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Preface 
 

This document defines the mathematical specifications for the Goddard Enhanced Onboard 
Navigation System (GEONS), which was previously known as the GPS Enhanced Onboard 
Navigation System.  This document is a revision of the document FDSS-23-0035, issued 
November 28, 2012 (Reference 4). It has been updated to include all capabilities implemented in 
GEONS Flight Software Release 3.0.  

Proposed changes to this document should be submitted to the signatories along with supportive 
material justifying the proposed change. Changes to this document shall be made by complete 
revision. 

Comments or questions concerning this document and proposed changes shall be addressed to:  

David Gaylor 
Code 595 
Goddard Spaceflight Center 
Greenbelt, Maryland  
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Section 1.  Introduction 

The National Aeronautics and Space Administration (NASA) Goddard Space Flight Center 
(GSFC) has developed the capability to provide high-accuracy attitude, orbit, and time 
autonomously onboard NASA spacecraft.  The GSFC Mission Engineering and Systems Analysis 
Division has implemented NASA-developed navigation algorithms for high-accuracy real-time 
onboard orbit determination in the Global Positioning System (GPS) Enhanced Orbit 
Determination (GEODE) flight software.  The Goddard Enhanced Onboard Navigation System 
(GEONS) extends the capabilities of the GEODE flight software to include additional 
measurement types and additional navigation algorithms. 

1.1 Purpose and Scope 
This document presents the mathematical algorithms implemented in the GEONS Software 
Library (or GEONS).  Reference 1 defines the GEONS flight software requirements.  These 
algorithms were initially developed based on prototype flight software developed to support the 
Explorer Platform (EP)/Extreme Ultraviolet Explorer (EUVE) Tracking and Data Relay Satellite 
System (TDRSS) Onboard Navigation System (TONS) experiment (Reference 2) and the TONS 
flight software implemented for the Earth Observing System (EOS) Terra mission (Reference 3).  

The GEONS Software Design Document (Reference 76) describes the software architecture and 
design of the GEONS Computer Software Configuration Items (CSCIs). The GEONS Software 
Library consists of four CSCIs: GEONS Flight, GEONS Ground Tools, GEONS Analysis Tools, 
and GEONS Beta, shown in Figure 1-1. This document includes mathematical specifications for 
all capabilities implemented in Release 3.0 of the GEONS Software Library. In addition, an 
indication is provided for algorithms that are implemented in the Beta and Ground CSCIs or 
planned for implementation in future versions of GEONS. 

 
Figure 1-1 GEONS Software Library 

1.2 Document Organization 
Section 1.3 provides an overview of the algorithms implemented in GEONS.  Sections 2 
through 12 define the explicit algorithms implemented and provide associated mathematical 
background useful in understanding these algorithms.  To distinguish the flight software 
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algorithms from the background discussion, each equation number associated with an explicit 
flight software algorithm is followed by an asterisk (*).  

Section 2 provides a high-level description of the orbit estimation algorithms.  The estimation state 
is defined, and the extended Kalman filter (EKF) processing flow is described.  Section 3 describes 
the coordinate systems, transformations, and time systems used in GEONS.  In addition, the 
algorithm used in the calculation of the Greenwich hour angle is provided. 

Section 4 describes the single-step Runge-Kutta numerical integration algorithm and force models 
used in the propagation of the spacecraft equations of motion.  Algorithms for propagation of 
nonspacecraft state variables and ground-based receivers are given.  State error covariance 
propagation algorithms are also presented. 

Section 5 defines the Global Navigation Satellite Systems (GNSS)/Wide Area Augmentation 
System (WAAS) and cross-link measurement models and measurement partial derivatives.  
Algorithms for computing the GNSS space vehicle (SV) position and velocity are provided.  This 
section also includes the point solution, ground-station-to–satellite range and Doppler, celestial 
object, and TDRSS forward-link Doppler measurement models and measurement partial 
derivatives.  

Section 6 provides the algorithms used to propagate the user state vector to real time.  Section 7 
provides an algorithm for Doppler compensation prediction.  Section 8 provides a backup 
ephemeris computation algorithm.  Section 9 describes the generic maneuver targeting algorithm 
based on Lambert’s method.  Section 10 provides a cold start initialization algorithm that uses 
range and Doppler measurements.  Section 11 provides attitude estimation algorithms that may be 
implemented in a future version of GEONS. Section 12 provides algorithms that are used to 
simulate GNSS measurements. 

A list defining the abbreviations and acronyms used and a list of the references cited throughout 
this document follows Section 12. 

1.3 Overview of the GEONS Navigation Algorithms 
Table 1-1 summarizes the GEONS navigation algorithms defined in this document. Algorithms 
supported in Release 3.0 of the GEONS Flight CSCI (referred to as GEONS 3.0 throughout this 
document) are indicated as well as algorithms currently included in the GEONS Beta or Ground 
CSCI or future if not currently available in a GEONS CSCI. A ground receiver propagation model 
is also provided to support prelaunch testing of spacecraft receivers and vehicles on the surface of 
the Moon, planet, or asteroid.  These algorithms are defined in detail in Sections 2 through 12 of 
this document. 

GEONS navigation processing consists of two primary activities: 

• State vector estimation based on the processing of GNSS SV, WAAS GEO, cross-link 
range and Doppler, cross-link line-of-sight, Ground-Station-to-satellite range and 
Doppler, celestial object, TDRSS forward-link Doppler, and/or point solution position 
measurements 

• Real-time state vector propagation 
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In addition, Doppler compensation prediction, backup ephemeris computation, maneuver 
targeting, and cold start initialization are also implemented in Beta versions of GEONS.  Figure 1-
2 provides an overview of the GEONS navigation processing scenario.  In this figure, dt is the time 
interval between state vector updates by the estimator, nominally equal to 30 to 60 seconds.  

During the same time intervals, measurement, GEONS state estimation, and real-time propagation 
processing are performed for different time periods.  For example, the GPS/WAAS measurement 
process and real-time propagation could occur once per second.  GEONS state vector estimation 
could be performed at regular intervals, e.g., every 30 or 60 seconds, with intermediate propagation 
of the filter state vector if required to maintain prediction accuracy. 
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Table 1-1 Summary of GEONS Flight Software Algorithms 

Algorithm Type Algorithm (Section #) GEONS 
3.0 CSCI 

Primary coordinate 
system 

• Mean equator and equinox of J2000.0 with analytic coordinate 
transformations (3.2) 

• Options for Moon-centered and asteroid-centered trajectory propagation 
(4.1.1) 

• Option for to Geocentric Celestial Reference Frame (GCRF) and 
International Terrestrial Reference Frame (ITRF) reference frames (3.2.15) 

• Flight 
 

• Beta 
 

• Beta 

Primary time system • Coordinated universal time (UTC) (3.3) • Flight 
Numerical integrator • Runge-Kutta 4th-and 8th order (4.2) • Flight 
Filter spacecraft orbit 
acceleration model 

• Joint Gravity Model-2 (JGM-2) geopotential up to degree and order 30 
(4.1.2.2) 

• Earth Gravity Model 96 (EGM96) geopotential up to degree and order 360 
(4.1.2.2) 

• LP100K non-spherical lunar potential model (4.1.2.2) 
• GRGM900C non-spherical lunar potential model (4.1.2.2) 
• Other planetary non-spherical potential models (4.1.2.2) 
• Earth, solar, and lunar point masses with low precision analytic ephemeris or 

Earth, solar, lunar, and planetary point masses with high precision analytic 
ephemeris or JPL Developmental Ephemeris (DExxx) (4.1.1) 

• Analytic representation of Harris-Priester atmospheric density (4.1.3) 
• Solar radiation pressure with spherical area model (4.1.4) 
• Measured accelerations in RIC, VBN, Spacecraft body, or Mean of J2000.0 

frames (4.1.5) 
• Impulsive delta-V maneuver model (4.1.5) 

• Flight 
 

• Beta 
 

• Beta 
• Beta 
• Beta 
• Flight 

 
 

• Flight 
• Flight 
• Flight 

 
• Flight 

Estimation state • Position and velocity vectors for local and remote satellites or ground-based 
receiver (2.1 and 4.6) 

• Moon-based receiver (4.7) 
• Atmospheric drag coefficient correction for local and remote satellites (4.3) 
• Solar radiation pressure coefficient correction for local and remote satellites 

(4.3) 
• GPS receiver time bias, time bias rate, and time bias acceleration for local 

and remote satellites modeled as random walk, FOGM drift, or FOGM bias 
and SOGM drift processes. A relativistic clock bias correction can be 
included in the random walk model. (4.3) 

• Pseudorange and Doppler biases for each GPS SV (4.3) 
• GPS Ionospheric delay scale factor (4.3 and 5.3.5) 
• Ground-station-to-satellite range and Doppler biases for each Ground 

Station (4.3) 
• Pseudorange and Doppler biases for each cross-link transmitter (4.3) 
• Unmodeled acceleration biases in the RIC, VBN, or spacecraft body frame 

(4.3) 
• Accelerometer measurement biases (4.3) 
• Integrated carrier phase biases for each GPS SV and GPS receiver (4.3) 
• Singly-differenced carrier phase biases for each GPS SV and remote GPS 

receiver with respect to the local receiver (4.3) 
• Celestial object sensor biases (4.3) 
• Cross-link line-of-sight sensor biases (4.3) 
• TDRSS forward-link Doppler bias for each TDRSS satellite (4.3) 
• Hierarchical relative navigation capability (2.4) 

• Flight 
 

• Beta 
• Flight 
• Flight 

 
• Flight 

 
 
 

• Flight 
• Beta 
• Beta 

 
• Beta 
• Beta 

 
• Future 
• Beta 
• Beta 

 
• Beta 
• Beta 
• Beta 
• Future 



 

  
 1-5 
 

Algorithm Type Algorithm (Section #) GEONS 
3.0 CSCI 

Estimator • Extended Kalman filter with physically realistic process noise models and 
factored covariance matrix (2.3) 

• Scalar and hybrid batch measurement update options (2.3.2) 
• Measurement underweighting option (2.3.2) 
• Consider parameter option (2.3.2) 

• Flight 
 

• Flight 
• Flight 
• Flight 

Measurement model • GPS pseudorange with GPS receiver time and time bias corrections (5.3) 
• Camera range and bearing angles to spacecraft or landmarks on celestial 

bodies (5.8.2.3 and 5.8.2.4) 
• TDRSS Differenced One-Way Doppler (DOWD) (5.9.4) 
• TDRSS forward-link Doppler (5.9.3) 
• Point solution position and time bias (5.7) 
• Ground-station-to-satellite range and Doppler (5.6) 
• Intersatellite one-way and two-way cross-link pseudorange and Doppler with 

option to propagate transmitting satellite states if not being estimated (5.5) 
• GNSS pseudorange, Doppler, and integrated carrier phase with GNSS 

receiver time and time bias corrections, single-frequency and dual-frequency 
ionospheric delay corrections (5.3) 

• GPS TASS Differential Corrections, and ICE Differential Correction 
parameters (5.2.4 and 5.2.5) 

• GPS-to-relay-to-ground two-leg pseudorange (5.11) 
• GPS signal-to-noise ratio and double-difference carrier phase for attitude 

estimation (11.5) 
• Standard and singly differenced WAAS GEO pseudorange and Doppler with 

receiver time and time bias corrections (5.3) 
• Line-of-sight vector to a celestial object (3-axis stabilized spacecraft) (5.8.2) 
• Intersatellite bearing to another satellite (3-axis stabilized spacecraft) 

(5.8.2.2) 
• Bearing to a landmark or celestial object (5.8.2.3) 
• Sun sensor elevation angle (spinning spacecraft) (5.8.3) 
• Earth horizon crossing times (spinning spacecraft) (5.8.3) 
• Near-to-far-body and Near-to-near-body pseudoangle (5.8.4) 
• X-ray Pulsar phase and frequency (5.10) 

• Flight 
• Flight 

 
• Ground 
• Beta 
• Ground 
• Beta 
• Beta 

 
• Beta 

 
 

• Beta 
 

• Beta 
• Future 

 
• Beta 

 
• Beta 
• Beta 

 
• Beta 
• Beta 
• Beta 
• Beta 
• Beta 

Spacecraft orbit state 
transition matrix 

• Semianalytic formulation including J2 and Earth and planetary point mass 
gravity, atmospheric drag, and solar radiation pressure acceleration partial 
derivatives (4.4.1) 

• Second-order Gauss-Markov orbital covariance artificial damping (4.4.1) 

• Flight 
 
 

• Beta 
Attitude estimation 
state 

• Attitude error, angular rate or gyro bias error, and antenna gain calibration 
coefficient states for each satellite (11.1) 

• Future 

Filter spacecraft 
attitude acceleration 
model 

• Gravity gradient and measured torques (11.4) • Future 

Real-time spacecraft 
acceleration model 

• Earth point mass and J2 (6) • Beta 

Backup Ephemeris • Averaged equinoctial element ephemeris (8) • Beta 
Maneuver targeting  • Lambert’s method for Earth and planetary orbits (9) • Beta 
Cold Start 
Initialization 

• Search for initial mean longitude (10) • Beta 

Measurement 
Simulation 

• GNSS measurement simulation (12) • Analysis 



 

  
 1-6 
 

Measure
pseudorange

and Doppler at
time T

GPS  Measurement

every 0.1 second

State Vector
 Estimation

every dt  seconds

Realtime State
       Prediction

every second

Propagate state
to T+2dt in
1-second

increments

Select
measurements

to be processed

Pseudorange
and Doppler at

time T

Update user
state and error
covariance to

time T

GPS
Measurements

User State
at Time T

Current Time
T+0.1 second T+dt seconds

Processing
Frequency

 

Figure 1-2 GEONS Navigation Processing Scenario 
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Section 2.  State Estimation Algorithms 

The state estimation algorithm for GEONS consists of an extended Kalman filter (EKF) that uses 
physically connected process noise covariance models to account for force model and 
measurement errors.  

This section provides a high-level description of the state estimation algorithms. Section 2.1 
defines the estimation state, Section 2.2 defines the state error covariance, and Section 2.3 
describes the state estimation processing flow, with appropriate references made to the more 
detailed algorithms provided in Sections 3 through 5. 

2.1  Estimation State Vector 
The GEONS estimation algorithm estimates a state vector, X , which consists of one or more 
satellite state vectors, X i , a vector of tracking-system-dependent measurement biases, B , and the 
ionospheric delay scale factor, Iγ . Each satellite state vector consists of the satellite’s position and 
velocity vectors and optionally the receiver time bias,  the receiver time bias drift, the receiver 
time bias acceleration, the atmospheric drag coefficient correction, the solar radiation pressure 
coefficient correction, and/or acceleration biases. The estimator models the drag coefficient 
correction, solar radiation pressure coefficient correction, the receiver time bias corrections, 
acceleration biases, accelerometer sensor biases, and tracking-sensor-dependent measurement 
biases as random variables. Alternatively, the state vector can include the position and velocity 
vectors of a surface receiver located on the Earth, Moon or planet. In the case of a surface receiver, 
the drag coefficient correction and solar radiation pressure coefficient correction cannot be 
estimated.  

Optionally, any parameter in the estimation state vector except for the satellite position and 
velocity can be processed as a consider parameter. However, GEONS 3.0 only supports the 
inclusion of the atmospheric drag coefficient correction and sensor and global biases as consider 
parameters. The value and covariance of a consider parameter is not updated by the filter 
measurement update process but the effects of consider parameter uncertainties are included in the 
calculation of corrections to and covariance of estimated parameters and in the error cross-
covariance of estimated and consider parameters.  In addition, GEONS provides the capability to 
configure the estimation state vector to estimate a subset of the total estimation state vector. This 
capability can be used to reduce the state vector when different state vector components are 
estimated for multiple vehicles. 

The total estimation state vector with dimension )1(
1

++∑
=

B

N

n

n
S Nn

S

, where sn  is the size of each 

receiver’s state vector, sN  is the number of satellite/receiver state vectors being estimated, and 

BN  is the number of measurement biases being estimated, has the following form: 
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Each receiver state vector with dimension  ≤11 has the following form: 
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where 

 R  =  satellite/receiver position vector in Earth-centered J2000.0 coordinates 
(meters) 

 R  =  satellite/receiver velocity vector in Earth-centered J2000.0 coordinates (meters 
per second) 

∆ ∆C CD R,  =  atmospheric drag and solar radiation pressure coefficient corrections (unitless) 

 Rb   =  vector of receiver-dependent bias parameters, given by 
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where 

 Rb  =  receiver time bias from onboard reference time (defined in Section 4.3) 
(meters) 

 Rd  =   receiver time bias rate (defined in Section 4.3) (meters per second) 

 Rd  =   optional receiver time bias acceleration (defined in Section 4.3) (meters per 
second2) 
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and  Ua  = unmodeled acceleration biases in radial-intrack-crosstrack (RIC), velocity-
binormal-normal (VBN), or spacecraft body frame (defined in Section 4.3) (meters 
per second2) 

Optionally, the state vector can include the relative state vector of each nonlocal satellite with 
respect to the local satellite (n=1) can be estimated, rather than its absolute state vector: 
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 (2.1-1d)* 

The BN –dimension vector of tracking-sensor-dependent biases can include 32 GPS + 36 Galileo 
+ 8 WAAS GEO pseudorange biases, 32 GPS + 36 Galileo + 8 WAAS GEO Doppler biases, sN  

cross-link pseudorange and Doppler biases, measurement biases for each celestial object sensor 
on each of the sN  satellite/receivers being estimated, GSn  Ground Station (GS) range and Doppler 
biases, TDRSn  Tracking and Data Relay Satellite System (TDRSS) Doppler biases, 40 GPS/WAAS 
+ 36 Galileo carrier phase biases for each of the sN  satellite/receivers being estimated, 40 
GPS/WAAS + 36 Galileo singly differenced carrier phase biases between the local 
satellite/receiver and each of the sN -1 remote satellite/receivers being estimated, and 3 
accelerometer sensor measurement biases for each accelerometer: 
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where 

 WGb /
ρ  =  vector of 32 GPS + 36 Galileo + 8 WAAS GEO pseudorange biases (defined in 

Section 4.3) (meters) 

 WG
db /  =  vector of 32 GPS + 36 Galileo + 8 WAAS GEO Doppler biases (defined in 

Section 4.3) (Hertz) 

 CLbρ  =  vector of sN  cross-link pseudorange biases (defined in Section 4.3) (meters) 

 CL
db  =  vector of sN  cross-link Doppler biases (defined in Section 4.3) (Hertz) 

 COb  =  vector of biases for sn  celestial object sensors on sN  satellites (defined in 
Section 4.3)  

 GSbρ  =  vector of GSn  GS range biases (defined in Section 4.3) (meters) 

 GS
db  =  vector of GSn  GS Doppler biases (defined in Section 4.3) (Hertz) 

 TDRS
db  =  vector of TDRSn  TDRS Doppler biases (defined in Section 4.3) (Hertz)  

 WGb /
φ  =  vector of carrier phase biases between each of 32 GPS + 36 Galileo + 8 WAAS 

GEO  transmitters and the receiver on each of the sN  satellites being estimated 
(defined in Section 4.3) (meters) 
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 WGb /
φ∆  =  vector of singly differenced carrier phase biases for each of 32 GPS + 36 Galileo 

+ 8 WAAS GEO transmitters between the local satellite/receiver and each of the 
sN -1 remote satellite/receivers being estimated (defined in Section 4.3) (meters) 

 A
IMUb  =  vector of accelerometer sensor measurement biases in the IMU frame (defined 

in Section 4.3) (meters/second2).  
The system equations are given by 
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 II w=γ  (2.1-4a) 

where 
 ( )w tR  = noise process that models random disturbance on  R  

  = noise process that models random disturbances on  R  

 ( )w tCD
 = white noise process that models random disturbances on  ∆CD  

 ( )w tCR
 = white noise process that models random disturbances on  ∆CR  

 ( )w tb  = noise process that models random disturbance on  bR  
 ( )twa  = noise process that models random disturbance on  Ua  
 ( )tw WG /

ρ  = noise process that models random disturbance on  WGb /
ρ  

 ( )tw WG
d

/  = noise process that models random disturbance on  WG
db /  

 ( )tw CL
ρ  = noise process that models random disturbance on  CLbρ  

 ( )tw CL
d  = noise process that models random disturbance on  CL

db  
 ( )tw CO  = noise process that models random disturbance on  COb  
 ( )tw GS

ρ  = noise process that models random disturbance on  GSbρ  
 ( )tw GS

d  = noise process that models random disturbance on  GS
db  

 ( )twTDRS
d  = noise process that models random disturbance on  TDRS

db   
 ( )tw WG /

φ  = noise process that models random disturbance on  WGb /
φ  

 ( )tw WG /
φ∆  = noise process that models random disturbance on  WGb /

φ∆  

 ( )tw A
IMU  = noise process that models random disturbance on  A

IMUb  
 ( )twI  = noise process that models random disturbance on  Iγ  

The quantity ( )w tb  is a column vector given by 

 ( )















=

3

2

1

w
w
w

twb  (2.1-5) 

where w1, w2, and w3 are white noise processes that model random disturbances on Rb , Rd , and 

Rd  respectively.  

The satellite acceleration equations, , are provided in Section 4.1. The derivatives of  ∆CD, 

∆CR , bR , Ua , WGb /
ρ , WG

db / , CLbρ , CL
db , COb , GSbρ , GS

db , TDRS
db , WGb /

φ , WGb /
φ∆ , A

IMUb , and Iγ  are 

defined in Section 4.3. The ground-based receiver propagation equations are given in Section 4.6. 

( )w tR

( )R t
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2.2  State Error Covariance Matrix 
The state error covariance at time tk is defined as the expectation value of the square of the 
deviation of the estimated state ( )X k  at time tk from the true (unknown) state  at time tk, i.e., 

 [ ][ ]P E X X X Xk k k k k

T
≡ − −





   (2.2-1) 

In the equations below, a plus sign in parentheses (+) denotes the value of a quantity that has been 
corrected to include the effects of a measurement; a minus sign in parentheses (–) denotes the value 
of a quantity before this correction has been implemented. 

If the effects of the kth measurement have been included in the state error estimate, then 

 ( ) ( )[ ] ( )[ ]P E X X X Xk k k

T
+ = + − + −





   (2.2-2) 

If they have not been included, then 

 
( ) ( )[ ] ( )[ ]P E X X X Xk k k

T
− = − − − −





 

 (2.2-3) 

The state error covariance matrix represents the filter uncertainty in the estimated state vector. It 
also accounts for error correlations between estimated state vector elements. For the filter to be 
accurate and stable, the covariance matrix must represent the actual errors in the estimated state 
vector. The state error covariance matrix is defined below: 

 [ ]P

C C
C

C

N N

N N N

=

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅



































1
2

1 2 1 2 1 1

2 1 1 2 2
2

1 1
2

σ σ σ σ σ
σ σ σ

σ σ σ

, ,

,

,

 (2.2-4) 

( )X k
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where 

[P] = [N × N] state error covariance matrix, where N equals )1( ++× Bss NNn  

σi = standard deviation in estimate of state vector element  i 

σ i
2  = variance in estimate of state vector element  i 

Ci,j = Cj,i   = correlation coefficient for elements  i and j, absolute value < 1 

The state error covariance is initialized or reinitialized using command parameters. If the initial 
state error variances σ i

2  are provided in Mean of J2000.0 XYZ coordinates, they are used directly 
in Equation 2.2-4 to form [ ]XYZP with Ci,i = 1 and off-diagonal Ci,j = 0.   

If the state error variances σ i
2  are provided in instantaneous radial, in-track, cross-track (RIC) 

coordinates, they are used as follows to form the receiver position and velocity state vector 
covariance submatrices [ ]n

RICP , for each of the sN  satellites/receivers. In this case Ci,i = 1 and all 
off-diagonal Ci,j = 0 except for the radial velocity/in-track position correlations, C4,2 and C2,4, and 
the radial position/in-track velocity correlations, C1,5 and C5,1, which are uplinked parameters, 
nominally equal to –0.95. 

 [ ]



























σ
σσσ

σσσ
σ

σσσ
σσσ

=

2

2
1,5

2
2,4

2
4,2

2
5,1

2

00000
0000
0000
00000
0000
0000

C

IIR

RIR

C

IRI

IRR

n
RIC

C
C

C
C

P











 (2.2-4b) 

 

Each of the resulting RIC covariance submatrices is then transformed to the Earth-centered Mean 
of J2000.0 frame as defined in Equation (3.2-53) in Section 3.2.5. The initial covariance matrix is 
then constructed as follows: 

 
[ ]

[ ]

[ ]























γσ
σ

2

2

11

)(0000
0)(000
0000
000
000

= 

I

NN

B
P

P

P
SS





 (2.2-4c)* 

where: 
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( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( ) 









































=

∆ 2

2/

2/

2

2

2

2

2

2

2/

2/

2

0
0
0
0
0
0
0
0
0
0

00
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000

)(

A
IMU

WG

WG

TDRS
d

GS
d

GS

CO

CL
d

CL

WG
d

WG

B

σ
σ

σ
σ

σ

σ

σ
σ

σ
σ

σ

σ

φ

φ

ρ

ρ

ρ

 (2.2-4d)* 

The covariance for individual state vector elements can be reinitialized by resetting the associated 
diagonal elements in the full covariance matrix to their initial values and the associated off-
diagonal elements to zero. Whenever the state error covariance is initialized or reinitialized, it is 
factored as discussed below. 

Similarly, when the relative state vectors of satellite n with respect to satellite 1 are estimated, the 
initial covariance matrix is given by 

 
[ ]

[ ]

[ ]























γσ
σ

2

2

11

)(0000
0)(000
0000
000
000

= 

I

NN
rel

B
P

P

P
SS





 (2.2-4e)* 

where 

 [ ] [ ][ ] 





 −−=

T

k
n

k
n

k
n

k
nnn

rel tXtXtXtXEP
relrelrelrel

)()(ˆ)()(ˆ  (2.2-4f) 

The relative covariance matrices are related to the absolute covariance matrices as follows: 

 
11 1 1nn nn n n

rel abs abs abs absP P P P P         = + − −           (2.2-4g) 

and similarly 

 [ ] [ ] [ ] [ ] [ ] n
rel

n
rel

nn
relabs

nn
abs PPPPP 1111

+++=  (2.2-4h) 
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2.2.1 Covariance Factorization 
The state error covariance matrix [P] is factored into a unit upper triangular matrix [U] and a 
diagonal matrix [D] (Reference 5). This factorization guarantees nonnegativity of the computed 
covariance and is numerically stable and accurate. This factorization also avoids the use of square 
roots. Subsequent sections define how the [ ]U and [D] matrices are time propagated and 
measurement updated directly, rather than the state error covariance matrix [P]. The [U] and [D] 
matrices are defined as 

 [P] = [U] [D] [U]T (2.2-5) 

where 

[P] = [N × N] state error covariance matrix 
[U] = [N × N] unit upper triangular matrix 
[D] = [N × N] diagonal matrix 

and 

 [ ]U

U U

U

N

N N

=

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅



































−

1
0 1

1
0 0 1

1 2 1

1

, ,

,

 (2.2-6) 

 [ ]D

D
D

D
D

N N

N N

=

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅



































− −

1 1

2 2

1 1

0 0
0

0
0 0

,

,

,

,

 (2.2-7) 

The covariance matrix is a symmetric positive definite matrix. A symmetric positive definite 
matrix has the following properties (see page 34 of Reference 5): (a) all eigenvalues are positive, 
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(b) all diagonal elements are positive, and (c) all correlation coefficient magnitudes are less than 
1. Symmetry and positive definiteness are required for [ ]TUDU  covariance factorization 
(Reference 5). The factorization algorithm given below was taken from Reference 5. 

First, for the Nth column, 

 NNNN PD ,, =  (2.2-8)* 

 U
P D

i N
i N Ni N

i N N N
,

, , , , ,
=





=
= − −

1
1 2 1

 (2.2-9)* 

Then, for the remaining columns, j = N-1, ..., 1, compute 

 [ ]D P D Uj j j j
k j

N

k k j k, , , ,= −
= +1

2Σ  (2.2-10)* 

 
U

i j
i j

P D U U D i j ji j
i j k k i k j k

k j

N

j j
,

, , , , ,/ , , ...,
=













>
=

−








 = − −

= +
∑

0
1

1 2 1
1

 (2.2-11)* 

The state noise covariance matrix [Q] is also factored into a unit upper triangular matrix [Gd] and 
a diagonal matrix [Qd] as follows, using the same factorization algorithm as for the state error 
covariance matrix (the state noise covariance matrix is sometimes referred to as the process noise 
covariance matrix): 

 [Q] = [Gd] [Qd] [Gd]T (2.2-12)* 

where 

[Q]= [N × N] state error covariance matrix 
[Gd]= [N × N] unit upper triangular matrix 
[Qd]= [N × N] diagonal matrix 

One result of the positive definiteness requirement for covariance factorization is that the time bias 
drift estimation cannot be disabled simply by setting its initial variance to zero and setting its state 
noise to zero. 
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2.2.2 Semimajor Axis Variance  
The absolute semimajor axis standard deviation is used to assess the filter convergence. The 
absolute semimajor axis standard deviation for satellite n, n

a∆σ , is computed from the user satellite 
position and velocity state error covariance matrix using the following algorithm. 

The semimajor axis is computed as follows: 

 

12

2
−

















µ
−=

E

n

n
n

R

R
a



 (2.2-13)* 

where  

 na  = semimajor axis for satellite n (meters) 
 µE  = gravitational constant of the Earth (meters3/second2) 

 nR  = magnitude of the satellite position vector (meters) 

 nR  = magnitude of the satellite velocity vector (meters/second) 

The absolute semimajor axis variance for satellite n is defined as follows  

 ( ) [ ][ ]( ) Tnnn
abs

nTn
k

n
k

n
k

n
k

n
a SWSaaaaE ,2 ˆˆ =−−=σ∆  (2.2-14a)* 

where 

 n
kâ  = estimated semimajor axis at time kt  (meters) 

 n
ka  = true (unknown) semimajor axis (meters) 

 nS  = vector of partial derivatives of the semimajor axis with respect to the position 

and velocity components of the estimation vector  

 [ ] ( ) 







µµµ

=








∂

∂
∂
∂

=
E

n

E

n

E

n

n

n

n

n

n

n
n
kn

n

n

n
n ZYX

R
Z

R
Y

R
Xa

R
a

R
aS



 333

22  (2.2-14)* 

 nn
absW ,  = 6×6 user satellite position and velocity submatrix of the absolute state error 

covariance matrix [P] for satellite n defined in Equation (2.2-4c) 
The absolute semimajor axis one sigma standard deviation is then computed as follows  

 
Tnnn

abs
nn

a SWS ,=σ∆  (2.2-15)* 

The relative semimajor axis is defined as  
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 1aaa nn
rel −=  (2.2-16) 

The relative semimajor axis covariance for satellite n relative to satellite 1 at time kt  is defined 

as follows  

 

( ) ( ) ( )[ ] ( ) ( )[ ]( )
[ ][ ]( ) [ ][ ]( )

[ ][ ]( ) [ ][ ]( )Tn
k

n
kkk

T

kk
n
k

n
k

T

kkkk

Tn
k

n
k

n
k

n
k

T

kk
n
k

n
kkk

n
k

n
k

n
rela

aaaaEaaaaE

aaaaEaaaaE

aaaaaaaaE

−−−−−−

−−+−−=

−−−−−−=σ∆

ˆˆˆˆ

ˆˆˆˆ

ˆˆˆˆ

1111

1111

11112

 (2.2-17) 

The relative semimajor axis standard deviation for satellite n relative to satellite 1 is computed as 
follows 

 [ ]
2/1

1

,1,

,11,1
1

























−








−=σ∆ Tn

T

nn
abs

n
abs

n
absabsnn

rela
S
S

WW
WW

SS  (2.2-18)* 

where ji
absW ,  is the 6×6 submatrix of the absolute state error covariance matrix [ absP ] associated 

with the correlation of the position and velocity estimates for satellite i with the estimates for 
satellite j, defined in Equation (2.2-4c).  

If the relative state vector is estimated for nonlocal satellites, the relative semimajor axis standard 
deviation for satellite n relative to satellite 1 is then computed as follows 

 ( )[ ] ( )
2/1

1

,1,

,11,1
1

























 −








−=σ∆ Tn

Tn

nn
rel

n
rel

n
relrelnnn

rela
S

SS
WW
WW

SSS  (2.2-18a)* 

where nn
relW ,  is 6×6 submatrix of the relative state error covariance matrix [ relP ] associated with 

the relative state of satellite n with respect to satellite 1.  
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2.3  Extended Kalman Filter Algorithms 
The  EKF algorithm consists of the following two major processes: 

1. Time Update. This process consists of propagating the estimated state and state error 
covariance factors from the time of the previous thk )1( −  filter update [denoted by 

( )X k− +1 , ( )+−1kU , and ( )+−1kD , respectively] to the time of the current thk)( filter update 

[denoted by ( )X k − , ( )−kU , and ( )−kD ]. 

2. Measurement Update. This process consists of correcting ( )X k − , ( )−kU , and ( )−kD  to 
include the effects of the current measurement. The corrected state and state error 
covariance are denoted by ( )X k + , ( )+kU  and ( )+kD . 

These steps are described in the subsections below.  

GEONS provides the following three estimation modes for performing the EKF processing where 
• toTime is the time passed to EKF process 
• measTimeX is one of the measurement times 
• outTime is the time when the EKF process outputs the state and covariances 

ESTIMATION_TIME_LEGACY=0 
• GEONS selects the most recent time for the first sensor type (measTime1) and 

propagates to that time (propTime=measTime1) or propTime= toTime if no 
measurements 

•  All measurement processing is performed at propTime=measTime1 
•  State and covariance are updated at outTime= propTime= measTime1 

  ESTIMATION_TIME_TOTIME = 1 
• GEONS propagates its state to propTime=toTime 
• All measurements are processed at propTime=toTime 
• State and covariance are updated at outTime= propTime=toTime 

 ESTIMATION_TIME_EACHMEAS = 2 
•  All measurements are sorted based on measTime. 
•  For each measurement 

• GEONS propagates the state and covariance to propTime= measTimeX 
• Processes the measurement at propTime= measTimeX 
• Updates the state and covariance at propTime= measTimeX 

• Output state and covariances are propagated to outTime= toTime 
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2.3.1 Time Update Process 
The time update is performed at either a specified estimation time or a valid measurement time tk 
and at the intermediate time ti if the time between measurements is greater than the maximum 
integration step size 

 t t tk k max− >−1 δ  (2.3-1)* 

where δtmax is equal to the maximum state vector integration step size.  

The estimated total state vector at the previous measurement time )( 1−kt , Xk−1(+),  and the state 
error covariance matrix factors, Uk–1(+) and Dk–1(+) are propagated to the time of current 
measurement update, tk , using the following procedure.  

When there are consider parameters, the state vector is partitioned into estimated states (x) and 
consider states (p), where ns=number of estimated parameters and np= number of consider 
parameters. If a consider parameter has a “known” mean value (e.g. based on a prior calibration), 
the initial value of this consider parameter should be set to this mean value. If the consider 
parameter has a mean value of zero (e.g. a correction to the SRP coefficient that is not being 
estimated), the initial consider parameter value should be set to zero and will remain as zero. The 
consider states are included in the state and covariance propagation.  

1. Propagate the state vector to the time ti. The quantity ( )X i −  is obtained by integrating the 
following N equations: 

 























γ

=

I

N

tB
tX
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X S











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 (2.3-2)* 

where 

 

n

U

R

R

Dn

a
b
C
C
R
R

X



























∆
∆=













  (2.3-2a) 
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

  (2.3-2b) 

 0=γ I  (2.3-2c) 

 The equations of motion for the spacecraft state vector components ( ,  )R R  are defined in 
Section 4.1. These equations are numerically integrated using the Runge-Kutta algorithm 
defined in Section 4.2. This numerical integration starts from the most recent integration time, 
ti–1, using R ti( )−1  and  ( )R ti−1 , the most recent propagated values based on an initial value 

equal to the state from the last measurement update,  ( )Xk− +1 . Note that acceleration-related 
consider bias parameters (i.e. solar radiation pressure and drag coefficient corrections and 
acceleration biases) are included in the acceleration used in the state propagation. If relative 
state vectors are being estimated, the relative state vector components ),( n

rel
n
rel

RR   are 
propagated by forming the associated absolute position and velocity vectors, 

)()()(),()()( 11
1

111
1

1 −−−−−− +=+= i
n
relii

n
i

n
relii

n tRtRtRtRtRtR  , propagating the absolute state, 

and then computing the propagated relative state. Propagation of the corrections to the 
nonspacecraft state vector components  ,( DC∆  ∆CR , bR , Ua , WGb /

ρ , WG
db / , CLbρ , CL

db , COb , 
GSbρ , GS

db , TDRS
db , WGb /

φ , WGb /
φ∆ , and Iγ ) is performed analytically, as discussed in Section 

4.3. The ground-based receiver state propagation equations are given in Section 4.6. This 
produces  ( ) ( )X X ti i− ≡ . Note that, if ti is the time at which receiver n acquires the signal 
from the jth GPS/Galileo SV/WAAS GEO, the associated carrier phase bias state vector 
element, jWG

n
b /

φ , and singly differenced carrier phase bias state vector element, j

n

WGb /
1φ∆  are 

reinitialized. 

2 Compute the state transition matrix from time ti–1 to time ti using the algorithm given in 
Section 4.4.1. If the state vector consists entirely of absolute state vectors: 
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If the state vector includes relative states for the nonlocal satellites, the associated state 
transition matrix includes the correlation between the relative states and the local state  
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 (2.3-4) 

 where 

 ( ) matrix)(Identity , 11 Itt ii =Φ −−  (2.3-5)* 

 Equation Deleted (2.3-6) 

3. Calculate the state process noise covariance matrix at time ti, denoted by Qi−1. The process 
noise algorithm for this step is described in Section 4.4.2. Factor into components Gd and Qd 
using the algorithm provided in Section 2.2. 

4. Propagate the state error covariance matrix factors to the time ti to obtain Uk (–) and Dk (–). 
This propagation is performed by directly propagating the U and D matrices as shown in 
Section 4.4.3. If ti  is the time at which receiver n acquires the signal from the jth GPS/Galileo 
SV/WAAS GEO, the associated carrier phase bias or singly differenced carrier phase bias 
state vector diagonal element are reinitialized to their initial values and the associated off-
diagonal elements of the full covariance matrix are reinitialized to zero, and the covariance 
matrix is refactorized, using the algorithm defined in Section 2.2.1. 



