflectivity observations can yield additional information about

(in)correctly classified footprints.

2) REANALYSIS DATA: ERA-5 MOISTURE AND TEMPERATURE DATA

2-meter temperature and freezing level height ERA-5 reanalysis data (hourly, 0.25°% 0.25°) were
included as additional input features. ERA-5 combines real observations (e.g. from radiosondes,
aircraft and satellites) with physics-based model data to generate a global analysis field. More
information about ERA-5 and the models it employs can be found in Hoffmann et al. (2019);
Hersbach et al. (2020); Mufioz-Sabater et al. (2021). ERA-5 is used as it is also implemented in
GPROF’s scheme that generates precipitation estimates from the GPM Tb values (Randel et al.
2020).

3) GROUND-BASED DATA: ECHO TOP HEIGHTS (ETH) AND PRECIPITATION INTENSITIES

The ground-based radars mentioned in Section 2.a and their products are operated by the Royal
Netherlands Meteorological Institute (KNMI). The Echo Top Height (ETH) (1x1 km, 5 min)
dataset was used to classify the footprints into shallow, non-shallow, or dry. ETH is based on a
composite of the two C-band radars retrieved from fifteen vertical elevation scans (ranging from
0.3° to 25.0°). ETH is defined as the maximum height where a predefined reflectivity threshold
is exceeded. The KNMI uses a low detection threshold of 7 dBZ which, together with residual
clutter, might result in unrealistically low (i.e. too close to the surface) or high ETH. Consequently,
individual extremely low (below 0.5 km) and high (above 16 km) ETH pixels or those associated
with precipitation intensities below 0.1 mm hr~! were removed before further analysis. To assess
the model’s sensitivity to these thresholds, two thresholds for both precipitation intensity (0.075
mm hr! and 0.1 mm hr™') and ETH (0.5 km or 1 km) were tested. More information about the
ETH product and its quality can be found in Holleman (2008) and Aberson (2011).

The same radars combined with gauges served as an indication for the precipitation intensity
(1x1 km, 5 min). These measurements were only used to filter marginal cases as mentioned in the
previous paragraph and to investigate the relation between precipitation intensity and misclassified
footprints. A summary of the dataset can be found in Bogerd et al. (2021), while more detailed

information is available in Overeem et al. (2009a,b, 2011).
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c. Spatiotemporal matching and classification procedure

The ground-based ETH dataset was used to classify the data while both the GMI Tb values and
the 2D-DPR variables were used as feature data. The DPR, KNMI, and ERA-5 datasets were
matched with the GMI’s resolution at 89 GHz. Each GMI footprint was matched to the closest
ERA-5 gridbox or DPR footprint. The ETH observations (1 kmx1 km) that exceeded the thresholds
defined in Section 2.b.3 were averaged using Gaussian weights over the 89 GHz channel footprint
dimensions (along-scan 4.4 km and along-track 7.2 km). The effect of sampling ETH values over
various footprint dimensions using different weights is evaluated in Bogerd et al. (2023).

The averaged value is used to classify a footprint as dry (rainfall < 0.1 mm/h), shallow (ETH
<3 km), or non-shallow (ETH >3 km). This implies not all native ETH pixels within a GMI
footprint necessarily have the same classification, which is especially the case for convective
events. For instance, a convective event that only covers 35% of the total footprint would still be
included if the averaged amount of rainfall exceeds the 0.1 mm/h threshold. The sensitivity of the
model to the percentage of pixels that exceeded the threshold at their native resolution was also

assessed.

d. Random Forest

A Random Forest (RF) ensemble scheme was used to classify the microwave radiometer obser-
vations. RF employs multiple decision trees during training and merges their predictions through
bootstrapping and majority voting, thereby addressing individual trees’ limitations (such as over-
fitting) and increasing the robustness of the results (Breiman 2001; Segal 2004; Hastie et al. 2009).
The use of decision trees results in a relatively interpretable classification procedure, which gener-
ates the possibility of understanding why a footprint is allocated to a certain class. Furthermore,
RF can retrieve the importance of each feature for the final decision, referred to as “permutation
importance”.

The permutation importance is calculated by randomly perturbing one feature and calculating
its impact on the model’s performance. The higher the score of a feature, the higher the model’s
dependency on this feature. However, these outcomes are only representative for the evaluated
RF model. Additionally, correlated features may receive low scores as the model can access them

through each other (Gregorutti et al. 2017). Therefore, the permutation importance is only used as
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an indication. More information about RF and its implementation in weather-related studies can
be found in the aforementioned references and Biau and Scornet (2016); Herman and Schumacher

(2018); Wolfensberger et al. (2021).

1) MODEL SETTINGS

This section elaborates on the training and validation procedure of the RF model, based on five
years of data (2016-2020). The results discussed in (Section 3) are based on the independent test
data (2015, 2021).

The RandomizedSearchCV from scikit-learn (Pedregosa et al. 2011) was used to find the best
values of the following four hyperparameters: number of decision trees, maximum depth of
each tree, minimal number of samples required to split a node (“decision point”), and minimum
number of samples required to create a “leaf” node (final node determining the classification).
Instead of examining all combinations, RandomizedSearchCV randomly samples hyperparameter
combinations within a specified range to advance the tuning process. The training data is split
into multiple subsets during the cross-validation. Subsequently, the RF model is trained (training)
with a set of hyperparameters on one data subset, while its performance is evaluated (validated) on
another subset.

The choice of parameter settings had a smaller impact on the performance than other choices.
These choices involved: coast inclusion, excluding single lower frequency channels (<85GHz),
percentage of ETH observations at their native resolution that could deviate from the footprint clas-
sification (Section 2.c), inclusion of ancillary information (DPR and/or ERA-5), and combinations
of these choices. All models were optimized using RandomizedSearchCV. The abbreviation of the

models as used in this manuscript and the input features are specified in Table 1.
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TasLE 1. The five RF models evaluated in this study. The “basic” model was evaluated twice: on a balanced
(BASIC) and imbalanced dataset (IM-BASIC). The other models were only evaluated on a balanced dataset.

Henceforth, the models are denoted by their respective abbreviations.

Name Model Input features

BASIC Basic All frequency channels above 85 GHz

IM-BASIC Imbalanced basic BASIC but tested on imbalanced dataset

ALL All frequencies All frequency channels (10-183 GHz)

ERA Basic+ERAS Basic plus ERAS (freezing level, temperature)

ERA+DPR Basic+ERAS5+DPR ERAS plus DPR (flagBB, heightBB, flagShallowRain, precipRateNearSurface)
STORMTOP  Basic+ERAS5+DPR+Stormtop ERAS5+DPR plus DPR retrieved stormtopheight

The Netherlands experiences rainfall on average 7% of the time, with approximately 93% of the
studied footprints being dry according to the reference dataset (not shown). As a consequence,
the dataset is highly imbalanced when considering the three targeted classes (dry, shallow, and
non-shallow). To prevent any category occurrence bias, the model is trained on a balanced dataset.
The number of dry observations was reduced to match the number of the shallow category using
random sampling. The test dataset was also balanced to give a more accurate overview of the
model performance. However, data will be imbalanced in operational applications. Hence, the
model is also tested on an imbalanced dataset (i.e. using all observations of 2015 and 2021) to
show how balancing affects the model’s score, referred to as IM-BASIC (Tab. 1).

As mentioned in Section 2.a.1, the seasonal cycle influences precipitation characteristics (also
shown in Fig. 1). Additionally, the seasonal cycle can affect both background radiation and
characteristics, such as temperature differences between land and sea. Consequently, the model
was trained and tested on seasonal datasets (winter: DJF, spring: MAM, summer: JJA, and fall:
SON).

Figure 1 shows the number of observations within each class for the (imbalanced) test dataset us-
ing different input features and seasons. As expected, the summer season has the lowest occurrence

of shallow precipitation, while the occurrence is highest in winter. Furthermore, Fig. 1 indicates

12
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the number of observations remaining after: 1. excluding the coast, 2. including DPR observations
(smaller swath compared to GMI), and 3. increasing the threshold for classifying a certain footprint
as shallow, non-shallow or dry from majority to 50% (thin pluses) or 80% (crosses) of valid native
ETH pixels (Section 2.c, footprints not exceeding the majority threshold are not included in further

analysis).
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to the number of observations when the DPR is included as well.
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2) MODEL EVALUATION

While accuracy is a common metric to assess machine learning models, it is more suitable for
balanced datasets. As an imbalanced test dataset was included as well (IM-BASIC), all models
were evaluated using the less intuitive F1-score, which is suitable for both balanced and imbalanced

datasets. The F1-score is defined as:

2-precision-recall

F1 score = — , (1)
precision+recall
with precision defined as:
.. true positives
precision = — —, (2)
true positives+false positives
and recall (also called sensitivity) as:
true positives
recall = (3)

true positives+false negatives

The F1-score varies between 0 and 1, where 1 indicates the model is perfect.

Furthermore, confusion matrices were used to assess the model. A confusion matrix presents
the model predictions by sorting them into categories, such as true positives or true negatives, and
is closely related to precision and recall. Hence, a confusion matrix gives insight into the model’s
performance per class (dry, shallow, non-shallow), resulting in a 3X3 matrix for this study.

In addition to these evaluations, which all focus on the RF model, the characteristics of the
classified footprints were analyzed. Three groups were generated: correctly classified footprints,
footprints misclassified as class 1, and footprints misclassified as class 2. For instance, if the
correct class is “dry”, class1 would be “shallow” and class 2 would be “non-shallow”. Cumulative
distribution functions (CDF) and the 25th, 50th, and 75th percentiles were used to identify the
characteristics of each group. Furthermore, three overpasses were examined as case studies, to

unravel the performance of the model.
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3. Results

The F1-score (Fig. 2) is lowest during winter (between 0.65 and 0.82) and highest during summer
(between 0.81 and 0.95). Excluding the coast (lower panel) only slightly increases the F1-score.
Testing on an imbalanced dataset (Section 2.d.2) increases the performance in all seasons, with the
smallest increase in summer. The increased F1-score when the test dataset is imbalanced is most
likely related to the correct classification of the majority class, which are dry footprints. Increasing
the threshold to 80% (crosses) of the native pixels that should belong to one class improves the F1
score, as those cases fill (almost) the entire footprint and are associated with stronger radiometric
signals. This increase in threshold increases the performance of the model in all seasons, with
the most notable improvements in summer and the smallest in winter. However, note the limited
number of observations, especially during summer (Fig. 1). The scores for BASIC, ALL, and
ERA, are comparable, except for ERA during spring over the entire land surface (upper panel).
This indicates that the addition of the single low frequencies and ERA parameters has a limited
positive impact. Including all 2D-DPR variables (thick plusses) improves the model during all

seasons, but this effect is reduced when excluding the stormtopheight parameter (stars).
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Fic. 2. The F1-scores for the RF model grouped by input features as specified in Tab. 1. The colors represent
the different seasons. The upper panel considers all observations over land and the lower panel only those at least
20 km from the coast. Similar to Fig. 1, the effect of changing the threshold from the majority of native pixels

to either 50% (plusses) or 80% (crosses) is also included.

The confusion matrices provide insight into the model’s performance per class (Fig. 3). The
upper panel of Fig. 3 shows the matrices using BASIC input features and the lower panel using
STORMTOP. Distinguishing between dry and shallow is more difficult in winter (left panels)

compared to summer (right panels). In summer, however, almost half of the shallow footprints are
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misclassified as non-shallow (right-upper panel). Including ERAS and DPR improves the correct
classification of dry and shallow in winter from 50.7% to 58.8%, but only slightly improves the
correct detection of non-shallow footprints in both seasons (0.8% in winter, 4.3% in summer) and
shallow in summer (1.3%). Furthermore, including the STORMTOP increases the “misses” of

shallow observations (lower panel), especially in winter.
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FiG. 3. The confusion matrices for winter (left panel) and summer (right panel) for BASIC (upper panel)
and STORMTOP (lower panel). The x-axis shows the predicted class according to the RF model, the y-axis
shows the class according to the reference. Hence, the diagonal from top left to bottom right shows the correctly
classified footprints. Each row adds up to 100%, i.e. the percentage indicates how many footprints of class 1
are classified correctly, wrongly as class 2, and wrongly as class 3. Note the lower panel is based on a reduced

number of observations (Fig. 1).
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The results of the permutation importance (Section 2.d.2) are summarized in Tab. 2. The scores
remained 0.11 or lower, suggesting limited dependency on individual input features likely caused
by cross-correlation between the input features. In general, the 166 GHz channel (either horizontal,
vertical, or in relation to a lower frequency channel) is found to be important. The polarization
difference between the 89 GHz channels is prominent in winter, 166V GHz-23V GHz during all
seasons, the 183+/-7 GHz channel in spring, winter, and one time in fall. Excluding the stormtop
(ERA+DPR) shows the importance of the other 2D-DPR products is limited, as the differences are
either minimal or Tb channels are the most important, except for fall (heightBB).

TaBLE 2. Most important input features according to the permutation importance, distinguished by season
and input of the RF model (as defined in Tab. 1). “Minimal differences” is mentioned when the highest
permutation importance is below 0.025. 166V GHz-23V GHz represents subtracting 23.7V observations from
166V observations, 183+/-7 GHz-23 GHz subtracting 23.7V observations from 183+/-7 observations. Note the
‘ALL’ and ‘BASIC’ models have the same important parameters. The last row represents the model trained and

tested on all seasons.

BASIC and ALL ERA ERA+DPR STORMTOP
DJF 183+/-7, 166V-23V 183+/-7, 89V-H (166V-23V excl. coast)  Minimal differences heightStormTop
MAM 166V-23V, 183+/-7 183+/-7, 166V-23V (166H excl. coast) 166V, 166H heightStormTop, 166V
JJA 166V-23V, 166H 166H, 166V-23V Minimal differences heightStormTop
SON 166V-23V, 183+/-7 166V, 166H (166V-23V excl. coast) 166V, heightBB heightStormTop
All seas. 166V-23V, 183+/-7-23 166V-23V, T2M (166H excl. coast) Minimal differences heightStormTop

The next three figures (Figs. 4-6) focus on winter, the season with the most frequent shallow
precipitation (Fig. 1) and aim to identify shared characteristics among the three classes. The
top four panels of Fig. 4 illustrate the Tb distribution obtained from individual high-frequency
channels (the other seasons are shown in Figs. S1-S3). The bottom panel shows the combination
of a high-frequency channel (166V, representing the interaction with precipitation particles) and a
low-frequency channel (23.8V, representing the background emissions). Although the value range
of the three classes often overlaps, non-shallow footprints are typically characterized by lower
Tb values, dry footprints by higher Tb values and shallow in between. This result is expected,

as ice decreases Tb values observed by higher frequency channels and non-shallow precipitation
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is associated with more ice than shallow precipitation. The distributions of accurately classified
footprints and those that are misclassified to the same class are similar, especially in the upper
three rows. For instance, the distribution of Tb associated with dry footprints classified as shallow

is similar to the distribution of “true” shallow footprints.
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Fic. 4. Cumulative density functions (CDF) of the Tb observed by the high-frequency channels. Note that
not all were marked as important according to the permutation importance (Tab. 2). Each panel represents
one channel, except for the bottom panel, which shows 166V GHz-23V GHz values that were often marked
as important. The darker colors represent the true and correctly classified footprints (blue shallow, green non-
shallow and purple dry). The lighter wrongly classified footprints (light-blue dry classified as shallow, light-green
shallow classified as non-shallow, and salmon shallow classified as dry). Only the winter season is considered.