 2-18 
 

  

 If ti is not a valid measurement time, set Ui (+) = Ui (–), Di (+) = Di (–), and Xi (+) = Xi (–) and 
terminate the time update process.  

2.3.2 Measurement Update Process 
The inputs to the measurement update process are the results of the time update, 

( ) ( ) ( ) , , ,X U Dk k k− − −and  as well as the measurement noise covariance, Rk. The output from the 

measurement update process are the updated total state vector, ( )X k + , and the updated state error 
covariance matrix factors, Uk (+) and Dk (+).  Section 2.3.2.1 discusses the process used to select 
valid measurements for processing. Section 2.3.2.2 defines the nominal scalar measurement update 
algorithm. Section 2.3.2.3 defines an alternate sequential measurement update algorithm that can 
be used when ground station range and Doppler measurements are processed at the same 
measurement time. Section 2.3.2.4 defines an alternate batch measurement update algorithm that 
can be used when multiple measurements are processed in the same filter update timespan. 

2.3.2.1 Measurement Selection 
The following criteria are used to select valid measurements for further processing: 

• Time constraints, e.g. elapsed time from last successful measurement update is greater than 
or equal to the minimum specified measurement sampling interval 

• Transmitter/sensor is enabled and has valid state vector or ephemeris 

• Measurements do not occur during a maneuver time span (optional). 

• Measurement-type specific selection criteria are satisfied (see Table 5.1 for details) 

• Visibility criteria are satisfied 

The visibility tests consist of the Height of Ray Path (HORP) test to eliminate measurements with 
long paths through the Earth’s atmosphere for GPS/Galileo/WAAS, crosslink, or TDRSS 
measurements and a minimum elevation angle test for ground station measurements. These tests 
are defined below.   
HORP Test: Edit a GPS/Galileo/WAAS, crosslink, or TDRSS measurement if the signal has a 
long path through the atmosphere (i.e., passes through the Earth's limb). The following updated 
HORP editing test is implemented in GEONS 3.0. Note that this test is more general than the 
original algorithm, which did not handle the case when the transmitter is at the minimum HORP 
altitude. In the ECEF frame, the HORP is computed as the altitude of the point on the line 
connecting the transmitter position and the receiver (predicted) position with minimum radius-
squared (i.e., minimum altitude neglecting the oblateness of the Earth).  
 
Compute the minimum radial distance ( d ): 
 

Let ( )R kR t  be the receiver position and ( )T kR t the transmitter position, then the set of points 
connecting them is given by 
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( ){ } [ ]1 ( ) ( ) ; where 0,1R k T kR t R tα α α− + ∈  

And their radial value is given by 
𝑓𝑓(𝛼𝛼) = ‖(1 − 𝛼𝛼)𝑅̄𝑅𝑅𝑅(𝑡𝑡𝑘𝑘) + 𝛼𝛼𝑅̄𝑅𝑇𝑇(𝑡𝑡𝑘𝑘)‖2 = ‖𝑅̄𝑅𝑅𝑅(𝑡𝑡𝑘𝑘) + 𝛼𝛼(𝑅̄𝑅𝑇𝑇(𝑡𝑡𝑘𝑘) − 𝑅̄𝑅𝑅𝑅(𝑡𝑡𝑘𝑘))‖2           (2.3-7a) 
 

By finding *α α= such that ( ) 0
df

d
α

α
= , we find the minimum of (convex) f on the real line 

at  

𝛼𝛼∗ = − 𝑅̄𝑅𝑅𝑅(𝑡𝑡𝑘𝑘)∙(𝑅̄𝑅𝑇𝑇(𝑡𝑡𝑘𝑘)−𝑅̄𝑅𝑅𝑅(𝑡𝑡𝑘𝑘))
‖𝑅̄𝑅𝑇𝑇(𝑡𝑡𝑘𝑘)−𝑅̄𝑅𝑅𝑅(𝑡𝑡𝑘𝑘)‖2                     (2.3-8)* 

If * 0α < , the minimum radial distance ( d ) is the radial distance to the receiver. If * 1α > , d  is 

the radial distance to the transmitter; otherwise d  is computed as ( )*f α  . 

a. The measurement is accepted if ed R h≥ +   [case (a) in Figure 2-1], where eR  is the mean 
equatorial radius of the Earth and h is a specified minimum altitude. For GPS/ Galileo 
receivers located below the GPS/Galileo constellations, the minimum altitude is typically 
specified as the smaller of the height of the atmosphere or the height of the receiver. For 
Lunar spacecraft, the minimum altitude is typically specified as 0. For Ground Station 
tracking of Earth-orbiting spacecraft, the minimum altitude is typically specified as -50 
km to account for Earth’s ellipsoid.    

b. If < ed R h+ ,[case (b) in Figure 2-1], perform the following central angle test.  

 Equation Deleted (2.3-9)* 

 Equation Deleted  (2.3-10)* 

  Compute the central angle and accept the measurement if α < αmax, where 

 1cos T R

T R

R R
R R

α −  ⋅
=  

 
 (2.3-11)* 

  and 

 TR  = magnitude of ( )T kR t  

 RR = magnitude of ( )R kR t  

 αmax = maximum central angle (an input control parameter nominally equal to 
70 degrees) 

c.  If the measurement is not accepted, terminate the update process. 
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Figure 2-1.  HORP Geometry 
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Elevation Angle Test: Edit a Ground Station (GS) one-way Doppler measurement if the 
elevation of the line-of-sight vector with respect to the local horizon is less than a minimum 
angle.  This atmospheric editing test is performed as follows: 

 Compute the instantaneous line-of-sight vector from the receiving satellite to the transmitting 
GS as follows:  

 )()( k
i

GSk
i tRtR −=ρ  (2.3-11b)* 

 where 

 )( ktR  = position vector of the receiving satellite at time tk , referenced to the inertial 
Mean of J2000.0 reference frame 

 )( k
i

GS tR  = position of the transmitting GS at time tk , referenced to the inertial Mean of 
J2000.0 reference frame 

 The GS position vectors are available in Earth-centered Earth-fixed (ECEF) coordinates. The 
GS position vector must be transformed from ECEF coordinates to J2000.0 inertial 
coordinates to using the transformations defined in Sections 3.2.1 through 3.2.3. 

 The atmospheric editing test is based on whether the elevation angle, E, of the line-of-sight 
vector with respect to the local horizon is greater than a minimum elevation angle, minE . 
Figure 2-2 illustrates the accepted (A) and edited (B) cases. The measurement is accepted if 
the following is true:   

 sin sin minE E>  (2.3-11c)* 

 where minE  is a commandable minimum elevation angle within the ±90 degrees range, minE  
and E are positive above the local horizon and negative below the horizon, and 

 
)(

)(
sin

k
i

GS
i

k
i

GS
i

tR

tR
E

ρ

⋅ρ
=  (2.3-11d)* 

 If the measurement is edited, terminate the measurement update process. 
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Figure 2-2. Atmospheric Editing Cases for GS Measurements 

2.3.2.2 Scalar Measurement Update Procedures 
Section 2.3.2.2.1 defines the default scalar measurement update process used in GEONS, which 
uses the Carlson Rank-One update algorithms based on Reference 5. Section 2.3.2.2.2 defines the 
scalar measurement update process when consider parameters are included. Either scalar update 
processes can be performed sequentially for each valid measurement at each measurement update 
epoch, tk.   

2.3.2.2.1 Default Scalar Measurement Update Procedure 

1. Given the results of the time update, ( ) ( ) ( ) , , ,X U Dk k k− − −and  compute the predicted 

measurement, Yk , the measurement residual, yk, and the measurement partial derivatives at 
the filter update epoch tk, Hk,  

 ( )[ ]  ,Y G X tk k k= −  (2.3-12)* 

 y Y Yk k k= −   (2.3-13)* 

 
( )

H G
Xk

X Xk

=










= −

∂
∂ 

 (2.3-14)* 

 where Yk is the observed measurement. The measurement model equation, G, and associated 
partial derivatives, H, are given in Sections 5.3 through 5.9 of this document. If the 
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measurement time is not equal to the filter update epoch, the state can optionally be propagated 
from the filter update time to the measurement time. 

2. Compute the predicted measurement residual variance, Vk, using Equations 2.3-15 through 
2.3-18 in the Carlson Rank-One update algorithm defined in Section 2.3.2.4.1, where 

 Vk = aN (2.3-19)* 

3. Perform the n-sigma measurement residual edit test: 

Calculate the sigma ratio 

 D
y
Vk
k

k

=  (2.3-20)* 

If D Nk ≤ σ , accept the measurement and continue the measurement update. If |Dk| > Nσ, reject 
the measurement and the covariance updates and exit the calculation. In these tests, Nσ is a 
specifiable integer with a default value of 4. 

4. Compute updated state error covariance factors and the Kalman gain vector, kK  using 
Equations 2.3-21 through 2.3-24 in the Carlson Rank-One update algorithm defined in Section 
2.3.2.4.1, where 

 K b Vk k=  (2.3-25)* 

where Kk  is the [ ]N × 1  Kalman gain vector and the components of  b  are defined in 
Equation (2.3.2.4.1-14). 

5. Update Xk ( )−  

  X X K yk k k k(+) = ( )− +  (2.3-26)* 

2.3.2.2.2 Scalar Measurement Update Procedure with Consider Parameters 

When there are consider parameters, the state vector kX  is partitioned into estimated states (x) and 
consider states (p), where ns=number of estimated parameters and np= number of consider 
parameters. Optionally, any parameter in the estimation state vector except for the satellite position 
and velocity can be processed as a consider parameter. However, GEONS 3.0 only supports the 
inclusion of the atmospheric drag coefficient correction and sensor and global biases as consider 
parameters. The value and covariance of a consider parameter is not updated by the filter 
measurement update process but the effects of consider parameter uncertainties are included in the 
calculation of corrections to and covariance of estimated parameters and in the error cross-
covariance of estimated and consider parameters.   
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1. Given the results of the time update, ( ) ( ) ( ) , , ,X U Dk k k− − −and  compute the predicted 

measurement, Yk , the measurement residual, yk, and the measurement partial derivatives at 
the measurement update epoch tk, Hk,  

 ( )[ ]  ,Y G X tk k k= −  (2.3.2.2.2-1)* 

 y Y Yk k k= −   (2.3.2.2.2-2)* 

 
( )

H G
Xk

X Xk

=










= −

∂
∂ 

 (2.3.2.2.2-3)* 

 where Yk is the observed measurement. The measurement model equation, G, and associated 
partial derivatives, H, are given in Sections 5.3 through 5.9 of this document. Note that 
consider measurement bias parameters are included in the predicted measurement and 
measurement partial derivative calculations. 

2. Perform a complete rank-one measurement update using the Carlson rank-one update given 
in Section 2.3.2.4.1 to compute the optimal Kalman gain, optK , covariance factors 

( ) ( )++ optopt DU and , and the predicted measurement residual variance, kV .  

 3.   If there are any consider parameters: 

For all parameters, set  

 0.0)( =iK  (2.3.2.2.2-4)* 

For each consider parameter, p, set the optimal Kalman gain to 0.0 

 )()( pKpK opt=  (2.3.2.2.2-5)* 

 0.0)( =pKopt  (2.3.2.2.2-6)* 

Perform another rank-one measurement update using the Agee-Turner rank-one update 
procedure given in Section 2.3.2.4.2 with c= kV  and Kx =  to solve  

 ( )( )Tk
T

optoptopt
T

conconcon KKVUDUUDU ++++=+++ )()()()()()(  (2.3.2.2.2-7)* 

4.    Perform the n-sigma measurement residual edit test. Calculate the sigma ratio 
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k

k
k

V
yD =  (2.3.2.2.2-8)* 

If D Nk ≤ σ , accept the measurement and continue the measurement update process.  

If |Dk| > Nσ, reject the measurement, and the terminate processing of the ith measurement. In 
these tests, Nσ is a specifiable integer with a default value of 4. 

5. If the measurement has not been edited, update Xk ( )−  and the U and D covariance factors. 
Note that the following does not update the consider parameters or the covariance of the 
consider parameters: 

 koptkk yKXX +−)(ˆ=(+)ˆ  (2.3.2.2.2-9)* 

 )()( +=+ conk UU  (2.3.2.2.2-10)* 

 )()( +=+ conk DD  (2.3.2.2.2-11)* 

2.3.2.3 Simultaneous Measurement Update (implemented only for ground station 
measurement processing in Release 2.10, replaced by Batch Measurement Update defined in 
Section 2.3.2.4 in GEONS Release 3.0) 

2.3.2.4 Batch Measurement Update Procedure with Consider Option  
The performance of an EKF is dependent on the order in which the measurements are processed. 
The following algorithm is discussed in detail in Section 3.2 of Navigation Filter Best Practices 
(Reference 59).  As noted in that reference, “This is of particular import in the case when there is 
a powerful measurement coupled with a large a priori error. The state (and covariance) update will 
be large, very likely out of the linear range. Subsequent measurements which are processed may 
well be outside the residual edit thresholds, and hence will be rejected. In order to remedy this, we 
employ a hybrid Linear/Extended Kalman Filter measurement update. Recall that in an Extended 
Kalman Filter, the state is updated / relinearized / rectified after each measurement is processed. 
Hence, the solution is highly dependent on the order in which the measurements are processed. 
This is not a desirable situation in which to be.” 

This difficulty can be reduced by not applying the state updates until all the measurements 
associated with the same filter state epoch are processed. The state updates ∆x are accumulated 
using a linear Kalman filter algorithm, which is mathematically equivalent to a sequential batch 
least-squares algorithm.  

Optionally, any parameter in the estimation state vector except for the satellite position and 
velocity can be processed as a consider parameter. However, GEONS 3.0 only supports the 
inclusion of the atmospheric drag coefficient correction and sensor and global biases as consider 
parameters. The value and covariance of a consider parameter is not updated by the filter 
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measurement update process but the effects of consider parameter uncertainties are included in the 
calculation of corrections to and covariance of estimated parameters and in the error cross-
covariance of estimated and consider parameters.   

The inputs to the measurement update process are the results of the time update, 
( ) ( ) ( ) , , ,X U Dk k k− − −and  as well as the measurement noise variance, Rk. The output from the 

measurement update process are the updated total state vector, ( )X k + , and the updated state error 
covariance matrix factors, Uk (+) and Dk (+) where tk is the measurement update epoch time.   

In general, the measurement time tags are not going to be equal to the current measurement update 
epoch time, tk. In this case, the filter has propagated its state and covariance to the filter update 
time t = tk from time t = tk−1, and is subsequently given a measurement to be filtered (denoted by 
subscript m) that corresponds to the time t = tm. If ∆t = tm − tk is significant (e.g. > 0.001 second), 
the time difference between the measurement and the filter state and covariance will need to be 
accounted for to accurately process the measurement. This time difference can be taken into 
account using either of the following options: 

1. If the time difference is relatively small, e.g. < 1 second, the predicted measurements can 
be linearized about the current measurement update time. In GEONS 3.0, this correction is 
implemented for the GPS, Galileo, WAAS, TDRSS, and cross-link measurements. 

2. The state can be computed at each measurement time by propagation and the measurement 
residual mapped to the filter epoch time using the state transition matrix. In GEONS 3.0, 
this approach is implemented for all celestial object and relative navigation camera 
measurements. 

The following procedure assumes that the second option is used to compute the predicted 
measurement at the measurement time. 

Given the results of the time update, ( ) ( ) ( )−−− kkk DUX and,,ˆ  at the current measurement update 

epoch, tk, and a set of kN  measurements{ }i
mY , with measurement times tm that fall within the 

measurement update time interval [ ]2/,2/ tttt kk ∆+∆− , the measurement update process consists 
of the following steps: 

1. For each measurement i
mY , where i = 1, …, kN ,  

a. If tm = tk, set ( )*
mX − = ( )−kX̂  for the associated satellite(s).  

b. If tm ≠ tk, the state is propagated or interpolated to the time of the measurement to obtain
( )*

mX − for the associated satellite(s).  

c. Compute the predicted measurement, i
mŶ , measurement residual, i

my , and measurement 
partial derivatives, Hm, at the measurement time tm 

 ( )*ˆ ,i
m m mY G X t = −   (2.3.2.4-1)* 
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 i
m

i
m

i
m YYy ˆ−=  (2.3.2.4-2)* 

                    
*
mXX

i
m X

GH
=









=

∂
∂  (2.3.2.4-3)* 

where i
mY is the observed measurement. The measurement model equation, G, and 

associated partial derivatives, H, are given in Sections 5.3 through 5.9.    

d. If tm ≠ tk, for celestial object measurements, compute the required submatrices of the 
state transition matrix from tk – tm, ( )km tt ,Φ , for the associated satellite(s) using 
equations given in Section 4.4.1.  (Note that for celestial object measurements only the 
position submatrix is required.) Map the measurement partial derivatives to the current 
filter epoch time, tk. 

     ( )km
i
m

i
k ttHH ,Φ=  (2.3.2.4-4)* 

e. Compute the predicted measurement residual variance, i
kV , using the predicted 

covariance and perform the n-sigma measurement residual edit test. Calculate the 
sigma ratio 

 
i

k

i
k

k
V
yD =  (2.3.2.4-5)* 

                  where 

   i
kV  = ( ) ( )2

( ) ( ) ( )
Ti T i i

k k k k kH U D U H σ− − − +  (2.3.2.4-6)* 

 If D Nk ≤ σ , accept the measurement and continue the measurement update process. 
If |Dk| > Nσ, reject the measurement, and the terminate processing of the ith 
measurement. In these tests, Nσ is a specifiable integer with a default value of 4.  
Measurement residuals can exceed the acceptance threshold due clock anomalies and 
unplanned maneuvers in addition to measurement faults. The percentage of 
measurements that are rejected is tracked in measurement residual edit test defined in 
Section 2.3.3 and included in telemetry.   

f. If the measurement is not edited, using the current values of ( )+−1i
kU  and ( )+−1i

kD  

where ( ) ( )−=+ kk UU 0 and ( ) ( )−=+ kk DD0  are from the time update, measurement 
update the covariance factors and compute the predicted measurement residual 
variance, i

kV , and the optimal Kalman gain using the following procedure:  



 2-28 
 

  

i. Perform a complete rank-one measurement update using the Carlson rank-one 
update given in Section 2.3.2.4.1 to compute the optimal Kalman gain, i

optK , 

covariance factors ( ) ( )++ i
opt

i
opt DU and , and the predicted measurement residual 

variance, i
kV . 

ii. If there are any consider parameters, the state vector is partitioned into 
estimated states (x) and consider states (p), where ns=number of estimated 
parameters and np= number of consider parameters  

For all parameters, set  

 0.0)( =iK i  (2.3.2.4-7)* 

For each consider parameter, p, set the optimal Kalman gave to 0.0 

 )()( pKpK i
opt

i =  (2.3.2.4-8)* 

 0.0)( =pK i
opt  (2.3.2.4-9)* 

Perform another rank-one measurement update using the Agee-Turner rank-one 
update procedure given in Section 2.3.2.4.2 with c= i

kV  and iKx =  to solve  

 ( )( )Tiii
k

Ti
opt

i
opt

i
opt

Ti
con

i
con

i
con KKVUDUUDU ++++=+++ )()()()()()(  (2.3.2.4-10)* 

g. Map the residual at the current filter epoch time, tk 

      1−∆−= i
k

i
k

i
m

i
k xHyy  (2.3.2.4-11)* 

Where 1−∆ i
kx is the current accumulated state correction for the current batch 

measurement interval, where 0
kx∆ = 0 for the first measurement in each batch. 

h. If measurement is not edited, update the accumulated the state update vector correction 

 i
k

i
opt

i
k

i
k yKxx +∆=∆ −1  (2.3.2.4-12)* 

Where the Kalman gain is from step e.i if no consider parameters or step e.ii if there 
are consider parameters. 

and the covariance factors 



 2-29 
 

  

 




+
+

=+
parametersconsider  are  thereif ),(

parametersconsider  no if ),(
)( i

con

i
opti

k U
U

U  (2.3.2.4-13)* 

 




+
+

=+
parametersconsider  are  thereif ),(

parametersconsider  no if ),(
)( i

con

i
opti

k D
D

D  (2.3.2.4-13a)* 

2. After all kN  measurements have been processed, update Xk ( )−  and the U and D 
covariance factors 

 kN
kkk xXX ∆+−)(ˆ=(+)ˆ  (2.3.2.4-14)* 

 




+
+

=+
parametersconsider  are  thereif ),(

parametersconsider  no if ),(
)(

k

k

N
con

N
opt

k U
U

U  (2.3.2.4-15)* 

 




+
+

=+
parametersconsider  are  thereif ),(

parametersconsider  no if ),(
)(

k

k

N
con

N
opt

k D
D

D  (2.3.2.4-16)* 

2.3.2.4.1 Carlson Rank-One Update Algorithm with Underweighting 
The Carlson Rank-One Update algorithm is discussed in detail in Appendix B.5 of Navigation 
Filter Best Practices (Reference 59). The Carlson Rank-One Update procedure with 
underweighting is as follows: 

a. Compute  

 [ ] [ ]Ti
k

Ti
k HUf )(−=  (2.3-15)* 

 ( )[ ] NjfDv jjj
i
kj ,,2,1, =−=  (2.3-16)* 

                  where 
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  N = dimension of the total state vector 
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  i
kH = [1 × N] measurement partial derivative matrix  

b. Test for underweighting: 

For j = 1, 2, ..., N, compute HPH = ( )Ti
k

Ti
k

i
k

i
k

i
k HUDUH )()()( 111 +++ −−− as follows using 

values computed in Step a 

 HPHj = HPHj–1 + fj vj (2.3-16a)* 

       If   HPHN ≤ i
uwα  set 

  

 ( )2
0

ia σ=  (2.3-17)* 

where 

            i
uwα   = Measurement underweighting threshold, a commanded parameter specified 

for each measurement type or each sensor type 

            iσ = 1-sigma measurement error, a commanded parameter specified for each receiver 
and measurement type. Note that for GPS and Galileo receivers with large 
variations in the acquired signal strength (e.g. receivers in very high altitude and 
lunar orbits), the PR measurement standard deviation can optionally be 
computed based on based on standard GPS thermal noise theory as discussed in 
Section 12.4.2. 

If   HPHN > i
uwα , set 

 ( ) Ti
k

i
k

i
k

i
uw

i HPHa )(2
0 −+= βσ  (2.3-17a)* 

where 

             i
uwβ   = Measurement underweighting value, a commanded parameter specified for 

each measurement type or each sensor type 
c. Compute updates to the state covariance based on the ith measurement: 
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 1 1 1 0a f v a= +  (2.3-17b)* 

 ( )[ ] ( )[ ] 101111 / aaDD i
k

i
k −=+  (2.3-17c)* 

 11 vb =  (2.3-17d)* 

 ( )[ ] 0.111 =+i
kU  (2.3-17e)* 

 

 

      For j = 2, ..., N, 

 aj = aj–1 + fj vj (2.3-18)* 

 ( )[ ] ( )[ ] jjjj
i
kjj

i
k aaDD /1,, −−=+  (2.3-21)* 

 j jb v=  (2.3-22)* 

 1/j j jf aλ −= −  (2.3-23)* 
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,
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i i
k k j nn j n j

i
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U U b
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b b U v

λ    + = − +     = −
  = + −  

  (2.3-24)* 

d. Compute an update to the measurement residual variance, i
kV ,  and the optimal 

Kalman gain 

   i
kV  = aN (2.3-19)* 

and the optimal Kalman gain 

 i
k

i
opt V

bK =  (2.3-25)* 
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2.3.2.4.2 Agee-Turner Rank-One Update Algorithm  

The Agee-Turner Rank-One update is discussed in detail in Appendix B.3 of Navigation Filter 
Best Practices (Reference 59). This following recursive algorithm is taken from Section 7.3.2 of 
Reference 59. This algorithm is used to solve a matrix of the form 

 TTT cxxUDUUDU +=~~~
 (2.3.2.4.2-1) 

where x is of rank 1. The following recursive algorithm is used to compute ijU~  and iiD~  

 Set cC n =  

             For j = n, ..., 2, compute 

 2~
j

j
jjjj xCDD +=  (2.3.2.4.2-2)* 

 1~ =jjU  (2.3.2.4.2-3)* 

 jj
j

j DC ~/=β  (2.3.2.4.2-4)* 

 jjj xv β=  (2.3.2.4.2-5)* 

              For i= 1, ..., j-1, compute 

                  

 jijii xUxx −=  (2.3.2.4.2-6)* 

 jiijij vxUU +=~  (2.3.2.4.2-7)* 

              End i loop 

 jjj
j DC β=−1  (2.3.2.4.2-8)* 

             End j loop 

 2
1

1
1111

~ xCDD +=  (2.3.2.4.2-9)*  
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2.3.2.5 Measurement Underweighting  

Measurement underweighting is an optional capability to underweight measurements when the 
absolute state covariance exceeds a commanded threshold for absolute measurements (i.e. GPS, 
Galileo, Ground Station, WAAS, Point Solutions, TDRSS, and all celestial object measurements 
except intersatellite) or when the relative state covariance exceeds a commanded threshold for 
relative measurements (i.e. crosslink and intersatellite line-of-sight/bearing). This capability is can 
be used to avoid initial filter divergence or post-maneuver divergence due to editing of valid 
measurements using an overly optimistic initial/post maneuver covariance relative to the actual 
errors when process noise is modeled to give good steady-state performance and adequate tracking 
is available. Underweighting is needed when accurate measurements are introduced at a time when 
the a priori covariance of the position and velocity is large and the measurement error due to the 
EKF linearization approximation is significant. Underweighting slows down the rate at which the 
covariance decreases to prevent the covariance matrix associated with these states from closing 
down too quickly. More detail is provided in the following reference: Renato Zanetti, Kyle J. 
DeMars, and Robert H. Bishop, “Underweighting Nonlinear Measurements,” Journal of 
Guidance, Control and Dynamics, Vol. 33, No. 5, September-October 2010. Measurement 
underweighting is implemented as an option in the Carlson rank one algorithm defined in Section 
2.3.2.4.1.  

2.3.2.6 Efficiency Improvements in the UDU Algorithms 
When the state vector is large containing many biases, which can either be estimated or consider 
states, the number of computations associated with the filter update process can be significantly 
reduced by separating the states into dynamic state and bias parameters. If the modified Gram-
Schmidt algorithm is used to perform the filter update without taking advantage of the fact that the 
bias states are uncoupled with one another, there is a great deal of wasted computation, due to the 
large number of zeros in the state transition matrix associated with the bias states. However, if the 
dynamic states (position, velocity, attitude and clock states) are updated via the modified Gram-
Schmidt process and if a more efficient algorithm is used for updating the bias states, the result is 
an efficient and a robust filter.  

The GEONS filter algorithms incorporate several techniques to reduce computations. In GEONS, 
the dynamic states, which consist of the spacecraft position and velocity, are numerically 
integrated as discussed in Section 4.1 and 4.2.  All other states are analytically integrated as 
discussed in Section 4.3. The state transition matrix, which is computed analytically as discussed 
in Section 4.4, has many zero elements.  Sparse matrix multiplication techniques are used to reduce 
computations in the propagation of the covariance matrix. 

The computational efficiency of the time update process in GEONS could be further improved by 
taking advantage of the block diagonal structure of the state transition matrix in the propagation 
of the covariance matrix. This improvement consists of a two-step process in which the modified 
Gram-Schmidt update is used for the first step and the Agee-Turner rank-one update is used for 
the second step. This improvement is discussed in detail in Section 7.3 of Navigation Filter Best 
Practices (Reference 59).  
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2.3.3 Fault Detection Tests 
GEONS includes several tests that can be used to detect processing anomalies. However, anomaly 
investigation and resolution are performed external to the GEONS software library code. For 
example, the resolution of anomalies that result in filter divergence typically requires external 
intervention to halt processing and restart GEONS possibly with some adjustment of the filter 
tuning parameters.   

If fault detection is enabled, GEONS performs the following navigation fault detection tests on the 
updated state and covariance for each receiver state being estimated: 

a. Filter Convergence Test: Set the filter converged indicator to true if the RSS position 
sigma, RSS velocity sigma, and semimajor axis sigma are all below their respective 
ground commandable convergence tolerances. 

b. RSS Position Difference Test:  

If an absolute comparison state is input, compute the RSS difference between the GEONS 
User position vector and the comparison ephemeris position vector (derived from either 
the GPS/Galileo Receiver’s point solution or a backup ephemeris).   

If a relative comparison state is input, compute the RSS difference between the GEONS-
estimated relative target position vector and the relative comparison position. In this case 
the GEONS-estimated relative target position vector state is computed by subtracting the 
absolute position vector of the local satellite from the absolute position vector of the target 
satellite 

      1arg sat
abs

etT
abs

GEONS
rel rrr −=              (2.3.3-1)* 

Set the passed position difference test indicator to "false" (1) following initialization when 
there are not sufficient GEONS states to interpolate, (2) if a comparison state is not 
available for the current time, or (3) if the difference exceeds a ground commandable 
position difference tolerance. Set the indicator to "true" otherwise.  

c. Covariance Factorization Test: Set the passed Covariance Matrix Divide by Zero Error 
Test Indicator to "false" if any of the following conditions have occurred, where the 
"zero" tolerance is a ground commandable value, 

• State error covariance matrix diagonalization divide by "zero" 

• State noise covariance matrix diagonalization divide by "zero" 

• State error covariance matrix propagation divide by "zero" 

• State error covariance matrix update divide by "zero" 

 Otherwise, set the value to "true". When the covariance factorization test fails, 
autonomously transition from GEONS Filter Submode to GEONS Propagate Submode 
but without propagating covariance. 
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d. RSS Position Sigma Test: Set the passed position sigma test indicator to "false" if the 
state error covariance matrix RSS position sigma exceeds the ground commandable 
position sigma maximum tolerance.  Different maximum tolerances are used for the 
preconvergence (i.e., when the filter convergence test has failed) and postconvergence 
(i.e., when the filter convergence test has passed) cases.  Otherwise, set the indicator to 
"true". 

e. RSS Velocity Sigma Test: Set the passed velocity sigma test indicator to "false" if the 
state error covariance matrix velocity variance exceeds a ground commandable velocity 
sigma maximum tolerance.  Different maximum tolerances are used for the 
preconvergence and postconvergence cases.  Otherwise, set the indicator to "true". 

f. Measurement Residual Edit Test: Determine the percentage of measurements edited over 
a ground commandable sample size. Set the passed measurement edit test indicator to 
"false" if the percentage sigma-edited is larger than the ground commandable percentage 
tolerance. Otherwise, set the indicator to "true". 

g. Covariance Overflow Test: Set the passed Covariance Overflow Error Test Indicator to 
"false" if any of the following conditions have occurred, where the overflow tolerance is 
a ground commanded value, 

• State error covariance [ ]D  matrix element exceeds overflow tolerance 

• State noise covariance [ ]dQ  matrix element exceeds overflow tolerance 

 Otherwise, set the value to "true". When the covariance overflow test fails, autonomously 
transition from the GEONS primary mode from Normal to Halted. 

h. Absolute Mahalanobis Measure Test (not implemented in GEONS 3.0): The absolute 
Mahalanobis measure threshold test is an optional test that can be performed if the 
absolute (e.g. Point Solution) comparison state and covariance are available for the 
satellite(s) being estimated. The test is performed as follows: 

Compute the Mahalanobis measure from the absolute position differences and the 
respective absolute covariances:  

 ( ) ( ) ( )GEONS
abs

COMP
abs

TGEONS
abs

COMP
abs

GEONS
abs

COMP
abs rrSrrrrd −−= −1,          (2.3.3-2)* 

where 

    GEONS
absr  = GEONS-computed absolute position vector of the satellite, referenced to the 

central-body inertial frame  

      COMP
absr = comparison absolute position vector of the satellite, referenced to the central-

body inertial frame  
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      COMP
abs

GEONS
abs PPS +=  = Sum of the GEONS-computed covariance matrix and 

comparison covariance matrix (see note below) of the satellite position, 
referenced to the central-body inertial frame.  

If the comparison covariance (or position variances) are not available within 1 second of 
the latest GEONS covariance, use the following approximations  

 If PDOP is available for the Point Solution state data, use 
PDOPPCOMP

abs *10=  

 If GDOP is available for the Point Solution state data but not PDOP, use 
GDOPPCOMP

abs *10= , and include the time bias in the state difference 

 If no PDOP or GDOP, use GEONS
absPNS *= , where N is TBD multiplier 

If  ( ) ThresholdCommandedrrd GEONS
abs

COMP
abs ≤, , set the Mahalanobis measure test 

indicator to “true.” If not set the indicator to "false." 

i. Relative Mahalanobis Measure Test (not implemented in GEONS 3.0): The relative 
Mahalanobis measure threshold test is an optional test that can be performed if the relative 
comparison state and covariance are input for the satellite(s) being estimated. The test is 
performed as follows: 

Compute the Mahalanobis measure from the relative position differences and the 
respective relative covariances:  

( ) ( ) ( )GEONS
rel

COMP
rel

TGEONS
rel

COMP
rel

GEONS
rel

COMP
rel rrSrrrrd −−= −1,         (2.3.3-3)* 

where 

    GEONS
relr = GEONS-computed relative position vector of the target satellite with respect to 

the local satellite, referenced to the central-body inertial frame  

    COMP
relr  = comparison relative position vector of the target satellite with respect to the local 

satellite, referenced to the central-body inertial frame  

    COMP
rel

GEONS
rel PPS +=  = Sum of the GEONS-computed relative position covariance 

matrix and externally-computed relative position covariance matrix of the 
target spacecraft with respect to the chaser satellite, referenced to the central-
body inertial frame.  

If  ( ) ThresholdCommandedrrd GEONS
rel

COMP
rel ≤, , set the Mahalanobis measure test 

indicator to “true.” If not set the indicator to "false." 
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2.3.4 GEONS Operational Modes 
The GEONS modes and mode transitions are defined in this section.  

The GEONS Navigation Modes are: 

a. Initialize 

b. Halted 

c. Normal 

The GEONS Navigation Mode transitions are shown in Figure 2-3. Each mode is discussed in the 
following subsections. 

INITIALIZE
MODE

NORMAL MODE

HALTED
MODE

Propagate
Submode

Filter
Submode

POWER-
OFF

Ground Command

Autonomous
 

Figure 2-3.  GEONS Mode State Transition Diagram 

2.3.4.1 Initialize Mode 
In Initialize Mode, the GEONS software processes are initialized from a power-off state and 
constants and initial values are loaded based on ground commands and/or the current receiver state 
solution. 

2.3.4.2 Halted Mode 
In Halted Mode, GEONS resets/reinitializes filter processing parameters (e.g., addition/deletion of 
solve-for parameters, change in atmospheric density) or state values (e.g., user state vector, 
covariance, process noise variances) based on ground commands and data values and/or the current 
receiver state solution.  
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2.3.4.3 Normal Mode 
This section defines the execution sequence for major functions that can be executed in the Normal 
Mode.   

Real-Time Prediction Processing 
GEONS propagates the local and remote satellite position and velocity vectors obtained from the 
last available state estimate to the requested output time using a simplified real-time acceleration 
model. 

Interface Processing 
In Normal Mode, GEONS executes the following interface functions: 

a. Process a GEONS command, when provided 

b. Process receiver input data, when provided 

c. Respond to telemetry data requests  

State Estimation Processing 
In Normal Mode, GEONS executes the following Propagate Submode or Filter Submode 
operations, depending upon the ground commanded GEONS Submode. 

GEONS Propagate Submode 
In the Propagate Submode, GEONS executes functions in the following sequence. 

a. Determine if it is time to include measurements from selected measurement sources. 

b. If it is time to include measurements from selected measurement sources, collect all 
valid measurements from all transmitters/sensors. 

c. If the commanded maneuver time span falls within the propagation time span, update 
the spacecraft mass with the post-maneuver mass, and use the commanded maneuver 
noise variance to update the state covariance. 

d. Propagate user state vector to measurement/intermediate request time, including 
externally-measured accelerations, if available. 

e. Compute the state transition matrix. 

f. Compute the process noise matrix. 

g. Compute the diagonals of the process noise matrix corresponding to the measurement 
biases from the individual measurement sources, if measurement biases are to be 
included. 

h. Propagate the covariance matrix. 
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i. For each measurement, compute the time and state of the transmitter/sensor, compute 
the predicted measurement, and perform the measurement editing tests. 

j. Perform navigation fault detection checks 

Filter Submode 
In the Filter Submode, GEONS performs the same functions as for the Propagate function, except 
for step (i), which is replaced by: 

i. For each measurement, compute the time and state of the transmitter, compute the 
predicted measurement, perform the measurement edit tests, and if the measurement 
edit tests are successful, update the user state vector with the measurement residual. 

 

Backup Ephemeris Computation  

The Backup Ephemeris Computation process is executed to compute averaged orbital elements 
and element rates using the real-time state vectors. 

FCW Computation  

The FCW Computation process is executed to compute the instantaneous Doppler shift and FCWs 
for a specific Ground Station using the real-time state vectors. 

Maneuver Targeting  

The Maneuver Targeting process is executed to compute initial and final maneuvers to transfer the 
satellite to a specified orbital position and velocity at a specified time and to perform these 
maneuvers at the specified time.   

Initial State Vector Computation  

The Initial State Vector Computation process is executed to compute an initial state vector based 
on nominal orbital elements using pseudorange and/or Doppler measurements. 

2.4  Hierarchical Relative Navigation Capability (Future Release) 

A number of distributed sparse aperture mission concepts (e.g. Stellar Imager, Solar Imaging 
Radio Array, various Terrestrial Planet Finder concepts) require dozens of spacecraft to precisely 
navigate in tightly controlled, close formations.  Although GEONS can in principle simultaneously 
estimate several dozen-satellite states, the computational burden in terms of both memory and 
processing becomes excessive when the number of satellites becomes greater than about one 
dozen.  This problem arises due to the high degree of correlation among formation flying satellite 
states when intersatellite crosslink measurements are processed.  To properly model these 
correlations, an optimal navigation filter must maintain various data structures, such as a 
covariance matrix, that scale in size proportionally with the square of the number of satellites.   
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To reduce the computational burden for large formations, the following hierarchical nearest-
neighbor algorithm provides the capability to estimate subclusters of satellites in a formation or 
constellation. In this case, the total set of sN  satellite state vectors to be estimated is divided into 
two or more independent segments with a maximum of maxN  satellites each as follows. 