The classification is retrieved using BASIC.
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ws  The distributions of the reference data are shown (Fig. 5) to analyze whether the misclassified
«0 observations are associated with values near the boundary of two classes. Precipitation intensity
« and ETH of footprints wrongly classified as non-shallow (dry) are higher (slightly lower) compared

«2  to those correctly classified as shallow.
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13 Fic. 5. Cumulative density functions (CDF) of the precipitation intensity (upper panel) and ETH (lower panel)
s+ in winter. The settings are similar to Fig. 4. Note that this information is not provided to the RF model as it

s involves reference characteristics. Additionally, note that only wet footprints were included.
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Figure 6 shows the attenuation-corrected vertical profiles retrieved from the DPR associated with
GMI footprints. The higher sensitivity of the Ka-band makes it more susceptible to attenuation,
reducing the number of valid observations (the number of observations is shown in the legend).
The reflectivity values of the non-shallow events in winter are higher than those associated with
shallow footprints (both correctly and most of the incorrectly classified). Shallow footprints
wrongly classified as dry were not detected by the DPR, indicating a weak reflectivity signal
observed by spaceborne sensors. These results are in agreement with those shown in Fig. 4:
adding DPR observations does not increase the RF’s capability to detect shallow precipitation
wrongly classified as dry. Additionally, less than half of the shallow footprints are captured by the
Ku-band, and only a third by the Ka-band, indicating that shallow events are often missed by the
DPR.
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FiG. 6. The 25th, 75th percentiles (dashed) and mean (solid) of the vertical reflectivity profiles corresponding
to GMI footprints in winter. The horizontally polarized radar reflectivity factor values are retrieved from matched
DPR observations. The number of observations retrieved by the Ka-channel is lower than those retrieved from
the Ku-band. The number of observations above 3000 m for shallow footprints wrongly classified as non-shallow

is limited. Classification retrieved using STORMTOP. Note that this information is not provided to the RF model.

Shallow footprints classified as dry are associated with relatively high Tb values (Fig. 4) and are
not detected by the DPR (5), indicating weak signatures or associated cloud height is below 1 km
(or 1.5 km at the edges of the DPR swath). Conversely, dry footprints misclassified as shallow are
associated with lower Tb values. Two cases are selected to further unravel why those footprints are
allocated to another class.

Case studies are used to gain some additional insight. The first case (Fig. 7) is relatively

well classified, although dry footprints at the precipitation system border are wrongly labeled as
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shallow. Footprints associated with non-shallow precipitation correspond to relatively low Tb
values observed by the 166H and 183.31+7 (especially at the northern and western edges) channels
compared to the Tb values associated with correctly classified dry footprints. As shown in Fig. 4,
observations associated with Tb values in between non-shallow and dry are classified as shallow.
“Dry footprints” that are incorrectly classified as shallow show values similar to those correctly
classified as shallow, especially at the northern and southern edges of the precipitation system.

As previously explained, precipitating clouds are often associated with ice particles, which
lower the Tb values measured at higher frequencies. However, ice could also be present in non-
precipitating clouds. Geostationary satellite observations from MSG-SEVIRI (third panel Fig. 7)
indeed suggest the presence of ice particles over the Netherlands, except north of 53°N where the
RF model correctly classified the observations as dry. The presence of ice is indicated by the cyan
color in the data obtained from channels associated with the visible spectrum (upper right panel,
Fig. 7) and by the reddish color indicated by the microphysics algorithm (middle right panel, Fig.
7). More information about the two algorithms can be found at EUMETSAT (2023c), EUMETSAT

(2023a), and references therein.
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Fic. 7. Case study 1: 19 January 2021. The left two upper panels show the reference values at the native
resolution (1x1 km), the two left middle panels the classification according to the reference (left) or the RF model
(middle), and the two lower left panels the Tb values for two of GMI’s high-frequency channels. Footprints are
not classified if the reference precipitation and ETH observations did not exceed the thresholds as defined in
Section 2.c or if one of the GMI frequency channels lacked observations. The right panel shows two images of
the geostationary MSG-SEVIRI satellite, which are provided by EUMETview (EUMETSAT 2023b). The upper
right panel makes use of three solar channels: NIR1.6, VIS0.8 and VIS0.6. The lower right panel shows the
results of the microphysics algorithm based on three channels: VIS0.8, IR3.9, and IR10.8.

The second case involves an overpass almost completely classified as shallow instead of dry
(middle panels, Fig. 8). Similar to the previous case, the values observed by the two high frequency
channels are in the value range associated with shallow precipitation (Fig. 4). In agreement with
the previous case, clouds with ice particles are present according to the SEVERI-MSG observations

(right panels, Fig. 8).
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Fic. 8. Case study 2: 6 January 2021, dry footprints classified as shallow. The settings are similar to Fig. 7,
except for the color scale of the upper panel. The reference labels cover a larger area than the model labels due

to the absence of high-frequency observations at the edges of the GMI swath.

A third case study involves a narrow band of shallow precipitation with a limited scattering signal
(lower panel, Fig. 9). Right of the IJsselmeer (approximately 42.5°N, 6.0°E), the narrow band of
shallow precipitation is only partly classified correctly, while left of the IJsselmeer (approximately
42.75°N, 5.75°E) the footprints are classified as dry. Both algorithms based on the MSG-SEVERI
data indicate the presence of mixed phase clouds (right upper panel, Fig. 9), which might confuse

the algorithm as a result of a limited decrease in Tb values (lower panel, 9).

4. Discussion

This study is the first to classify microwave radiometer observations as dry, shallow, or non-
shallow using a random forest model over such a northern location. We tested the model’s

sensitivity to input features and the implemented thresholds on the reference data. Adjusting
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the thresholds, as specified in Section 2.b.3, only slightly affected the Fl-scores (max. =+0.1),

independent of the input features, and did not significantly affect the important features according

to the permutation difference (not shown). Although other models might yield better results, such

as a neural network, the RF model was chosen for reasons given in Section 1.
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FiG. 9. Case study 3: 13 January 2021. A narrow precipitation event that is partly correctly detected and partly

missed (left of the IJsselmeer). The settings are similar to Fig. 8, except for the color scale of the upper panel.

The GMI sensor is equipped with high-frequency channels to improve the detection of light-

intensity events in comparison to its predecessor that served during the Tropical Rainfall Measuring

Mission (TRMM), the TMI (TRMM Microwave Imager).

As shallow precipitation over the

Netherlands is often associated with light precipitation, we also hypothesized these channels to be

important for the RF model. The higher frequency channels were indeed important for the RF

model, but it remained difficult to accurately separate dry and shallow events. Various explanations

are discussed below.
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Firstly, the algorithm might be overly sensitive. This sensitivity is likely induced by the relatively
weak scattering signal associated with (stratiform) shallow events (Weng and Grody 2000; Kida
et al. 2009, 2018). As a consequence, the random forest model learns to identify even the smallest
decreases in brightness temperatures as shallow precipitation. However, as a drawback of this
sensitivity, slight decreases in brightness temperatures related to non-precipitating ice clouds, such
as thick cirrus clouds or multi-layered clouds, are also subjective to be classified as shallow, as
shown in the two case studies (Figs. 7 and 8).