The total estimation state vector with dimension )1( ++× Bss NNn , where sn  is the size of each 
satellite/receiver’s state vector, sN  is the number of satellite/receiver state vectors being estimated, 
and BN  is the number of measurement biases being estimated: 
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is divided into two or more independent segments of a maximum of maxN  satellites each, with 
dimension ≤ )1( max ++× Bs NNn : 
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where max/ NNN s=  rounded up to an integer and the Nth segment can have smaller dimension 
than the others. The state vector segments are formed using the nominally closest maxN  satellites. 

Each estimated satellite state vector i
nX  has the form defined in Equation (2.1-1b). The 

measurement bias vector B  is defined in Equation (2.1-2b) and Iγ  is the ionospheric delay scale 
factor. Note that B  and Iγ  are independently estimated in each partition.  

Similarly the state transition, process noise, and covariance matrices are subdivided  
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 [ ] [ ] [ ] [ ] T
nnnn UDUP =  (2.4-5)* 

Each covariance matrix partition is propagated and updated independent of the other partitions and 
each state vector segment is independently updated following the algorithm given in Section 
2.3.2.2.  

When crosslink measurements are processed as discussed in Section 5.5, the following procedure 
is used to calculate the position of the transmitting and receiving satellites: 

1) If both the transmitting and receiving satellites are members of the same segment of 
the estimation state, e.g. i

nX  and j
nX , compute the crosslink range using the predicted 

states )(ˆ −i
nX  and )(ˆ −j

nX . 

2) If the transmitting and receiving satellites are not members of the same segment of the 
estimation state, e.g. transmitting satellite state is i

mX  and receiving satellite state is 
j

nX , compute the crosslink range using the predicted state )(ˆ −j
nX  for the receiving 

satellite state and compute the position of the transmitting satellite using a state vector 
that is either a) extracted from a ephemeris file (ground processing only) or b) 
propagated based on a periodically received state vector.    
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Section 3.  Coordinate Systems, Transformations, and 
Time Systems 

This section describes the coordinate systems, transformations, and time systems used in 
GEONS. It also contains the algorithm for the Greenwich hour angle calculation, which is used 
in the coordinate system transformations.  

3.1 Coordinate Systems  
Propagation of the satellite's state vector is performed using planet-centered rectangular 
coordinates and an acceleration vector referenced to a central-body-inertial (CBI) frame. The 
central body can be any planet, the Moon, or celestial object for which an ephemeris is available. 
The spacecraft acceleration due to a nonspherical gravitational field of a planet is computed 
using the satellite’s planet-body fixed (PBF) coordinates and then transformed to the CBI frame. 
The propagated CBI state vector is transformed to the Earth-centered inertial (ECI) frame. 
Computation of the satellite's state transition matrix is performed using partial derivatives of the 
acceleration vector expressed in the ECI frame, which include the gravitational effects of other 
bodies. The tracking measurements are computed using state vectors referenced to the ECI 
frame. The GPS Space Vehicle (SV) positions and tracking station positions are expressed in 
Earth-centered Earth-fixed (ECEF) coordinates and must be transformed to the ECI frame. The 
radial (R), in-track (I), and cross-track (C) orbital frame coordinates are useful in expressing the 
position covariance and acceleration biases. These coordinate systems are defined in the 
following subsections. The required transformations are provided in Section 3.2.  

3.1.1 Planet-Centered Inertial Systems  
The CBI frames used in GEONS are obtained by translating the inertial frame used to develop 
the planetary ephemeris to the center of mass of the planet or Moon. Section 4.1.1 discusses the 
planetary ephemeris options that are available. For planetary ephemerides based on a series 400 
Developmental Ephemeris, the CBI frames are obtained by translating from the International 
Celestial Reference Frame (ICRF). The ICRF is a realization of the International Celestial 
Reference System (ICRS), which was developed based on the recommendations of the 
International Astronomical Union (IAU). These recommendations stipulated that the origin of 
the ICRS is the solar system barycenter, the principal plane as close as possible to the Earth 
mean equator of J2000.0 and the origin of its principal plane as close as possible to the 
dynamical equinox of J2000.0. The ICRS is epoch-less with axis directions fixed with respect to 
the extragalactic radio sources. The ICRS, which officially replaced the IAU 1976 FK5 system 
definition on January 1, 1998, uses new precession-nutation models. Reference 49 provides a 
more complete discussion of the ICRF.  

The equinox of the Earth’s orbit is defined as the intersection of the plane of the Earth's equator 
and the plane of the ecliptic. The mean equator is the true equator with all nutation effects 
removed from the motion of the axis of rotation. The true Earth equator is defined as the plane 
normal to the Earth's instantaneous axis of rotation. The ecliptic plane is the Earth-Sun orbital 
plane.  
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The rectangular Cartesian coordinates (see Figure 3-1) associated with the ECI coordinate 
system are defined with respect to the following axes: 

 EX̂  axis = parallel to principal direction (dynamical equinox of J2000.0 in the IAU 1976 
                            FK5 system; close to the dynamical equinox of J2000.0 in the ICRS) 

 EŶ  axis = normal to the EX̂  and EẐ  axes to form a right-hand system 

 EẐ  axis = normal to the mean Earth’s equator of J2000.0 in the direction of the  
    Earth's mean spin axis in the IAU 1976 FK5 system; close to the mean equator 
                             of J2000.0 in the ICRS 

The quantities R , X, Y, and Z designate the position vector and Cartesian coordinates referenced 
to the inertial frame.  
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Figure 3-1.  IAU 1976 FK5 ECI Coordinate System 
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3.1.2 Earth-Centered True Equator and Equinox of Date (TOD) Coordinate 
Systems 
The Earth-centered true equator and equinox of date (TOD) system is defined as follows: 

Origin: Center of the Earth 

Reference Time: Reference Date 

Reference Body: Earth 

Principal Plane: True equator of the Earth, normal to the instantaneous Earth's rotation 
axis at the date  

Principal Direction: True vernal equinox of date 

The TOD reference frame is defined with respect to the true equator and equinox at the time of 
computation, which differs from the mean of date reference system by the inclusion of the 
nutation of the true Earth spin axis about the mean pole. The true of date system is defined 
similarly to the mean of date system: a right-handed system with the z  axis positive north and 
the  x y−  plane defined as the true equatorial plane of date. The x -axis direction is toward the 
true equinox of date. The quantities r ,  x, y, and z designate the position vector and Cartesian 
coordinates referenced to the TOD frame.  

The Earth's equator moves with time in response to perturbations exerted by the Sun, Moon, and 
planets. These motions explain the difference between the mean of date and true of date 
reference frames.  

The motion of the equator consists of three elements: a smooth, long-term motion that carries the 
mean pole about the ecliptic pole at approximately 23.5 degrees; a short-period motion 
superimposed on the long-term motion; and the motion of the Earth's axis of figure with respect 
to the spin axis. The long-term motion is called the luni-solar precession and has a period of 
26,000 years. The short-period motion is called nutation and is more irregular, with an amplitude 
of about 9 arc-seconds and a period of 18.6 years. The motion of the axis of figure is called polar 
motion and is considerably smaller and more irregular than the first two elements, but it should 
also be included for very-high-accuracy applications. 

The motion of the ecliptic plane is a slow rotation, known as planetary precession. It carries the 
equinox, which is the intersection of the ecliptic plane and equator, eastward by approximately 
12 arc-seconds per century. This also decreases the angle between the ecliptic and the equator, 
known as the obliquity of the ecliptic, by approximately 47 arc-seconds per century.  

The long-period motions of the equator and equinox are considered together and are termed 
general precession. They are used to define the mean equator and equinox of a given date. The 
true equator and equinox of that date are determined by correcting the mean equator and equinox 
of date for the effects of nutation. 
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3.1.3 Earth-Centered Earth-Fixed (ECEF) Coordinate System 
The ECEF/Geocentric Terrestrial Reference Frame (GTRF) is consistent with the International 
Terrestrial Reference Frame (ITRF) defined in Reference 49. The ECEF coordinate system is 
defined as follows: 

Origin: Center of mass of the Earth 

Reference Time: Reference Date 

Reference Body: Earth 

Principal Plane: Polar plane of the Earth, perpendicular to the adopted polar geographic 
axis (referred to as the International Reference Pole) 

Principal Direction: Intersection of the Greenwich meridian with the equator (referred to as 
the International Prime Meridian) 

The Earth's axis of figure (i.e., principal moment of inertia) is not coincident with the Earth's 
instantaneous axis of rotation. It moves with respect to the latter, causing the polar motion effect. 
Therefore, the motion of the rotation axis pole is given with respect to the pole at some 
established epoch. The pole at the established epoch is referred to as the adopted geographic pole 
and corresponds to the Earth-fixed z axis, zb .  

The Greenwich meridian is the plane containing the adopted polar axis that passes through the 
former Royal Observatory at Greenwich, England.  

The rectangular Cartesian coordinates (see Figure 3-2) associated with the ECEF coordinate 
system are defined with respect to the following axes: 

 xb  axis = principal direction 

 yb  axis = normal to the  x zb b and  axes to form a right-hand system 

 zb  axis  = axis along the vector passing through the adopted geographic pole 

The quantities, r x y zb b b b,  ,   and  designate the position vector and Cartesian coordinates 
referenced to the ECEF frame. 
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Figure 3-2.  Earth-Centered Earth-Fixed Coordinate System 

3.1.4  RIC Orbit Frame Coordinate System 
The radial/in-track/cross-track (RIC) coordinate system is sometimes referred to as the orbit 
frame coordinate system. The RIC coordinate system is shown in Figure 3-3. Its origin and axes 
are defined as followed. 

Origin: Center of mass of the central body (Earth, Moon or planet) 

Reference Time: Reference Date 

Reference Body: Central body 

Principal Plane: Plane of the user spacecraft orbit 

Principal Direction: Radius vector from the origin to the user spacecraft 
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Figure 3-3.  Radial/In-Track/Cross-Track (RIC) Orbit Frame Coordinate System 

The rectangular coordinates for this system are the following; 

 CR̂  axis = (+) in direction from the center of the central body to the user spacecraft 

 CĈ  axis = (+) in direction of the orbital angular momentum vector 

 CÎ axis = Completes the right-handed orthogonal coordinate system ( )  I C R= × , 

(+) direction has the same general sense as the velocity vector direction 
Unit vectors defining the orientation of the RIC coordinate axes in the central-body J2000.0 
coordinate system, a Cartesian XYZ coordinate system, are computed as follows: 

 
C

C
C R

R
R =ˆ  (3.1-1)* 

 
CC

CC
C

RR

RRC




×

×
=ˆ  (3.1-2)* 

 CCC RCI ˆˆˆ ×=  (3.1-3)* 
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where 

 [ ]TC ZYXR =  = spacecraft position vector in the central body frame (meters) 

 [ ]TC ZYXR  =  = spacecraft velocity vector in the central body frame (meters/second) 

 [ ]TzyxC RRRR =ˆ  = radial unit vector in the central body coordinate frame (unitless) 

 [ ]TzyxC IIII =ˆ  = in-track unit vector in the central body coordinate frame (unitless) 

 [ ]TzyxC CCCC =ˆ  = cross-track unit vector in the central body coordinate frame (unitless) 

3.1.5 Rotating Libration Point Coordinate System (Future Release) 

The rotating libration point (RLP) coordinate system is used for satellite orbits about to the Sun-
Earth interior libration point, L1. The L1 point lies between the Sun and the Earth-Moon 
barycenter, approximately 1.5 x 106 kilometers (0.01 AU) from the Earth-Moon barycenter .   

The RLP coordinate system is shown in Figure 3-4. Its origin and axes are defined as followed. 

Origin: L1 libration point  

Reference Time: Reference Date 

Reference Body: L1 libration point 

Principal Plane: Plane of the Earth-Moon barycenter’s motion about the Sun 

Principal Direction: Vector from the Sun to the Earth-Moon barycenter 

 

 

 

Figure 3-4. Rotating Libration Point Coordinate System 

The rectangular coordinates for this system are defined with respect to the following axes: 

 xL  axis = principal direction 

 yL  axis = normal to the xL  and zL  axes to form a right-hand system 

 zL  axis  = normal to plane containing the position and velocity vectors of the barycenter 
with respect to the Sun.  
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The quantities R RL L and   designate the satellite’s position and velocity vectors in the RLP 
frame. 

Unit vectors defining the orientation of the RLP coordinate axes in the Earth-centered inertial 
J2000.0 coordinate system are computed as follows: 

 x
R
RL

B

B

=  (3.1-4)* 

 



z

R R

R R
L

B B

B B

=
×

×
 (3.1-5)* 

   y z xL L L= ×  (3.1-6)* 

The inertial position and velocity of the Earth-Moon barycenter with respect to the Sun are given 
by 

 R

m
m

R R

m
m

B

E

M
E M

E

M

=
+

+1
 (3.1-7)* 

 

 

R

m
m

R R

m
m

B

E

M
E M

E

M

=
+

+1
 (3.1-8)* 

where 

 RE  = inertial position vector of the Earth with respect to the Sun (meters) 

 RE  = inertial velocity vector of the Earth with respect to the Sun (meters/second) 

 RM  = inertial position vector of the Moon with respect to the Sun (meters) 

 RM  = inertial velocity vector of the Moon with respect to the Sun (meters/second) 

 mE  = mass of the Earth ( 5.9733328 x 1024 kilograms) 

 mM  = mass of the Moon (kilograms) 

The rate of change of the libration coordinate axes is given by 

 
 

x
R
R

R R

R
RL

B

B

B B

B

B= −
•

3  (3.1-9)* 
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( ) ( )[ ]

BB

BB

BBBB

BB

BB
L RR

RR

ARRR

RR

ARz 






 ×

×

×•×
−

×

×
= 3ˆ  (3.1-10)* 

 LLLLL xzxzy  ˆˆˆˆˆ ×+×=  (3.1-11)* 

where 

 A
R

R
B S

B

B

= −µ 3  (3.1-12)* 

and µ S  is the gravitational constant of the Sun, 0.1327124x1021 meters3/second2. 

3.1.6  Libration Point RIC Coordinate System (Future Release) 
The libration-point-centered radial/in-track/cross-track (LRIC) coordinate system is shown in 
Figure 3-5. The origin and axes of the LRIC system are defined as followed. 

Origin: L1 libration point 

Reference Time: Reference Date 

Reference Body: L1 libration point 

Principal Plane: Plane of the user spacecraft orbit 

Principal Direction: Radius vector from the origin to the user spacecraft 

The rectangular coordinates for this system are the following 

 RL  axis = (+) in direction from the libration point to the user spacecraft 

 CL  axis = (+) in direction of the orbital angular momentum vector 

 I L axis = Completes the right-handed orthogonal coordinate system ( )  I C RL L L= × , 

(+) direction has the same general sense as the velocity vector direction 
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Figure 3-5.  Libration-Point-Centered Radial/In-Track/Cross-Track (LRIC) Orbit 
Frame Coordinate System 

Unit vectors defining the orientation of the LRIC coordinate axes in the RLP coordinate system 
defined in Section 3.1.5 are computed as follows: 

 R
R
RL

L

L

=  (3.1-13)* 

 



C

R R

R R
L

L L

L L

=
×

×
 (3.1-14)* 

   I C RL L L= ×  (3.1-15)* 

where 

 RL  = spacecraft position vector expressed in RLP coordinates (meters) 

 RL  = spacecraft velocity vector expressed in RLP coordinates (meters/second) 
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 RL  = radial unit vector in RLP coordinates (unitless) 

 I L  = in-track unit vector in RLP coordinates (unitless) 

 CL  = cross-track unit vector in RLP coordinates (unitless) 

3.1.7 Lunar and Planet Body-Fixed Systems  
The planet body-fixed frames are commonly defined using the IAU Cartographic Coordinates 
defined in Reference 48, which provide the orientation of the axis of rotation and location of the 
prime meridian with respect to the ICRF. The origin and axes of the IAU planet equator and 
prime meridian of date frame are defined as followed. 

Origin: Center of mass of the planet  

Reference Time: Reference Date 

Reference Body: Planet 

Principal Plane: Equator of the planet, perpendicular to the axis of rotation 

Principal Direction: Intersection of the planetary prime meridian with the reference plane 

The lunar principal axis coordinate frame is used to compute the spacecraft acceleration arising 
from the Moon’s nonspherical gravitational potential. The associated coordinate axes are 
coincident with the principle axes of inertia of the Moon. The origin and axes of the lunar 
principle axis frame are defined as followed. 

Origin: Center of mass of the Moon  

Reference Time: Reference Date 

Reference Body: Moon 

Principal Plane: Equator of the Moon, perpendicular to the true axis of rotation 

Principal Direction: Vector in the principal plane pointing to the 0 degree meridian 

The rectangular coordinates for the lunar principal axis frame are the following 
 LPAx̂ axis = Unit vector along the principal direction 

 LPAŷ axis = Unit vector in the equatorial plane of the Moon and normal to LPAx̂  and LPAẑ  
such that LPALPALPA yxz ˆˆˆ ×=  

 LPAẑ  axis = Unit vector lying along the axis of rotation of the Moon  

Note that the lunar principal axis frame is not the same as the IAU mean lunar pole frame that is 
commonly used in lunar geodesy. The IAU mean lunar pole frame uses the mean pole of rotation 
to define the principal plane and the mean axis of the Moon, which points to the center of the 
Earth, to define the principal direction. 

3.1.8  VBN Coordinate System 
The velocity/binormal/normal (VBN) coordinate system is defined as followed. 
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Origin: Center of mass of the central body 

Reference Time: Reference Date 

Reference Body: Central Body 

Principal Plane: Plane of the user spacecraft orbit 

Principal Direction: Velocity vector of the user spacecraft 

The rectangular coordinates for this system are the following; 

 V̂  axis = (+) direction along the spacecraft velocity vector 

 B̂  axis = Completes the right-handed orthogonal coordinate system ( )VNB ˆˆˆ ×=  

 N̂ axis = (+) direction normal to the orbital plane (along the angular momentum vector) 

Unit vectors defining the orientation of the VBN coordinate axes in the central body inertial 
J2000.0 coordinate system are computed as follows: 

 
C

C
C

R

RV



=ˆ  (3.1-16)* 

 
CC

CC
C

RR

RRN




×

×
=ˆ  (3.1-17)* 

 CCC VNB ˆˆˆ ×=  (3.1-18)* 

where 

 [ ]TC ZYXR =  = spacecraft position vector in the central body inertial frame (meters)
 [ ]TC ZYXR  =  = spacecraft velocity vector in the central body inertial frame  
      (meters/second) 

 [ ]TzyxC VVVV =ˆ  = velocity unit vector in the central body inertial frame (unitless) 

 [ ]TzyxC BBBB =ˆ  = binormal unit vector in the central body inertial frame (unitless) 

 [ ]TzyxC NNNN =ˆ  = normal unit vector in the central body inertial frame (unitless) 
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3.2 Coordinate Transformations  
GEONS supports two implementations of the ECI to ECEF coordinate transformation:  the original 
IAU-76/FK5-based approach and the newer International Astronomical Union (IAU)-2000 
Celestial Intermediate Origin (CIO) based approach. The IAU-76/FK5 transformation consists of 
three separate transformations, which are defined in Sections 3.2.1 through 3.2.3.  The first relates 
the mean of J2000.0 frame to the mean of date (MOD) frame using the IAU 1976 Precession 
Model. The second relates the MOD frame to the true of date (TOD) frame using the IAU 1980 
Theory of Nutation. The third relates the TOD frame to the ECEF frame. Sections 3.2.4 and 3.2.5 
provide transformations associated with vectors and covariances expressed in radial, intrack, and 
crosstrack (RIC) coordinates. Sections 3.2.6 and 3.2.7 provide transformations associated with 
vectors expressed in a rotating libration point frame. Section 3.2.8 provides transformations 
associated with antenna offsets expressed in the spacecraft body frame. Section 3.2.9 discusses the 
coordinate transformation from the ECI to the lunar principal axis frame. Section 3.2.10 provides 
the transformation from the VBN to the central-body inertial frame. Sections 3.2.11 and 3.2.12 
provide the transformations from the ECI to the CBI frame and the CBI to the PBF frames, 
respectively. Section 3.2.13 provides the transformation from the Ecliptic to the Mean of J2000 
frame. Section 3.2.14 discusses calculation of the J2 mean semimajor axis error. Section 3.2.15 
discusses the IAU-2000 CIO-based transformation from the ECI/ GCRF to the ECEF/ITRF using 
IAU-2000 precession/nutation models. 

3.2.1 IAU-76/FK5 ECI Mean-of-J2000.0-to-Mean-of-Date Coordinate 
Transformation  
The coordinate rotation between the IAU-76/FK5 mean equator and equinox of J2000.0 reference 
frame and other mean equator and equinox of date reference frames is a special case of the 
transformation between two mean equator and equinox of date coordinate systems. The Julian 
epoch J2000.0 is specifically defined to be the Julian epoch date of January 1.5, 2000, Julian date 
2451545.0 barycentric dynamical time (TDB) [also known as ephemeris time (ET)]. 

The transformation of a fixed vector from one coordinate system to an alternate coordinate system 
can be accomplished by performing a series of frame rotations in succession. If a rotation matrix 
about a Cartesian X  axis is denoted as Q(a), a rotation matrix about a Cartesian Y  axis is denoted 
as P(a), and a rotation matrix about a Cartesian Z  axis is denoted as R(a), then as functions of the 
rotation angle, a, the elements of the rotation matrices are 

 ( )
















−
=

aa
aaaQ

cossin0
sincos0

001
 (3.2-1) 

 ( )P a
a a

a a
=

−















cos sin

sin cos

0
0 1 0

0
 (3.2-2) 
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 ( )R a
a a
a a= −

















cos sin
sin cos

0
0

0 0 1
 (3.2-3) 

The transformation matrix for processing from the mean equator and equinox of date for the 
reference epoch of J2000.0 to the mean equator and equinox of date for epoch E2  is given by 

 ( )A R Z Q RA A A= − −





−





π θ π ς
2 2

 (3.2-4) 

where 
π ς
2

− A  = angle measured on the equator of the reference epoch of J2000.0 from the X axis 
to the intersection of the two equatorial planes 

θ A  = angle of inclination of the equator at E2 measured from the equator at J2000.0 

π
2

+ Z A  = angle measured on the equator of date, E2, from the X2 axis to the intersection of 
the two equatorial planes 

The angles of the transformation are illustrated in Figure 3-6. 
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Ẑ2

 

Ẑ
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Figure 3-6.  Precession Angles 
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This matrix is equivalent to 

 ( ) ( ) ( )A R Z P RA A A= − −θ ς  (3.2-5)* 

Denoting the position vector expressed in mean equator and equinox of J2000.0 by R  and the 
position vector expressed in mean equator and equinox of epoch E2  by R2 , the relationship can 
be expressed by  

 R A R2 =  (3.2-6)* 

The time derivative of A can be assumed to be small enough to ignore its effects on the 
transformation of the velocity, so that 

  R A R2 =  (3.2-7)* 

where R2  is the time derivative of R2  and R  is the derivative of R . 

Due to the orthogonality of the transformation matrix, the precession transformation matrix from 
E2 to J2000.0 is the transpose of A, so that 

 R A RT= 2  (3.2-8)* 

and 

  R A RT= 2  (3.2-9)* 

where AT is the transpose of A. 

The equations for ζ θA A,  ,  and Z A  in units of arcseconds are based on the IAU 1976 Precession 
Model 

 ς A T T T= + +2306.2181 0.30188 0.017998" " 2 " 3  (3.2-10) 

 θ A T T T= − − 2004."3109 0 42665 0 0418332 3. ." "  (3.2-11) 

 Z T T TA = + +2306."2181 109468 0 0182032 3. ." "  (3.2-12) 

where 

 T = time interval in Julian centuries of 36525 days between the Julian date of epoch 
of J2000.0 and the Julian date for the epoch E2, given by 

 T
E

=
−2 24515450
365250

.
.

 (3.2-13)* 

The time interval T is defined in Julian centuries of TDB. The difference between TDB and 
Terrestrial Time (TT) is ignored in this calculation. Equation (3.2-13) is evaluated using TT 
computed using Equation (3.3-30). 
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3.2.2 Earth Mean-of-Date-to-True-of-Date Coordinate Transformation 
The true Earth equator and equinox of date coordinate system is the Earth mean equator and 
equinox of date system corrected for nutation. Nutation is measured as cyclic changes in the 
obliquity of the ecliptic and the longitude of the equinox.  

The rotation matrix from the mean equator and equinox of date system to the true equator and 
equinox of date system is given by 

 )()()( mt QRQN εδψ−ε−=  (3.2-14)* 

where 

 mε  = mean obliquity of the ecliptic, the angle from the mean equator to the true 
ecliptic plane 

 δψ  = nutation in longitude 

 εδ+ε=ε mt  = true obliquity of the ecliptic, the angle from the true equator to the true 
ecliptic, where εδ  is the nutation in obliquity 

These angles are illustrated in Figure 3-7. The Q and R matrices are defined in Section 3.2.1.  

 

Figure 3-7.  Nutation Angles 
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The transformation of position vectors from the mean of date system to the true of date system is 
then 

 r N R=  2  (3.2-15)* 

where 

 r  = position vector in the true of date frame 
 R2  = position vector in the mean of date frame 

The transformation for velocity vectors is also given by 

  r N R=  2  (3.2-16)* 

because the derivative of N is assumed to be negligible. 

The mean obliquity and nutation angles are computed using the IAU 1980 Theory of Nutation 
(Reference 50). In the J2000.0 system, the mean obliquity in degrees is given by 

 3626 )10(5036.0)10(1639.001300417.043929111.23 TTTm
−− +−−=ε  (3.2-17)* 

The third-order term in the series for the mean obliquity is on the order of 10–9 for epochs near 
J2000.0 and therefore is currently not included in GEONS. In Equation 3.2-17), T = time interval 
in Julian centuries of 36525 days TBD between the Julian date E2 and Julian date of epoch J2000.0, 
given by 

 T
E

=
−2 24515450
36525 0

.
.

 (3.2-18)* 

Three options are available in GEONS for computing the values of the nutation in longitude, δψ , 
and obliquity, δε : (1) evaluating the full 106 term series based on the IAU 1980 Theory of 
Nutation, (2) evaluating the IAU 1980 Theory of Nutation series truncated to 35 terms (all terms 
for which both nutation in longitude and obliquity coefficients are less than 0.001 arcsec are 
excluded), and (3) evaluating the Chebyshev polynomial fits to the full 106 term series based on 
the IAU 1980 Theory of Nutation available from DE files. 

The difference between TDB and Terrestrial Time (TT) is ignored in GEONS when the IAU 1980 
Theory of Nutation is used and Equation (3.2-18) is evaluated using TT computed using Equation 
(3.3-30). When the nutation angles are computed by evaluating Chebyshev polynomial in the DE 
files, T can be evaluated using either TT or optionally TBD. 

3.2.2.1 Nutation Computation Using IAU 1980 Theory of Nutation  
The equations for the two series are 

 ( )( )[ ]∑
=

+Ω+++′+=δψ
106

1
2154321sin

i
iiiiiii TbbaDaFaaa   (3.2-19)* 

and 
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 ( )( )[ ]∑
=

+Ω+++′+=δε
106

1
2154321cos

i
iiiiiii TccaDaFaaa   (3.2-20)* 

where 

 aji = coefficients of the five fundamental arguments for the ith term in the series 
 b1i = coefficient for the nonsecular component of the ith term in the longitude series 
 b2i = coefficient for the secular component of the ith term in the longitude series 
 c1i = coefficient for the nonsecular component of the ith term in the obliquity series 
 c2i = coefficient for the secular component of the ith term in the obliquity series 
The quantities  ′, , F, D, and Ω  are the fundamental arguments and are defined as 

   = lunar mean anomaly (arcseconds) 
 ′  = mean anomaly of the Sun's (Earth's) orbit (arcseconds) 

 F = difference between the mean longitude of the Moon and Ω   
   (mean longitude – Ω ) (arcseconds) 
 D = mean elongation of the Moon from the Sun (arcseconds) 
 Ω  = longitude of the ascending node of the Moon's mean orbit on the ecliptic   
   (arcseconds) 
and are given by 

    = 485866.733+1717915922.633 T + 31.310 2T + 3064.0 T  (3.2-21)*  

 ′  = 1287099.804 +129596581.224 T – 0.577 2T - 3012.0 T  (3.2-22)* 

 F = 335778.877+1739527263.137 T –13.257 2T + 3011.0 T  (3.2-23)* 

 D = 1072261 307. +1602961601.328 T – 6.891 2T + 3019.0 T  (3.2-24)* 

 Ω  = 280450160. – 6962890.539 T + 7.455 2T + 3008.0 T  (3.2-25)* 

The third-order terms, involving T3, in the above equations are very small and can be ignored for 
epochs near J2000.0. The full series for each computation has 106 trigonometric terms. The 
coefficients for the full series are given in Table 3-1a.  
Table 3-1a.  Coefficients for the Series for Nutation in Longitude Ψδ   
and Obliquity δε , With T Measured in Julian Centuries From Epoch J2000.0 
 

ARGUMENT LONGITUDE 
(0’’.0001) 

OBLIQUITY 
(0’’.0001) 

 
i 

l 
a1i 

l´ 
a2i 

F 
a3i 

D 
a4i 

Ω 
a5i 

 
b1i 

 
b2i 

 
c1i 

 
c2i 

1  0  0  0   0   1 -171996.0   -174.2   92025.0   8.9  
2  0  0  0   0   2    2062.0      0.2    -895.0   0.5  
3 -2  0  2   0   1      46.0      0.0     -24.0   0.0  
4  2  0 -2   0   0      11.0      0.0       0.0   0.0  
5 -2  0  2   0   2      -3.0      0.0       1.0   0.0  
6  1 -1  0  -1   0      -3.0      0.0       0.0   0.0  
7  0 -2  2  -2   1      -2.0      0.0       1.0   0.0  
8  2  0 -2   0   1       1.0      0.0       0.0   0.0  
9  0  0  2  -2   2  -13187.0     -1.6    5736.0  -3.1  
10  0  1  0   0   0    1426.0     -3.4      54.0  -0.1  
11  0  1  2  -2   2    -517.0      1.2     224.0  -0.6  
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ARGUMENT LONGITUDE 
(0’’.0001) 

OBLIQUITY 
(0’’.0001) 

 
i 

l 
a1i 

l´ 
a2i 

F 
a3i 

D 
a4i 

Ω 
a5i 

 
b1i 

 
b2i 

 
c1i 

 
c2i 

12  0 -1  2  -2   2     217.0     -0.5     -95.0   0.3  
13  0  0  2  -2   1     129.0      0.1     -70.0   0.0  
14  2  0  0  -2   0      48.0      0.0       1.0   0.0  
15  0  0  2  -2   0     -22.0      0.0       0.0   0.0  
16  0  2  0   0   0      17.0     -0.1       0.0   0.0  
17  0  1  0   0   1     -15.0      0.0       9.0   0.0  
18  0  2  2  -2   2     -16.0      0.1       7.0   0.0  
19  0 -1  0   0   1     -12.0      0.0       6.0   0.0  
20 -2  0  0   2   1      -6.0      0.0       3.0   0.0  
21  0 -1  2  -2   1      -5.0      0.0       3.0   0.0  
22  2  0  0  -2   1       4.0      0.0      -2.0   0.0  
23  0  1  2  -2   1       4.0      0.0      -2.0   0.0  
24  1  0  0  -1   0      -4.0      0.0       0.0   0.0  
25  2  1  0  -2   0       1.0      0.0       0.0   0.0  
26  0  0 -2   2   1       1.0      0.0       0.0   0.0  
27  0  1 -2   2   0      -1.0      0.0       0.0   0.0  
28  0  1  0   0   2       1.0      0.0       0.0   0.0  
29 -1  0  0   1   1       1.0      0.0       0.0   0.0  
30  0  1  2  -2   0      -1.0      0.0       0.0   0.0  
31  0  0  2   0   2   -2274.0     -0.2     977.0  -0.5  
32  1  0  0   0   0     712.0      0.1      -7.0   0.0  
33  0  0  2   0   1    -386.0     -0.4     200.0   0.0  
34  1  0  2   0   2    -301.0      0.0     129.0  -0.1  
35  1  0  0  -2   0    -158.0      0.0      -1.0   0.0  
36 -1  0  2   0   2     123.0      0.0     -53.0   0.0  
37  0  0  0   2   0      63.0      0.0      -2.0   0.0  
38  1  0  0   0   1      63.0      0.1     -33.0   0.0  
39 -1  0  0   0   1     -58.0     -0.1      32.0   0.0  
40 -1  0  2   2   2     -59.0      0.0      26.0   0.0  
41  1  0  2   0   1     -51.0      0.0      27.0   0.0  
42  0  0  2   2   2     -38.0      0.0      16.0   0.0  
43  2  0  0   0   0      29.0      0.0      -1.0   0.0  
44  1  0  2  -2   2      29.0      0.0     -12.0   0.0  
45  2  0  2   0   2     -31.0      0.0      13.0   0.0  
46  0  0  2   0   0      26.0      0.0      -1.0   0.0  
47 -1  0  2   0   1      21.0      0.0     -10.0   0.0  
48 -1  0  0   2   1      16.0      0.0      -8.0   0.0  
49  1  0  0  -2   1     -13.0      0.0       7.0   0.0  
50 -1  0  2   2   1     -10.0      0.0       5.0   0.0  
51  1  1  0  -2   0      -7.0      0.0       0.0   0.0  
52  0  1  2   0   2       7.0      0.0      -3.0   0.0  
53  0 -1  2   0   2      -7.0      0.0       3.0   0.0  
54  1  0  2   2   2      -8.0      0.0       3.0   0.0  
55  1  0  0   2   0       6.0      0.0       0.0   0.0  
56  2  0  2  -2   2       6.0      0.0      -3.0   0.0  
57  0  0  0   2   1      -6.0      0.0       3.0   0.0  
58  0  0  2   2   1      -7.0      0.0       3.0   0.0  
59  1  0  2  -2   1       6.0      0.0      -3.0   0.0  
60  0  0  0  -2   1      -5.0      0.0       3.0   0.0  
61  1 -1  0   0   0       5.0      0.0       0.0   0.0  
62  2  0  2   0   1      -5.0      0.0       3.0   0.0  
63  0  1  0  -2   0      -4.0      0.0       0.0   0.0  
64  1  0 -2   0   0       4.0      0.0       0.0   0.0  
65  0  0  0   1   0      -4.0      0.0       0.0   0.0  
66  1  1  0   0   0      -3.0      0.0       0.0   0.0  
67  1  0  2   0   0       3.0      0.0       0.0   0.0  
68  1 -1  2   0   2      -3.0      0.0       1.0   0.0  
69 -1 -1  2   2   2      -3.0      0.0       1.0   0.0  
70 -2  0  0   0   1      -2.0      0.0       1.0   0.0  
71  3  0  2   0   2      -3.0      0.0       1.0   0.0  
72  0 -1  2   2   2      -3.0      0.0       1.0   0.0  
73  1  1  2   0   2       2.0      0.0      -1.0   0.0  
74 -1  0  2  -2   1      -2.0      0.0       1.0   0.0  
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ARGUMENT LONGITUDE 
(0’’.0001) 

OBLIQUITY 
(0’’.0001) 

 
i 

l 
a1i 

l´ 
a2i 

F 
a3i 

D 
a4i 

Ω 
a5i 

 
b1i 

 
b2i 

 
c1i 

 
c2i 

75  2  0  0   0   1       2.0      0.0      -1.0   0.0  
76  1  0  0   0   2      -2.0      0.0       1.0   0.0  
77  3  0  0   0   0       2.0      0.0       0.0   0.0  
78  0  0  2   1   2       2.0      0.0      -1.0   0.0  
79 -1  0  0   0   2       1.0      0.0      -1.0   0.0  
80  1  0  0  -4   0      -1.0      0.0       0.0   0.0  
81 -2  0  2   2   2       1.0      0.0      -1.0   0.0  
82 -1  0  2   4   2      -2.0      0.0       1.0   0.0  
83  2  0  0  -4   0      -1.0      0.0       0.0   0.0  
84  1  1  2  -2   2       1.0      0.0      -1.0   0.0  
85  1  0  2   2   1      -1.0      0.0       1.0   0.0  
86 -2  0  2   4   2      -1.0      0.0       1.0   0.0  
87 -1  0  4   0   2       1.0      0.0       0.0   0.0  
88  1 -1  0  -2   0       1.0      0.0       0.0   0.0  
89  2  0  2  -2   1       1.0      0.1      -1.0   0.0  
90  2  0  2   2   2      -1.0      0.0       0.0   0.0  
91  1  0  0   2   1      -1.0      0.0       0.0   0.0  
92  0  0  4  -2   2       1.0      0.0       0.0   0.0  
93  3  0  2  -2   2       1.0      0.0       0.0   0.0  
94  1  0  2  -2   0      -1.0      0.0       0.0   0.0  
95  0  1  2   0   0       1.0      0.0       0.0   0.0  
96 -1 -1  0   2   1       1.0      0.0       0.0   0.0  
97  0  0 -2   0   1      -1.0      0.0       0.0   0.0  
98  0  0  2  -1   1      -1.0      0.0       0.0   0.0  
99  0  1  0   2   2      -1.0      0.0       0.0   0.0  

101  1  0 -2  -2   0      -1.0      0.0       0.0   0.0  
102  0 -1  2   0   1      -1.0      0.0       0.0   0.0  
103  1  1  0  -2   1      -1.0      0.0       0.0   0.0  
104  1  0 -2   2   0      -1.0      0.1       0.0   0.0  
105  2  0  0   2   0       1.0      0.0       0.0   0.0  
106  0  0  2   4   2      -1.0      0.0       0.0   0.0  

To reduce computation, the GEONS software can optionally compute the nutation series excluding 
those nonsecular or secular terms for which both nutation and obliquity coefficients are less than 
0.001 arc-second. Table 3-1b lists only those coefficients included in the truncated series. 
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Table 3-1b.  Coefficients for the Truncated Series for Nutation in Longitude Ψδ   
and Obliquity δε , With T Measured in Julian Centuries From Epoch J2000.0 
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5736
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224
-95
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0
0
9
7
6

977
-7
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129

-1
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13.8
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46
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17
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123
63
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Comparisons were made between the nutation matrices computed from the full series and the 
truncated series and were tabulated from the Astronomical Almanac (Reference 8) at several dates. 
Elements of the nutation matrix computed using the full series agreed with the Astronomical 
Almanac values to the eight published digits for all cases. The largest difference between an 
element of the full series matrix and the corresponding element of the truncated series matrix was 
less than 2 × 10–8. It may be possible to make further reductions for cases in which only times 
within 10 years of J2000.0 are considered; however, this reduction would require further analysis. 