Secondly, as expected, the presence of ice particles seems to be a condition for the RF model
to detect (shallow) precipitation. However, due to the limited vertical extent associated with
shallow precipitation, the cloud top might be located below the freezing level. As a consequence,
scattering related to ice particles is absent and only the emission of liquid water can be detected
(Lebsock et al. 2010). These “warm” rain processes over land surfaces are hard to distinguish
from non-precipitating clouds by spaceborne microwave radiometers (Stephens and Kummerow
2007). Another source resulting in a limited scattering signal is the presence of liquid water above
the freezing level (Matrosov and Turner 2018). Both the absence of and limited scattering signal
related to ice particles might result in shallow footprints being classified as dry (Fig. 9).

The difference in results with, for instance, the overview paper of Turk et al. (2021) might be
related to our regional approach and focus on distinguishing dry, shallow, and non-shallow footprints
instead of characterizing background surfaces. Our focus enhances the relative importance of higher
frequency channels due to the interaction with water vapor and scattering of ice particles. However,
including observations from low-frequency channels through subtraction from high-frequency
channels demonstrated a slightly higher F1-score, ranging between 0.1 to 0.3 higher depending on
the season, compared to when low frequencies were included separately (not shown).

Another hypothesis that has been discussed is the possibility that lower Tb values are product
of wet surface conditions, which the RF misinterprets as colder clouds. We found consistently
lower Tb values measured by the 18.7 GHz channel over water-saturated areas such as rivers
and low-laying land (not shown). However, these areas did not overlap with the locations of dry
footprints wrongly classified as shallow. Additionally, higher frequency channels did not observe
lower values over these areas (Figs. 7, 8, lower panels). Furthermore, the sky was often cloudy

when dry footprints were classified as shallow (Figs. 7, 8, right panels). In general, our algorithm
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seems less affected by background radiation due to the limited importance of lower frequency
channels. This limited role of the lower frequency channels and the relatively small footprint size
of the GMI could also explain the limited influence of the coast, which contrasts the results of
previous research (Bennartz 1999; Munchak and Skofronick-Jackson 2013).

Unfortunately, at least three cases with numerous shallow footprints classified as dry occurred
during nighttime when geostationary VIS observations are unavailable. Although algorithms solely
based on IR observations can also deduce cloud-phase information, their accuracy is lower than
those including VIS observations (Costa et al. 2007; Iwabuchi et al. 2016; Escrig et al. 2013).
Additionally, interpreting IR images is more complex than those based on IR/VIS observations
and is considered out of scope for the current analysis. We also explored matched observations
with ATMS, SSMIS, and TROPICS (radiometers equipped with higher frequency channels), but
the number of matched footprints with GMI was limited.

The performance of geostationary cloud-phase retrieval algorithms that combine IR/VIS obser-
vations is only qualitative and may not work well over snow covered surfaces or low solar zenith
angles (Lensky and Rosenfeld 2008; EUMETRAIN 2023), but the impact of these limitations is
expected to be limited as there was no snow cover during the considered case studies. Since the
areas flagged as (thick) ice clouds by both algorithms considered in this study appear to correlate
well with errors in the RF algorithm (Figs. 7, 8, right panels), it seems beneficial to include the
geostationary satellites to separate between dry, shallow, and non-shallow footprints.

The authors are aware that the spatial coverage of the current study could be extended globally if
DPR observations were used as a reference. However, as mentioned in Section (1) and confirmed
in the results of this study (Section 3), the performance of DPR regarding shallow precipitation
is limited. This result again amplifies the need for reliable calibration and validation data. At
the same time, our results suggest that DPR observations could improve the classification between
shallow and non-shallow precipitation systems.

The frequent occurrence of convective events in summer results in an overrepresentation of
non-shallow footprints (Fig. 3). This overrepresentation is reduced when using the ALL model
(Fig. 10). Although this improves the classification between dry and rainy footprints (i.e. shallow
and non-shallow) in summer, the “ALL” model showed a decreased performance in classifying dry

and rainy footprints in winter, when most shallow events occur.
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Fic. 10. Same as Fig. 3, but applying the model based on the entire year on DJF (left) and JJA (right) Upper

panel is without inclusion of the DPR, lower panel with inclusion of the DPR. The tested dataset was balanced.

The Fl-scores corresponding to the “ALL” model distinguished by season and various input
parameters are shown in Fig. 11. Compared to the seasonal models (Fig. 2), the F1-scores of the
ALL, BASIC, and ERA models decreased for all seasons (Fig. 11). These results again confirm
the limited importance of ERA parameters, even when applying a more general model in the time
aspect. In contrast, Fig. 11 also demonstrates the added value of DPR observations, despite DPR’s

limitations detecting shallow precipitation.
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Fic. 11. Same as Fig. 2, but applying the model based on the entire year on the four different seasons.

The limited importance of ERA-5 parameters, which is contrary to findings in prior studies,
is attributed to the regional focus. Seasons implicitly provide environmental information, for
instance due to the clustering of temperature. Table 2 demonstrates that ERA-5 temperature is
more important when training the model on all seasons. Additionally, we included ERAS moisture

data to mitigate the impact of varying moisture levels (above the cloud top) on Tb values retrieved
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from higher frequency channels. However, we found a limited impact of atmospheric moisture on
the model’s performance, likely due to relatively modest moisture levels over the Netherlands.

More accurate input could in principle be retrieved using 3D data. However, this study aimed
to find more general relations through the use of a longer period. The amount of data when
considering 3D observations would be prohibitive over such a time frame. Instead, we would aim
to study 3D radar fields (i.e. coupling microwave radiometer observations to ground-based radars)
in relation to case studies, preferably from a vertically pointing rain radar, to unravel the vertical
structure of the atmosphere and to confirm our earlier hypotheses related to the presence/absence
of ice particles.

Sections 3 and 4 both focus on the wrongly classified shallow and dry footprints, while only little
attention is paid to the non-shallow footprints. As previously stated, this study aims to improve the
detection of (shallow) precipitation with radiometers. Non-shallow precipitation is almost always
detected: even if wrongly classified, non-shallow footprints are almost never classified as dry (Fig.
3, 10). The reason to still include the separation between shallow and non-shallow was to point

out that missed precipitation mostly involved shallow precipitation.

5. Conclusions

The retrieval of light and/or shallow precipitation estimates from spaceborne microwave radiome-
ter observations is challenging, especially over land. This study implemented a random forest (RF)
model that used microwave radiometer observations from the Global Precipitation Measurement
(GPM) mission as input to distinguish dry, shallow, and non-shallow footprints over a high-latitude
region. The RF model, trained on five years of data and tested on two independent years, performed
worst in winter (F1-score ranging from 0.68 to 0.75) and best in summer (F1-score ranging from
0.81 to 0.92), independent of the input features. The model had difficulties to distinguish shallow
and non-shallow in both seasons, but more in summer (48.2% of the shallow events classified as
non-shallow) than winter (36.8%). In contrast, distinguishing between shallow and dry footprints
was more challenging in winter, when 12.5% shallow footprints were wrongly classified as dry
and 15.3% of the dry footprints were wrongly classified as shallow. Shallow footprints associated

with a limited scattering signal were wrongly classified as dry, while dry footprints associated with
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relatively low brightness temperatures observed by higher frequency channels (>85 GHz) were
wrongly classified as shallow.