3.2.2.2 Nutation Calculation Using Chebyshev Series Representation 
The DE files provide Chebyshev coefficients for the nutation in longitude and obliquity referenced 
to TT, which have been computed based on the full 1980 Theory of Nutation. These coefficients 
can optionally be used in GEONS to compute the nutation terms using the following formulas:  
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Each nutation angle ),( δεδψ  is computed as follows: 

 ∑
=

τ=
N

n
nnTT Tctx

0
)()(  (3.2-25a)* 

where TTt  is the request time in TT (computed using Equations 4.1-28b and 4.1-28c), nc  are the 
associated Chebyshev coefficients, )(τnT  are the Chebyshev polynomials, and N is the degree of 
the expansion. The Chebyshev polynomials are computed using the following recursion formula: 

 ,...3,2),()(2)( 21 =τ−ττ=τ −− nTTT nnn  (3.2-25b)* 

where 1)(0 =τT  and τ=τ)(1T .  

The applicable range of interpolation for the Chebyshev time parameter τ  is 11 ≤τ≤− , which is 
computed as follows: 

 12
−

∆
∆

=τ
C

TT

T
t   (3.2-25c)* 

where Start
CTTTT Ttt −=∆  is the elapsed time from the start time of the polynomial fit interval, 𝑇𝑇𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, 

and CT∆  is the length associated Chebyshev polynomial fit interval. The fit interval is 32 days for 
the nutation angles. 

3.2.2.3 Earth-Mean-of-J2000.0 to True-of-Date Transformation Matrix 
The transformation matrix from the mean equator of J2000.0 to the true equator of date is 
computed by multiplying the two transformation matrices, A and N, so that  

 C = N A (3.2-26)* 

where A is the precession matrix from the reference epoch, J2000.0, as defined in Section 3.2.1. 

The transformation of position vectors from the mean equator of J2000.0 to the true equator of 
date is then 

 r C R=  (3.2-27) 

where r  is a position vector in the true of date frame and R  is a position vector in the mean of 
J2000.0 frame. The transformation of velocity vectors is also given by  

  r C R=  (3.2-28) 

because the derivative of C is assumed to be negligible. 

Because both the A and N matrices are orthogonal, their product is orthogonal. The transformation 
matrix from true of date to mean of J2000.0 is then given by CT 

 R C rT=  (3.2-29) 
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  R C rT=  (3.2-30) 

3.2.3 Earth True-of-Date-to-ECEF Coordinate Transformation 
The transformation that relates the TOD coordinates to the ECEF coordinates accounts for two 
separate effects. The first relates the true vernal equinox to the prime meridian of the rotating Earth 
by means of the angle ag, the true of date right ascension of Greenwich. The second effect, called 
polar motion, accounts for the fact that the pole of the ECEF body-fixed axis does not coincide 
with the Earth's spin axis. The first of these effects, which transforms the TOD coordinates to 
pseudo-body-fixed coordinates, is defined in Section 3.2.3.1. Polar motion is not required for 
Doppler measurement processing but should be included to process the pseudorange 
measurements. The transformation from pseudo-body-fixed coordinates to ECEF coordinates is 
defined in Section 3.2.3.2. 

3.2.3.1 True-of-Date-to-Pseudo-Body-Fixed Coordinate Transformation 
The transformation from true of date coordinates to ECEF coordinates uncorrected for polar 
motion (also referred to as pseudo-body-fixed coordinates) is  

 ( )r R a r R rP g g= =  (3.2-31)* 

where 

 R = Z  axis rotation matrix defined in Section 3.2.1 
 r  = true equator and equinox of date position vector 
 rP  = pseudo-body-fixed position vector 

 ag = TOD right ascension of the Greenwich prime meridian, which is equal in value to  
               the Greenwich hour angle 

The transformation of a velocity vector is 

 ( )[ ] ( ) r d
dt

R a r R a rP g g= +  (3.2-32)* 

where 

 ( )[ ]
( ) ( )
( ) ( )d

dt
R a

a a
a ag

e g e g

e g e g=

−

− −



















ω ω

ω ω

sin cos
cos sin

0
0

0 0 0
 (3.2-33)* 

and 

 r  = true equator and equinox of date position vector 
 r  = true equator and equinox of date velocity vector 
 rP  = pseudo-body-fixed velocity vector  

 eω  = Earth rotation rate equal to 7.2921158553 x 10-5 radians per second 
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Correction for polar motion converts the pseudo-body-fixed coordinates to body-fixed 
coordinates, rb . If the polar motion effects are ignored, then r r rb P b P= = and r  . 

Because the R matrix is orthogonal, the transformation from the pseudo-body-fixed coordinate 
system to true equator and equinox of date coordinates is 

 ( )r R a rT
g p=  (3.2-34) 

 ( ) ( )[ ] r R a r
t

R a rT
g P g= −





d
d

 (3.2-35) 

where RT(ag) is the transpose of the R(ag) matrix. 

The true of date right ascension of the Greenwich prime meridian, ag, is measured easterly from 
the true vernal equinox to the Greenwich meridian along the equator. A related quantity is the 
Greenwich hour angle (GHA), also called the true Greenwich sidereal time, which measures the 
angular distance of the true vernal equinox west along the equator from the Greenwich meridian. 
The GHA and ag are equal in value, and both increase as the Earth rotates.  

The GHA is computed from the Greenwich mean sidereal time (aGM) and a correction due to 
nutation in longitude and obliquity, known as the equation of equinoxes.  

The Greenwich mean sidereal time, aGM, is defined as the right ascension of the fictitious mean 
Sun minus 12 hours plus the time of day in UT1 (universal time, corrected to remove polar motion 
effects). The Greenwich mean sidereal time at 0h 0min 0s UT1 is expressed in units of radians, 
following the expression presented in Reference 50  

 𝑎𝑎𝐺𝐺𝐺𝐺 =
[24110.54841𝑠𝑠 + 8640184.812866 𝑇𝑇𝑈𝑈𝑈𝑈1
+0.093104 𝑇𝑇𝑈𝑈𝑈𝑈12 − 6.2 × 10−6𝑇𝑇𝑈𝑈𝑈𝑈13 ] 2𝜋𝜋

86400
 (3.2-36)* 

where 
 TUT1 = number of Julian centuries elapsed from epoch J2000.0 UT1 to the JD at  
                     0h 0min 0s UT1 = (JDUT1 – 2451545.0)/36525, where JD is the integer part of the 
                     Julian date for 0h 0min 0s UT1 on the date of interest 
The superscript s indicates seconds. The algorithm for converting from UTC to UT1 time is 
provided in Section 3.3.  

The elapsed UT1 time on the day of interest is added in as follows: 

 aGM(t) = aGM  + ωe(t − tref)   

where 

 aGM = mean Greenwich sidereal time computed using Equation (3.2-36) at 0h 0min 0s 
UT1 of the day of interest 

 eω  = rotation rate of the Earth 

 tref = 0h 0min 0s UT1 of the day of interest 
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The true Greenwich sidereal time is computed by applying the correction, Hδ , from the nutation 
in longitude and obliquity to the aGM(t) , as  

 GHA = ag = aGM(t)  + Hδ  (3.2-37)* 

where 

 𝛿𝛿𝛿𝛿 = 𝛿𝛿𝛿𝛿 𝑐𝑐𝑐𝑐𝑐𝑐( 𝜀𝜀𝑚𝑚) + 𝑓𝑓(0.00264 𝑠𝑠𝑠𝑠𝑠𝑠𝛺𝛺 + 0.000063 𝑠𝑠𝑠𝑠𝑠𝑠2𝛺𝛺) (3.2-38)* 

The computation of the mean obliquity, 𝜀𝜀𝑚𝑚 , is defined in Equation 3.2-17. The computation of 
the nutation in longitude, ψδ , is discussed in Section 3.2.2.1, as part of the transformation to the 
true of date coordinate frame. The function f(x) converts arcseconds to radians and 𝛺𝛺 is the 
longitude of the ascending node of the Moon’s mean orbit on the ecliptic as defined for nutation 
in Section 3.2.2.1. 

 (Equation deleted) (3.2-39) 

3.2.3.2 Earth Pseudo-Body-Fixed-to-ECEF Coordinate Transformation 
The polar motion correction takes into account the fact that the Earth's principal moment of inertia 
is not coincident with the Earth's rotation axis. The coordinates of the Celestial Ephemeris Pole 
(which differs from the Earth's instantaneous rotation axis by quasi-diurnal terms with amplitudes 
under 0.01 arcseconds) are measured relative to the International Reference Pole in terms of its xp 
and yp components in the polar plane, which is perpendicular to the z body-fixed axis.  The z body-
fixed axis is coincident with the rotation axis at an established epoch referred to as the adopted 
reference pole, called the International Reference Pole. The coordinates xp and yp are periodically 
measured by the International Earth Rotation Service (IERS) and supplied to users daily via the 
IERS website (http://www.iers.org). The IERS polar motion coordinates describe the 
instantaneous rotation axis of the ITRF with respect to the ICRF, when used with the conventional 
1976 Precession Model and 1980 Nutation Theory.  

The instantaneous coordinates of the pole in arc-seconds, xp and yp, are obtained by evaluating the 
following trigonometric function for the date of interest: 

 xp = a1 + a2 cos A + a3 sin A + a4 cos C + a5 sin C  (arc-seconds) (3.2-40)* 

 yp = a6 + a7 cos A + a8 sin A + a9 cos C + a10 sin C  (arc-seconds) (3.2-41)* 

where the coefficients ai are determined in the USNO polar motion prediction published in the 
IERS Bulletin-A. The angles A and C are computed as follows: 

 A = ( )2
365 25

π
.

MJD Tp−  (radians) (3.2-42)* 

 C = ( )2
435

π MJD Tp−  (radians) (3.2-43)* 
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where MJD is the modified Julian date of the request time and Tp is the epoch time of the 
prediction, also published in IERS Bulletin-A. The MJD is computed as follows: 

 MJD = JD  − 2400000.5 days (3.2-44)* 

where JD is the Julian date of the request time computed using Equation (4.1-11). The estimated 
accuracies of these predictions are 0.002 arc-second and 0.005 arc-second for the 10- and 40-day 
predictions, respectively. The 10 ai coefficients and the epoch time of the prediction will be 
uplinked to the spacecraft monthly. 

When the GPS-ICE Earth Orientation Parameters (EOP) messages are available from the GPS 
Broadcast Message, px  and py  are computed as follows: 

 
)(__

)(__

)EOPp

EOPp

ttYPMYPMy

ttXPMXPMx

−+=

−+=



 (3.2_44b) 

The coefficients PM_X, PM_Y, XPM _  and YPM _  are provided as part of the GPS Broadcast 
message type 32 (see Table 3-2). Section 30.3.3.5 in Reference 10 provides a detailed discussion 
of the EOP. 

Table 3-2.  GPS Earth Orientation Parameters 

Parameter Units Description 

EOPt  Second EOP Data Reference Time in seconds from the start 
of the GPS week 

XPM _  Arcseconds X-Axis Polar Motion Value at Reference Time  

XPM _  Arcseconds/
day 

X-Axis Polar Motion Drift at Reference Time  

YPM _  Arcseconds Y-Axis Polar Motion Value at Reference Time  

YPM _  Arcseconds/
day 

Y-Axis Polar Motion Drift at Reference Time  

1UT∆  Seconds UT1-GPS Difference at Reference Time 

1TU ∆  Seconds/day Rate of UT1-GPS Difference at Reference Time 

 

Alternatively, when TDRSS Augmentation Service for Satellites (TASS) messages are available, 
the current Earth Orientation Parameters, xp and yp, can be obtained directly from the values in 
these messages. 
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The additional transformation from the pseudo-body-fixed coordinates defined in Equations 
(3.2-31) and (3.2-32) to the body-fixed ECEF frame is as follows: 

 ( )r B x y rEF p p p= ′ ′,  (3.2-45)* 

 ( ) , r B x y rEF p p p= ′ ′  (3.2-46)* 

where 

 ( )B x y
x
y

x y
p p

p

p

p p

′ ′ =
′

− ′
− ′ ′

















,
1 0
0 1

1
 (3.2-47)* 

and px′  and py′  are the pole coordinates expressed in radians, where 1 arc-second = 
0.4848136811095 × 10–5 radians. 

In summary, the coordinate transformation from the mean equator and equinox of J2000.0 to ECEF 
is given by 

 r B R C RECEF g J= 2000  (3.2-48a)* 

 [ ] 20002000)( JgJgECEF RCRBRCaR
dt
dBr  +






=  (3.2-48b)* 

The coordinate transformation from ECEF to the mean equator and equinox of J2000.0 is given 
by 

 R C R B rJ
T

g
T T

ECEF2000 =  (3.2-49a)* 

 [ ] ECEF
TT

g
T

ECEF
TT

g
T

J rBRCrBaR
dt
dCR  +






= )(2000  (3.2-49b)* 

3.2.4  Central-Body Inertial-to-RIC Coordinate Transformation 
The matrix that transforms a vector in the central-body inertial frame to the RIC frame is formed 
using RIC unit vectors expressed in the central body inertial frame defined in Equations 3.1-1 
through 3.1-3: 

 [ ]
















⋅⋅⋅
⋅⋅⋅
⋅⋅⋅

=←

CCCCCC

CCCCCC

CCCCCC

CXYZRIC

ZCYCXC
ZIYIXI
ZRYRXR

T
ˆˆˆˆˆˆ
ˆˆˆˆˆˆ
ˆˆˆˆˆˆ

 (3.2-50)* 

A vector expressed in the central-body mean of J2000.0 frame is transformed to RIC coordinates 
with respect to the central-body frame as follows 
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 [ ]















=

















←

C

C

C

CXYZRIC

C

C

C

Z
Y
X

T
C
I
R

 (3.2-51)* 

A vector in RIC coordinates is transformed to mean of J2000.0 coordinates with respect to the 
central-body frame as follows 

 [ ]















=

















←

C

C

C
T
CXYZRIC

C

C

C

C
I
R

T
Z
Y
X

 (3.2-52)* 

3.2.5  Central-Body Inertial to RIC Covariance Transformation 

A [6 × 6] position and velocity covariance matrix [P] in RIC coordinates with respect to the 
central-body frame is transformed into central-body mean of J2000.0 coordinates as shown below: 

 [ ] [ ]
[ ] [ ] [ ]

[ ] 















=

←×

×←

←×

×←

CXYZRIC

CXYZRIC
RIC

T

CXYZRIC

CXYZRIC
XYZ T

T
P

T
T

P
CC

33

33

33

33

0
0

0
0

 (3.2-53)* 

This transformation is used when transforming the initial RIC state error covariance matrix into 
Mean of J2000.0 XYZ coordinates and when transforming the RIC state noise covariance matrix 
into Mean of J2000.0 XYZ coordinates. 

A [6 × 6] position and velocity covariance matrix [P] in XYZ coordinates is transformed into RIC 
coordinates as shown below: 

 [ ] [ ]
[ ] [ ] [ ]

[ ]

T

CXYZRIC

CXYZRIC
XYZ

CXYZRIC

CXYZRIC
RIC T

T
P

T
T

P
CC 
















=

←×

×←

←×

×←

33

33

33

33

0
0

0
0

 (3.2-54)* 

This transformation is used when transforming the state error covariance matrix into RIC 
coordinates.  

3.2.6 Inertial Cartesian to Rotating Libration Point Coordinate Transformation 
(Future Release) 
The transformation of the satellite position and velocity vectors expressed in the inertial mean of 
J2000.0 frame, R  and R , to the rotating libration point (RLP) frame defined in Section 3.1.5, 

LR  and LR , is computed as follows: 

 
R
R

T
T T

R
R

L

L

RLP XYZ

RLP XYZ RLP XYZ
  









 =





















← ×

← ←

03 3  (3.2-55)* 

where 
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 [ ]T
x x x
y y y
z z z

RLP XYZ

L x L y L z

L x L y L z

L x L y L z

← =

















  

  

  

 (3.2-56)* 

 [ ]

  

  

  
T

x x x
y y y
z z z

RLP XYZ

L x L y L z

L x L y L z

L x L y L z

← =

















 (3.2-57)* 

The inertial coordinates of the RLP unit vectors  ,ˆ,ˆ LL yx and Lẑ  are defined in Equations 3.1-4 

through 3.1-6. The rates of change of the inertial coordinates of the RLP unit vectors  ,ˆ,ˆ LL yx  and 

Lz̂  are defined in Equations 3.1-9 through 3.1-11. 

3.2.7  Rotating Libration Point to Libration-Point-RIC Coordinate Transformation 
(Future Release) 
The LRIC unit vectors defined in Section 3.1.6 can be formed into a matrix that transforms RLP 
coordinates into LRIC coordinates: 

 [ ]T
R R R
I I I
C C C

LRIC RLP

L x L y Lz

L x L y Lz

L x L y Lz

← =

















  

  

  
 (3.2-58)* 

A vector in RLP coordinates, such as a line-of-sight position vector from the libration point to the 
user satellite, is transformed into LRIC coordinates as follows 

 [ ]
R
I
C

T
x
y
z

L

L

L

LRIC RLP

L

L

L















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=
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










←  (3.2-59)* 

A vector in LRIC coordinates, such as a thrust acceleration vector, is transformed into RLP 
coordinates as 

 [ ]
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



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
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
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 (3.2-60)* 

3.2.8  Spacecraft Antenna Offset Transformations 
This section provides transformations that are used to transform antenna offset vectors expressed 
in a spacecraft body-fixed frame to an offset vector in the inertial frame.  
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The position and velocity of antenna m on spacecraft n are computed as follows in terms of 
constant antenna offsets expressed in the spacecraft body frame ( ) ( ) ( )[ ]

B
n
AB

n
AB

n
A mmm

zyx ∆∆∆ ,, : 
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  (3.2-61)* 

where R t R( )  and )( RtR  are the position and velocity of the spacecraft center of mass and n
BXYZT ←  

and n
BXYZT ←

  are the transformation matrix from the local body frame to the J2000.0 inertial frame 
and its time derivative, respectively.   

Sections 3.2.8.1 and 3.2.8.2 define the transformation matrices n
BXYZT ←  used for 3-axis stabilized 

spacecraft and spin-stabilized spacecraft, respectively. 

3.2.8.1 Three-Axis Stabilized Spacecraft 

For a three-axis stabilized spacecraft, the transformation matrix n
BXYZT ←  is equal to the transpose 

of the attitude matrix )(tA , which maps vectors from the J2000.0 inertial frame to the satellite 
body frame.   

 
0

)(
≅

=

←

←

n
BXYZ

Tn
BXYZ

T
tAT


  (3.2-62)* 

At time t, the attitude matrix is given by   

 
















θφθ−φθ
θψφθψ+φψ−φθψ−φψ−
θψφθψ+φψφθψ−φψ

=
coscossinsinsin

sincossincoscossinsinsincoscoscossin
sinsincoscossinsincossincossincoscos

)(tA  (3.2-63) 

where 
 φ, θ, ψ = satellite body yaw, pitch, and roll angles at time t with respect to the inertial 
frame, corresponding to a 3-1-3 sequence of Euler angle rotations 
or equivalently 
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tA  (3.2-64)* 
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where 
 4321 ,,, qqqq  = quaternion elements or Euler symmetric parameters defining the 
orientation of the satellite body at time t with respect to the inertial frame 
The capability is available in GEONS to input an attitude history file that contains the values of 
the quaternion elements at specific times.  Operationally, this attitude information could be 
provided by an onboard attitude estimator operating in parallel with the GEONS orbit estimator or 
by an advanced star tracking system that provides the attitude quaternion directly. 

Definitions of the spacecraft body frames are spacecraft specific; however, the target attitude frame 
is often defined with the −Bz axis along the radial or anti-radial direction, the −Bx axis along the 
in-track or anti-in-track direction, and −By axis along the cross-track or anti-cross-track direction.  
For the case of a nadir-pointing spacecraft rotating at 1 revolution per orbit with negligible attitude 
control errors, the transformation matrix n

BXYZT ←  in Equation (3.2-61) is equivalent to the matrix 
T

XYZRICT ][ ← , defined in Section 3.2-50, which maps a vector in the RIC frame to the inertial frame. 
If the antenna offsets are expressed in terms of RIC components in the central body frame, 
Equation (3.2-61) reduces to  
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3.2.8.2 Spin-Stabilized Spacecraft  
For spin-stabilized spacecraft, n

BXYZT ←  is the transformation matrix from the rotating local body 
frame to the J2000.0 inertial frame.  Figure 3-8 illustrates this rotating body frame.  The satellite 
spins at a rate Bω  about the spacecraft spin axis, nominally parallel to the geometric axis of the 
satellite. The rotating body frame is centered at the spacecraft center of mass with the Bz  axis 
along the spin axis direction and the Bx  and By  axes in the plane perpendicular to the spin axis. 
The location of the Bx  and By  axes is satellite specific; one axis is usually chosen to be aligned 
with a specific hardware element such as a solar panel or a sensor.  The phase angle Bφ  defines 
the instantaneous location of the Bx  axis relative to a body-centered non-rotating frame. 

The orientation of the spin-axis with respect to the geocentric inertial J2000 frame is expressed as 
follows:  
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ˆ  (3.2-66) 

where 

 Â  = unit vector along the spacecraft spin axis 
 Bα  = the right ascension of the spin axis 
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 Bδ  = declination of the spin axis 

 

Figure 3-8. Definition of Rotating Body Frame 

The transformation matrix n
BXYZT ←  from a vector expressed in this rotating body-fixed frame to a 

vector expressed in the inertial frame can be written in terms of three rotations: 
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The capability is available in GEONS to input an attitude history file that contains the values of 
the right ascension and declination of the spin axis with respect to the inertial reference frame, the 
rotation rate, and the phase at specific times.  The value of the phase at any time is computed as 
follows based on the most recent input values for Bφ  and Bω : 

 [ ]π−ω+φ=φ 2),()(mod)( n
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n
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n
lastB

n
kB tttt   (3.2-69)* 
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3.2.9  ECI to Lunar Principal Axis Frame Coordinate Transformation  
The Lunar Principal Axis (LPA) (also referred to as selenographic) coordinate frame is used to 
define positions on the Lunar surface and to compute the spacecraft acceleration arising from the 
Moon’s nonspherical gravitational potential. The coordinate axes are the principal axes of inertia 
of the Moon, defined in Section 3.1.7. The orientation of the lunar principal axes with respect to 
the mean of J2000 frame is given by three Euler angles: (1) the rotation by angle ϕ  about the Z-
axis from the vernal equinox (X-axis of J2000.0 frame) to the intersection of the ascending node 
of the lunar equator, (2) the tilt up about the X-axis by θ  to match the lunar equator, and (3) the 
rotation by ψ  along the lunar equator to the lunar prime meridian.  

The transformation of position and velocity vectors from the Earth-centered Mean of J2000.0 
frame (ECI) to the Lunar-centered Mean of J2000 reference frame (LCI) is given by  
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ECIECILCI

MoonJJ

MoonJJ

RRR
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 −=

−=

20002000
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 (3.2-70)* 

where 
ECIMoonR  and 

ECIMoonR  are the position and velocity of the Moon in the Mean of J2000.0 
geocentric frame.  

The transformation of a position and velocity vector from the LCI frame, 
LCIJR 2000 , to the LPA 

frame, LPAr , is given by  
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+=
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 (3.2-71)* 

where the rotation matrix, 
LCIJLPAT 2000← , transforms the vector from the Mean of J2000.0 lunar-

centered frame to the lunar principal axis frame.  

In terms of the Euler angles of the lunar principal axes relative to the J2000 reference frame, the 
rotation matrix 

LCIJLPAT 2000←  is given by 

 )()()(2000 φθψ=← RQRT
LCIJLPA  (3.2-72) 

where the elementary rotation matrices are defined in Section 3.2.  

3.2.9.1 Transformation Using Chebyshev Series Representation 
The most accurate source for the lunar Euler angles is a modern high precision planetary ephemeris 
(accurate to less than 1 meter). Note that the Euler angles provided in DE403 were used to develop 
the LP100K nonspherical lunar gravity model and are therefore the best choice for use with that 
gravity model. The DE series 400 files provide Chebyshev coefficients for the Euler angles 
referenced to TT. These coefficients can optionally be used in GEONS to compute the 
transformation given in Equation (3.2-72). In this case the Euler angles are evaluated using the 
following formulas:  
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Each Euler angle ),,( ψθφ  and the associated rates are computed as follows: 
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 (3.2-72a)* 

where TTt  is the request time in TT (computed using Equations 4.1-28b and 4.1-28c), nc  are the 

associated Chebyshev coefficients, )(τnT  and )(τnT  are the Chebyshev polynomials for the angles 
and angular rates respectively, and N is the degree of the expansion. The Chebyshev polynomials 
are computed using the following recursion formula: 

 ,...3,2),()(2)( 21 =τ−ττ=τ −− nTTT nnn  (3.2-72b)* 

where 1)(0 =τT  and τ=τ)(1T .  

The applicable range of interpolation for the Chebyshev time parameter τ  is 11 ≤τ≤− , which is 
computed as follows: 

 12
−

∆
∆

=τ
C

TT

T
t   (3.2-72c)* 

where Start
CTTTT Ttt −=∆  is the elapsed time from the start time of the polynomial fit interval, Start

CT
, and CT∆  is the length associated Chebyshev polynomial fit interval. The fit interval is 32 days 
for the Euler angles. 

The transformation is computed as follows: 
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The time derivative of the rotation matrix, 
LCIJLPAT 2000←

 , is obtained by differentiating its elements:  
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  (3.2-72e)* 

and [ ]T
LCIJLPALPAJ TT

LCI 20002000 ←← =  . 

3.2.9.2 Transformation Using Analytical Series  
GEONS also provides the following analytical approach to compute this transformation, which is 
based on a conversion of the IAU 1994 series for lunar physical librations of the mean lunar pole 
frame to the DE403 lunar principle axis frame. This approach is less accurate (accurate to about 
100 meters on the lunar surface) than using the Euler angles provided in the high precision 
planetary ephemeris but is more appropriate for implementation in flight software. In terms of the 
IAU 1994 series, the transformation matrix 

LCIJLPAT 2000←  is computed as follows: 

 
LCILCI JMPMPLPAJLPA TTT 20002000 ←←← =  (3.2-73) 

where MPLPAT ←  is the transformation from the IAU mean lunar pole frame to the DE403 lunar 
principle axis frame and 

LCIJMPT 2000←  is the transformation from the IAU mean lunar pole frame to 
the mean of J2000.0 frame.  

References 44 and 45 provide modifications to the IAU lunar physical libration series given in 
Reference 43 to account for the differences between the IAU mean lunar pole and principle axis 
frames based on a body-fixed lunar orientation of DE403. The resultant transformation is given by 
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 (3.2-74)* 
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where 900 −ϕ=α  is the right ascension of the lunar north pole with respect to the mean of J2000 
frame  
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 (3.2-75)* 

θ−=δ 900  is the declination of the lunar north pole with respect to the mean of J2000 frame 
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 (3.2-76)* 

and ψ=Λ  is the lunar prime meridian with respect to the mean of J2000 frame 
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 (3.2-77)* 

where 

 (degrees)0529921.0045.1251 edE −=  (3.2-78)* 

 (degrees)1059842.0089.2502 edE −=  (3.2-79)* 

 (degrees)0120009.13008.2603 edE +=  (3.2-80)* 

 (degrees)3407154.13625.1764 edE +=  (3.2-81)* 

 (degrees)9856003.0529.3575 edE +=  (3.2-82)* 

 (degrees)4057084.26589.3116 edE +=  (3.2-83)* 

 (degrees)0649930.13963.1347 edE +=  (3.2-84)* 

 (degrees)3287146.0617.2768 edE +=  (3.2-85)* 

 (degrees)7484877.1226.349 edE +=  (3.2-86)* 

 (degrees)1589763.0134.1510 edE −=  (3.2-87)* 

 (degrees)0036096.0743.11911 edE +=  (3.2-88)* 

 (degrees)1643573.0961.23912 edE +=  (3.2-89)* 
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 (degrees)9590088.12053.2513 edE +=  (3.2-90)* 

 (degrees)104.117635815.133213.38 212
eep dd −×−+=Λ  (3.2-91)* 

where ed  is the time interval in days from January 1.5, 2000 TCB (Julian date: 2451545.0) and 

eT  is the time interval in Julian centuries of 36525 ephemeris days, i.e. 
36525

e
e

dT = . 

The time derivative of the rotation matrix, 
LCIJLPAT 2000←

 , is obtained by differentiating its elements, 

assuming that 0α  and 0δ  are zero:  
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and [ ]T
LCIJLPALPAJ TT

LCI 20002000 ←← =  . 

where 17635815.13≅Λ  degrees per day =
18086400

17635815.13 π
×≅Λ  radians per second, the first 

order rotation rate of the Moon. 

3.2.10 VBN to CBI Coordinate Transformation 
The transformation of a vector expressed in the VBN frame defined in Section 3.1.8 to the 
central-body inertial mean of J2000.0 frame is computed as follows: 
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where 
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 (3.2-93)* 

3.2.11 ECI to Non-Earth CBI Coordinate Transformation 

The transformation of position and velocity vectors from the Mean of J2000.0 Earth-centered 
frame (ECI) to the Mean of J2000 reference frame of a non-Earth central body (CBI) is given by  
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where 
ECIPlanetR  and 

ECIPlanetR  are the position and velocity of the non-Earth central body in the 
Mean of J2000.0 Earth-centered frame.  

3.2.12 Non-Earth CBI to PBF Coordinate Transformation 

The transformation from the non-Earth CBI to PBF frame is performed using the cartographic 
coordinates of the body provided in Reference 48. The cartographic coordinates of the body consist 
of the orientation of the axis of rotation (north pole) and the prime meridian of the object with 
respect to the inertial ICRF. In the absence of other information, the axis of rotation is assumed to 
be normal to the mean orbital plane. 

The transformation is given by 
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 (3.2-95)* 

where 900 −ϕ=α  is the right ascension of date of the axis of rotation (north pole) with respect to 

the ICRF frame, θ−=δ 900  is the declination of date of the axis of rotation with respect to the 
ICRF, and ψ=Λ  is the prime meridian with respect to the ICRF. 

The time derivative of the rotation matrix, 
CBIJPBFT 2000←

 , is obtained by differentiating its 

elements, assuming that 0α  and 0δ  are zero:  
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and [ ]T
PCIJPBFPBFJ TT

CBI 20002000 ←← =  . 

Table 1 in Reference 48 provides the following approximate expressions (accurate to 0.1 degree) 
for computing these angles, which are summarized in Table 3-3. 

Table 3-3. Values for the Direction of the North Pole of Rotation and Prime 
Meridian of the Sun and Planets 

Body Right Ascension (

0α ) (degrees) 
Declination ( 0δ ) 

(degrees) 

Prime Meridian ( Λ ) 
(degrees) 

Rotation Rate ( Λ ) 
(degrees/day) 

Sun 286.13 63.87 84.10 +14.1844000d 14.1844000 
Mercury 281.01 - 0.033T 61.45 – 0.005T 329.548 + 6.1385025d 6.1385025 
Venus 272.76 67.16 160.20 – 1.4813688d – 1.4813688 
Mars 317.68143 – 

0.1061T 
52.88650 - 0.0609T 176.630 + 

350.89198226d 
350.89198226 
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Body Right Ascension (

0α ) (degrees) 
Declination ( 0δ ) 

(degrees) 

Prime Meridian ( Λ ) 
(degrees) 

Rotation Rate ( Λ ) 
(degrees/day) 

Jupiter 268.05 – 0.009T 64.49 + 0.003T 284.95 + 
870.5366420d 

870.5366420 

Saturn 40.589 – 0.036T 83.537 – 0.004T 38.90 + 810.7939024d 810.7939024 

 

where d  is the time interval in days from January 1.5, 2000 TCB (Julian date: 2451545.0) and T  
is the time interval in Julian centuries of 36525 ephemeris days from January 1.5, 2000 TCB (Julian 

date: 2451545.0 TCB), i.e. 
36525

dT = . 

3.2.13 Ecliptic to CBI Coordinate Transformation 
The ecliptic coordinate frame is defined as follows: 

• x-axis is pointing from the center of the Earth towards the vernal equinox of epoch 
J2000.0 

• z-axis is perpendicular to the ecliptic (Earth-Sun) plane 

• y-axis completes the right-handed system 
The transformation matrix from the ecliptic frame to the inertial frame is given by: 
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where the mean obliquity of the Ecliptic, mε , is computed using Equations (3.2-17) and (3.2-18). 

3.2.14 J2 Mean Semimajor Axis Error 
The J2 mean semimajor axis error is computed as the difference of the truth J2 mean semimajor 
axis and the estimated J2 mean semimajor axis. 

 Estimated
J

True
J aaa 22 −=∆  (3.2.14-1)* 

The J2 mean semimajor axis is defined to be 
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where µE is the gravitational constant of the Earth and 
EJPM 2+ψ  is the sum of the gravitational 

potential due to the Earth’s point mass and J2  

 )](sin1[ 0
2

2
0
22 φµψ P

R
RC

R
eE

JPM E






+=+  (3.2.14-3) 

where 
 R = magnitude of the vector from the Earth’s center of mass to the satellite 
 Eµ  = gravitational constant of the Earth (398600.4415 x 109 meters3/second2 for 
consistency with the JGM-2 gravitational model) 
 Re =  equatorial radius of the Earth 

 2
0 JCn −= = second order zonal harmonic coefficient for the Earth  

 φ  = geocentric latitude 

( ) [ ]1sin3
2
1sin 20

2 −= φφP  

Ignoring polar motion effects, the geocentric latitude is computed as follows: 

 φ = 





−sin 1 z
r

 (3.2.14-4)* 

where ( )r, x, y, z  are the TOD components of the spacecraft position vector. The spacecraft state 
in the TOD frame is computed from the vector in the Mean of J2000.0 frame as follows 

 RCr =  (3.2.14-5)* 
where the C matrix is defined in Equation 3.2-26).  
Using Equation 3.2.14-4, Equation 3.2.14-3 reduces to the following: 
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Note that Equation (3.2.14-3) is an extension of the definition of the semimajor axis to include the 
J2 potential. The standard definition of the semimajor axis given by 
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which can be rewritten as follows 
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where 
R

E
PM

µψ =  is the gravitational potential due to the Earth’s point mass gravitational term. 

3.2.15 IAU-2000 ECI/GCRF to ECEF/ITRF Coordinate Transformation (Planned for 
GEONS 3.1) 
The IAU-2000 GCRF to ITRF transformation is discussed in detail in Reference 49.  GEONS 
implements the following CIO-based computation approach, which is consistent with the 
recommendations provided in Reference 62, to relate the International Terrestrial Reference Frame 
(ITRF) to the Geocentric Celestial Reference Frame (GCRF) at the date t: 
 

 ( ) ( ) ( ) ( ) ( )GCRF ITRFR t Q t R t W t r t=  (3.2.15-1)* 

where Q(t) is the transformation matrix arising from the combined effects of nutation, precession 
and frame bias (Celestial Intermediate Reference Frame (CIRF) to GCRF rotation), R(t) is the 
transformation matrix arising from the rotation of the Earth around the axis associated with the 
pole (Terrestrial Intermediate Reference Frame (TIRF) to CIRF rotation), and W(t) is the 
transformation matrix for polar motion and from the ITRF origin (ITRF to the TIRF rotation). 
The parameter t, used in Eq. (3.2.15-1) is defined by 

 ( 2000 January 1d 12h TT) in days / 36525t TT= −  (3.2.15-2)* 

where TT=TAI + 32.184s is Terrestrial Time. 
 
The corresponding transformation for the velocity vector is obtained by taking the time derivative 
of Eq. (3.2.15-1). The time derivatives of the Q(t) and W(t) rotation matrices are negligible; 
however, for the R(t) rotation, the derivative of the rotation matrix around the equator must be 
included: 
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and 
                   =          Earth rotation rate equal to 7.2921158553 x 10-5 radians per second 

     ERA   =          Earth Rotation Angle between the Celestial Intermediate Origin (CIO) and 
the Terrestrial Intermediate Origin (TIO) at date t on the equator of the Celestial Intermediate 
Pole (CIP)  

 
The definition of the GCRS and ITRS and the procedures for the ITRS to GCRS transformation 
that are provided in Reference 49 comply with the IAU 2000/2006 resolutions. More detailed 
explanations about the relevant concepts, software and IERS products corresponding to the IAU 
2000 resolutions can be found in IERS Technical Note 29 (Capitaine et al., 2002). 
 
Software routines to implement the IAU 2006/2000A transformations are provided by the IAU 
Standards Of Fundamental Astronomy (SOFA) service. Implementations in Fortran77 and C are 
available. The SOFA software supports both the CIO-based and classical Equinox-based 
approaches for implementing the IAU resolutions in the transformation from ITRS to GCRS 
provided by Eq. (3.2.15-1). For both transformations, the procedure is to form the various 
components of Eq. (3.2.15-1), choosing for the Q(t) and R(t) pair either the CIO based or classical 
forms, and then to combine these components into the complete terrestrial-to-celestial matrix. 
Formulations for Q(t) using either the full IAU-2000A or truncated IAU-2000B nutation models 
are provided. The GEONS implementation makes use of the CIO-based routines available in the 
open-source Essential Routines for Fundamental Astronomy (ERFA) library, which are based on 
the SOFA library routines. 
 
 

eω
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3.3 Time Systems  
GPS time is the basic time system for the GPS SV ephemerides and the GPS Tensor™ receiver 
computations. Coordinated universal time (UTC) is the basic time system for GEONS’ internal 
computations. Universal time corrected for polar motion (UT1) is used in computing the GHA, 
which is used in transformations between the inertial and ECEF coordinate frames. The 
transformations between these time systems are provided in this section. 