This study confirmed the importance of high-frequency channels for spaceborne precipitation
retrieval over land, while at the same time the added value when combining these observations with
those retrieved from low frequency channels was demonstrated. Furthermore, the implementation
of the RF model and analysis of the wrongly identified footprints improved our understanding of
the difficulties associated with distinguishing between shallow and dry footprints in a moderate
maritime climate. This method could be extended to other regions as well to further unravel the
difficulties associated with precipitation retrieval from spaceborne microwave radiometers. This
study also indicated the potential to improve spaceborne precipitation detection by merging obser-
vations retrieved from both geostationary and LEO orbiting satellites. For future studies concerning
spaceborne precipitation retrieval over northern latitudes, we recommend to use vertically pointing

radars to study the microphysics associated with shallow events.

34



607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

Acknowledgments. We acknowledge financial support from the Dutch Research Council (NWO)
through project ALWGO.2018.048. Additionally, we would like to thank Giulia Panegrossi and
Lisa Milani for their valuable contributions and ideas on shallow precipitation. Furthermore, we
highly appreciate the input of Mircea Grecu regarding the GPM-DPR instrument. We also thank

the two anonymous reviewers for their constructive comments and suggestions.

Data availability statement. GPM data can be retrieved from: https://gpm.nasa.gov/data/
directory

MSG data can be retrieved from: https://data.eumetsat.int/search?query=

KNMI ETH data can be retrieved from: https://dataplatform.knmi.nl/dataset/
radar-tar-echotopheight-5min-1-0

KNMI precipitation data can be retrieved from: https://dataplatform.knmi.nl/dataset/

rad-nl25-rac-mfbs-5min-netcdf4-2-0

References

Aberson, K., 2011: The spatial and temporal variability of the vertical dimension of rain-
storms and their relation with precipitation intensity. URL http://bibliotheek.knmi.nl/knmipubIR/
IR2011-03.pdf.

Adhikari, A., and A. Behrangi, 2022: Assessment of satellite precipitation products in relation
with orographic enhancement over the western United States. Earth and Space Science, 9 (2),

€2021EA001 906, https://doi.org/10.1029/2021EA001906.

Adhikari, A., C. Liu, and L. Hayden, 2019: Uncertainties of GPM microwave imager precipitation
estimates related to precipitation system size and intensity. Journal of Hydrometeorology, 20 (9),

1907-1923, https://doi.org/10.1175/JHM-D-19-0038.1.

Anagnostou, E. N., 2004: Overview of overland satellite rainfall estimation for hydro-
meteorological applications. Surveys in Geophysics, 25 (5), 511-537, https://doi.org/10.1007/
s10712-004-5724-6.

35



633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

Arulraj, M., and A. P. Barros, 2017: Shallow precipitation detection and classification using
multifrequency radar observations and model simulations. Journal of Atmospheric and Oceanic

Technology, 34 (9), 1963-1983, https://doi.org/10.1175/JTECH-D- 17-0060.1.

Awaka, J., M. Le, V. Chandrasekar, N. Yoshida, T. Higashiuwatoko, T. Kubota, and T. Iguchi,
2016: Rain type classification algorithm module for GPM dual-frequency precipitation radar.
Journal of Atmospheric and Oceanic Technology, 33 (9), 1887—-1898, https://doi.org/10.1175/
JTECH-D-16-0016.1.

Behrangi, A., K.-1. Hsu, B. Imam, S. Sorooshian, G. J. Huffman, and R. J. Kuligowski, 2009:
PERSIANN-MSA: A precipitation estimation method from satellite-based multispectral analy-
sis. Journal of Hydrometeorology, 10 (6), 1414—1429, https://doi.org/10.1175/2009JHM1139.1.

Behrangi, A., Y. Tian, B. H. Lambrigtsen, and G. L. Stephens, 2014: What does CloudSat
reveal about global land precipitation detection by other spaceborne sensors? Water Resources

Research, 50 (6), 4893-4905, https://doi.org/https://doi.org/10.1002/2013WR014566.

Bennartz, R., 1999: On the use of SSM/I measurements in coastal regions. Journal of Atmospheric
and Oceanic Technology, 16 (4), 417-431, https://doi.org/10.1175/1520-0426(1999)016{0417:
OTUOSI)2.0.CO:;2.

Biau, G., and E. Scornet, 2016: A random forest guided tour. TEST, 25 (2), 197-227, https://doi.org/
10.1007/s11749-016-0481-7.

Bogerd, L., H. Leijnse, A. Overeem, and R. Uijlenhoet, 2023: Assessing sampling and retrieval
errors of GPROF precipitation estimates over the Netherlands. EGUsphere, 1-22, https://doi.org/
10.5194/egusphere-2023-1258.

Bogerd, L., A. Overeem, H. Leijnse, and R. Uijlenhoet, 2021: A comprehensive five-year evaluation
of IMERG late run precipitation estimates over the Netherlands. Journal of Hydrometeorology,

22 (7), 1855-1868, https://doi.org/10.1175/JHM-D-21-0002.1.

Breiman, L., 2001: Random Forests. Machine Learning, 45 (1), 5-32, https://doi.org/10.1023/A:
1010933404324.

36



659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

Casella, D., G. Panegrossi, P. Sano, A. C. Marra, S. Dietrich, B. T. Johnson, and M. S. Kulie, 2017:
Evaluation of the GPM-DPR snowfall detection capability: Comparison with CloudSat-CPR.
Atmospheric Research, 197, 6475, https://doi.org/10.1016/j.atmosres.2017.06.018.

Cecil, D. J., and T. Chronis, 2018: Polarization-corrected temperatures for 10-, 19-, 37-, and 89-
GHz passive microwave frequencies. Journal of Applied Meteorology and Climatology, 57 (10),
2249-2265, https://doi.org/10.1175/JAMC-D-18-0022.1.

Chen, F., and X. Li, 2016: Evaluation of IMERG and TRMM 3B43 monthly precipitation products
over mainland China. Remote Sensing, 8 (6), 472, https://doi.org/10.3390/rs8060472.

Costa, M. J., V. Levizzan, E. Cattani, and S. Melani, 2007: The retrieval of cloud top properties us-
ing VIS-IR channels. Measuring Precipitation From Space, V. Levizzani, P. Bauer, and F. J. Turk,
Eds., Springer Netherlands, Dordrecht, 79-95, https://doi.org/10.1007/978-1-4020-5835-6_7.

D’Adderio, L. P., D. Casella, S. Dietrich, P. Sano, and G. Panegrossi, 2022: GPM-CO observations
of Medicane Ianos: Comparative analysis of precipitation structure between development and
mature phase. Atmospheric Research, 273, 106 174, https://doi.org/10.1016/j.atmosres.2022.
106174.

Daniels, E. E., G. Lenderink, R. W. A. Hutjes, and A. a. M. Holtslag, 2014: Spatial precipitation
patterns and trends in the Netherlands during 1951-2009. International Journal of Climatology,
34 (6), 1773—-1784, https://doi.org/10.1002/joc.3800.

Draper, D. W., D. A. Newell, F. J. Wentz, S. Krimchansky, and G. M. Skofronick-Jackson, 2015:
The Global Precipitation Measurement (GPM) microwave imager (GMI): instrument overview
and early on-orbit performance. IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing, 8 (7), 3452-3462, https://doi.org/10.1109/JSTARS.2015.2403303.

Escrig, H., F. J. Batlles, J. Alonso, F. M. Baena, J. L. Bosch, I. B. Salbidegoitia, and J. I. Burgaleta,
2013: Cloud detection, classification and motion estimation using geostationary satellite imagery

for cloud cover forecast. Energy, 55, 853—859, https://doi.org/10.1016/j.energy.2013.01.054.