3.3.1 Conversion From GPS System Time to UTC  
GPS time is measured in terms of the number of weeks elapsed from the GPS standard epoch and 
the number of seconds from the beginning of the GPS week (00:00 Sunday). The GPS time system 
(GPST) has a constant offset of 19 seconds with respect to the International Atomic Time (TAI) 
and was coincident with UTC at the GPS standard epoch. Table 3-4 lists the standard GPS and 
J2000.0 epoch dates.  Reference 9 provides a detailed discussion of the GPS time system. 

Table 3-4.  Standard Epochs 
Epoch Calendar Date Time System Julian Date 

GPS  1980 January 6 0d.  UTC 2444244.5 

J2000.0 2000 January1.5d  TT 2451545.0 

 
The GPS Week count (WN) starts at the GPS standard epoch and is modulo 1024.  Therefore, the 
week count will roll over at Julian Date 2442444.5+7*1024 = 2451412.5, which is midnight 21-
22 August 1999 UTC. 

The following basic relations hold between these time systems for calendar years 1972 and later: 

      TAI = GPST + 19.s000     (constant offset) (3.3-1) 

  TAI = UTC + 1.s000 n       (3.3-2) 

where n is the accumulated integer leap second offset  

Using these relations, UTC can be obtained from GPST as follows:  

 UTC = GPST +(19.s000 - 1.s000 n) (3.3-3)* 

At the GPS standard epoch, UTC = GPST. In late 1991, the value of n was 26, leading to a 7-second 
difference between GPST and UTC. Note that GPST always goes ahead of UTC.  For example, the 
beginning of the GPS week will precede the beginning of the corresponding UTC calendar week 
by an integer (= n – 19) seconds. 

For conversion of GPS time to UTC using Equation (3.3-3), the GPS week count roll over must 
be taken into account. The current GPS week number can be derived from the Week Number 
contained in word 3 of subframe 1 of the navigation message (WN) , taking into account the roll 
over every 1024 weeks, as follows:   
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 WN WN N'= +1024   (3.3-3a)* 

where N is initialized to zero for initialization times prior to midnight 21-22 August 1999 and to 1 
for initialization times after to midnight 21-22 August 1999. The value of N is incremented by 1 
when the roll over occurs (first message for which previous WN =1023, current WN = 0). The 
relation given by Equation (3.3-3) is correct to within 1 microsecond.  

The broadcast SV ephemeris message contains GPS-UTC clock correction terms that can be used 
to compute the offset of the broadcast GPS time from UTC to within 90 nanoseconds. However, 
these corrections are not currently implemented in GEONS. Page 18 of subframe 4 of the 
navigation message includes the UTC conversion parameters that are shown in Table 3-5. 

Table 3-5.  GPS-to-UTC Time Conversion Parameters 
Included in Page 18 of Subframe 4 

Parameter Units Description 

A0  Second Constant term of the polynomial 

A1  Seconds/ 
second 

Coefficient of the first-order term of the polynomial  

∆t LS  Second Delta time due to leap seconds (definitive) 

tot  Second Reference time for UTC data 

WNt  Week Reference week number for UTC data  

WN LSF  Week Week number for the scheduled leap second 

DN  Day Day number for the scheduled leap second 

∆t LSF  Second Scheduled delta time due to leap seconds 

 
There is one additional time parameter needed for the UTC conversion, the user estimated time 
(te).  The user estimated time (te) (user’s current time) should be in seconds from start of the current 
week. The last three parameters in Table 3-3 describe the scheduled future (with respect to the 
reference time for the UTC data) leap second update.  The day associated with the week number 
(WNLSF) and the day number (DN) ∆t LSF  becomes effective is referred to as the effectivity date.  
Note that ‘day one’ is the first day relative to the start of week. 

Reference 10 gives three different UTC computation algorithms. The relationship of the effectivity 
date to the user’s current GPS time will determine that algorithm should be used, as shown below:   

(a) Whenever the effectivity date is not in the past relative to the user’s current time and the 
user’s current time does not fall in the timespan that starts at DN+3/4 and ends at DN+5/4, 
the UTC time (in seconds from start of the current week) is obtained from the GPS time 
using the following equations:  

 t t tUTC e UTC= −( ) [mod ]∆   86400   (3.3-4) 
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 where the UTC conversion term,∆tUTC , is computed using the following expression: 

 )](604800[ 010 tteLSUTC WNWNttAAtt −+−++∆=∆  (3.3-5) 

(b) Whenever the user’s current time falls within the timespan of DN+3/4 to DN+5/4, the 
following UTC time conversion equations will accommodate the leap second event with 
a possible week number transition: 

 t W t tUTC LSF LS= + −   ([mod )]86400 ∆ ∆  (3.3-6) 

  where 

 W t te UTC= − − +( ) [mod ]∆ 43200 86400 43200   (3.3-7) 

The term∆tUTC  in the above equation is computed using Equation (3.3-5) as in the case 
of (a). 

(c) Whenever the effectivity date is in the ‘past’ relative to the user’s current time, the 
relationship given for UTC in the case of (a) above is valid except that the value of ∆t LSF  
is substituted for ∆t LS  in computing ∆tUTC , i.e., 

 ∆ ∆t t A A t t WN WNUTC LSF e t t= + + − + −0 1 0 604800[ ( )]  (3.3-8) 

The UTC conversion parameters used in Equation (3.3-5) [all the parameters on the right-hand 
side of this equation] are contained in the GPS navigation message (page 18 of subframe 4 in 
Reference 10). The corrections associated with the A0  and A1  terms are on the order of 
nanoseconds. 

3.3.2 Conversion From GPS SV Clock Time (tsv) to GPS System Time  
GPS SV clock time is converted to the GPS system time using the following equation:  

 
Sj

SC ttt δ−= )(  (3.3-9)* 

The SV time offset, Sjtδ , from the GPS system time is computed using the time offset correction 
parameter tOC and the SV clock polynomial parameters (a0, a1, and a2), all of which are available 
from the broadcast navigation message for GPS SV j. This offset is given by the following 
expression taken from Section 20.3.3.3.3.1 of Reference 10 with the addition of the clock 
correction parameters )(tt DC

Sjδ∆  when available from the TDRSS Augmentation Service for 
Satellites (TASS) broadcast messages:  

     )(sin)()( 2/12
210 ttEAeFttattaat DC

SjkOCOCSj δ∆++−+−+=δ   (3.3-10)* 

and the rate of change of the SV time offset is given by 

 𝛿𝛿𝑡̇𝑡𝑆𝑆𝑆𝑆 = 𝑎𝑎1 + 2𝑎𝑎2(𝑡𝑡 − 𝑡𝑡𝑂𝑂𝑂𝑂) + 𝐸̇𝐸𝐹𝐹𝐹𝐹𝐴𝐴1/2 𝑐𝑐𝑐𝑐𝑐𝑐 𝐸𝐸𝑘𝑘  (3.3-10b)* 



 
 

 3-46  
 

 

where 

 F = –4.442807633 × 10–10 seconds/(meter)½   
 e = eccentricity  
 A1/2 = square-root of semimajor axis  
 Ek = eccentric anomaly 

 E  = rate of change of the eccentric anomaly, 𝑛𝑛
1−𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘

 where n = √𝜇𝜇�𝐴𝐴1/2�
−3

+ 𝛥𝛥𝛥𝛥 

The Keplerian orbit parameters e and A1/2 and the mean motion correction n∆  are available from 
the ephemeris parameters included in the broadcast navigation message, and the eccentric anomaly 
Ek can be computed using Kepler's equation (see Section 5.2.2).   

The term kEAeF sin2/1  represents the relativistic correction that depends on the eccentricity of 
the GPS orbit, which can also be computed using an equivalent expression, − ⋅2 2R V c/ . The clock 
polynomial coefficients ( a a a0 1 2, ,  ) and the clock data reference time (tOC) are given in subframe 
1 of the navigation message. The SV clock offset is used in the pseudorange measurement model 
given by Equation 5.3-20 in Section 5.3.2.  

The TASS messages will provide precise GPS differential corrections and other ancillary data to 
enable decimeter level orbit determination accuracy and nanosecond time-transfer accuracy, 
onboard in real-time. TASS will broadcast its message on the S-band multiple access channel of 
NASA’s TDRSS. Broadcasts will be available from three or more TDRSS satellites, providing 
global coverage.  

When the GPS ICE differential correction (DC) messages are available, Equation (3.3-10) is 
computed as follows: 

 kOCOCffSj EFeAttattaaaat sin)())(()( 2/12
21100 +−+−δ++δ+=δ  (3.3-10c)* 

Equation (3.3-10b) is also corrected as follows: 

 kOCfSj EFeAEttaaat cos)(2 2/1
211

 +−+δ+=δ        (3.3-10d)* 

The clock DC coefficients will be transmitted as part of the GPS Broadcast messages. Table 5-2 
provides a description of these parameters. Section 30.3.3.7 of Reference 10 provides a detailed 
discussion of these corrections. 
When the GPS SV ephemeris is obtained from a precise ephemeris, which contains position, 
velocity, and clock polynomial coefficients ( 10  , aa )   at equally spaced points in time, rather than 
a broadcast navigation message, the following equation is used to compute the SV time offset and 
offset rate of change at time t: 

 210
)()(2)(

c
tVtRttaat ASj

⋅
−−+=δ  (3.3-11)* 
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 

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

 µ

−−≅δ
R

v
c

at E
Sj

2
21

2  (3.3-11b)* 

where At  is the time point immediately preceding the time t and )(and)( tVtR are obtained by 
interpolation of the precise ephemeris data. 

In addition, there are group delay correction terms for L1, L2, and L5 users and ionospheric 
correction parameters for single frequency L1 P, L1 C/A, L2 P, and L2 C users and dual frequency 
L1/L2 users. These include the L1-L2 group delay differential correction parameter, TGD, and inter-
signal group delay corrections (ISC) associated with the mean SV group delay differential between 
the L1 P and the L1 C/A codes ( ACLISC /1 ), the L1 P and the L2 C codes ( CLISC 2 ), the L1 P and 
the L5 I5 codes ( 55ILISC ), and the L1 P and the L5-Q5 codes ( 55QLISC ), (Reference 10 (Section 
30.3.3.3.1.1) and Reference 46 (Section 20.3.3.3.1). The group delay correction parameters, TGD, 
and the ISC values are provided to the user as message type 30 data (Table 30-IV in Reference 10 
and Table 20-IV in Reference 46).   

Including these corrections, the additional single frequency SV clock correction is given by 

 ( ) ACL
jGDACL

SF
S ISCTt

jj

/1

/1
+−=δ  (3.3-12)* 

 ( ) CL
jGDCL

SF
S ISCTt

jj

2

2
+−=δ  (3.3-12a)* 

 ( ) 55

55

IL
jGDIL

SF
S ISCTt

jj
+−=δ  (3.3-12b)* 

 ( ) 55

55

QL
jGDQL

SF
S ISCTt

jj
+−=δ  (3.3-12c)* 

The user who uses both frequencies does not require this correction since the clock parameters 
account for the induced effects. See Section 5.3.1.2 for description of group delay and ionospheric 
corrections for dual-frequency pseudorange measurements. 

3.3.3 Conversion From Julian Date to Calendar Date 
The conversion from Julian date (JD) to calendar date is performed using the following algorithm:  

 L1= +JD 68569  (3.3-13)* 

 N = 4 1460971L /  (3.3-14)* 

 L2 = − +L N1 146097 3 4( ) /  (3.3-15)* 

 I1 = +4000 1 14610012( ) /L  (3.3-16)* 

 L3 = − +L I2 11461 4 31/  (3.3-17)* 
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 J1 = 80 24473L /  (3.3-18)* 

 K = −L J3 12447 80/  (3.3.19)* 

 L4 = J1 11/   (3.3-20)* 

 J = + −J L1 42 12  (3.3-21)* 

 I = − + +100 49 1 4( )N I L  (3.3-22)* 

where JD is the Julian Date + 0.5 truncated to an integer, I is the year, J is the month, and K is the 
day of the month. In this computation, all variables are integers and a division by integers implies 
truncation of the quotients to integers. 

3.3.4 Conversion From Calendar Date to Julian Date 
The conversion from calendar date to Julian date (JD) can be performed using the following 
algorithm:  

 JD
D Y

Y
S=

− + + +

− +
















− +

32075 1461 4799 4 336

3 4899 100 4
0 5 86400 0

( ) /

[( ) / ] /
. / .  (3.3-23)* 

where Y is the year, D is the day of the year, and S is seconds of the day. 
 (equation deleted) (3.3-24)* 

In these computations, division by integers implies truncation of the quotients to integers. 

The calculation of the Greenwich sidereal time [Equation (3.2-36)] requires time values in the UT1 
system. Therefore, a conversion algorithm between the UTC and UT1 time systems is required. 
The conversion from UTC to UT1 is, in theory, a continuous function. The USNO distributes 
predictions for the UT1-UTC corrections in IERS Bulletin-A. The UT1-UTC corrections are 
computed for the date of interest using the following polynomial fit to these predictions: 

 ∆UT UT UTC u u MJD T u MJD TUT UT1 1 1 2 1 3 1
2= − = + − + −( ) ( )  (seconds) (3.3-25)* 

where MJD is the modified Julian date of the request date, defined by Equation (3.2-44), and 
TUT1  is the modified Julian date of the epoch of the prediction and 321 ,, uuu  are commanded 
values. 
If the GPS Earth Orientation Parameters are made available, ∆UT1 is computed as follows: 

 𝛥𝛥𝛥𝛥𝛥𝛥1 = 𝛥𝛥𝛥𝛥𝛥𝛥1𝐺𝐺𝐺𝐺𝐺𝐺 + 𝛥𝛥𝛥𝛥𝑇̇𝑇1𝐺𝐺𝐺𝐺𝐺𝐺[𝑡𝑡 − 𝑡𝑡𝐸𝐸𝐸𝐸𝐸𝐸] (3.3-25b)* 

The coefficients 𝛥𝛥𝛥𝛥𝛥𝛥1𝐺𝐺𝐺𝐺𝐺𝐺 and 𝛥𝛥𝛥𝛥𝑇̇𝑇1𝐺𝐺𝐺𝐺𝐺𝐺 are provided as part of the GPS CNAV message type 32 
on the L2C signal. Note that this option is not implemented in GEONS 3.0 but is planned for 
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GEONS 3.1. Section 30.3.3.5 in Reference 10 provides a detailed discussion of the user algorithm 
for application of the GPS EOP parameters. Table 3-2 provides a description of these parameters. 
 (Equation deleted) (3.3-26) 

The coefficients ui are precomputed by performing a quadratic fit to the USNO UT1-UTC 
predictions published in the IERS Bulletin-A. 

 (Equation deleted) (3.3-27) 

The estimated accuracies of these predictions are 0.0017 second and 0.0048 second for 10- and 
40-day predictions, respectively. The 3 ui   coefficients and the epoch time of the prediction will 
be uplinked to the spacecraft monthly. 

The current UT1 time is then computed from the current UTC time as follows:  

 UT UTC UT1 1= + ∆  (3.3-28)* 

3.3.5 Conversion From UTC to TAI and Terrestrial Time 
International Atomic Time (TAI) is related to UTC as follows: 

 seconds000.1 nUTCTAI s+=  (3.3-29a)* 

where n equals the total number of elapsed leap seconds (i.e.,10 plus the number since 1972).  

Terrestrial Time (TT) is the time scale of the apparent geocentric ephemerides of the bodies in the 
solar system.  It is used in the evaluation of the precise analytic solar/lunar ephemeris series 
described in Section 4.1.1.2. TT replaces the now obsolete Terrestrial Dynamical Time (TDT) and 
ephemeris time (ET). TT is related to TAI as follows: 

 seconds184.32+= TAITT  (3.3-29) 

Using Equation (3.3-2), TT is computed from UTC as follows: 

 TT = UTC + 1.s000 n seconds184.32+       (3.3-30)* 

The conversion from TT to TDB is performed for evaluation of the DE planetary ephemeris using 
ERFA library Time and Calendar routines. 

3.3.6 Relativistic Clock Corrections  
This section discusses the effect of special and general relativity on spacecraft clocks. The primary 
relativistic effects on a satellite clock are the second order Doppler shift and the gravitational 
frequency shift. Clocks moving in space run faster than clocks at rest on the surface of the Earth 
due to the lower gravitational potential in satellite orbit but run slower due to their higher velocity.  
For more detail see Reference 57 for the effect on GPS orbits and Reference 70 for the effect on 
lunar orbits. 

Reference 70 provides the following formula for computing the total time difference of clock A 
with respect to clock B accumulated from coordinate time t1 to coordinate time t2: 
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 Φ Φ ∆ = − − +
  

∫  (3.3-31) 

where AΦ  and BΦ  are the associated gravitational potentials and Av  and Bv  are the associated 
clock speeds with respect to the inertial frame. 

UTC and TAI are based on time measured by clocks at rest on the surface of the Earth. A time 
interval recorded by a clock at rest on the surface of the Earth is given by: 

 dt
c

d E 





 Φ
+= 2

01τ  (3.3-32) 

or equivalently 

 t
cE ∆






 Φ
+=∆ 2

01τ   (3.3-32b)) 

where 102
0 1096929.6/ −×−=Φ c  is the effective geopotential at the equator in the rotating ECEF 

frame.  In Equation (3.3-32b), t∆  denotes a finite time interval, not necessarily an infinitesimally 
small interval, and t denotes the coordinate time measured at infinity (the independent variable in 
the spacecraft equations of motion).  In the following sections, the gravitational potentials for a 
clock on a satellite orbiting the Earth or Moon are approximated using only the point mass 
gravitational contributions. 

3.3.6.1 Relativistic Clock Corrections for Earth Orbiting Satellites 
The effect of the Earth’s point mass gravitational potential on a time interval recorded by a clock 
on a satellite orbiting the Earth relative to a clock at rest on the surface of the Earth is approximated 
by 
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 (3.3-33) 

where the subscript S stands for satellite and E
SR  and E

SR are the magnitudes of the position and 
velocity vectors in the Earth-centered inertial frame, respectively. Using the following relationship 
for the total energy 
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 (3.3-34) 

for 2
SR  in Equation 3.3-33 yields 
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The integrated form of this equation (assuming that the satellite is in an elliptical orbit) is given 
by: 

 C
c

Eae
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SES
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 Φ
−−≅∆ 22
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2

sin2
2
31

µ
τµτ  (3.3-36) 

The integration constant C can be assumed to be zero using appropriate initial conditions or can 
be omitted assuming that it will be absorbed in the estimated clock bias term.  

The relative time bias due to the relativistic effects of the clock onboard the spacecraft with respect 
to the Earth bound clock is given by: 

 22
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τµτττ −∆







 Φ
−−=∆−∆=∆  (3.3-37) 

The eccentricity dependent term is always included in GEONS when computing GPS transmit 
times (see Section 3.3.2). The terms inside the parenthesis are the ones used by GPS project to 
calibrate the oscillators onboard GPS SVs.  In the case of GPS satellites, un-calibrated clock 
onboard GPS satellite will run faster than an Earth fixed clock, by approximately 38.6 micro-
seconds per day. A typical GPS clock behavior is shown in Figure 3-9.  With some GPS SVs, the 
eccentricity could be as large as 0.02. 

 

Figure 3-9. Relativistic Effects on a GPS SV Clock 

Figure 3-10 shows the relativistic effect on a satellite clock in a high-altitude Earth orbit (HEO) 
with a semimajor axis of 42095.7 km and eccentricity of 0.82.  
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Figure 3-10. Relativistic Effects on a HEO Satellite Clock 

If the relativistic effects in Equation (3.3-37) are not modeled explicitly, the linear effect will be 
absorbed in the time bias drift estimate and the periodic effect will be absorbed in both the time 
bias and time bias drift estimates, requiring a somewhat larger process noise value for the time 
bias and/or drift than would be needed if the effect were modeled. To improve estimation of the 
time bias and drift, the relativistic effects can be optionally included in the propagation of the 
receiver time. 

3.3.6.2 Relativistic Clock Corrections for Lunar Orbiting Satellites (Not 
implemented in GEONS 3.0) 
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3.3.7 Conversion From Galileo System Time (GST) to UTC  
Galileo System Time (GST) is measured in terms of the Week Number (number of weeks 
elapsed from the GST start epoch) and the Time of Week (number of seconds from the beginning 
of the previous week (00:00 Sunday). Table 3-6 lists the GPS, J2000.0 and Galileo epoch dates.  
Reference 63 provides a more detailed discussion of the GST. 

Table 3-6.  Standard Epochs 
Epoch Calendar Date Time System Julian Date 

GPS  1980 January 6 0d.  UTC 2444244.5 

J2000.0 2000 January1.5d  TT 2451545.0 

Galileo 1999 August 21 23:59:47  UTC 2451412.5 

 
The GST Week Number (WN) starts at the GST start epoch and is modulo 4096 (about 78 
years).  Note that the GST start epoch is 1999 August 22 d0. GPST, which coincides with the roll-
over of the GPS Week Number that occurred in August 1999 when the number of leap seconds 
was 13. The Time of Week (TOW) is defined as the number of seconds that have occurred since 
the transition from the previous week. The TOW covers an entire week from 0 to 604799 
seconds and is reset to zero at the end of each week.  

Note that the following procedure for conversion from GST to UTC is identical to that defined in 
Section 3.3.1 for conversion of GPST to UTC; however, the values of the GST conversion 
parameters will be different than those for GPST conversion. The format of the Galileo C/NAV 
navigation message is the same as the format of the GPS navigation message. The format of the 
Galileo F/NAV and I/NAV messages is defined in Section 4 of Reference 63. 

Following the procedure defined in Section 5.1.7 of Reference 63, UTC can be obtained from 
GST using the GST-UTC conversion parameters listed in Table 3.7 for 3 different cases 
depending on the epoch of the possible leap second adjustment (scheduled future or recent past) 
given by DN, the day at the end of which the leap second becomes effective, and week number 
WN LSF  to which DN is referenced. “Day one” of DN is the first day relative to the end/start of 
week and the WN LSF  value consists of eight bits which are a modulo 256 binary representation 
of the Galileo week number to which the DN is referenced.  
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Table 3-7.  GST-to-UTC Time Conversion Parameters  
(from Table 65 in Reference 63) 

Parameter Unit Description 
 
 
 
 
 

A0  Second Constant term of the polynomial 
 
 
 
 

A1  Seconds/ 
second 

Coefficient of the first-order term of the polynomial  
 
 

∆t LS  Second Leap second count before leap second adjustment 

tot  Second Reference Time of Week for UTC data 

0tWN  Week Reference Week Number for UTC data  

WN LSF  Week Week number for the scheduled leap second 
adjustment 

DN  Day Day number at the end of which a leap second 
adjustment becomes effective 

∆t LSF  Second Leap second count after leap second adjustment 

 
In all computations the user must account for the truncated nature (roll-over) of the parameters 
(DN, WN, 0tWN , and WN LSF ), considering the following properties: 

At the time of broadcast of the GST -UTC parameters, 

• The absolute value of the difference between untruncated WN and 0tWN  values does not 
exceed 127 

• When ∆t LS  and ∆t LSF  differ, the absolute value of the difference between the 
untruncated WN and WN LSF  values received within the same subframe does not exceed 
127. 

In addition to the parameters listed in Table 3-6, the following parameters are used in the GST – 
UTC conversion algorithm: 
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• tE is the GST as estimated by the user through its GST determination algorithm in 
seconds from start of the current week 

• WN is the week number to which tE is referenced. 
 
Case a 
Whenever the leap second adjustment time indicated by WN LSF  and DN is not in the past 
(relative to the user’s present time) and the user’s present time does not fall in the time span 
which starts six hours prior to the effective time and ends six hours after the effective 
time, tUTC is computed according to the following equations: 

 ( ) [Modulo 86400]UTC E UTCt t t= −∆  (3.3.7-1)* 

where 

 ( )( )0 1 0 0604800UTC LS E t tt t A A t t WN WN∆ = ∆ + + − + −  (3.3.7-2)* 

 
Case b 
Whenever the user’s current time falls within the time span of six hours prior to the leap second 
adjustment time to six hours after the adjustment time, tUTC is computed according to the  
following equations (ΔtUTC as defined in case a): 

 ( )[Modulo 86400 + ]UTC LSF LSt W t t= ∆ −∆  (3.3.7-3)* 

where 

 ( ) [ ]43200 Modulo 86400 43200E UTCW t t= −∆ − +  (3.3.7-4)* 

 
Case c 
Whenever the leap second adjustment time, as indicated by the WN LSF  and DN values, is in the 
“past” (relative to the user’s current time) and the user’s present time does not fall in the time 
span which starts six hours prior to the leap second adjustment time and ends six hours after the 
adjustment time, tUTC is computed according to the following equation: 

 ( ) [Modulo 86400]UTC E UTCt t t= −∆  (3.3.7-5)* 

where 

 ( )( )0 1 0 0604800UTC LSF E t tt t A A t t WN WN∆ = ∆ + + − + −  (3.3.7-6)* 

3.3.8 Conversion From Galileo System Time (GST) to GPS Time (GPST)  
The procedure for converting between Galileo System Time (GST) and GPS Time (GPST) is 
defined in Section 5.1.8 of Reference 63. The difference between the Galileo and the GPS time 
scales, expressed in seconds, is given by the equation below: 
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 ( )( )0 1 0 0604800Systems Galileo GPS G G G Gt t t A A TOW t WN WN∆ = − = + − + −  (3.3.8-1)* 

where 

Galileot = GST time in seconds 

 GPSt  = GPS time in seconds 

 0GA  = constant term of the offset  Systemst∆  

 1GA  = rate of change of the offset Systemst∆  

 0Gt  = reference GST TOW for the GGTO data  

 TOW = GST Time of Week in seconds 

 WN = GST Week Number 

 0GWN = Week Number of the GPS/Galileo Time Offset reference 

The user must account in the above formula for the truncated nature (roll-over) of the weekly 
parameters (WN, WN0G), considering that at the time of broadcast of the GGTO parameters, the 
absolute value of the difference between untruncated WN and WN0G values does not exceed 31. 
The GGTO parameters are formatted according to the values in Table 3.8. When the GGTO is 
not available,  the GGTO parameters disseminated are: A0G (all ones -16 bits), A1G (all ones - 12 
bits), t0G (all ones - 8 bits), WN0G (all ones - 6 bits). When a user receives all four parameters set to 
all ones the GGTO is considered as not valid. 

Table 3-8.  GGTO Parameters for the GPS Time to GST Offset Computation 
(from Table 66 in Reference 63) 

 

 
Parameter 

 
Definition 

 
Bits Scale 

factor 
 

Unit 

A0G Constant term of the polynomial describing the offset 
Δtsystems 

16* 2-35 s 

A1G Rate of change of the offset Δtsystems 12* 2-51 s/s 
t0G Reference time for GGTO data 8 3600 s 

WN0G Week number of GGTO reference 6 1 week 
Total GST-GPS Conversion Size 42   

3.3.9 Conversion From Galileo Satellite Clock Time to Galileo System Time 
(GST)  
The procedure for computing the offset of the physical Galileo Satellite signal time of 
transmission relative to the satellite signal time of transmission in Galileo System Time (GST) is 
defined in Sections 5.1.3 through 5.1.5 of Reference 63. Each Galileo satellite transmits the 
satellite clock correction data defined in Table 3-9.  
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Table 3-9.  Galileo Clock Correction Parameters 
(from Table 60 in Reference 63) 

 

 
Parameter 

 
Definition 

 
Bits Scale 

factor 
 

Unit 

t0c clock correction data reference Time of Week 14 60 s 
af0 SV clock bias correction coefficient 31* 2-34 s 
af1 SV clock drift correction coefficient 21* 2-46 s/s 
af2 SV clock drift rate correction coefficient 6* 2-59 s/s2 

Total Clock Correction Size 72   

 

 

The total Galileo satellite time correction consists of a satellite time correction ( )
jGALt Xδ  for 

both single and dual frequency GPS users and an additional Broadcast Group Delay correction 
( )

j

SF
GALt Xδ  for only single frequency GPS users. 

 ( ) ( ) ( )
j j j

SF
GST GAL GALt X t X t Xδ δ∆ = +  (3.3.9-1) 

The satellite time correction (in seconds), ( )
jGALt Xδ , is computed using the GST signal time of 

transmission in seconds ( GSTt ), time correction GST reference Time of Week, ( )( )OCt X , and the 
SV clock polynomial parameters (af0, af1, and af2). These data are available from the broadcast 
navigation message for Galileo SVj for the associated dual frequency combination 
( ) ( 1, 5 )X E E a= and ( ) ( 1, 5 )X E E b=  as defined in Table 61 in Reference 63. 

[ ] [ ]2 1/2
0 1 2( ) ( ) ( ) ( ) ( ) ( ) sin

jGAL f f GST OC f GST OC GALt X a X a X t t X a X t t X F e A Eδ = + − + − +  (3.3.9-2)* 

The rate of change of the satellite time correction is given by 

 [ ] 1/2
1 2( ) ( ) 2 ( ) ( ) cos

jGAL f f GST OC GALt X a X a X t t X EF eA Eδ = + − +    (3.3.9-3)* 

where 

 FGAL = –4.442807309 × 10–10 seconds/(meter)½   
 e = eccentricity  
 A1/2 = square-root of semimajor axis  
 E = eccentric anomaly  

 E  = rate of change of the eccentric anomaly, approximated by ( ) nAnE ∆+µ=≅
−32/1  

The term kEAeF sin2/1  represents the relativistic correction that depends on the eccentricity of 
the Galileo orbit. The Keplerian orbit parameters e and A1/2 and the mean motion correction n∆  
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are available from the Galileo satellite ephemeris parameters included in the broadcast 
navigation message, and the eccentric anomaly E can be computed using Kepler's equation (see 
Section 5.2.2).   

In addition, each Galileo satellite broadcast has its own Broadcast Group Delay (BGD) 
correction terms for single frequency users. The additional single frequency satellite clock 
correction is given by 

 ( ) ( )1 1 2,
j

SF
GAL jt f BGD f fδ = −  (3.3.9-4)* 

 ( ) ( )
2

1
2 1 2

2

,
j

SF
GAL j

ft f BGD f f
f

δ
 

= − 
 

 (3.3.9-5)* 
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Section 4.  State Propagation 

The GEONS propagator will propagate the user state vectors between measurement updates. In 
addition, the TDRSS transmitter states and optionally the crosslink transmitter states are 
propagated if they are not being estimated. The forces modeled in the equations of motion include 
atmospheric drag, solar radiation pressure, non-spherical gravitational field for central body, and 
point-mass gravitational effects of the Earth, Sun, Moon, Venus, Mars, Jupiter, and Saturn. The 
gravitational effect of the Earth and the J2 zonal coefficient are included in the computation of the 
position and velocity state transition matrix components.  

The spacecraft equations of motion are given in Section 4.1. The numerical integration algorithm 
is defined in Section 4.2. The equations of motion for the nonspacecraft state vector components 
are given in Section 4.3. The state covariance propagation algorithms are defined in Section 4.4.  
Procedures for handling maneuvers are addressed in Section 4.5. The ground-based receiver state 
propagation algorithms are described in Section 4.6. 

4.1 Spacecraft Equations of Motion 
The spacecraft equations of motion, expressed in Cartesian coordinates, are 

 
d R
dt

a
2

2
=  (4.1-1) 

where 

 R  = satellite position vector in the mean of J2000.0 coordinate frame 
 a  = total acceleration vector in the mean of J2000.0 coordinate frame 

This set of three second-order differential equations is transformed to an equivalent set of six first-
order differential equations  

 d
d
R
t

R=   (4.1-2)* 

 d
d

R
t

a=  (4.1-3)* 

where R  is the satellite velocity expressed in the mean of J2000.0 coordinate frame. 

The total acceleration of the satellite, a , includes the following components:  

• Gravitational acceleration (point-mass contributions) of the satellite due to the Earth’s 
mass ( aE ) and the solar, lunar and other planet masses ( aS , aM  and Pa , respectively)  

• Gravitational acceleration of the satellite due to the nonsphericity of the Earth’s 
gravitational potential ( a ENS ) and the Moon’s gravitational potential ( a MNS ) 
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• Satellite acceleration due to atmospheric drag forces ( aD ) 

• Satellite acceleration due to solar radiation pressure ( aSRP ) 

• Satellite acceleration measured externally ( exta ) 

• Satellite acceleration due to unmodeled accelerations ( Ua ) expressed in the Mean of 
J2000.0 frame 

The total acceleration, a ,  is expressed in terms of these components as 

 UextSRPDNSNSPMSE aaaaaaaaaaa
ME

+++++++++=  (4.1-4)* 

All or any subset of these effects can be included in the acceleration vector, which is used in 
constructing the equations of motion. These accelerations are discussed in the following 
subsections. In addition, when a maneuver is modeled as an impulsive velocity change (delta-V), 
the satellite equations of motion are integrated to the maneuver time, the velocity change is added 
to the velocity vector at the maneuver time, and integration of the equations of motion continues 
using the post-maneuver state vector. 

4.1.1 Earth, Solar, Lunar, and Planetary Point-Mass Accelerations 
To first order, the gravitational attraction of a body of mass m can be approximated as that arising 
from a dimensionless particle of mass m located at the center of mass of the body. Point-mass 
accelerations arising from the following bodies can be included in the acceleration model: Earth, 
Moon, Sun, Mars, Venus, Jupiter, and Saturn.  

The motion of the satellite is referenced to the central body’s position, i.e., the central-body mean 
of J2000.0 coordinate system is used in the integration of the spacecraft equations of motion. Any 
of these bodies can be the central body. The total point mass acceleration is given by 

 
( ) ∑

=








−

−
−

µ+
µ

−=
P

p
p

C

p
C

n
C

p
C

n
C

p
C

pn
C

n
CC

n
C

R
R

RR
RR

R
R

t
R

1
3332

2

||||d
d  (4.1-5)* 

 (Equation removed) (4.1-6) 

 (Equation removed) (4.1-7) 

 (Equation removed) (4.1-8) 

where 

 n
CR  = position vector of the satellite n referenced to the central-body mean of J2000.0 

frame 

 p
CR  = position vector of perturbing planetary body p referenced to the central-body 

mean of J2000.0 frame 
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 Cµ  = gravitational constant of the central body 

 pµ  = gravitational constant of the perturbing body 

The following are the recommended values for these constants 

 Eµ  = gravitational constant of the Earth (398600.4415 x 109 meters3/sec2 consistent 
with JGM-2) 

 Sµ  = gravitational constant of the Sun (1.327124 x 1020 meters3/sec2) 

 Mµ  = gravitational constant of the Moon (4.902799 x 1012 meters3/sec2) 

 Marsµ  = gravitational constant of Mars (4.2828286588769 x 1013 meters3/sec2) 

 Venusµ  = gravitational constant of Venus (3.2485876561687 x 1014 meters3/sec2) 

 Jupiterµ  = gravitational constant of Jupiter (1.2671259708179 x 1017 meters3/sec2) 

 Saturnµ  = gravitational constant of Saturn (3.793951970883 x 1016 meters3/sec2) 

Three models are available for computing the positions of the Sun and Moon: a low precision 
method based on an article by by Van Flandern and Pulkkinen (Reference 11), a more precise 
method developed by Steven Moshier (Reference 26), and a high-precision method using 
Chebyshev coefficients extracted from a JPL Definitive Ephemeris (DE) file and saved in memory. 
These methods are described in Section 4.1.1.1, 4.1.1.2, and 4.1.1.3. The precise method developed 
by Moshier and DE method are also used to compute the positions of the other planets. Note that 
both models provide the Sun, Moon, or planetary positions referenced to the Earth-centered mean 
of J2000.0 frame and therefore must be transformed to the central-body frame if the central body 
is not the Earth, using the transformation defined in Section 3.2.11.  In addition, the Moon, Sun, 
planetary and asteroid positions can be read in on a file. 

4.1.1.1  Low Precision Planetary Ephemeris 
The mean of date positions of the Sun and the Moon are determined by evaluating the low-
precision (i.e., approximately 1 minute of arc) series expansions for the mean of date coordinates 
provided in an article by Van Flandern and Pulkkinen (Reference 11). The associated velocities 
are computed using finite differencing of the position vectors. Formulas for the positions of the 
planets are also provided in Reference 11; however, only the components relevant to the positions 
of the Sun and Moon are implemented in GEONS. This low-precision method is computationally 
more efficient than the more precise method and sufficiently accurate for use in GEONS navigation 
processing of near-Earth satellites. Reference 12 presents an approach for augmenting the 
algorithm presented above to provide a solar position accuracy of better than 10 arc-seconds. 

In the following equations, the time tTT is expressed as the number of days measured from the 
standard epoch, 2000 January 1.5 Terrestrial Time (TT) (Julian date of 2,451,545.0). Therefore,  

 tTT = JDTT – 2451545.0 (4.1-9)* 
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where JDTT is the given Julian date TT including fractional days.  

The time parameter T, used as a polynomial variable, is the time in Julian centuries from the epoch 
B1900.0, given by  

 1
36525

+= TTtT  (4.1-10)* 

The equation to convert a Gregorian calendar date to a Julian day number at Greenwich noon (JD) 
is as follows: 

 
(

[ ] ) 0.86400/5.04/100/)4899(3
3364/)4799(146132075

SY
YDJDTT

+−+−
+++−=

 (4.1-11)* 

where Y is the year, D is the day of the year, and S is seconds of the day, TT. In this statement, Y, 
M, D, and S are input as integers, and a division by integers implies truncation of the quotients to 
integers (decimals are not carried).  

For evaluation of the low precision ephemeris series, the difference between TT and UTC has 
neglible impact and is ignored. 

In terms of the time tTT, the following fundamental arguments are needed in the calculation of the 
solar and lunar positions: 

• L represents the mean longitude  

• F denotes the argument of latitude  

• G denotes the mean anomaly  

The expressions for each fundamental argument, Aj , given below, are in units of revolutions (one 
revolution equals 360 degrees). For practical calculations, the integral number of revolutions 
should be discarded. 

Moon 

 A1 = LM = 0.606434 + 0.03660110129 tTT (4.1-12)* 

 A2 = GM = 0.374897 + 0.03629164709 tTT (4.1-13)* 

 A3 = FM = 0.259091 + 0.03674819520 tTT (4.1-14)* 

 A4 = D = LM – LS = −0.172638 + 0.03386319198 tTT (4.1-15)* 

 A5 = MΩ  = LM – FM = 0.347343 − 0.00014709391 tTT (4.1-16)* 

Sun 

 A7 = LS = 0.779072 + 0.00273790931 tTT (4.1-17)* 

 A8 = GS = 0.993126 + 0.00273777850 tTT (4.1-18)* 
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Venus 

 A12 = L2 = 0.505498 + 0.00445046867 tTT (4.1-19)* 

 A13 = G2 = 0.140023 + 0.00445036173 tTT (4.1-20)* 

Mars 

 A16 = G4 = 0.053856 + 0.00145561327 tTT (4.1-21)* 

Jupiter 

 A19 = G5 = 0.056531 + 0.00023080893 tTT (4.1-22)* 

Only the fundamental arguments needed to calculate the positions of the Sun and Moon (Reference 
11) are given above (thus the absence of some argument numbers). The quantity D is the mean 
elongation of the Moon from the Sun, and MΩ  is the longitude of the lunar ascending nodes. Only 
those planets that have significant perturbation effects on the orbits of the Sun and Moon are 
included in the series expansions. 

The geocentric equatorial coordinates are the right ascension, a, declination, δ , and geocentric 
distance, ρ . These coordinates are expressed in terms of a compact series denoted by U, V, and 
W, as follows: 

 a L W
U V

= +
−













−sin 1
2

 (4.1-23)* 

 δ = 





−sin 1 V
U

 (4.1-24)* 

 ρ = ∆ U  (4.1-25)* 

In Equation (4.1-23), L is understood to be LM for the Moon and LS for the Sun. The scaling factor 
in Equation (4.1-25), ∆ , is equal to 1.00021 astronomical units for the Sun and equal to 60.40974 
in units of equatorial Earth radii for the Moon. The corresponding position vector in the mean of 
date coordinate frame is given by 

 
X
Y
Z

a
a
















=

















ρ
δ
δ

δ

cos cos
cos sin

sin
 (4.1-26)* 
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The mean of J2000.0 vectors are computed using transformation matrix A given in Section 3.2.1.  

The series for U, V, and W in Equations (4.1-23) through (4.1-25) is presented in the form 

 c T or b Ai
n

i
j j

j

i
sin

cos
∑ ∑









  (4.1-27)* 

The coefficients ci, ni, and bj are presented in Tables 4-1 and 4-2, which have been extracted from 
Reference 11. The parameters Aj are fundamental arguments [Equations (4.1-12) through (4.1-22)] 
calculated for the required time. As an example, the U series for the Sun from Table 4-1 would be 
the following: 

 
U G G

T G G G
S S

S S

= − −

− − −

1 0 03349 0 00014 2

0 00008 0 00003 5

. cos . cos

. cos . sin ( )
 (4.1-28)* 

The value of T can be evaluated using Equation (4.1-10), and the fundamental arguments GS and 
G5 corresponding to T can be calculated using the expressions given in Equations (4.1-17) and 
(4.1-22), respectively.  
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Table 4-1.  Trigonometric Series for the Sun 

SERIES COEFFICIENT POWER 
OF T 

TRIGONOMETRIC FUNCTIONS AND COEFFICIENTS (bj) 
FOR FUNDAMENTAL ARGUMENTS (Aj) 

 (ci) (ni) SIN/COS j = 1 j = 5 j = 7 j = 8 j = 13 j = 16 j = 19 

V 0.39785 0 SIN 0 0 1 0 0 0 0 
 –0.01000 0 SIN 0 0 1 –1 0 0 0 
 0.00333 0 SIN 0 0 1 1 0 0 0 
 –0.00021 1 SIN 0 0 1 0 0 0 0 
 0.00004 0 SIN 0 0 1 2 0 0 0 
 –0.00004 0 COS 0 0 1 0 0 0 0 
 –0.00004 0 SIN 0 1 –1 0 0 0 0 
 0.00003 1 SIN 0 0 1 –1 0 0 0 

U 1.00000 0 COS 0 0 0 0 0 0 0 
 –0.03349 0 COS 0 0 0 1 0 0 0 
 –0.00014 0 COS 0 0 0 2 0 0 0 
 0.00008 1 COS 0 0 0 1 0 0 0 
 –0.00003 0 SIN 0 0 0 1 0 0 –1 

W –0.04129 0 SIN 0 0 2 0 0 0 0 
 0.03211 0 SIN 0 0 0 1 0 0 0 
 0.00104 0 SIN 0 0 2 –1 0 0 0 
 –0.00035 0 SIN 0 0 2 1 0 0 0 
 –0.00010 0 COS 0 0 0 0 0 0 0 
 –0.00008 1 SIN 0 0 0 1 0 0 0 
 –0.00008 0 SIN 0 1 0 0 0 0 0 
 0.00007 0 SIN 0 0 0 2 0 0 0 
 0.00005 1 SIN 0 0 2 0 0 0 0 
 0.00003 0 SIN 1 0 –1 0 0 0 0 
 –0.00002 0 COS 0 0 0 1 0 0 –1 
 0.00002 0 SIN 0 0 0 4 0 –8 3 
 –0.00002 0 SIN 0 0 0 1 –1 0 0 
 –0.00002 0 COS 0 0 0 2 –2 0 0 
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Table 4-2.  Trigonometric Series for the Moon (1 of 4) 

SERIES COEFFICIENT POWER 
OF T 

TRIGONOMETRIC FUNCTIONS AND COEFFICIENTS (bj) 
FOR FUNDAMENTAL ARGUMENTS (Aj) 

 (ci ) ( ni ) SIN/COS j = 2 j = 3 j = 4 j = 5 j = 7 j = 8 j = 12 

V 0.39558 0 SIN 0 1 0 1 0 0 0 
 0.08200 0 SIN 0 1 0 0 0 0 0 
 0.03257 0 SIN 1 –1 0 –1 0 0 0 
 0.01092 0 SIN 1 1 0 1 0 0 0 
 0.00666 0 SIN 1 –1 0 0 0 0 0 
 –0.00644 0 SIN 1 1 –2 1 0 0 0 
 –0.00331 0 SIN 0 1 –2 1 0 0 0 
 –0.00304 0 SIN 0 1 –2 0 0 0 0 
 –0.00240 0 SIN 1 –1 –2 –1 0 0 0 
 0.00226 0 SIN 1 1 0 0 0 0 0 
 –0.00108 0 SIN 1 1 –2 0 0 0 0 
 –0.00079 0 SIN 0 1 0 –1 0 0 0 
 0.00078 0 SIN 0 1 2 1 0 0 0 
 0.00066 0 SIN 0 1 0 1 0 –1 0 
 –0.00062 0 SIN 0 1 0 1 0 1 0 
 –0.00050 0 SIN 1 –1 –2 0 0 0 0 
 0.00045 0 SIN 2 1 0 1 0 0 0 
 –0.00031 0 SIN 2 1 –2 1 0 0 0 
 –0.00027 0 SIN 1 1 –2 1 0 1 0 
 –0.00024 0 SIN 0 1 –2 1 0 1 0 
 –0.00021 1 SIN 0 1 0 1 0 0 0 
 0.00018 0 SIN 0 1 –1 1 0 0 0 
 0.00016 0 SIN 0 1 2 0 0 0 0 
 0.00016 0 SIN 1 –1 0 –1 0 –1 0 
 –0.00016 0 SIN 2 –1 0 –1 0 0 0 
 –0.00015 0 SIN 0 1 –2 0 0 1 0 
 –0.00012 0 SIN 1 –1 –2 –1 0 1 0 
 –0.00011 0 SIN 1 –1 0 –1 0 1 0 
 0.00009 0 SIN 1 1 0 1 0 –1 0 
 0.00009 0 SIN 2 1 0 0 0 0 0 
 0.00008 0 SIN 2 –1 0 0 0 0 0 
 0.00008 0 SIN 1 1 2 1 0 0 0 
 –0.00008 0 SIN 0 3 –2 1 0 0 0 
 0.00007 0 SIN 1 –1 2 0 0 0 0 
 –0.00007 0 SIN 2 –1 –2 –1 0 0 0 
 –0.00007 0 SIN 1 1 0 1 0 1 0 
 –0.00006 0 SIN 0 1 1 1 0 0 0 
 0.00006 0 SIN 0 1 –2 0 0 –1 0 
 0.00006 0 SIN 1 –1 0 1 0 0 0 
 0.00006 0 SIN 0 1 2 1 0 –1 0 
 –0.00005 0 SIN 1 1 –2 0 0 1 0 
 –0.00004 0 SIN 2 1 –2 0 0 0 0 
 0.00004 0 SIN 1 –3 0 –1 0 0 0 
 0.00004 0 SIN 1 –1 0 0 0 –1 0 
 –0.00003 0 SIN 1 –1 0 0 0 1 0 
 0.00003 0 SIN 0 1 –1 0 0 0 0 
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Table 4-2.  Trigonometric Series for the Moon (2 of 4) 

SERIES COEFFICIENT 
POWER 

OF T 

TRIGONOMETRIC FUNCTIONS AND COEFFICIENTS (bj) 
FOR FUNDAMENTAL ARGUMENTS (Aj) 

 (ci) (ni) SIN/COS j = 2 j = 3 j = 4 j = 5 j = 7 j = 8 j = 12 

  V  0.00003 0 SIN 0 1 –2 1 0 –1 0 
  (Cont'd) –0.00003 0 SIN 0 1 –2 –1 0 0 0 

 0.00003 0 SIN 1 1 –2 1 0 –1 0 
 0.00003 0 SIN 0 1 0 0 0 –1 0 
 –0.00003 0 SIN 0 1 –1 1 0 –1 0 
 –0.00002 0 SIN 1 –1 –2 0 0 1 0 
 –0.00002 0 SIN 0 1 0 0 0 1 0 
 0.00002 0 SIN 1 1 –1 1 0 0 0 
 –0.00002 0 SIN 1 1 0 –1 0 0 0 
 0.00002 0 SIN 3 1 0 1 0 0 0 
 –0.00002 0 SIN 2 –1 –4 –1 0 0 0 
 0.00002 0 SIN 1 –1 –2 –1 0 –1 0 
 –0.00002 1 SIN 1 –1 0 –1 0 0 0 
 –0.00002 0 SIN 1 –1 –4 –1 0 0 0 
 –0.00002 0 SIN 1 1 –4 0 0 0 0 
 –0.00002 0 SIN 2 –1 –2 0 0 0 0 
 0.00002 0 SIN 1 1 2 0 0 0 0 
 0.00002 0 SIN 1 1 0 0 0 –1 0 

U 1.00000 0 COS 0 0 0 0 0 0 0 
 –0.10828 0 COS 1 0 0 0 0 0 0 
 –0.01880 0 COS 1 0 –2 0 0 0 0 
 –0.01479 0 COS 0 0 2 0 0 0 0 
 0.00181 0 COS 2 0 –2 0 0 0 0 
 –0.00147 0 COS 2 0 0 0 0 0 0 
 –0.00105 0 COS 0 0 2 0 0 –1 0 
 –0.00075 0 COS 1 0 –2 0 0 1 0 
 –0.00067 0 COS 1 0 0 0 0 –1 0 
 0.00057 0 COS 0 0 1 0 0 0 0 
 0.00055 0 COS 1 0 0 0 0 1 0 
 –0.00046 0 COS 1 0 2 0 0 0 0 
 0.00041 0 COS 1 –2 0 0 0 0 0 
 0.00024 0 COS 0 0 0 0 0 1 0 
 0.00017 0 COS 0 0 2 0 0 1 0 
 0.00013 0 COS 1 0 –2 0 0 –1 0 
 –0.00010 0 COS 1 0 –4 0 0 0 0 
 –0.00009 0 COS 0 0 1 0 0 1 0 
 0.00007 0 COS 2 0 –2 0 0 1 0 
 0.00006 0 COS 3 0 –2 0 0 0 0 
 0.00006 0 COS 0 2 –2 0 0 0 0 
 –0.00005 0 COS 0 0 2 0 0 –2 0 
 –0.00005 0 COS 2 0 –4 0 0 0 0 
 0.00005 0 COS 1 2 –2 0 0 0 0 
 –0.00005 0 COS 1 0 –1 0 0 0 0 
 –0.00004 0 COS 1 0 2 0 0 –1 0 
 –0.00004 0 COS 3 0 0 0 0 0 0 
 –0.00003 0 COS 1 0 –4 0 0 1 0 
 –0.00003 0 COS 2 –2 0 0 0 0 0 
 –0.00003 0 COS 0 2 0 0 0 0 0 
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Table 4-2.  Trigonometric Series for the Moon (3 of 4) 

SERIES COEFFICIENT 
POWER 

OF T 
TRIGONOMETRIC FUNCTIONS AND COEFFICIENTS (bj) 

FOR FUNDAMENTAL ARGUMENTS (Aj) 

 (ci) (ni) SIN/COS j = 2 j = 3 j = 4 j = 5 j = 7 j = 8 j = 12 

W 0.10478 0 SIN 1 0 0 0 0 0 0 
 –0.04105 0 SIN 0 2 0 2 0 0 0 
 –0.02130 0 SIN 1 0 –2 0 0 0 0 
 –0.01779 0 SIN 0 2 0 1 0 0 0 
 0.01774 0 SIN 0 0 0 1 0 0 0 
 0.00987 0 SIN 0 0 2 0 0 0 0 
 –0.00338 0 SIN 1 –2 0 –2 0 0 0 
 –0.00309 0 SIN 0 0 0 0 0 1 0 
 –0.00190 0 SIN 0 2 0 0 0 0 0 
 –0.00144 0 SIN 1 0 0 1 0 0 0 
 –0.00144 0 SIN 1 –2 0 –1 0 0 0 
 –0.00113 0 SIN 1 2 0 2 0 0 0 
 –0.00094 0 SIN 1 0 –2 0 0 1 0 
 –0.00092 0 SIN 2 0 –2 0 0 0 0 
 0.00071 0 SIN 0 0 2 0 0 –1 0 
 0.00070 0 SIN 2 0 0 0 0 0 0 
 0.00067 0 SIN 1 2 –2 2 0 0 0 
 0.00066 0 SIN 0 2 –2 1 0 0 0 
 –0.00066 0 SIN 0 0 2 1 0 0 0 
 0.00061 0 SIN 1 0 0 0 0 –1 0 
 –0.00058 0 SIN 0 0 1 0 0 0 0 
 –0.00049 0 SIN 1 2 0 1 0 0 0 
 –0.00049 0 SIN 1 0 0 –1 0 0 0 
 –0.00042 0 SIN 1 0 0 0 0 1 0 
 0.00034 0 SIN 0 2 –2 2 0 0 0 
 –0.00026 0 SIN 0 2 –2 0 0 0 0 
 0.00025 0 SIN 1 –2 –2 –2 0 0 0 
 0.00024 0 SIN 1 –2 0 0 0 0 0 
 0.00023 0 SIN 1 2 –2 1 0 0 0 
 0.00023 0 SIN 1 0 –2 –1 0 0 0 
 0.00019 0 SIN 1 0 2 0 0 0 0 
 0.00012 0 SIN 1 0 –2 0 0 –1 0 
 0.00011 0 SIN 1 0 –2 1 0 0 0 
 0.00011 0 SIN 1 –2 –2 –1 0 0 0 
 –0.00010 0 SIN 0 0 2 0 0 1 0 
 0.00009 0 SIN 1 0 –1 0 0 0 0 
 0.00008 0 SIN 0 0 1 0 0 1 0 
 –0.00008 0 SIN 0 2 2 2 0 0 0 
 –0.00008 0 SIN 0 0 0 2 0 0 0 
 –0.00007 0 SIN 0 2 0 2 0 –1 0 
 0.00006 0 SIN 0 2 0 2 0 1 0 
 –0.00005 0 SIN 1 2 0 0 0 0 0 
 0.00005 0 SIN 3 0 0 0 0 0 0 
 –0.00005 0 SIN 1 0 0 0 16 0   –18     
 –0.00005 0 SIN 2 2 0 2 0 0 0 
 0.00004 1 SIN 0 2 0 2 0 0 0 
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Table 4-2.  Trigonometric Series for the Moon (4 of 4) 

SERIES COEFFICIENT POWER 
OF  T 

TRIGONOMETRIC FUNCTIONS AND COEFFICIENTS (bj) 

FOR FUNDAMENTAL ARGUMENTS (Aj) 

 (ci) (ni) SIN/COS j = 2 j = 3 j = 4 j = 5 j = 7 j = 8 j = 12 

W  0.00004 0 COS 1 0 0 0 16 0 –18 
(Cont'd) –0.00004 0 SIN 1 –2 2 0 0 0 0 

 –0.00004 0 SIN 1 0 –4 0 0 0 0 
 –0.00004 0 SIN 3 0 –2 0 0 0 0 
 –0.00004 0 SIN 0 2 2 1 0 0 0 
 –0.00004 0 SIN 0 0 2 –1 0 0 0 
 –0.00003 0 SIN 0 0 0 0 0 2 0 
 –0.00003 0 SIN 1 0 –2 0 0 2 0 
 0.00003 0 SIN 0 2 –2 1 0 1 0 
 –0.00003 0 SIN 0 0 2 1 0 –1 0 
 0.00003 0 SIN 2 2 –2 2 0 0 0 
 0.00003 0 SIN 0 0 2 0 0 –2 0 
 –0.00003 0 SIN 2 0 –2 0 0 1 0 
 0.00003 0 SIN 1 2 –2 2 0 1 0 
 –0.00003 0 SIN 2 0 –4 0 0 0 0 
 0.00002 0 SIN 0 2 –2 2 0 1 0 
 –0.00002 0 SIN 2 2 0 1 0 0 0 
 –0.00002 0 SIN 2 0 0 –1 0 0 0 
 0.00002 1 COS 1 0 0 0 16 0 –18 
 0.00002 0 SIN 0 0 4 0 0 0 0 
 –0.00002 0 SIN 0 2 –1 2 0 0 0 
 –0.00002 0 SIN 1 2 –2 0 0 0 0 
 –0.00002 0 SIN 2 0 0 1 0 0 0 
 –0.00002 0 SIN 2 –2 0 –1 0 0 0 
 0.00002 0 SIN 1 0 2 0 0 –1 0 
 0.00002 0 SIN 2 0 0 0 0 –1 0 
 –0.00002 0 SIN 1 0 –4 0 0 1 0 
 0.00002 1 SIN 1 0 0 0 16 0 –18 
 –0.00002 0 SIN 1 –2 0 –2 0 –1 0 
 0.00002 0 SIN 2 –2 0 –2 0 0 0 
 –0.00002 0 SIN 1 0 2 1 0 0 0 
 –0.00002 0 SIN 1 –2 2 –1 0 0 0 

4.1.1.2 Intermediate Precision Planetary Ephemeris 
A more precise analytical planetary ephemeris is available for propagation of high-Earth orbits, 
e.g. geosynchronous and higher. This method consists of the evaluation of series developed by 
Steven Moshier (Reference 26). It uses tables of coefficients derived by a least-squares fit to the 
Jet Propulsion Laboratory’s DE404 ephemeris and is therefore referenced to the ICRF. The 
periodic frequencies used were determined by spectral analysis of the ephemeris and comparison 
with other analytical planetary theories. The least-squares fit covers the interval from –1350 to 
+3000 for the inner planets.  

The method uses numerical tables to compute the geocentric polar coordinates (i.e. longitude, 
latitude, and distance) of the Moon referenced to the mean equinox and ecliptic of date and the 
heliocentric polar coordinates of the Earth-Moon barycenter and the planets referenced to the mean 
ecliptic of J2000. The series are evaluated in the following order: 



 
 

4-12 
 

1. The geocentric Cartesian coordinates of the Moon, E
MoonR , are computed from the 

geocentric polar coordinates and rotated from the Mean of Date to the Mean of J2000 
frame.  

2. The heliocentric ecliptic Cartesian coordinates of the Earth-Moon barycenter, S
EMBR , are 

computed from the heliocentric polar coordinates and then rotated to the mean equator of 
J2000 frame. The geocentric Sun vector is then computed as follows:  

 E
Moon

EarthMoon

MoonS
EMB

E
Sun R

mm
mRR 








+

+−=  (4.1-28a)* 

3. The heliocentric ecliptic Cartesian coordinates of the planets are computed from the 
heliocentric polar coordinates and then rotated to the mean equator of J2000 frame and 
translated to the geocentric frame using the geocentric position vector of the Sun, E

SunR . 

4. The associated velocities are computed using finite differencing of the position vectors. 

The method used requires the Julian date in TT. The TT calendar date corresponding to the current 
UTC time is computed using Equation (3.3-30) given in Section 3.3.5. 

 seconds184.320.1 ++= nUTCTT s  (4.1-28b)* 

where n equals 10 plus the total number of elapsed leap seconds since 1972. The equation to 
convert a Gregorian calendar date to a Julian day number at Greenwich noon (JD) is as follows: 

 
(

[ ] ) 0.86400/5.04/100/)4899(3
3364/)4799(146132075

SY
YDJDTT

+−+−
+++−=

 (4.1-28c)* 

where Y is the year, D is the day of the year, and S is seconds of the day, TT. In this statement, Y, 
M, D, and S are input as integers, and a division by integers implies truncation of the quotients to 
integers (decimals are not carried).  

Over the 2000 to 2500 time period, the root-mean-square error for the Moon’ position is 
approximately 0.06 arc seconds in longitude, 0.04 arc seconds in latitude, and 60 meters in 
distance. For time periods near J2000, comparisons with the high precision lunar ephemeris 
available from the JPL DE405 Ephemeris indicate a total position difference on the order of 100 
to 200 meters. 

4.1.1.3 High Precision Planetary Ephemeris 
The capability is also available to use a high precision planetary ephemeris consisting of 
Chebyshev polynomial coefficients for each position component extracted from a JPL series 4xx 
DE for a specific time span for any of the following bodies: Mercury, Venus, Earth-Moon 
barycenter, Mars, Jupiter, Saturn, Uranus, Neptune, Pluto, Sun, and Moon (geocentric). The 
coefficients for the planets represent the solar system barycentric (SSB) positions of the centers of 
the planetary systems with respect to the International Celestial Reference Frame (ICRF) 
referenced to Barycentric Dynamical Time (TDB). Reference 51 provides a detailed description 
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of the contents of these files and sample subroutines for retrieving their contents. Chebyshev 
polynomial coefficients from DE421 are available in the GEONS flight software and the capability 
is available to update to a later DE version, when available.  

Each position and corresponding velocity component is computed as follows: 

 

∑

∑

=

=

τ=

τ=

N

n
nnTT

N

n
nnTT

Tctx

Tctx

1

0

)()(

)()(



 (4.1-28d)* 

where TTt  is the request time in TT (computed using Equations 4.1-28b and 4.1-28c), nc  are the 
associated Chebyshev coefficients, )(τnT  are the Chebyshev polynomials of the first kind, and N 
is the degree of the expansion. The Chebyshev polynomials are computed using the following 
recursion formula: 

 ,...3,2),()(2)( 21 =τ−ττ=τ −− nTTT nnn  (4.1-28e)* 

where 1)(0 =τT  and τ=τ)(1T .  

The applicable range of interpolation for the Chebyshev time parameter τ  is 11 ≤τ≤− , which is 
computed as follows: 

 12
−

∆
∆

=τ
C

TT

T
t   (4.1-28f)* 

where Start
CTTTT Ttt −=∆  is the elapsed time from the start time of the polynomial fit interval, Start

CT
, and CT∆  is the length associated Chebyshev polynomial fit interval. The fit intervals are as 
follows: 4 days for the Moon, 8 days for Mercury, 16 days for the Sun, Venus, and the Earth-Moon 
barycenter, and 32 days for the remaining planets. 

The derivatives of the Chebyshev polynomials are computed by differentiating Equation (4.1-28e) 
by time: 

 𝑇̇𝑇𝑛𝑛(𝜏𝜏) = �2𝜏̇𝜏𝑇𝑇𝑛𝑛−1(𝜏𝜏) + 2𝜏𝜏𝑇̇𝑇𝑛𝑛−1(𝜏𝜏) − 𝑇̇𝑇𝑛𝑛−2(𝜏𝜏)� 𝑛𝑛 = 2,3, . .. (4.1-28g)* 

where 𝑇̇𝑇1(𝜏𝜏) = 𝜏̇𝜏, 𝑇̇𝑇2(𝜏𝜏) = 4𝜏̇𝜏𝜏𝜏, and  

 𝜏̇𝜏 = 2
𝛥𝛥𝑇𝑇𝐶𝐶

 (4.1-28h)* 

For use in GEONS, the planetary positions and velocities and velocities are transformed to the 
mean of J2000.0 ECI frame as follows: 

 
SSBSSBECI

SSBSSBECI

EarthPlanetPlanet

EarthPlanetPlanet

RRR

RRR
 −=

−=
 (4.1-28i)* 
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where 

𝑅̄𝑅𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℎ𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑅̄𝑅𝐸𝐸𝐸𝐸𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆 − � 𝑚𝑚𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑚𝑚𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀+𝑚𝑚𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℎ

� 𝑅̄𝑅𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝐸𝐸𝐸𝐸𝐸𝐸 

𝑅̇̄𝑅𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℎ𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑅̇̄𝑅𝐸𝐸𝐸𝐸𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆 − � 𝑚𝑚𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑚𝑚𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀+𝑚𝑚𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℎ

� 𝑅̇̄𝑅𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝐸𝐸𝐸𝐸𝐸𝐸  

Or equivalently 

 𝑅̄𝑅𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℎ𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑅̄𝑅𝐸𝐸𝐸𝐸𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆 − �
𝑅̄𝑅𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝐸𝐸𝐸𝐸𝐸𝐸
1+𝑅𝑅𝐸𝐸/𝑀𝑀

� 

𝑅̇̄𝑅𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℎ𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑅̇̄𝑅𝐸𝐸𝐸𝐸𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆 − �
𝑅̇̄𝑅𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝐸𝐸𝐸𝐸𝐸𝐸
1+𝑅𝑅𝐸𝐸/𝑀𝑀

� (4.1-28j)* 

where 
SSBPlanetR  and 

SSBPlanetR  are the position and velocity of the Planet in the Mean of J2000.0 

SSB frame, 
SSBEMBR  and 

SSBEMBR  are the position and velocity of the Earth-Moon barycenter in 

the Mean of J2000.0 SSB frame, and 
ECIMoonR  and 

ECIMoonR  are the position and velocity of the 
Moon in the Mean of J2000.0 geocentric frame, which are computed by evaluating Equation (4.1-
28d). 

SSBEarthR  and 
SSBEarthR  are the position and velocity of the Earth in the Mean of J2000.0 SSB 

frame computed using Equation (4.1-28j). 𝑅𝑅𝐸𝐸/𝑀𝑀 is the Earth/Moon mass ratio equal to 
0.813005600000000044e+02. 

4.1.2 Nonspherical Gravitational Acceleration  
GEONS includes the capability to model nonspherical gravitational effects from the Earth or non-
Earth central body (e.g. Moon, other planets or asteroid). The inertial acceleration vector resulting 
from nonspherical gravitational effects is given by the gradient of the nonspherical terms in the 
gravitational potential function, NSψ , as follows: 

 aNS NS= ∇ψ  (4.1-29)* 

The default geopotential model is the 30x30 Joint Gravity Model-2 (JGM-2). The 360x360 Earth 
Gravitational Model 96 (EGM96) geopotential model is also available in GEONS 3.0. The default 
lunar potential model is the 100x100 Lunar Prospector (LP) 100K model. To avoid numerical 
precision problems, the JGM-2 gravitational potential is computed using scaled coefficients with 
unnormalized associated Legendre functions (Section 4.1.2.1); all other Earth, lunar, and planetary 
gravitational potentials are computed using normalized coefficients with normalized associated 
Legendre functions (Section 4.1.2.2).  

4.1.2.1 Nonspherical Gravitational Acceleration of the Earth Using Unnormalized 
Coefficients (replaced with normalized algorithm in GEONS 3.0) 
This algorithm is used with the default Joint Gravity Model-2 (JGM-2) 30x30 geopotential model. 
The nonspherical geopotential, 

ENSψ , is given by 
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 (4.1-30) 

where 
 r = magnitude of the vector from the Earth’s center of mass to the satellite 

 φ  = geocentric latitude 
 λ  = geocentric longitude (measured east from the prime meridian) 

 µ  = gravitational constant of the Earth (398600.4415 x 109 meters3/second2 for 
consistency with the JGM-2 gravitational model) 

 Re =  equatorial radius of the Earth 

 N = maximum degree included in the expansion 

 ( )P sinn
m φ  = associated Legendre function 

E
m
nE

m
n C ,S )()(  = harmonic coefficients for the Earth (zonal harmonics for m = 0, sectoral 

harmonics for m = n, and tesseral harmonics for n > m ≠ 0) 
 (Note:  J = Cn n

0− , where J are the zonal coefficients) 

The first and second terms are the nonspherical potential due to the sum of zonal and tesseral 
harmonics, respectively. The term n = 1 is not present, since the origin of the coordinate system is 
placed at the center of mass of the Earth. For GEONS, the value of N, the maximum degree 
included in the expansion, will be an input parameter and will not exceed 30 for the Earth. The 
default geopotential model is the Joint Gravity Model-2 (JGM-2).  

The Earth’s gravitational coefficients and associated Legendre polynomials are scaled as follows: 

 E
m
n

m
n CFC )(~
=  (4.1-31) 

 E
m
n

m
n SFS )(~
=  (4.1-32) 

 ~P
F

Pn
m

n
m=

1  (4.1-33) 

The scaled coefficients and unnormalized associated Legendre functions are used in the 
calculations. The following nominal scale factor is used for JGM-2:  

 F = 1025  (4.1-34) 

Expressing the gradient in ECEF coordinates, r = x ,y ,zb
T

b b b( )  (see Section 3.1.3), the form for 
the inertial acceleration vector is obtained as follows: 
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 (4.1-35) 

where ,,
bb NSNS yx  and 

bNSz  are the components of the inertial acceleration expressed in ECEF 
coordinates and not the acceleration with respect to the ECEF coordinate system. Thus, it is 
necessary to transform these components into the mean of J2000.0 coordinate system in which the 
spacecraft equations of motion are expressed. 

This transformation is given by 

 ENS
TT

g
T

NS bE
aBRCa =  (4.1-36) 

where TT
g BR  transforms from ECEF to TOD coordinates and CT transforms from TOD to mean of 

J2000.0 coordinates. Assuming that the geographic pole axis, zb , is aligned with the instantaneous 
spin axis, z , of the TOD coordinate system, the TT

g BR  rotation reduces to RT(ag), which is 
equivalent to replacing ( )r , x , y , zb b b b  in Equation (4.1-35) by ( )r, x, y, z , the TOD components, 
and calculating the longitude and latitude as follows: 

 λ = a – ag (4.1-37)* 

 φ = 




−sin 1 z
r

 (4.1-38)* 

where 

 a = right ascension of the spacecraft ( )[ ]a y x= /-1tan  

 ag = TOD right ascension of Greenwich 

The CT rotation matrix is defined in Sections 3.2.1 and 3.2.1. 

The inertial acceleration vector can then be written as  
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 (4.1-39)* 

where the partial derivatives are evaluated using the TOD coordinates ( )r, x, y, z . 

The partial derivatives of the nonspherical portion of the Earth’s potential with respect to r, φ, and 
λ are given by 
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The Legendre functions and the terms cos(mλ), sin(mλ), and m tanφ  are computed via recursion 
formulas, as follows: 

 [ ]~ (sin ) ( ) sin ~ (sin ) ( ) ~ (sin )P
n

n P n Pn n n
0

1
0

2
01 2 1 1φ φ φ φ= − − −− −

 (4.1-43)* 
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 (4.1-44)* 
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 (4.1-46)* 

with initial values 

 ~ (sin ) (sin )P
F

P
F0

0
0
01 1

φ φ= =  (4.1-47)* 

 ~ (sin ) (sin ) sinP
F

P
F1

0
1

01
φ φ

φ
= =  (4.1-48)* 

 ~ (sin ) (sin )
cos

P
F

P
F1

1
1
11

φ φ
φ

= =  (4.1-49)* 

and 

 [ ] [ ] 2 ;)2(sin)1(sincos2)sin( ≥λ−−λ−λ=λ mmmm  (4.1-50)* 

 [ ] [ ] 2 ;)2(cos)1(coscos2)cos( ≥λ−−λ−λ=λ mmmm  (4.1-51)* 

 m mtan ( ) tan tanφ φ φ= − +1  (4.1-52)* 
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The partial derivatives of r, φ , and λ , with respect to x, y, and z, are computed from the 
expressions 
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∂  (4.1-53) 
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where the position partial derivatives are equal to the following: 

 ( ) ( ) ( )  1 ,0 ,0 =       0 ,1 ,0 =       0 ,0 ,1 = 
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Substituting Equations (4.1-53) through (4.1-55) into Equation (4.1-39) yields the TOD 
components of the acceleration vector 
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which are then transformed to the mean of J2000.0 reference frame using Equation (4.1-39). 

4.1.2.2 Nonspherical Gravitational Acceleration Using Normalized Coefficients 
Note that in GEONS 3.0, all nonspherical gravitational acceleration are computed using this 
algorithm. The original baseline JGM-2 unnormalized coefficients are re-scaled by the 1e25 factor 
and normalized according to the normalized Legendre polynomial scaling. Note that the recursion 
formula for computing the acceleration due to non-spherical gravity given below is singular at the 
poles (x = y = 0 in planet fixed coordinates). A different recursion should be used for any mission 
with an inclination close to 90 deg. 

The normalized associated Legendre functions are defined in terms of the unnormalized functions 
as follows 
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where the normalization factor ( )mnN ,  is given by 
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Expressing the nonspherical lunar potential, 
MNSψ , in terms of )(sinφm
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where 
 r = magnitude of the vector from the central body’s center of mass to the satellite 

 φ  = latitude of the satellite in the planet body fixed (PBF) frame (e.g. geographic 
or selenographic latitude) 

 λ  = longitude of the satellite in the PBF frame (e.g. geographic or selenographic 
longitude) 

 

 µ  = gravitational constant of the central body (e.g. 4902.800238 x 109 

meters3/second2 for the LP100K gravitational model) 

 Re =  equatorial radius of the central body (e.g. 1738 kilometers for the LP100K 
gravitational model) 

 N = maximum degree included in the expansion (e.g. 100 for the LP100K model) 
 ( )φP m

n sin  = normalized associated Legendre function 

 m
n

m
n C ,S  = normalized harmonic coefficients for the central body: 
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 (4.1.2-4) 

Expressing the gradient of the nonspherical potential in PBF coordinates (e.g. the International 
Terrestrial Reference Frame (ITRF) in the case of the Earth or the lunar principal axis frame in the 
case of the Moon), the associated acceleration vector in the planet-centered inertial (PCI) mean of 
J2000 frame is obtained as follows: 
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where the rotation, [ ]TJPBF PCI
T 2000← , which transforms the acceleration vector from the PBF to the 

PCI coordinate frame, is discussed in Sections 3.2.1 through 3.2.3 for the Earth and Sections 3.2.9 
and 3.2.12 for the Moon and other planets, respectively.  The acceleration components 

,,
PBFPBF NSNS yx   and 

PBFNSz , which are the components of the inertial acceleration expressed in PBF 
coordinates (not the acceleration with respect to the PBF system) are given by 
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The spacecraft position vector in the PBF frame PBFr  is computed as follows 

 ( )
PCIECIPCI PlanetJJPBFPBF RRTr −= ← 20002000  (4.1.2-7)* 

where 
ECIJR 2000  is the spacecraft position vector in the Mean of J2000 geocentric frame and 

ECIPlanetR  is the position of the central body in the Mean of J2000 geocentric frame.  

The partial derivatives of the nonspherical portion of the central body potential with respect to r, 
φ, and λ are given by 
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where 
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The normalized Legendre functions and the terms cos(mλ), sin(mλ), and m tanφ  are computed 
via recursion formulas, as follows: 

For n=m: 
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       where  
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For n  = m+1 and m ≥ 0: 

 )(sinsin32)(sin1 φφ+=φ+
m

m
m
m PmP  (4.1.2-16)* 

For n  ≥  m+2 and m ≥ 0:   

                            )(sin),()(sinsin),()(sin 21 φβφφαφ m
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      where 

 
))((
)12)(12(),(

mnmn
nnmn
+−
−+

=α  (4.1.2-18)* 

 
))()(32(

)1)(1)(12(),(
mnmnn
mnmnnmn

−+−
−−−++

=β  (4.1.2-19)* 

and for m ≥ 2: 

 [ ] [ ]λλλλ )2(sin)1(sincos2)sin( −−−= mmm  (4.1.2-20)* 

 [ ] [ ]λλλλ )2(cos)1(coscos2)cos( −−−= mmm  (4.1.1-21)* 

 φφφ tantan)1(tan +−= mm  (4.1.2-22)* 

(Equations 4.1.2-23 through 4.1.2-28 removed) 

The partial derivatives of r, φ , and λ , with respect to PBFx , PBFy , and PBFz , are computed from 
the expressions 
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where the position partial derivatives are equal to the following: 
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Substituting Equations (4.1.2-29) through (4.1.2-31) into Equation (4.1.2-6) yields the 
selenographic components of the acceleration vector 

     PBF
NS

PBFPBF
PBF

NS

PBFPBFPBF

PBF

PBF

NS

SG
NS y

yx
x

yxr

z
rr

x
PBF 









λ∂
∂ψ

+
−














φ∂
∂ψ

+
−

∂
∂ψ

= 22222

11
  (4.1.2-33) 

     PBF
NS

PBFPBF
PBF

NS

PBFPBFPBF

PBFNS

PBF
NS x

yx
y

yxr

z
rr

y
PBF 









λ∂
∂ψ

+
+














φ∂
∂ψ

+
−

∂
∂ψ

= 22222

11
  (4.1.2-34) 

 
φ∂

∂ψ+
+








∂

∂ψ
= NS

PBF

PBFPBF
PBF

SN

PBF
NS r

yx
z

rr
z

PBF 2

221
  (4.1.2-35) 

which are transformed to the mean of J2000.0 geocentric reference frame using Equation (4.1.2-5). 

4.1.2.3 Reduction in Nonspherical Gravitational Acceleration Calculations 
State propagation using a Runge-Kutta integrator requires multiple evaluations of the acceleration 
model for each integration step. The GEONS flight code includes a fourth-order integrator, which 
requires four acceleration evaluations, and an eighth-order integrator, which requires ten 
acceleration evaluations. These integration methods are discussed in detail in Section 4.2. The 
fourth-order integrator was selected for use in flight applications where computational efficiency 
is critical. To further reduce computation, an option is available to compute the Sun and Moon 
positions and rotation matrices used in the evaluation of the acceleration models only at the initial 
time. 