EUMETRAIN, 2023: SEVIRI day microphysics RGB quick guide. URL https://www-cdn.
eumetsat.int/files/2020-04/pdf _rgb_quick_guide_day_micro.pdf.

37



686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

oy

0

EUMETSAT, 2023a: Day microphysics RGB - MSG - 0 degree. URL https://data.eumetsat.int/
product/EO:EUM:DAT:-MSG:DMRGB#.

EUMETSAT, 2023b: EUMETSAT productviewer. URL https://view.eumetsat.int/productviewer?
v=default.

EUMETSAT, 2023c: Natural colour RGB - MSG - 0 degree. URL https://data.eumetsat.int/product/
EO:EUM:DAT:-MSG:NCL#.

Gregorutti, B., B. Michel, and P. Saint-Pierre, 2017: Correlation and variable importance in random

forests. Statistics and Computing, 27 (3), 659-678, https://doi.org/10.1007/s11222-016-9646-1.

Hastie, T., R. Tibshirani, and J. Friedman, 2009: Random forests. The Elements of Statistical

Learning: Data mining, inference, and prediction, Springer New York, New York, NY, 587-
604, https://doi.org/10.1007/978-0-387-84858-7_15.

Hayden, L., and C. Liu, 2021: Differences in the diurnal variation of precipitation estimated by
spaceborne radar, passive microwave radiometer, and IMERG. Journal of Geophysical Research:

Atmospheres, 126 (9), €2020JD033 020, https://doi.org/10.1029/2020JD033020.

Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming.
Journal of Climate, 19 (21), 5686-5699, https://doi.org/10.1175/JCLI3990.1.

Herman, G. R., and R. S. Schumacher, 2018: Money doesn’t grow on trees, but forecasts do:
forecasting extreme precipitation with random forests. Monthly Weather Review, 146 (5), 1571—

1600, https://doi.org/10.1175/MWR-D-17-0250.1.

Hersbach, H., and Coauthors, 2020: The ERAS global reanalysis. Quarterly Journal of the Royal
Meteorological Society, 146 (730), 1999-2049, https://doi.org/10.1002/qj.3803.

Hirose, M., S. Shige, T. Kubota, F. A. Furuzawa, H. Minda, and H. Masunaga, 2021: Refinement
of surface precipitation estimates for the dual-frequency precipitation radar on the GPM core

observatory using near-nadir measurements. Journal of the Meteorological Society of Japan.

Ser. 11, 99 (5), 1231-1252, https://doi.org/10.2151/jms;j.2021-060.

38



M

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

Hoffmann, L., and Coauthors, 2019: From ERA-Interim to ERAS: the considerable impact of
ECMWF’s next-generation reanalysis on Lagrangian transport simulations. Atmospheric Chem-

istry and Physics, 19 (5), 3097-3124, https://doi.org/10.5194/acp-19-3097-2019.

Holleman, I., 2008: Echotops for annotation on radar imagery. Tech. rep. URL https://cdn.knmi.
nl/knmi/pdf/bibliotheek/knmipubTR/TR299.pdf.

Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement Mission. Bul-
letin of the American Meteorological Society, 95 (5), 701-722, https://doi.org/10.1175/
BAMS-D-13-00164.1.

Huntington, T. G., 2006: Evidence for intensification of the global water cycle: review and

synthesis. Journal of Hydrology, 319 (1), 83-95, https://doi.org/10.1016/].jhydrol.2005.07.003.

Iguchi, T., 2020: Dual-frequency Precipitation Radar (DPR) on the Global Precipitation Mea-
surement (GPM) mission’s core observatory. Satellite Precipitation Measurement: Volume 1,
V. Levizzani, C. Kidd, D. B. Kirschbaum, C. D. Kummerow, K. Nakamura, and F. J. Turk,
Eds., Advances in Global Change Research, Springer International Publishing, Cham, 183-192,
https://doi.org/10.1007/978-3-030-24568-9_11.

Iguchi, T., and Coauthors, 2022: GPM/DPR Level-2 Algorithm Theoretical Basis Document
(ATBD). URL https://gpm.nasa.gov/sites/default/files/2022-06/ATBD_DPR_VO7A.pdf.

IPCC, 2021: Climate change 2021 — the physical science basis: working group I contribution
to the sixth assessment report of the Intergovernmental Panel on Climate Change (IPCC). 1st
ed., Cambridge University Press, https://doi.org/10.1017/9781009157896, URL https://www.
cambridge.org/core/product/identifier/9781009157896/type/book.

IPCC, 2022: Climate Change 2022 — impacts, adaptation and vulnerability: working group 11
contribution to the sixth Assessment report of the Intergovernmental Panel on Climate Change
(IPCC). 1st ed., Cambridge University Press, https://doi.org/10.1017/9781009325844, URL
https://www.cambridge.org/core/product/identifier/9781009325844/type/book.

Iwabuchi, H., M. Saito, Y. Tokoro, N. S. Putri, and M. Sekiguchi, 2016: Retrieval of radiative and
microphysical properties of clouds from multispectral infrared measurements. Progress in Earth

and Planetary Science, 3 (1), 32, https://doi.org/10.1186/s40645-016-0108-3.

39



739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

Kida, S., T. Kubota, S. Shige, and T. Mega, 2018: Chapter 12 - development of a rain/no-
rain classification method over land for the microwave sounder algorithm. Remote Sensing of
Aerosols, Clouds, and Precipitation, T. Islam, Y. Hu, A. Kokhanovsky, and J. Wang, Eds.,
Elsevier, 249-265, https://doi.org/10.1016/B978-0-12-810437-8.00012-8.

Kida, S., S. Shige, T. Kubota, K. Aonashi, and K. Okamoto, 2009: Improvement of rain/no-rain
classification methods for microwave radiometer observations over the ocean using a 37 GHz
emission signature. Journal of the Meteorological Society of Japan. Ser. II, 8TA, 165-181,
https://doi.org/10.2151/jmsj.87A.165.

Kidd, C., 1998: On rainfall retrieval using polarization-corrected temperatures. International

Journal of Remote Sensing, 19 (5), 981-996, https://doi.org/10.1080/014311698215829.

Kidd, C., G. Huffman, V. Maggioni, P. Chambon, and R. Oki, 2021: The global satellite precipi-
tation constellation: current status and future requirements. Bulletin of the American Meteoro-

logical Society, 102 (10), E1844-E1861, https://doi.org/10.1175/BAMS-D-20-0299.1.

Kidd, C., and V. Levizzani, 2011: Status of satellite precipitation retrievals. Hydrology and Earth
System Sciences, 15 (4), 1109-1116, https://doi.org/10.5194/hess-15-1109-2011.

Kidd, C., J. Tan, P.-E. Kirstetter, and W. A. Petersen, 2018: Validation of the Version 05 Level
2 precipitation products from the GPM core observatory and constellation satellite sensors.
Quarterly Journal of the Royal Meteorological Society, 144 (S1), 313-328, https://doi.org/
10.1002/qj.3175.

Klotz, B. W., and E. W. Uhlhorn, 2014: Improved stepped frequency microwave radiometer tropical
cyclone surface winds in heavy precipitation. Journal of Atmospheric and Oceanic Technology,

31 (11), 2392-2408, https://doi.org/10.1175/JTECH-D-14-00028.1.