If the size of the nonspherical gravitational model that is being evaluated is moderately large, 
calculation of the nonspherical gravitational acceleration will be the major contributor to the 
computational time for each acceleration evaluation. This cost can be reduced by using a first-
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order Taylor series approximation to the nonspherical gravitational acceleration centered at the 
location of the spacecraft at the beginning of the integration step.  

The following description of this capability, which has been implemented for propagation of the 
Orion spacecraft, is based on the state propagation discussion in Section 6.6.5 of Reference 59. 
The nonspherical gravity acceleration is computed using the following Taylor series about the 
spacecraft position at the beginning of each integration step, )( 0tR n . Truncating after the first 

order in [ ])()( 0tRtR n
i

n −  gives 
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 (4.1.2-36)* 

where 
)(tR

a
n
NS

∂
∂

is the gravity gradient matrix.  This approximation requires calculation of the 

nonspherical gravitational acceleration and the associated gravity gradient matrix at only the initial 
integration step time. A less accurate but more computationally efficient approach would be to 
only reevaluate the point-mass and possibly J2 gravity contributions at each intermediate  time 
following the initial integration step time.  

4.1.3 Atmospheric Drag Acceleration  
Atmospheric drag acceleration is modeled for the user spacecraft as a drag force in the direction 
of the relative wind vector acting on a satellite of constant surface area. This model applies only 
to the Earth. The velocity of the satellite relative to the atmosphere is computed in the inertial 
coordinate system by subtracting the motion of the atmosphere, assumed to rotate with the Earth, 
from that of the satellite, as follows: 

 V R Rrel = − × ω  (4.1-59)* 

The Earth’s rotation vector, ω , is directed along the Earth’s instantaneous spin axis with a 
magnitude equal to the rotation rate of the Earth and components (ω 1,ω 2,ω 3). The Earth’s 
rotation vector is computed in the inertial mean of J2000.0 frame as follows: 

 ( ) ( ) ( )[ ]ω ωT
e C 3,1 ; C 3,2 ; C 3,3=  (4.1-60)* 

where ω e is the rotation rate of the Earth in radians per second (7.2921158553 x 10-5 
radians/second and the C matrix, which provides the transformation from the ECI to the TOD 
frame is used to rotate the spin axis to the inertial frame, is defined in Equation (3.2-26).  

For the case of a spherical satellite, the atmospheric drag acceleration is computed as 
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where 

 CD(tk) = aerodynamic force coefficient, computed using Equation (4.3-13) 

 A  = surface area of the satellite (meters2) 

 m  = mass of the satellite (kilograms) 
 ρ a  = density function computed from the atmospheric drag model (kilograms/ 

meters3) 

Nominally, for a spherical satellite, the aerodynamic force coefficient, CD, is equal to 2.0. In order 
to absorb an error in any of the above terms, an adjustment to CD, ∆CD(tk), can be estimated. The 
computation of ∆CD(tk)  is discussed further in Section 4.3. 

The atmospheric density function, ρ a , is modeled using an analytic approximation to the Harris-
Priester atmospheric model. Harris and Priester determined the physical properties of the upper 
atmosphere theoretically by solving the heat conduction equation under quasi-hydrostatic 
conditions (see References 13 through 15). Approximations for fluxes from the extreme ultraviolet 
and corpuscular heat sources were included, but the model averages the semiannual and seasonal-
latitudinal variations and does not attempt to account for the extreme ultraviolet 27-day effect.  

The atmospheric model presented here is a modification of the Harris-Priester concept. The 
modification attempts to account for the diurnal bulge by including a cosine variation between a 
maximum density profile at the apex of the diurnal bulge (which is located approximately 
30 degrees east of the subsolar point) and a minimum density profile at the antapex of the diurnal 
bulge. 

The variation of the atmospheric density depends on the solar flux value and the altitude. In the 
Harris-Priester model, tables corresponding to the anticipated solar flux value are used. The 
approximation in GEONS is based on an analytic formula [see Equation (4.1-61) below] that 
applies to all solar flux values of interest and requires limited tables (which can be uplinked once 
during the initialization stage). The result is a gain in operational simplicity without significant 
loss of accuracy (between 5 and 10 percent). 

The density values at a fixed height h above the reference ellipsoid for either the minimum 
atmospheric density ( minρ ) or the maximum atmospheric density ( maxρ ) can be represented by the 
following simple analytic formula (Reference 16): 

 ( ) ( ) [ ]m m m
f 6 5f, h A f B em mρ α β= − + − − −65 2 ( )  (4.1-62)* 

where 

 mρ  = maximum ( maxρ ) or minimum ( minρ )density 

 mmmm BA βα  , , ,  = height-dependent, best-fit parameters to fit the tabulated Harris-Priester 
density values 

 f  = 10.7-centimeter solar flux level in units of 10–22 watts/meter2/hertz, an 
uplinkable parameter, commonly referred to as F10.7 



 
 

4-25 
 

The solar flux value is also available in the TDRSS Augmentation Service for Satellites (TASS) 
broadcast messages. 

The best-fit parameters for minρ  and maxρ  are provided in Tables 4-3 and 4-4, respectively. The 
tables are associated with altitudes between 110 and 2000 kilometers. Values for the altitude region 
associated with the nominal spacecraft mission orbit should be available in the flight software. 

For any given height h, minρ and maxρ  can be obtained by interpolating between the two adjacent 
heights, h1 and h2, for which parametric equations are available, as follows: 
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 (4.1-63)* 

where 

 h1 < h < h2 (4.1-64) 

and 

 k h h
h h

=
−
−

1

2 1
 (4.1-65)* 

If h< the minimum altitude in the tables (i.e. 110 kilometers), the value h = the minimum altitude 
in the tables is used in the evaluation of Equation (4.1-62). 

If h> the maximum altitude in the tables (i.e. 2000 kilometers), the density is zero. 

A good approximation (neglecting polar motion) for the satellite height, h, is given by 

 h = r – RE (4.1-66)* 

where RE  is the mean radius of the Earth, given as 
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 (4.1-67)* 
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 (4.1-68)* 

and 

 r = magnitude of the satellite position vector 

 Re = equatorial radius of the Earth 

 f E  = Earth’s flattening coefficient 

 δ  = declination of the satellite (it is assumed that δ  equals the geocentric latitude 
of the subsatellite point) 
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 𝑥𝑥𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸, 𝑦𝑦𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸  = components of the satellite position vector,𝑟𝑟𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 

The density, aρ , is then computed by including the diurnal variation effect 

   [ ]ρ ρ ρ ρ γ
a

nf h f h f h= + − 
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min max min( , ) ( , ) ( , ) cos

2
 (4.1-69)* 

where γ  is the angle between the satellite position vector and the apex of the diurnal bulge. 

The cosine function in Equation (4.1-68) can be determined directly as 
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where 

 R = satellite position vector (in mean of J2000.0 coordinates) 

 ÛB = unit vector directed toward the apex of the diurnal bulge (in mean of J2000.0 
coordinates) 

For GEONS, n is an input parameter, which is typically equal to 2 for low-inclination orbits and 6 
for polar orbits. 

The vector ÛB has the following components: 

 ( )U  aB S Sx
= +cos cosδ λ  (4.1-71)* 

 ( )yB S SU  a= +cos sinδ λ  (4.1-72)* 

 zB SU = sin δ  (4.1-73)* 

where 

 δ S  = declination of the Sun, defined in Equation (4.1-24) 

 aS = right ascension of the Sun, defined in Equation (4.1-23) 
 λ = lag angle between the Sun line and the apex of the diurnal bulge  
   (approximately 30 degrees) 
  



 
 

4-27 
 

Table 4-3. Best-Fit Parameters for the Harris-Priester Minimum 
Atmospheric Density, minρ  

Altitude, h 
(kilometers) 

Best-Fit Parameters 

 A (kilograms/ 
kilometers3) 

α (unitless) B (kilograms/ 
kilometers3) 

β (unitless) 

110 7.8000D+01 0.0 0.0 0.0 

120 2.4900D+01 0.0 0.0 0.0 

130 -1.1939D-02 0.8751 8.9780D+00 0.0 

140 -3.3128D-03 0.8803 4.0690D+00 0.0 

150 3.0904D-03 0.5179 2.0860D+00 0.0 

160 3.8306D-03 0.7550 1.1460D+00 0.0 

170 3.8433D-03 0.7929 6.6160D-01 0.0 

180 2.6344D-03 0.8610 4.0160D-01 0.0 

190 1.9229D-03 0.8996 2.5300D-01 0.0 

200 1.4409D-03 0.9285 1.6280D-01 0.0 

210 9.3739D-04 0.9807 1.0760D-01 0.0 

220 5.8783D-04 1.0373 7.2870D-02 0.0 

230 3.8447D-04 1.0837 5.0380D-02 0.0 

240 2.5352D-04 1.1285 3.5490D-02 0.0 

250 1.6852D-04 1.1720 2.5410D-02 0.0 

260 1.1296D-04 1.2142 1.8460D-02 0.0 

270 7.7290D-05 1.2528 1.3580D-02 0.0 

280 5.3951D-05 1.2880 1.0100D-02 0.0 

290 3.8363D-05 1.3198 7.5880D-03 0.0 

300 2.7122D-05 1.3533 5.7190D-03 0.0  

320 5.7779D-06 1.5646 3.3050D-03 6.6739D.03 

340 2.4895D-06 1.6656 1.9530D-03 8.8782D-03 

360 1.1952D-06 1.7486 1.1750D-03 1.0875D-02 

380 6.0302D-07 1.8240 7.1670D-04 1.3006D-02 

400 3.1547D-07 1.8940 4.4280D-04 1.5129D-02 

420 1.7111D-07 1.9579 2.7790D-04 1.7603D-02 

440 9.1715D-08 2.0256 1.7600D-04 1.9867D-02 
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Altitude, h 
(kilometers) 

Best-Fit Parameters 

 A (kilograms/ 
kilometers3) 

α (unitless) B (kilograms/ 
kilometers3) 

β (unitless) 

460 4.9008D-08 2.0947 1.1280D-04 2.2358D-02 

480 2.5849D-08 2.1671 7.3460D-05 2.4837D-02 

500 1.3512D-08 2.2420 4.8660D-05 2.7228D-02 

520 6.9794D-09 2.3197 3.2910D-05 2.9303D-02 

540 3.5672D-09 2.4001 2.2790D-05 3.0905D-02 

560 1.7865D-09 2.4851 1.6220D-05 3.1924D-02 

580 8.9173D-10 2.5712 1.1880D-05 3.2157D-02 

600 4.3949D-10 2.6602 8.9780D-06 3.1651D-02 

620 2.1604D-10 2.7503 6.9870D-06 3.0602D-02 

640 1.0590D-10 2.8414 5.5930D-06 2.9273D-02 

660 5.2157D-11 2.9322 4.5890D-06 2.7841D-02 

680 2.6007D-11 3.0211 3.8460D-06 2.6423D-02 

700 1.3122D-11 3.1084 3.2810D-06 2.5185D-02 

720 6.7645D-12 3.1921 2.8380D-06 2.4270D-02 

740 3.6011D-12 3.2702 2.4820D-06 2.3581D-02 

760 1.9792D-12 3.3428 2.1900D-06 2.3164D-02 

780 1.1312D-12 3.4087 1.9440D-06 2.3068D-02 

800 6.8348D-13 3.4647 1.7360D-06 2.3083D-02 

850 2.6558D-12 3.0991 1.1800D-06 2.6181D-02 

900 1.4314D-12 3.1164 8.7000D-07 3.0263D-02 

950 9.7814D-13 3.0982 6.6000D-07 3.8122D-02 

1000 1.5905D-12 2.9272 4.8000D-07 4.7237D-02 

1100 1.3351D-11 2.3794 3.0000D-07 3.5909D-02 

1200 6.4934D-11 1.9547 1.8500D-07 2.9814D-02 

1300 3.6950D-10 1.5317 1.1300D-07 1.7111D-02 

1400 1.1825D-09 1.2630 7.3000D-08 1.0000D-03 

1500 7.2326D-10 1.3027 5.2000D-08 2.5822D-04 

1600 3.9700D-10 1.3579 3.7000D-08 1.0000D-03 

1700 3.1532D-10 1.3817 2.5500D-08 1.0000D-03 

1800 1.8189D-10 1.4228 1.8200D-08 1.0000D-03 

1900 1.3933D-10 1.4313 1.3000D-08 1.0000D-03 

2000 9.5796D-11 1.4598 1.0000D-08 1.0000D-03 

NOTE: This table was derived from Reference 16. 
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Table 4-4. Best-Fit Parameters for the Harris-Priester Maximum 
Atmospheric Density, maxρ  

Altitude, h  Best-Fit Parameters  
(kilometers) A (kilograms/ 

kilometers3) 
α (unitless) B (kilograms/ 

kilometers3) 
β (unitless) 

110 7.8000D+01 0.0 0.0 0.0 

120 2.4900D+01 0.0 0.0 0.0 

130 -1.0288D-02 0.9124 9.3310D+00 0.0 

140 -1.5957D-03 1.0205 4.2120D+00 0.0 

150 6.0816D-03 0.4198 2.1680D+00 0.0 

160 4.3565D-03 0.7089 1.2360D+00 0.0 

170 3.7004D-03 0.7724 7.5580D-01 0.0 

180 2.9642D-03 0.8090 4.8850D-01 0.0 

190 2.4927D-03 0.8261 3.2740D-01 0.0 

200 1.8838D-03 0.8559 2.2840D-01 0.0 

210 1.5208D-03 0.8719 1.6340D-01 0.0 

220 1.2219D-03 0.8895 1.1920D-01 0.0 

230 9.5705D-04 0.9114 8.8510D-02 0.0 

240 7.4926D-04 0.9332 6.6660D-02 0.0 

250 5.8527D-04 0.9554 5.0830D-02 0.0 

260 4.5493D-04 0.9787 3.9190D-02 0.0 

270 3.5273D-04 1.0027 3.0500D-02 0.0 

280 2.7128D-04 1.0288 2.3940D-02 0.0 

290 2.0847D-04 1.0555 1.8940D-02 0.0 

300 1.6154D-04 1.0809 1.5100D-02 0.0 

320 1.0021D-04 1.1258 9.8860D-03 0.0 

340 6.3023D-05 1.1692 6.6080D-03 0.0 

360 4.0140D-05 1.2115 4.4940D-03 0.0 

380 2.5853D-05 1.2529 3.1000D-03 0.0 

400 1.6829D-05 1.2934 2.1630D-03 0.0 

420 2.1107D-05 1.3320 1.5260D-03 0.0 

440 7.3292D-06 1.3719 1.0850D-03 0.0 

460 4.8575D-06 1.4120 7.7670D-04 0.0 

480 3.2318D-06 1.4521 5.5990D-04 0.0 

500 2.1442D-06 1.4936 4.0610D-04 0.0 

520 1.1880D-06 1.5650 2.9630D-04 2.8426D-03 

540 7.4848D-07 1.6173 2.1740D-04 3.8473D-03 
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Altitude, h  Best-Fit Parameters  
(kilometers) A (kilograms/ 

kilometers3) 
α (unitless) B (kilograms/ 

kilometers3) 
β (unitless) 

560 4.7709D-07 1.6685 1.6050D-04 4.7660D-03 

580 3.0399D-07 1.7205 1.1920D-04 5.7479D-03 

600 1.9500D-07 1.7720 8.9100D-05 6.6919D-03 

620 1.2570D-07 1.8231 8.7080D-05 7.5966D-03 

640 8.1577D-08 1.8734 5.0900D-05 8.4180D-03 

660 5.2632D-08 1.9253 3.8960D-05 9.3167D-03 

680 3.4199D-08 1.9763 3.0110D-05 1.0066D-02 

700 2.2130D-08 2.0285 2.3510D-05 1.0866D-02 

720 1.4432D-08 2.0795 1.8570D-05 1.1472D-02 

740 9.3506D-09 2.1321 1.4840D-05 1.2121D-02 

760 6.0874D-09 2.1841 1.2020D-05 1.2575D-02 

780 3.9601D-09 2.2365 9.8670D-06 1.3009D-02 

800 2.5823D-09 2.2888 8.1930D-06 1.3276D-02 

850 2.1946D-09 2.2422 6.2000D-06 2.5529D-03 

900 2.0811D-09 2.1776 4.4000D-06 -1.9168D-03 

950 4.5331D-10 2.3997 3.3000D-06 5.0229D-03 

1000 1.2710D-10 2.5811 2.7000D-06 1.2919D-02 

1100 1.2207D-11 2.9070 1.7500D-06 2.7866D-02 

1200 2.6581D-12 3.0632 1.2000D-06 3.2416D-02 

1300 7.4153D-13 3.1939 8.5000D-07 3.9225D-02 

1400 5.4632D-14 3.5853 6.2000D-07 4.1313D-02 

1500 7.7086D-15 3.8596 4.7500D-07 3.4612D-02 

1600 1.7322D-15 4.0683 3.6500D-07 3.5450D-02 

1700 6.3293D-15 3.7397 3.0000D-07 3.4738D-02 

1800 2.1463D-13 2.9859 2.2000D-07 4.1007D-02 

1900 9.0409D-13 2.6444 1.8000D-07 3.5595D-02 

2000 5.9649D-12 2.2291 1.4600D-07 3.1280D-02 

 
NOTE: This table was derived from Reference 16. 
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4.1.4 Solar Radiation Pressure Acceleration Model 
This section provides solar radiation pressure acceleration models based on a simple spherical 
satellite model with constant spacecraft area and a higher fidelity model that takes into account the 
changing spacecraft surface area due to changing attitude with respect to the Sun. 

4.1.4.1 Solar Radiation Pressure Acceleration with Spherical Area Model 

The model for the acceleration, aSRP  , due to direct solar radiation pressure acting on a spherical 
satellite is given by  

 3
2 )(

vs

vskR
SunSSRP r

r
m

AtCRPa υ=  (4.1-73a)* 

where the eclipse factor υ  is defined as follows 

  υ  = 0 if the spacecraft is shadowed by the central body 

  υ  = 1 if the spacecraft is sunlit 

where the vector from the sun to the spacecraft, rvs , is computed as follows: 

 S
C

n
Cvs RRr −=  (4.1-74)* 

and PS   = mean solar flux at one astronomical unit, divided by the speed of light 
(4.57 x10-6 Newtons/meter2) 

 n
CR   = position vector of satellite n referenced to the central-body mean of J2000 frame 

 S
CR   = position vector of the Sun referenced to the central-body mean of J2000 frame, 

computed as described in Section 4.1.1 

 RSun   = one astronomical unit (1.49597893 x10+11 meters) 

 )( kR tC   = solar radiation pressure coefficient, computed using Equation (4.3-13a) 

 A  = surface area of the spacecraft (meter2) 

 m  = mass of the spacecraft (kilograms) 

 rvs   = magnitude of the vector rvs (meters) 

Note that partial shadowing, i.e., penumbra and umbra, is not modeled. The following cylindrical 
shadow model is used to detect eclipse events at each time that the acceleration is computed. The 
spacecraft is assumed to be in sunlight (υ  = 1) if 

 0≥•
S

C

S
Cn

C R
RR  (4.1-75)* 
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The spacecraft is fully in shadow (υ  = 0) if 

 0<•
S

C

S
Cn

C R
RR  (4.1-76)* 

and if the vector to the spacecraft along the normal to the sun vector has a magnitude less than the 
central body radius, RC,  

 CS
C

S
C

S
C

S
Cn

C
n

C R
R
R

R
RRR <













•−  (4.1-77)* 

4.1.4.2 Solar Radiation Pressure Acceleration with Multiplate Area Model (not currently 
implemented) 

The solar radiation pressure acceleration at a specific time is computed for each illuminated flat 
plate in the multiplate spacecraft model based on the following high-fidelity model defined 
Reference 54.  

 ( ) 







ρ−+






 ⋅ρ+
δ
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i
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ˆ1ˆ)ˆˆ(
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2ˆˆ)(
1

2

2

 (4.1-77a) 

where 

 =)( kR tC  solar radiation pressure coefficient computed using Equation (4.3-13a) 

=SP  mean solar flux at one astronomical unit, divided by the speed of light (4.57 x10-6 
Newtons/meter2) 

 =SunR  one astronomical unit (1.49597893 x10+11 meters) 

=υ  eclipse factor, equal to the fraction of the solar radiation pressure flux at the 
spacecraft taking into account shadowing by the Moon and the Earth as defined in 
Section 4.1.4.1 

 =m  spacecraft mass (kilograms) (satellite-specific commanded parameter) 

 =iA  surface area of the ith plate (meter2) (satellite-specific commanded parameter) 

 =in̂  surface normal unit vector for the ith plate in the central-body inertial frame  

 n
C

S
C RRS −=  magnitude of the satellite-to-sun vector (meters) 

 n
C

S
C

n
C

S
C

RR
RRS

−
−

=ˆ , satellite-to-sun unit vector in the central-body inertial frame 

=δi  diffusive reflectivity for the ith plate (satellite-specific commanded parameter) 
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 =ρi  specular reflectivity for the ith plate (satellite-specific commanded parameter) 

The summation is performed for each illuminated plate i, i.e. when  

 0ˆˆ >⋅ inS  (4.1-77b) 

Spin-Stabilized Macromodel and Associated Partial Derivatives (Future Release) 

For the MMS spacecraft, an approximate area model consists of a regular octagonal cylinder 
composed of 8 solar array side panels and top and bottom plates and an inner column. The total 
acceleration is equal to the contributions from each of these components: 

 col
SRP

bottop
SRP

oct
SRPSRP aaaa ++= /  (4.1-77c)* 

The spacecraft rotation period (20-24 seconds) is comparable to the integration stepsize (nominally 
30 seconds). Therefore, the acceleration computed using Equation 4.1-77a should be averaged 
over the rotation period.  
Reference 55 provides a similar solar radiation pressure model for the spin-stabilized SELENE 
relay spacecraft.  In Reference 55, the solar radiation pressure acceleration is derived in the 
spacecraft-centered body frame defined as follows: 

Bẑ  is parallel to the spin axis Â  

BB zSx ˆˆˆ ×= , normal to Bẑ  and the Sun direction Ŝ  (4.1-77d)* 

BBB xzy ˆˆˆ ×= , in the plane defined by Â  and Ŝ    

The angle θ  between the spin axis and the Sun direction is given by 

 SA ˆˆcos ⋅=θ  (4.1-77e)* 

where Â  is the spin axis direction expressed in the inertial frame 
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δ
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A
sin

cossin
coscos

ˆ  (4.1-77f)* 

Bα  is the right ascension of the spin axis with respect to the inertial frame, and Bδ  is the 
declination of the spin axis with respect to the inertial frame (defined in Section 3.2.8.2).  
The model in Reference 55 is based on the following assumptions: (1) the spacecraft rotation 
period is much smaller than the orbital period so that the solar radiation force acting on the 
spacecraft can be modeled as constant over one rotation period, (2) the orientation of the spin axis 
does not change over the rotation period, and (3) the effects of shadowing and reflection by the 
different parts of the spacecraft can be neglected. The accelerations in the spacecraft-centered body 
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frame defined in Equation (4.1.4-77d) are then rotated to the inertial frame for inclusion in the 
equations of motion   

 ( ) ( ) ( )[ ]B
col
SRPB

bottop
SRPB

oct
SRP

n
BXYZSRP aaaTa ++= ←

/  (4.1-77g)* 

where  

  
















⋅⋅⋅
⋅⋅⋅
⋅⋅⋅

=←

IBIBIB

IBIBIB

IBIBIB
n

BXYZ

zzzyzx
yzyyyx
xzxyxx

T
ˆˆˆˆˆˆ
ˆˆˆˆˆˆ
ˆˆˆˆˆˆ

  (4.1-77h)* 

This model assumes that the top and bottom of the cylinder are identical and that only one will be 
illuminated at any time. The acceleration due to solar radiation pressure acting on the top/bottom 
plate is obtained using Equation (4.1.4-77a) directly: 
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 (4.1-77i)* 

where 

=topA  area of the top/bottom of the cylinder, assumed to be identical (an input parameter) 

=δ t  diffusive reflectivity for the top/bottom (an input parameter) 

=ρt  specular reflectivity for the top/bottom (an input parameter) 

The mean acceleration over one spacecraft rotation due to solar radiation pressure acting on the 8 
sides of the octagonal cylinder is computed by summing up the forces acting on each sunlit solar 
array plate and averaging over the rotational period. In the satellite-centered frame, this yields: 
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where 
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=octA  Area of each solar array panel (an input parameter) 

=δ s  diffusive reflectivity for the solar array (an input parameter) 

 =ρ s  specular reflectivity for the solar array (an input parameter) 

Using a similar approach, the mean acceleration over one spacecraft rotation due to solar 
radiation pressure acting on the column is given by  
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where 
=r  radius of the column (an input parameter) 

=h  height of exposed portion of the column (an input parameter) 

=δc  diffusive reflectivity for the column (an input parameter, equal to 0.20 for 
Germanium Black Kapton) 

 =ρc  specular reflectivity for the column (an input parameter, equal to 0.30 for 
Germanium Black Kapton) 
The associated partial derivative matrix [D] referenced in Section 4.4.1.3 is given by  
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4.1.5 Externally Measured Accelerations 

This acceleration model is suitable for modeling thrust accelerations associated with a spacecraft 
maneuver. This model assumes that the externally measured accelerations have been averaged 
over the propagation interval. These accelerations can be input in any of the following frames: 
Mean of J2000.0 with respect to the central body, RIC or VBN defined with respect to the central-
body frame or three-axis stabilized or spin-stabilized spacecraft body frames.  The externally 
measured acceleration associated with the current propagation interval is converted to the inertial 
Mean of J2000 coordinate frame using the appropriate transformation (i.e. Equation 3.2-52, 3.2-
92, 3.2-62, or 3.2-67). Note that averaging of the externally measured accelerations is not currently 
implemented in GEONS. In addition, a maneuver can be modeled as an impulsive velocity change 
(delta-V) that is added to the velocity vector at the maneuver time. When accelerometer sensor 
measurements are used to model the non-conservative forces, the averaged acceleration is included 
in the total acceleration in the central-body inertial frame: 

 𝑎𝑎� = 𝑎𝑎�𝐸𝐸 +  𝑎𝑎�𝑆𝑆 + 𝑎𝑎�𝑃𝑃 + 𝑎𝑎�𝑁𝑁𝑁𝑁𝐸𝐸 +  𝑎𝑎�𝑁𝑁𝑁𝑁𝑀𝑀 +   𝑎̄𝑎𝑒𝑒𝑒𝑒𝑒𝑒
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (4.1-77p)* 

External accelerations are typically obtained from an accelerometer onboard the spacecraft. An 
accelerometer measures the non-conservative forces acting on a spacecraft at any time, if they 
exceed the accelerometer thresholds. The non-conservative forces, which are typically dominated 
by any propulsive forces, also include atmospheric drag and solar radiation pressure forces. 
Accelerometer sensor measurements are typically used to model the propulsive force only when 
the spacecraft is thrusting. Estimated accelerometer sensor biases are used to correct the 
accelerometer measurements prior to including them in the total acceleration vector. 
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Correction of the accelerometer sensor measurements is not currently implemented in GEONS. 
The corrected accelerometer acceleration is given by  

 𝑎̄𝑎𝑒𝑒𝑒𝑒𝑒𝑒𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = [𝑇𝑇𝑋𝑋𝑋𝑋𝑋𝑋←𝐵𝐵]𝐶𝐶 [𝑇𝑇𝐵𝐵←𝐼𝐼𝐼𝐼𝐼𝐼] 
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�𝑎𝑎𝐼𝐼𝐼𝐼𝑈𝑈𝑧𝑧
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 − 𝑏𝑏𝐼𝐼𝐼𝐼𝑈𝑈𝑧𝑧  

𝐴𝐴 � �1 + 𝑠𝑠𝐼𝐼𝐼𝐼𝑈𝑈𝑧𝑧
𝐴𝐴 �� ⎦

⎥
⎥
⎤
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where  

[ ]CBXYZT ← = rotation matrix from the spacecraft body frame to the central body inertial 
frame defined in Section 3.2.8 

[ ]IMUBT ←  = rotation matrix from the IMU sensor frame to the body frame  

[ ]A
IMU

A
IMU

A
IMU zyx

sss ,,  = scale factors, representing the error in the conversion from raw 
sensor outputs to engineering units 

Measured
IMUa  = Measured accelerometer accelerations in the IMU sensor frame  

[ ]A
IMU

A
IMU

A
IMU zyx

bbb ,,  = component of the accelerometer measurement bias in the IMU 
sensor frame  

A
IMUb  = vector of all accelerometer measurement biases  
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
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


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
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IMU

A
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A
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A
IMU

A
IMU

A
IMU

A
IMU

y

y

x

y

y

x

s
s
s
b
b
b

b  (4.1-77r) 

 

4.1.6 Unmodeled Accelerations 

Unmodeled accelerations can be represented by acceleration biases defined with respect to any of 
the following coordinate frames: 

• ( )RICUa , acceleration biases expressed in the Radial/In-track/Crosstrack (RIC) 
coordinates with respect to the central body frame defined in Section 3.1.4 

• ( )VBNUa , acceleration biases expressed in the Velocity/Binormal/Normal (VBN) 
coordinates with respect to the central body frame defined in Section 3.1.8 

• ( )BUa , acceleration biases expressed in the spacecraft body frame  
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These acceleration biases are modeled as either random constants or Gauss-Markov processes 
using the models defined in Section 4.3. The estimated “unmodeled” acceleration bias values are 
included in the total acceleration that is used to propagate the position and velocity components of 
the estimated state vector. The acceleration biases must be transformed to the inertial Mean of 
J2000.0 frame for inclusion in the total acceleration vector defined in Equation 4.1-4. The 
transformations are as follows, depending on the frame used to define the bias: 

( )
[ ] ( )
[ ] ( )
[ ]( )








=

←

←

←

framebody  in the expressed biaseson acceleratifor  ,
frame VBN in the expressed biaseson acceleratifor  ,
frame RIC in the expressed biaseson acceleratifor  ,

2000

BUBXYZ

VBNUCVBNXYZ

RICU
T

CXYZRIC

JU

aT
aT
aT

a  (4.1-78)* 

The associated transformation matrices are defined in Sections 3.2.4, 3.2.8, and 3.2.10. 
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4.2 Runge-Kutta Integration Algorithm  
The Runge-Kutta method is a self-starting, single-step numerical integration technique by which 
the value of the dependent variable, x, at some future time, t1 + τ (where τ is the integration step 
size), can be calculated from a weighted summation formula and the value of the dependent 
variable at t1. GEONS includes both fourth-order and eighth-order integration algorithms. 

The fourth-order integration algorithm, which is described below, was selected for computational 
efficiency. The following formulas apply to a single component of the vector of quantities being 
integrated, )(t x . 

Given a first-order differential equation of the form 

 ( )t ,xF
dt
dx

=   (4.2-1) 

and an initial value 

 )( 00 txx =  (4.2-2) 

the dependent variable, x, at time t1 + τ is computed as follows: 

 ( )3210600 22)( FFFFxtx ++++=τ+ τ  (4.2-3)* 

where 

 ( )000  , txFF =  (4.2-4)* 

 





 τ

+
τ

+=
2

,
2 0001 tFxFF  (4.2-5)* 

 





 τ

+
τ

+=
2

,
2 0102 tFxFF  (4.2-6)* 

 ( )τ+τ+= 0203 , tFxFF  (4.2-7)* 

The function F is given by the user spacecraft equations of motion defined in Section 4.1. To 
reduce computation, an option is available to compute the Sun and Moon positions and rotation 
matrices used in the evaluation of the acceleration models only at the initial time t0 . A fixed 
maximum value will be assigned to the stepsize τ for the user spacecraft. The actual stepsize will 
be an adjustable variable smaller than or equal to the fixed maximum value. 

The Shanks eighth order Runge-Kutta algorithm was selected to provide higher accuracy using 
larger stepsizes (Reference 56). The following Shanks Runge-Kutta algorithm requires 10 function 
evaluations.  
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The dependent variable, x, at time t0 + τ is computed as follows: 

 ( ) i
i

i Fc+x+t x ∑
=

τ=τ
9

0
00  (4.2-8)* 

where 

 ( )000  , txFF =  (4.2-9)* 

 ( )τ++= iii atkxFF 00 ,        i = 1,…, 9 (4.2-10)* 

 jji

i

j
ii Fbak ,

1

0
∑
−

=

τ=        i = 1,…, 9 (4.2-11)* 

Table 4-5 contains the values for the coefficients used in these formulas. 

 

Table 4-5. Coefficients for the Eighth Order Runge-Kutta Method 
i  

ic  ia  jiiba ,  

   J=0 J=1 J=2 J=3 J=4 J=5 J=6 J=7 J=8 
0 41/840           
1 0 4/27 4/27         

2 0 2/9 1/18 3/18        
3 27/840 1/3 1/12 0 3/12       
4 272/840 1/2 1/8 0 0 3/8      
5 27/840 2/3 13/54 0 -27/54 42/54 8/54     
6 216/840 1/6 389/4320 0 -54/4320 966/4320 -824/4320 243/4320    
7 0/840 1 -231/20 0 81/20 -1164/20 656/20 -122/20 800/20   
8 216/840 5/6 -127/288 0 18/288 -678/288 456/288 -9/288 576/288 4/288  

9 41/840 1 1481/820 0 -81/820 7104/820 -3376/820 72/820 -5040/820 -60/820 720/820 
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4.3 Nonspacecraft State Vector Propagation 
This section provides the state propagation and state transition matrix equations for the 
atmospheric drag coefficient correction ( DCΔ ), solar radiation pressure coefficient correction (

RC∆ ), receiver time bias (bR), receiver time bias rate and acceleration ( Rd  and Rd ), acceleration 
biases ( Ua ),GPS/WAAS pseudorange biases ( WGb /

ρ ), GPS/WAAS Doppler biases ( WG
db / ), 

GPS/WAAS carrier phase biases ( WGb /
φ ), GPS/WAAS singly differenced carrier phase biases (

WGb /
φ∆ ), cross-link pseudorange biases ( CLbρ ), cross-link Doppler biases ( CL

db ), celestial object 

sensor biases ( COb ), GS range biases ( GSbρ ), GS Doppler biases ( GS
db ), TDRSS Doppler biases (

TDRS
db ), accelerometer sensor measurement biases in the IMU frame ( A

IMUb ), and ionospheric scale 
factor ( Iγ ). Each of these biases can be modeled as either a random walk or first-order Gauss-
Markov (FOGM) process using the equations provided in Sections 4.3.1 and 4.3.2, respectively. 
In addition, the time bias drift can be modeled as a second-order Gauss-Markov (SOGM) process 
using the equations provided in Section 4.3.3. 

The atmospheric drag coefficient for satellite n at time t is computed as follows 

 ( ) ( ) ( )tCCtC n
Dref

n
D

n
D ∆+=  (4.3-1)* 

where 

 ( )ref
n
DC  = constant reference value for n

DC  (commandable parameter)  

 ( )tC n
DΔ  = correction to n

DC  at time t 

The solar radiation pressure coefficient for satellite n at time t is computed as follows 

 ( ) ( ) ( )tCCtC n
Rref

n
R

n
R ∆+=  (4.3-1a)* 

where 

 ( )ref
n
RC  = constant reference value for n

RC  (commandable parameter) 

 ( )tCn
R∆  = correction to n

RC  at time t 

Some GPS receivers estimate the receiver clock's offset from GPS time and increase/decrease the 
receiver's clock time by 1 millisecond whenever the magnitude of the estimated offset exceeds 0.5 
milliseconds.  (If the estimated offset is less than -0.5 milliseconds, the clock time is increased by 
1 millisecond.  If the offset is greater than +0.5 milliseconds, the clock time is decreased by 1 
millisecond.)  To accommodate such receivers, the residual receiver time bias for satellite n, )(~ tb n

R

, can optionally be modeled as 

 
INT

n
R

n
Rn

R
n

R q
qtbsigntbqtbtb 






 ×+
−=

5.0)]([)()()(~  (4.3-2a)* 
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where  

 )(tbn
R  = accumulated time bias (meters) at time t  for receiver n 

 [x]INT = designates the greatest integer contained in the value of x  

 sign[x] = designates the sign of the value of x  

 q = distance that a signal travels in 1 millisecond (299792.458 meters) 

The accumulated receiver time bias )(tbn
R  is related to the time bias rate, optional time bias 

acceleration, and optional correction to model relativistic drift effects on the spacecraft clock 
relative to a UTC reference clock at rest in the ECI frame on the Earth’s geoid, n

Rd
Rel

∆ , as follows 

 𝑏𝑏𝑅𝑅𝑛𝑛(𝑡𝑡) = 𝑏𝑏𝑅𝑅𝑛𝑛(𝑡𝑡 − 𝛥𝛥𝛥𝛥) + [𝑑𝑑𝑅𝑅𝑛𝑛(𝑡𝑡 − 𝛥𝛥𝛥𝛥) + 𝛥𝛥𝑑𝑑𝑅𝑅Rel
𝑛𝑛 (𝑡𝑡 − 𝛥𝛥𝛥𝛥)] ⋅ 𝛥𝛥𝛥𝛥 + 𝑑̇𝑑𝑅𝑅𝑛𝑛(𝑡𝑡 − 𝛥𝛥𝛥𝛥) ⋅ 𝛥𝛥𝑡𝑡

2

2
 (4.3-2) 

The accumulated receiver time bias rate )(td n
R  is related to the optional time bias acceleration as 

follows 

 𝑑𝑑𝑅𝑅𝑛𝑛(𝑡𝑡) = 𝑑𝑑𝑅𝑅𝑛𝑛(𝑡𝑡 − 𝛥𝛥𝛥𝛥) + 𝑑̇𝑑𝑅𝑅𝑛𝑛(𝑡𝑡 − 𝛥𝛥𝛥𝛥) ⋅ 𝛥𝛥𝛥𝛥 +  ∆𝑑𝑑𝑅𝑅𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟 (𝑡𝑡 − 𝛥𝛥𝛥𝛥) (4.3-3) 

where 

 )(tbn
R  = accumulated GPS receiver time bias (meters) at time t  

 )0(n
Rb  = initial receiver time bias (meters) (commandable parameter) 

 )(td n
R  = value of the receiver time bias rate at time t (meters/second) 

 )0(n
Rd  = initial receiver time bias rate (meters/second) (commandable parameter) 

 )(td n
R
  = value of the optional receiver time bias acceleration at time t (meters/second2) 

 )0(n
Rd  = initial receiver time bias acceleration value (meters/second2) (commandable 

parameter) 

 )(
Rel

td n
R∆  = drift of the satellite clock versus a clock at rest on the surface of the Earth due 

to relativity (meters/second) 

The value of )(~ tb n
R  is related to the receiver's residual time offset term n

Rtδ  as follows: 

 n
R

n
R tctb δ=)(~  (4.3-4) 

The value of )(td n
R is related to the receiver frequency offset (in hertz), δFREF, as follows: 

 
T

n
REFn

R F
Fctd δ

=)(  (4.3-5) 

Where FT is the nominal carrier frequency (e.g. 1575.42 megahertz for L1). 
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Note that the model for the residual receiver clock bias given in Equation (4.3-2a) is receiver 
specific.  If the receiver does not increase (decrease) the clock time to accommodate offsets of 1 
millisecond, the accumulated bias model given in Equation (4.3-2) should be used.  