Kummerow, C., and L. Giglio, 1994: A passive microwave technique for estimating rainfall and
vertical structure information from space. Part I: algorithm description. Journal of Applied Me-
teorology and Climatology, 33 (1), 3—18, https://doi.org/10.1175/1520-0450(1994)033(0003:
APMTFE)2.0.CO;2.

Kummerow, C. D., 2020: Introduction to passive microwave retrieval methods. Satellite Precipi-

tation Measurement: Volume 1, V. Levizzani, C. Kidd, D. B. Kirschbaum, C. D. Kummerow,

40



767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

K. Nakamura, and F. J. Turk, Eds., Advances in Global Change Research, Springer International
Publishing, Cham, 123-140, https://doi.org/10.1007/978-3-030-24568-9_7.

Kummerow, C. D., D. L. Randel, M. Kulie, N.-Y. Wang, R. Ferraro, S. Joseph Munchak, and
V. Petkovic, 2015: The evolution of the Goddard profiling algorithm to a fully parametric
scheme. Journal of Atmospheric and Oceanic Technology, 32 (12), 22652280, https://doi.org/
10.1175/JTECH-D-15-0039.1.

Kummerow, C. D., S. Ringerud, J. Crook, D. Randel, and W. Berg, 2011: An observationally
generated a priori database for microwave rainfall retrievals. Journal of Atmospheric and Oceanic

Technology, 28 (2), 113-130, https://doi.org/10.1175/2010JTECHA1468.1.

Lebsock, M. D., T. S. L’Ecuyer, and G. L. Stephens, 2010: Detecting the ratio of rain and cloud
water in low-latitude shallow marine clouds. Journal of Applied Meteorology and Climatology,

50 (2), 419432, https://doi.org/10.1175/2010JAMC2494.1.

Lee, Y.-R., D.-B. Shin, J.-H. Kim, and H.-S. Park, 2015: Precipitation estimation over radar gap
areas based on satellite and adjacent radar observations. Atmospheric Measurement Techniques,

8 (2), 719-728, https://doi.org/10.5194/amt-8-719-2015.

Lensky, I. M., and D. Rosenfeld, 2008: Clouds-Aerosols-Precipitation Satellite Analysis Tool
(CAPSAT). Atmos. Chem. Phys.

Levizzani, V., J. Schmetz, H. J. Lutz, J. Kerkmann, P. P. Alberoni, and M. Cervino, 2001: Precipi-
tation estimations from geostationary orbit and prospects for METEOSAT Second Generation.

Meteorological Applications, 8 (1), 23—41, https://doi.org/10.1017/S1350482701001037.

Liao, L., and R. Meneghini, 2019: Physical evaluation of GPM DPR single- and dual-wavelength
algorithms. Journal of Atmospheric and Oceanic Technology, 36 (5), 883-902, https://doi.org/
10.1175/JTECH-D-18-0210.1.

Lin, X., and A. Y. Hou, 2012: Estimation of rain intensity spectra over the continental United States
using ground radar—gauge measurements. Journal of Climate, 25 (6), 1901-1915, https://doi.org/
10.1175/JCLI-D-11-00151.1.

41



793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

Liu, C., and E. J. Zipser, 2009: “Warm Rain” in the tropics: seasonal and regional distributions
based on 9 yr of TRMM Data. Journal of Climate, 22 (3), 767-779, https://doi.org/10.1175/
2008JCLI2641.1.

Lorenz, C., and H. Kunstmann, 2012: The hydrological cycle in three state-of-the-art reanalyses:
Intercomparison and performance analysis. Journal of Hydrometeorology, 13 (5), 1397-1420,

https://doi.org/10.1175/JHM-D-11-088.1.

Maggioni, V., C. Massari, and C. Kidd, 2022: Chapter 13 - Errors and uncertainties associated with
quasiglobal satellite precipitation products. Precipitation Science, S. Michaelides, Ed., Elsevier,

377-390, https://doi.org/10.1016/B978-0-12-822973-6.00023-8.

Maggioni, V., P. C. Meyers, and M. D. Robinson, 2016: A review of merged high-resolution satellite
precipitation product accuracy during the Tropical Rainfall Measuring Mission (TRMM) era.
Journal of Hydrometeorology, 17 (4), 1101-1117, https://doi.org/10.1175/JHM-D-15-0190.1.

Masaki, T., T. Iguchi, K. Kanemaru, K. Furukawa, N. Yoshida, T. Kubota, and R. Oki, 2020: Cali-
bration of the dual-frequency precipitation radar onboard the global precipitation measurement
core observatory. IEEE Transactions on Geoscience and Remote Sensing, 1-16, https://doi.org/

10.1109/TGRS.2020.3039978.

Matrosov, S. Y., and D. D. Turner, 2018: Retrieving mean temperature of atmospheric liquid
water layers using microwave radiometer measurements. Journal of Atmospheric and Oceanic

Technology, 35 (5), 1091-1102, https://doi.org/10.1175/JTECH-D-17-0179.1.

McCollum, J. R., W. F. Krajewski, R. R. Ferraro, and M. B. Ba, 2002: Evaluation of biases of
satellite rainfall estimation algorithms over the continental United States. Journal of Applied
Meteorology and Climatology, 41 (11), 1065-1080, https://doi.org/10.1175/1520-0450(2002)
041(1065:EOBOSR)2.0.CO;2.

Munchak, S. J., and G. Skofronick-Jackson, 2013: Evaluation of precipitation detection over
various surfaces from passive microwave imagers and sounders. Armospheric Research, 131,

81-94, https://doi.org/10.1016/j.atmosres.2012.10.011.

42



819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

Muiioz-Sabater, J., and Coauthors, 2021: ERAS-Land: a state-of-the-art global reanalysis dataset
for land applications. Earth System Science Data, 13 (9), 43494383, https://doi.org/10.5194/
essd-13-4349-2021.

Nath, P. K., and B. Behera, 2011: A critical review of impact of and adaptation to climate change
in developed and developing economies. Environment, Development and Sustainability, 13 (1),

141-162, https://doi.org/10.1007/s10668-010-9253-9.

Overeem, A., T. A. Buishand, and I. Holleman, 2009a: Extreme rainfall analysis and estimation
of depth-duration-frequency curves using weather radar. Water Resources Research, 45 (10),

https://doi.org/10.1029/2009WR007869.

Overeem, A., I. Holleman, and A. Buishand, 2009b: Derivation of a 10-year radar-based cli-
matology of rainfall. Journal of Applied Meteorology and Climatology, 48 (7), 1448-1463,
https://doi.org/10.1175/2009JAMC1954.1.

Overeem, A., H. Leijnse, and R. Uijlenhoet, 2011: Measuring urban rainfall using microwave
links from commercial cellular communication networks. Water Resources Research, 47 (12),

https://doi.org/10.1029/2010WR010350.

Panegrossi, G., A. C. Marra, P. Sano, L. Baldini, D. Casella, and F. Porcu, 2020: Heavy precipitation
systems in the Mediterranean area: the role of GPM. Satellite Precipitation Measurement:
Volume 2, V. Levizzani, C. Kidd, D. B. Kirschbaum, C. D. Kummerow, K. Nakamura, and F. J.
Turk, Eds., Advances in Global Change Research, Springer International Publishing, Cham,
819-841, https://doi.org/10.1007/978-3-030-35798-6_18.

Pedregosa, F., and Coauthors, 2011: Scikit-learn: Machine Learning in Python. Journal of Machine
Learning Research, 12 (85), 2825-2830.

Petkovi¢, V., C. D. Kummerow, D. L. Randel, J. R. Pierce, and J. K. Kodros, 2018: Improving
the quality of heavy precipitation estimates from satellite passive microwave rainfall retrievals.

Journal of Hydrometeorology, 19 (1), 69-85, https://doi.org/10.1175/JHM-D-17-0069.1.

Petkovi¢, V., M. Orescanin, P. Kirstetter, C. Kummerow, and R. Ferraro, 2019: Enhancing
PMW satellite precipitation estimation: detecting convective class. Journal of Atmospheric

and Oceanic Technology, 36 (12), 2349-2363, https://doi.org/10.1175/JTECH-D-19-0008.1.

43



847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

Petty, G. W., and R. Bennartz, 2017: Field-of-view characteristics and resolution matching for the
Global Precipitation Measurement (GPM) Microwave Imager (GMI). Atmospheric Measurement
Techniques, 10 (3), 745-758, https://doi.org/10.5194/amt-10-745-2017.

Petty, G. W., and K. Li, 2013: Improved passive microwave retrievals of rain rate over land and
ocean. Part I: algorithm description. Journal of Atmospheric and Oceanic Technology, 30 (11),

2493-2508, https://doi.org/10.1175/JTECH-D-12-00144.1.

Randel, D. L., C. D. Kummerow, and S. Ringerud, 2020: The Goddard Profiling (GPROF)
precipitation retrieval algorithm. Satellite Precipitation Measurement: Volume 1, V. Levizzani,
C. Kidd, D. B. Kirschbaum, C. D. Kummerow, K. Nakamura, and F. J. Turk, Eds., Advances in
Global Change Research, Springer International Publishing, 141-152, https://doi.org/10.1007/
978-3-030-24568-9 8.

Saltikoft, E., and Coauthors, 2019: An overview of using weather radar for climatological studies:
successes, challenges, and potential. Bulletin of the American Meteorological Society, 100 (9),

1739-1752, https://doi.org/10.1175/BAMS-D-18-0166.1.

Segal, M. R., 2004: Machine learning benchmarks and random forest regression.

Shen, Z., and Coauthors, 2020: Recent global performance of the Climate Hazards group In-
frared Precipitation (CHIRP) with Stations (CHIRPS). Journal of Hydrology, 591, 125284,
https://doi.org/10.1016/j.jhydrol.2020.125284.

Shige, S., S. Kida, H. Ashiwake, T. Kubota, and K. Aonashi, 2013: Improvement of TMI rain
retrievals in mountainous areas. Journal of Applied Meteorology and Climatology, 52 (1), 242—
254, https://doi.org/10.1175/JAMC-D-12-074.1.

Skofronick-Jackson, G., W. Berg, C. Kidd, D. B. Kirschbaum, W. A. Petersen, G. J. Huffman,
and Y. N. Takayabu, 2018: Global Precipitation Measurement (GPM): Unified precipitation
estimation from space. Remote Sensing of Clouds and Precipitation, C. Andronache, Ed.,

Springer Remote Sensing/Photogrammetry, Springer International Publishing, Cham, 175-193,
https://doi.org/10.1007/978-3-319-72583-3_7.

44



873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

Spencer, R. W., 1986: A satellite passive 37-GHz scattering-based method for measuring oceanic
rain rates. Journal of Applied Meteorology and Climatology, 25 (6), 754-766, https://doi.org/
10.1175/1520-0450(1986)025(0754: ASPGSB)2.0.CO;2.

Stephens, G. L., and C. D. Kummerow, 2007: The remote sensing of clouds and precipitation
from space: A review. Journal of the Atmospheric Sciences, 64 (11), 3742-3765, https://doi.org/
10.1175/2006JAS2375.1.

Tang, G., M. P. Clark, S. M. Papalexiou, Z. Ma, and Y. Hong, 2020: Have satellite precipitation
products improved over last two decades? A comprehensive comparison of GPM IMERG

with nine satellite and reanalysis datasets. Remote Sensing of Environment, 240, 111697,

https://doi.org/10.1016/j.rse.2020.111697.

Tiberia, A., and Coauthors, 2021: GPM-DPR Observations on TGFs Producing Storms. Journal
of Geophysical Research: Atmospheres, 126 (8), e2020JD033 647, https://doi.org/10.1029/
2020JD033647.

Toyoshima, K., H. Masunaga, and F. A. Furuzawa, 2015: Early evaluation of Ku- and Ka-band
sensitivities for the Global Precipitation Measurement (GPM) Dual-Frequency Precipitation

Radar (DPR). SOLA, 11 (0), 14—17, https://doi.org/10.2151/s0la.2015-004.

Turk, F. J., and Coauthors, 2021: Adapting Passive Microwave-Based Precipitation Algorithms
to Variable Microwave Land Surface Emissivity to Improve Precipitation Estimation from the
GPM Constellation. Journal of Hydrometeorology, 22 (7), 1755-1781, https://doi.org/10.1175/
JHM-D-20-0296.1.

Watters, D., A. Battaglia, K. Mroz, and F. Tridon, 2018: Validation of the GPM Version-5 surface
rainfall products over Great Britain and Ireland. Journal of Hydrometeorology, 19 (10), 1617-
1636, https://doi.org/10.1175/JHM-D-18-0051.1.

Weng, F., and N. C. Grody, 2000: Retrieval of ice cloud parameters using a microwave imaging
radiometer. Journal of the Atmospheric Sciences, 57 (8), 1069—1081, https://doi.org/10.1175/
1520-0469(2000)057(1069:ROICPU)2.0.CO;2.

45



899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

Wilheit, T., and Coauthors, 1994: Algorithms for the retrieval of rainfall from passive mi-
crowave measurements. Remote Sensing Reviews, 11 (1-4), 163—-194, https://doi.org/10.1080/
02757259409532264.

Wilheit, T. T., A. T. C. Chang, M. S. V. Rao, E. B. Rodgers, and J. S. Theon, 1977: A satellite
technique for quantitatively mapping rainfall rates over the oceans. Journal of Applied Meteo-
rology and Climatology, 16 (5), 551-560, https://doi.org/10.1175/1520-0450(1977)016¢0551:
ASTFQM)2.0.CO;2.

Wilheit, T. T., and Coauthors, 1982: Microwave radiometric observations near 19.35, 92 and 183

GHz of precipitation in tropical storm Cora. Journal of Applied Meteorology and Climatology,
21 (8), 1137-1145, https://doi.org/10.1175/1520-0450(1982)021(1137:MRONAG)2.0.CO;?2.

Winsemius, H. C., B. Jongman, T. I. E. Veldkamp, S. Hallegatte, M. Bangalore, and P. J. Ward,
2018: Disaster risk, climate change, and poverty: assessing the global exposure of poor people to
floods and droughts. Environment and Development Economics, 23 (3), 328-348, https://doi.org/
10.1017/S1355770X17000444.

Wolfensberger, D., M. Gabella, M. Boscacci, U. Germann, and A. Berne, 2021: RainForest: a
random forest algorithm for quantitative precipitation estimation over Switzerland. Atmospheric

Measurement Techniques, 14 (4), 3169-3193, https://doi.org/10.5194/amt-14-3169-2021.

Yamamoto, M. K., S. Shige, C.-K. Yu, and L.-W. Cheng, 2017: Further improvement of
the heavy orographic rainfall retrievals in the GSMaP algorithm for microwave radiome-
ters. Journal of Applied Meteorology and Climatology, 56 (9), 2607-2619, https://doi.org/
10.1175/JAMC-D-16-0332.1.

You, Y., and Coauthors, 2020: Raindrop signature from microwave radiometer over deserts. Geo-

physical Research Letters, 47 (16), e2020GLO088 656, https://doi.org/10.1029/2020GL088656.

46