The primary relativistic effects on a satellite clock are the second order Doppler shift and the 
gravitational frequency shift. Clocks moving in space run faster than clocks at rest on the surface 
of the Earth due to the lower gravitational potential in satellite orbit but run slower due to their 
higher velocity.  The fractional frequency shift of the receiver’s clock relative to a reference clock 
fixed on the Earth’s geoid can be approximated as follows (see Equations 27 and 53 in Reference 
57 for more detail) for an Earth-orbiting satellite 

 ( )
2
0

22

2
Rel

2 ccRc
R

F
F

n
S

E
n
S

T

Φ
−−−=

∆ µ
 (4.3-6) 

where 

 n
S

E

R
µ

−  = Earth’s Gravitational point mass potential at the satellite’s position  

 n
SR  = Magnitude of the satellite’s ECI position vector 

 n
SR  = Magnitude of the satellite’s ECI velocity vector 

10
2
0 10x96929.6 −−=

Φ
c

 =Effective geopotential at the equator in the ECEF frame (included because 

reference clocks are fixed on the Earth’s surface) 

Based on Equations 4.3-5 and 4.3-6, the relativistic contribution to the drift of the receiver’s clock 
relative to a reference clock fixed on the Earth’s geoid can be approximated as follows for an 
Earth-orbiting satellite 

 ( )













+










+−=∆ −10

2

2 10x96929.6
2

1)(
Rel

n
S

n
S

En
R

R
Rc

ctd
µ  (m/s) (4.3-7)* 

Components of an acceleration bias vector Ua  can be estimated to account for unmodeled 
accelerations. The acceleration bias vector can be modeled in trajectory-fixed coordinates (RIC or 
VBN) or a spacecraft body-fixed frame dependent on the spacecraft attitude using the equations 
given in Section 4.1.6. Each component of the acceleration bias vector can be modeled as either a 
random walk or Gauss-Markov process. 

 (Equation Deleted) (4.3-8) 

 (Equation Deleted) (4.3-9) 

 (Equation Deleted) (4.3-10) 

 (Equation Deleted) (4.3-11) 
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 (Equation Deleted) (4.3-12) 

 (same as Equation 4.3-1) (4.3-13) 

 (same as Equation 4.3-1a) (4.3-13a) 

 (same as Equation 4.3-2a) (4.3-14a) 

4.3.1 Random Walk Processes 
The predicted values for the random walk biases that can be estimated in GEONS are as follows: 

 𝑏𝑏𝑅𝑅𝑛𝑛(𝑡𝑡𝑘𝑘) = 𝑏𝑏𝑅𝑅𝑛𝑛(𝑡𝑡𝑘𝑘−1) + [𝑑𝑑𝑅𝑅𝑛𝑛(𝑡𝑡𝑘𝑘−1) + 𝛥𝛥𝑑𝑑𝑅𝑅Rel
𝑛𝑛 (𝑡𝑡𝑘𝑘−1)][𝑡𝑡𝑘𝑘 − 𝑡𝑡𝑘𝑘−1] + 𝑑̇𝑑𝑅𝑅𝑛𝑛(𝑡𝑡𝑘𝑘−1)[𝑡𝑡𝑘𝑘 − 𝑡𝑡𝑘𝑘−1]2/2 (4.3-14)* 

 ( ) ( )1−∆=∆ k
n
Dk

n
D tCtC  (4.3-15)* 

 ( ) ( )1−∆=∆ k
n
Rk

n
R tCtC  (4.3-15a)* 

 ( )( ) ( )( )RICk
n

URICk
n

U tata 1−=  (4.3-16)* 

 ( )( ) ( )( )VBNk
n

UVBNk
n

U tata 1−=   (4.3-17)* 

 ( )( ) ( )( )Bk
n

UBk
n

U tata 1−=  (4.3-18)* 

 ( ) ( ) ( )[ ]111 −−− −+= kkk
n
Rk

n
Rk

n
R tttdtdtd   (4.3-19)* 

 ( ) ( )1−= k
n
Rk

n
R tdtd   (4.3-19a)* 

 ( ) ( )1
//

−= k
WG

k
WG tbtb ρρ  (4.3-19a)* 

 ( ) ( )1
//

−= k
WG

dk
WG

d tbtb  (4.3-19b)* 

 ( ) ( )1−ρρ = k
CL

k
CL tbtb  (4.3-19c)* 

 ( ) ( )1−= k
CL

dk
CL

d tbtb  (4.3-19d)* 

 ( ) ( )1−= k
CO

k
CO tbtb  (4.3-19e)* 

 
( ) ( )

( )
( ) 51)-(5.3Equation in  defined is   and ,...,1,40,...1  re       whe          

nreceiver by  G/Wfor n acquisitio signal of  time,
                         n         acquisitio signal of  time,

/

i
/

1
/

/
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nS
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iWG

n

kk
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n
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tbNni

ttb
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−φ
φ
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
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≠

=
 (4.3-

19f)* 
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( ) ( )

( )
( ) 19)-(5.4Equation in  defined is   and ,...,2,40,...1  re       whe          

nreceiver or  1receiver by  G/Wfor n acquisitio signal of  time,
                         n         acquisitio signal of  time,

/

i
/

1
/

/

1

1

1

1

acq
WG

S
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WG

kk
WG

k
WG

tbNni
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φ∆

φ∆

−φ∆
φ∆

==







=
≠

=
 (4.3-

19g)* 

 ( ) ( )1−γ=γ kIkI tt  (4.3-19h)* 

 )()( 1−ρρ = k
GS

k
GS tbtb  (4.3-19i)* 

 )()( 1−= k
GS

dk
GS

d tbtb  (4.3-19j)* 

 )()( 1−= k
TDRS

dk
TDRS

d tbtb  (4.3-19k)* 

 )()( 1−= k
A

IMUk
A

IMU tbtb  (4.3-19k)* 

The following are the nonzero partial derivatives for the random-walk variables that are used in 
computing the state transition matrix: 

 ( )
( ) 1

1

=
∆∂
∆∂

−k
n
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n
D

tC
tC  (4.3-20)* 

 ( )
( ) 1
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tC  (4.3-20a)* 

 ( )
( ) 1
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=
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tb  (4.3-21)* 

 ( )
( ) 1

1
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∂
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kk
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R
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n
R tt

td
tb  (4.3-21a)* 

 ( )
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R tt
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tb
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 (4.3-21b)* 
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=
∂
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n
R
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td  (4.3-22)* 
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 (4.3-22a)* 
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 ( )
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
 (4.3-22aa)* 
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i

 (4.3-27g)* 

where GSn  is the number of transmitting ground stations, sensorn  is the number of celestial object 
sensors, and TDRSn  is the number of TDRSS satellite transmitters. 

4.3.2 First-Order Gauss-Markov Processes 
The predicted values for the Gauss-Markov biases that can be estimated in GEONS are as follows: 

 ( ) ( )1−
τ
∆

−

∆=∆ k
n
D

T

k
n
D tCetC DC  (4.3-28)* 

 ( ) ( )1−
τ
∆

−

∆=∆ k
n
R

T

k
n
R tCetC RC  (4.3-29)* 

 )(1)()( 11 −
τ
∆

−

− 









−τ+= k

n
R

T

Rk
n
Rk

n
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where 

 T∆  =  1−− kk tt  

 τ  =  correlation time associated with the bias, a commanded parameter (seconds) 
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The following are the nonzero partial derivatives for Gauss Markov biases, which are used in 
computing the state transition matrix: 
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where GSn  is the number of transmitting ground stations, sensorn  is the number of celestial object 
sensors, and TDRSn  is the number of TDRSS satellite transmitters. 

4.3.3 Second-Order Gauss-Markov Processes 
When the time bias is modeled as a FOGM process and the time bias drift is modeled as a SOGM 
process, the maximum value of the time bias covariance can be limited. In this case, the predicted 
values are as follows: 
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where the following partial derivatives are used in computing the state transition matrix: 
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where  
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where 

 T∆  =  1−− kk tt  
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 Rτ=β /1  =  where Rτ  is the FOGM correlation time associated with the receiver time bias, 
a commanded parameter (seconds) with recommended values 43200 s≤ Rτ
≤43200000 s 

 nω  =  SOGM natural frequency, a commanded parameter (radians per second) with 
recommended values 6x10-5≤ nω ≤3x10-4 

 dζ  =  SOGM damping ratio, a commanded parameter (unitless) with recommended 
values 0≤ dζ <1 

If the values for Rτ , nω , and dζ  are selected such that a
1  is much larger than T∆ , the 

FOGM/SOGM process resembles a random walk process over intervals shorter than a
1 . 

Reference 53 provides a more detailed discussion of the performance of this model. 
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4.4 State Error Covariance Propagation  
Sections 4.4.1 through 4.4.3 present the algorithms for computing the state transition matrix, 
computing the state process noise covariance matrix, and propagating the covariance matrix 
factors, respectively. Note that the timestep used for state error covariance propagation is the same 
as the time interval used in the filter time update processing discussed in Section 2.3.1. 

4.4.1 State Transition Matrix Computation  
The state transition matrix is used to propagate the state error covariance matrix. Note that the state 
transition matrix is computed in ECI frame, regardless of the central body that is being used to 
integrate the satellite state vector. 

The state transition matrix at time ti is defined as 
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If the state vector includes relative states for the nonlocal satellites, the associated state 
transition matrix includes the correlation between the relative states and the local state  
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Note that, if the atmospheric drag coefficient correction, the solar radiation pressure coefficient 
correction and/or the acceleration biases are not being estimated, the associated columns are not 
present in the state transition matrix given in Equation (4.4.1a).   

The position and velocity components are computed by the following semianalytic approximation  
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where ∆T = ti – ti–1 (seconds) and nω⋅ς=β 2 , where ς  is the SOGM orbital covariance artificial 
damping ratio (a commandable parameter) and nω  is the orbital rate given by (Reference 52) 
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where the semimajor axis is given by 
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The [3 × 3] [Ai] matrix consists of the partial derivatives of the acceleration vector, ( )R ti , with 
respect to the position vector at time ti.  Computation of the [Ai] matrix is discussed in Section 
4.4.1.1. The [3 × 3] [ I ] matrix is the identity matrix. This semianalytic second-order formulation 
of the position and velocity state transition submatrix, which is based on Method H in Reference 
17 and Reference 59, is obtained using the following second-order Runge-Kutta integration 
formula: 
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∆𝑇𝑇2

2
 (4.4-4) 

Based on analysis presented in Reference 17, this approximation will propagate the state error 
covariance matrix around one orbit (for a low Earth orbit) with an accuracy of approximately 1 
percent if a maximum time step of 16 seconds is used.  

If the atmospheric drag coefficient correction is estimated, the atmospheric drag correction 
components are computed by the approximation 
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The [Bi-1] matrix represents the partial derivatives of the acceleration vector with respect to the 
drag scale factor at time ti-1. The [B] matrix is computed in Section 4.4.1.2. 

If the solar radiation pressure coefficient correction is estimated, the solar radiation pressure 
coefficient correction components are computed by the approximation 
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The [Di-1] matrix represents the partial derivatives of the acceleration vector with respect to the 
solar radiation pressure coefficient at time ti-1. The [D] matrix is computed in Section 4.4.1.3. 

If the acceleration biases are estimated, the acceleration bias components are computed by the 
approximation 
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The [Ei-1] matrix represents the partial derivatives of the mean of J2000.0 acceleration vector with 
respect to the acceleration biases at time ti-1. The [E] matrix is computed in Section 4.4.1.4. 



 
 

4-56 
 

If the accelerometer sensor biases are estimated, the accelerometer bias components are computed 
by the approximation 
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 (4.4-5c)* 

The [Fi-1] matrix represents the partial derivatives of the mean of J2000.0 acceleration vector with 
respect to the accelerometer sensor biases at time ti-1. The [F] matrix is computed as defined in 
Section 4.4.1.5.  

The remaining partial derivatives in Equation 4.4-1a are defined in Section 4.3.1 (Equations 4.3-
20 through 4.3-22d) and Section 4.3.2 (Equations 4.3-31b through 4.3-31i) for random walk or 
first-order Gauss Markov bias processes, respectively and in Section 4.3.3 when the time bias drift 
is modeled as a second-order Gauss-Markov process (Equations 4.3-37 through 4.3-40). 
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 (4.4-5e)* 

The partial derivatives of the measurement biases in Equation (4.4-5e) and the partial derivative 
of the ionospheric scale factor are defined in Section 4.3.1 (Equations 4.3-23 through 4.3-27f) and 
Section 4.3.2 (Equations 4.3-31j through 4.3-33) for random walk or Gauss Markov bias processes, 
respectively. 

4.4.1.1 Acceleration Partial Derivatives 

If the covariance damping ratio ς  equals zero, the [3 × 3] acceleration partial derivatives matrix 
[Ai] includes all point mass accelerations for all perturbing bodies included in the acceleration 
model and the Earth J2 zonal harmonic acceleration, aJ2

, if the degree of the nonspherical Earth 
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gravitational model is greater than or equal to 2. If the covariance damping ratio ς  is greater than 
zero, the [3 × 3] acceleration partial derivatives matrix [Ai] includes only the central body point 
mass acceleration.  Note that this matrix is computed in the ECI frame regardless of which body 
is used as the central body for state integration. This matrix can be approximated as follows in the 
ECI frame, if the effects of precession and nutation are ignored: 
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 (4.4-6)* 

where 
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 R X Y Z= + +2 2 2  (4.4-10)* 

and Ca  is the non-Earth central body acceleration expressed in the ECI frame 
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where Pµ  is the gravitational constant of the non-Earth central body and pR  is the position vector 
of the non-Earth central body expressed in the ECI frame 

In Equation 4.4-7, the summation over p includes all bodies other than the Earth that are included 
in the gravitational point mass acceleration and n

ECIRR =  and p
ECI

p RR = . 

When the covariance damping ratio ς  equals zero, the gravitational acceleration can be written in 
the form: 

 𝑎̄𝑎𝑔𝑔 =

⎣
⎢
⎢
⎢
⎡ − 𝜇𝜇𝑥𝑥

𝑅𝑅3
𝑋𝑋 + ∑ 𝜇𝜇𝑝𝑝𝑝𝑝 � 𝑋𝑋𝑝𝑝−𝑋𝑋

|𝑅̄𝑅𝑝𝑝−𝑅̄𝑅|3 −
𝑋𝑋𝑝𝑝

|𝑅𝑅𝑝𝑝|3�

− 𝜇𝜇𝑥𝑥
𝑅𝑅3
𝑌𝑌 + ∑ 𝜇𝜇𝑝𝑝𝑝𝑝 � 𝑌𝑌𝑝𝑝−𝑌𝑌

|𝑅𝑅𝑝𝑝−𝑅̄𝑅|3 −
𝑌𝑌𝑝𝑝

|𝑅̄𝑅𝑝𝑝|3�

(−𝜇𝜇𝑥𝑥
𝑅𝑅3

+ 3 𝜇𝜇𝐸𝐸𝐶𝐶20𝑅𝑅𝑒𝑒2

𝑅𝑅5
)𝑍𝑍 + ∑ 𝜇𝜇𝑝𝑝𝑝𝑝 � 𝑍𝑍𝑝𝑝−𝑍𝑍

|𝑅̄𝑅𝑝𝑝−𝑅̄𝑅|3 −
𝑍𝑍𝑝𝑝

|𝑅̄𝑅𝑝𝑝|3�⎦
⎥
⎥
⎥
⎤

 (4.4-11)* 
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When the covariance damping ratio ς  equals zero, the following acceleration partial derivatives 
(taken from Reference 17) are valid for the J2000.0 coordinate system: 

 𝜕𝜕𝑎𝑎𝑔𝑔𝑔𝑔
𝜕𝜕𝜕𝜕

= −𝜇𝜇𝑥𝑥
𝑅𝑅3

+ 𝑋𝑋2

𝑅𝑅5
�7𝜇𝜇𝑥𝑥 − 4𝜇𝜇𝐸𝐸 + 3𝜇𝜇𝐸𝐸 𝐶𝐶20

𝑅𝑅𝑒𝑒2

𝑅𝑅2
� + ∑ 𝜇𝜇𝑝𝑝𝑝𝑝 � −1

|𝑅̄𝑅𝑝𝑝−𝑅̄𝑅|3 + 3 𝑋𝑋𝑝𝑝−𝑋𝑋
|𝑅̄𝑅𝑝𝑝−𝑅̄𝑅|5� (4.4-13)* 

 𝜕𝜕𝑎𝑎𝑔𝑔𝑔𝑔
𝜕𝜕𝜕𝜕

= 𝑋𝑋 𝑌𝑌
𝑅𝑅5
�7𝜇𝜇𝑥𝑥 − 4𝜇𝜇𝐸𝐸 + 3𝜇𝜇𝐸𝐸 𝐶𝐶20

𝑅𝑅𝑒𝑒2

𝑅𝑅2
� + ∑ 𝜇𝜇𝑝𝑝𝑝𝑝 �3 (𝑋𝑋𝑝𝑝−𝑋𝑋)(𝑌𝑌𝑝𝑝−𝑌𝑌)

|𝑅̄𝑅𝑝𝑝−𝑅̄𝑅|5 � (4.4-14)* 

 𝜕𝜕𝑎𝑎𝑔𝑔𝑔𝑔
𝜕𝜕𝜕𝜕

= 𝑋𝑋 𝑍𝑍
𝑅𝑅5
�7𝜇𝜇𝑥𝑥 − 4𝜇𝜇𝐸𝐸 − 12𝜇𝜇𝐸𝐸 𝐶𝐶20

𝑅𝑅𝑒𝑒2

𝑅𝑅2
� + ∑ 𝜇𝜇𝑝𝑝𝑝𝑝 �3 (𝑋𝑋𝑝𝑝−𝑋𝑋)(𝑍𝑍𝑝𝑝−𝑍𝑍)

|𝑅̄𝑅𝑝𝑝−𝑅̄𝑅|5 � (4.4-15)* 
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 𝜕𝜕𝑎𝑎𝑔𝑔𝑔𝑔
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When the covariance damping ratio ς  is greater than zero, 

 𝜕𝜕𝑎𝑎𝑔𝑔𝑔𝑔
𝜕𝜕𝜕𝜕

= 𝜇𝜇𝑝𝑝 �
−1

|𝑅̄𝑅𝑝𝑝−𝑅̄𝑅|3 + 3 (𝑋𝑋𝑝𝑝−𝑋𝑋)2

|𝑅̄𝑅𝑝𝑝−𝑅̄𝑅|5� (4.4-21a)* 
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𝜕𝜕𝜕𝜕
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4.4.1.2 Drag Scale Factor Partial Derivatives 

The [3 × 1] drag scale factor partial derivative matrix [B] is given below: 

 [ ]B
A

m
V Va

rel rel= −
ρ
2

 (4.4-22)* 

where all the parameters on the right hand side of Equation (4.4-22) are defined in Section 4.1.3. 

 Equation deleted (4.4-23) 

 Equation deleted (4.4-24) 

 Equation deleted (4.4-25) 

 Equation deleted (4.4-26) 



 
 

4-60 
 

4.4.1.3 Solar Radiation Pressure Coefficient Partial Derivatives 

The [3 × 1] solar radiation pressure coefficient partial derivative matrix [D] is given below for the 
spherical area model: 

 [ ]D P R A
m

r
rS Sun

vs

vs

= ν 2
3  (4.4-26a)* 

The parameters on the right hand side of Equation (4.4-26a) are defined in Section 4.1.4.1 and are 
computed in the ECI frame. The corresponding partial derivative matrix for the MMS spin-
stabilized macromodel is defined in Section 4.1.4.2. 

4.4.1.4 Acceleration Bias Partial Derivatives 

The [3 × 3] acceleration bias partial derivative matrix [E] is given below: 

[ ]
[ ]







=

←

←

←

BUBXYZ

VBNUCVBNXYZ

RICUCRICXYZ

aT
aT
aT

E
)( frame,body  in the expressed biaseson acceleratifor  ,

)( frame, VBN in the expressed biaseson acceleratifor  ,
)( frame, RIC in the expressed biaseson acceleratifor  ,

][  (4.4-26b)* 

The transformation matrices in Equation (4.4-26b) are defined in Sections 3.2.4, 3.2.8 and 3.2.10. 

4.4.1.5 Accelerometer Sensor Bias Partial Derivatives 

The components of the [3  × 6] partial derivative matrix [F] of the accelerometer acceleration with 
respect to the accelerometer measurement bias components in the IMU sensor frame and the 
accelerometer scale factor bias components defined in Section 4.1.5 have the following values 
during thrusting and are 0 otherwise: 

 [𝐹𝐹] = −[𝑇𝑇𝑋𝑋𝑋𝑋𝑋𝑋←𝐵𝐵]𝐶𝐶 [𝑇𝑇𝐵𝐵←𝐼𝐼𝐼𝐼𝐼𝐼] �
1 0 0
0 1 0
0 0 1

𝑎𝑎𝐼𝐼𝐼𝐼𝑈𝑈𝑥𝑥
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 0 0

0 𝑎𝑎𝐼𝐼𝐼𝐼𝑈𝑈𝑦𝑦
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 0

0 0 𝑎𝑎𝐼𝐼𝐼𝐼𝑈𝑈𝑧𝑧
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

� (4.4-26c)* 

The transformation matrices are defined in Sections 3.2.8 and 3.2.10.  

4.4.2 Process Noise Covariance Matrix  
The process noise covariance matrix, Qk, is used in the Kalman filter algorithms to correct the state 
error covariance for errors in the force model. The GEONS extended Kalman filter uses a 
physically connected algorithm (see References 18 and 19) for calculating the gravitational 
contribution to the spacecraft state error covariance and uses random-walk algorithms for 
calculating the contribution from other sources. This section presents these algorithms. 
Section 4.4.2.1 describes the block structure of the process noise covariance matrix and the 
nonspacecraft state process noise block. Section 4.4.2.2 discusses the computation of the 
gravitational process noise contribution. 
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4.4.2.1 Block Structure of the Process Noise Covariance Matrix 
The total process noise covariance matrix has the form: 

 























γ )(000
0)(00
00)(0

000)(

= 

1-

1-

1-

11-

1-

Ii

i

Ni

i

i

Q
BQ

XQ

XQ

Q
S











 (4.4-27)* 

The GEONS state vector components for each user satellite can be partitioned into two parts: (1) 
spacecraft position and velocity elements and (2) other satellite state parameters, which include 
receiver time bias and time bias drift corrections and optionally the atmospheric drag coefficient 
correction and solar radiation pressure coefficient correction. This can be represented as follows: 

 X
S
g

n
n

=







  (4.4-27a)* 

where S  is composed of the position and velocity vectors, R and R , of the nth user spacecraft (
S  is a six-component vector). 

The quantity g  is given by 
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


∆
∆

=

U

R

R

D

a
b
C
C

g  (4.4-28)* 

where 

 ∆CD  = the atmospheric drag coefficient correction 

 ∆CR  = the solar radiation pressure coefficient correction 
 bR  = GPS receiver time-bias vector, which includes bR, dR , and optionally Rd  

 Uu  = Unmodeled acceleration biases expressed in either the RIC, VBN or body 
frame 

The gravitational process noise contribution to the covariance matrix for the orbital elements 
vector, S , is computed using the physically connected algorithm described in Section 4.4.2.2. The 
quantities contained in the vector g  are random variables, and the contribution of the process noise 
to the covariance matrix for these parameters is described at the end of this section. 
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The process noise covariance matrix components for each user satellite [needed to evaluate 
Equations (4.4-62) and (4.4-63) in Section 4.4.3] have a block structure that can be represented as 
follows: 

 







=

−

−
− )(0

0)(
)(

1

1
1 n

i

n
in

i gQ
SQ

XQ  (4.4-29)* 

where 

 Q( )S n  = process noise covariance matrix for the position and velocity vectors of 
satellite n [defined in Equation (4.4-30)] 

 Q( )g n  = process noise covariance matrix for the other state variables of satellite n 
[defined in Equation (4.4-35)] 

The position and velocity submatrix is computed in RIC components in the central body frame and 
then transformed into XYZ mean of J2000 coordinates as shown below; where the transformation 
matrix, [ ]CXYZRICT ← , is computed using the position and velocity in the central body frame at time 
(ti–1): 
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where 
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 (4.4-31)* 

where 

 Qr = radial velocity noise variance rate (meters2/second3) in the central body frame 

 Qi = in-track velocity noise variance rate (meters2/second3) in the central body 
frame 

 Qc = cross-track velocity noise variance rate (meters2/second3) in the central body 
frame 

 ∆T = ti – ti–1 = time step (seconds) 
 Qµ = radial Earth gravity state noise variance rate for geosynchronous orbits 

computed using Equation (4.4-61b) (meters2/second4) 

Note that this formulation for the state process noise assumes that the velocity errors are 
uncorrelated in time. The radial, in-track, and cross-track variance rates (Q’s) each have two 
components as shown below:  

 Q Q Qr r eg r o= +, ,  (4.4-32)* 

 Q Q Qi i eg i o= +, ,  (4.4-33)* 

 Q Q Qc c eg c o= +, ,  (4.4-34)* 

where 

 Qr,eg = Earth gravity radial state noise variance rate for low-Earth-orbiting (LEO) 
satellites (meters2/second3), computed using Equation (4.4-59), which is only 
value if the Earth is the central body. 

 Qr,o = other radial velocity noise variance rate (meters2/second3), commandable 
parameter 
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 Qi,eg = Earth gravity in-track velocity noise variance rate for LEO satellites 
(meters2/second3), computed using Equation (4.4-60), which is only value if 
the Earth is the central body. 

 Qi,o = other in-track velocity noise variance rate (meters2/second3), commandable 
parameter 

 Qc,eg = Earth gravity cross-track state noise variance rate for LEO satellites 
(meters2/second3), computed using Equation (4.4-61), which is only value if 
the Earth is the central body. 

 Qc,o = other cross-track state noise variance rate (meters2/second3), commandable 
parameter 

Variances are added because the component error sources are independent. This model assumes 
timewise uncorrelated random acceleration errors, sometimes referred to as a random-walk model. 

For orbits where the dynamic modeling errors are fairly constant in the radial, in-track, and cross-
track directions (e.g. near-circular and libration point orbits), constant values for the other velocity 
noise variance rates are usually adequate. However, for highly elliptic orbits where the dynamic 
modeling errors vary by more than an order of magnitude with distance from the central body (e.g. 
highly elliptic lunar orbits), a model that increases the velocity noise variance rates based on the 
square of the inverse of the distance from the central body can provide a more realistic covariance. 
Note that this type of scaled model is not currently implemented in the GEONS 3.0 source code. 

Other state noise refers to small unmodeled accelerations from polar motion, tidal effects, random 
venting, etc. Other state noise includes small errors in the acceleration models for solar gravity, 
lunar gravity, and solar pressure. If the unmodeled acceleration effects are estimated, the state 
noise is covered by its own state vector element process noise.  Note that atmospheric drag or solar 
radiation pressure coefficient correction state noise is covered by its own state vector element. The 
derivation of the Earth gravity state noise model is given Section 4.4.2.2. 

The process noise contributions for the remaining state vector elements for satellite n and the 
measurement biases are modeled as either random-walk or Gauss-Markov processes.  When the 
time bias, drift and optional acceleration are modeled as random walk processes, the associated 
process noise matrix elements are given by 
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 (4.4-34a)* 

where 

 
RbQ  = GPS receiver time bias process noise variance rate (meters2/second) 
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RdQ  = GPS receiver time bias rate process noise variance rate (meters2/second3) 

 
RdQ 

  = GPS receiver time bias acceleration process noise variance rate 

(meters2/second5) 

For all other elements modeled as random walk processes, the process noise variance is given by 

 TQQ RWRW ∆=   (4.4-34b)* 

where 

 RWQ  = the associated process noise variance rate (one per second) 

When the time bias drift is modeled as a first-order Gauss-Markov process, the maximum value 
of the time drift process noise variance is bounded and the time bias process noise variance grows 
linearly with T∆ . The associated process noise matrix elements are given by 
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 (4.4-34c)* 

where 

 Rτ  = GPS receiver time bias drift correlation time, a commanded parameter 
(seconds) 

 
RdS  = Power spectral density of the receiver time bias drift noise, a commanded 

parameter (meters2/second3) 

For all elements modeled as first-order Gauss-Markov processes except for the time bias and drift, 
the process noise variance is bounded and given by 

 ( ) 







−σ= τ

∆
−

T

FOGMFOGM eQ
2

2 1  (4.4-34d)* 

where 

 FOGMσ  = the associated maximum root variance, a commanded parameter 

 τ  = the associated correlation time, a commanded parameter (seconds) 

When the receiver time bias is modeled as a first-order Gauss-Markov process and the time bias 
drift is modeled as a second-order Gauss-Markov process, the maximum propagated process noise 
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variances for the time bias and time bias drift are bounded. The associated process noise matrix 
elements are given by 

 







=

2221

1211

QQ
QQ

QSOGM
bR

 (4.4-34e)* 

where 

 TSQ
Rb ∆=11  (4.4-34f)* 

 02112 == QQ  (4.4-34g)* 

 TSQ
Rd ∆=22  (4.4-34h)* 

where 

 
RbS  = Power spectral density of the receiver time bias noise, a commanded parameter 

(meters2/second) 
 

RdS  = Power spectral density of the receiver time bias drift noise, a commanded 
parameter (meters2/second3) 

 T∆  = ti – ti–1 = time step (seconds) 

When the FOGM/SOGM time bias/drift model is used, the behavior of the associated covariance 
is controlled by the selection of the power spectral densities and the values for Rτ , nω , and dζ  
defined in Section 4.3.3. Reference 53 provides a more detailed discussion of the performance of 
this model. 

The process noise covariance submatrix for the remaining state vector elements for satellite n are 
given by 
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where 

 QCD
 = the atmospheric drag coefficient correction process noise variance; note that 

the associated row and column is not included if the atmospheric drag 
coefficient correction is not estimated 

 QCR
 = the solar radiation pressure coefficient correction process noise variance; note 

that the associated row and column is not included if the solar radiation 
pressure coefficient correction is not estimated 

 
RbQ  = GPS receiver time bias process noise matrix given by either Equation 4.4-34a 

or 4.4-34c 
 

UaQ  = Acceleration bias process noise variance (meters2/second3) 

The components of the diagonal measurement bias process noise submatrix are computed as 
follows: 
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 (4.4-35a)* 

where 

 WGQ /
ρ  = diagonal matrix containing pseudorange bias process noise variances for 32 

GPS SVs and 8 WAAS GEOs, where the rate is a commanded parameter 
(meters2/second) 

 WG
dQ /  = diagonal matrix containing Doppler bias process noise variances for 32 GPS 

SVs and 8 WAAS GEOs, where the rate is a commanded parameter 
(hertz2/second) 

 CLQρ  = diagonal matrix containing cross-link pseudorange bias process noise 

variances for all transmitters, where the rate is a commanded parameter 
(meters2/second) 

 CL
dQ  = diagonal matrix containing cross-link Doppler bias process noise variances for 

all transmitters, where the rate is a commanded parameter (hertz2/second) 

 COQ  = diagonal matrix containing celestial object sensor bias process noise variances 
for SN  satellites, where the rate is a commanded parameter 
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 GSQρ  = diagonal matrix containing range bias process noise variances jGSQρ  for all 
transmitting ground stations (meter2)  

 GS
dQ  = diagonal matrix containing Doppler bias process noise variances jGS

dQ  for all 
transmitting ground stations (hertz2)  

 TDRS
dQ  = diagonal matrix containing Doppler bias process noise variances jTDRS

dQ  for all 
TDRSS transmitters (hertz2) 

 WGQ /
φ  = diagonal matrix containing process noise variances for carrier phase biases 

between SN  receivers and 32 GPS SVs and 8 WAAS GEOs, where the rate is 
a commanded parameter (meters2/second) 

 WGQ /
φ∆  = diagonal matrix containing process noise variances for the singly differenced 

carrier phase biases between the local receiver (1) and 1−SN  remote receivers 
and 32 GPS SVs and 8 WAAS GEOs, where the rate is a commanded 
parameter (meters2/second) 

 (Equation replaced by Equations 4.4-34a and b) (4.4-35b)* 

 (Equation replaced by Equations 4.4-34a and b) (4.4-35c)* 

Finally, the process noise matrix element for the ionospheric scale factor, )(1 IiQ γ− , is computed 
using Equation 4.4-34b or d.  

4.4.2.2 Earth Gravity State Noise Model for LEO Satellites 
GEONS uses a semianalytic Earth gravity state noise model derived from algorithms presented in 
References 18 through 20. The algorithm in Reference 19 computes a state noise covariance matrix 
for a state vector defined in terms of equinoctial orbital elements. The algorithm in Reference 3 
uses the state noise covariance matrix formulation in equinoctial orbital elements but transforms 
it to XYZ (Cartesian) coordinates. The algorithm in this document avoids the use of equinoctial 
orbital elements by computing the state noise covariance matrix in RIC coordinates and then 
transforming it to XYZ (Cartesian) coordinates. 

The following algorithm models the state noise contribution for LEO satellites due to errors of 
omission and errors of commission in the gravity model coefficients.  

The following derivation is adapted from Reference 3. The Earth gravity state noise in RIC 
coordinates is derived from the following integral: 

 [ ( )] ( , ) ( ) ( , )  ( ) ( , ) d,Q t t t B t C t T B t t t tk RIC EG
t
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T T

k
k

k
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∫ + +
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1 10φ φ  (4.4-36) 
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where 

 [Q]RIC,EG = [6 × 6] RIC Earth gravity state noise matrix 

 [φ] = [6 × 6] RIC state transition matrix 

 [B] = [6 × 3] RIC matrix of partial derivatives of the RIC coordinates with respect to 
the velocity vector 

 [C] = [3 × 3] RIC gravity error covariance matrix 
 [T] = [3 × 3] RIC correlation time matrix 

The quantities in the integral are computed as follows: 

 T =
−∫ ρ γ γ
γ

γ
( ) d  (4.4-37) 

where γ  is a gravity autocorrelation cutoff time that satisfies the condition 
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 (4.4-38) 

where P is the orbital period. 

The matrix ρ(γ) has the following form: 
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 (4.4-39) 

where 

 𝐶𝐶𝑅𝑅(𝑡𝑡,  𝛾𝛾) = ∑ � 𝑅𝑅𝑒𝑒
𝑅𝑅(𝑡𝑡)�

2𝑛𝑛+4𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀
𝑛𝑛=2 𝜎𝜎2(𝑛𝑛) 𝑃𝑃𝑛𝑛0(𝑐𝑐𝑐𝑐𝑐𝑐   [𝜓𝜓(𝛾𝛾)]) (4.4-40) 

 𝐶𝐶𝐼𝐼(𝑡𝑡,  𝛾𝛾) = ∑ 𝑛𝑛(𝑛𝑛+1)
2(𝑛𝑛−1)2

𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀
𝑛𝑛=2 � 𝑅𝑅𝑒𝑒

𝑅𝑅(𝑡𝑡)�
2𝑛𝑛+4

𝜎𝜎2(𝑛𝑛) �𝑃𝑃𝑛𝑛0(𝑐𝑐𝑐𝑐𝑐𝑐   [𝜓𝜓(𝛾𝛾)]) − 𝑃𝑃𝑛𝑛2(𝑐𝑐𝑐𝑐𝑐𝑐  [𝜓𝜓(𝛾𝛾)])
𝑛𝑛(𝑛𝑛+1) � (4.4-41) 

 𝐶𝐶𝐶𝐶(𝑡𝑡,  𝛾𝛾) = ∑ 𝑛𝑛(𝑛𝑛+1)
2(𝑛𝑛−1)2 �

𝑅𝑅𝑒𝑒
𝑅𝑅(𝑡𝑡)�

2𝑛𝑛+4𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀
𝑛𝑛=2 𝜎𝜎2(𝑛𝑛) �𝑃𝑃𝑛𝑛0(𝑐𝑐𝑐𝑐𝑐𝑐   [𝜓𝜓(𝛾𝛾)]) + 𝑃𝑃𝑛𝑛−12 (𝑐𝑐𝑐𝑐𝑐𝑐  [𝜓𝜓(𝛾𝛾)])

𝑛𝑛(𝑛𝑛+1) � (4.4-42) 

Where 𝑃𝑃𝑛𝑛0 is the Legendre polynomial of degree n and 𝑃𝑃𝑛𝑛2 is the associated Legendre function of 
degree n and order 2. These sums are computed so that convergence is achieved, where  

100≤MaxN .  

The symbols σ2(n) occurring in the equations for ),,( γtCR ),,( γtCI and ),( γtCC  are called the 
generalized degree variances. The degree variances for errors of commission, terms 2 through 
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degree CommissionN , are obtained from the formal errors associated with the gravity model 
coefficients. The degree variances for the errors of omission, terms 𝑁𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 through MaxN , are 
obtained from the magnitudes of the omitted coefficients and extrapolation of the magnitudes of 
the coefficients for the JGM2 gravity model. 

 

The matrix C(t, 0) is defined as follows: 
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The components of the matrix C(t, 0) are obtained from the equations for ),,( γtCR ),,( γtCI and 
),( γtCC by setting γ = 0. In this case, Ψ(0) = 0 and cos Ψ(0) = 1; therefore, Pn

0 1 1( ) =  and 

Pn
m ( )1 0=  for m ≠ 0. The equations for ),,( γtCR ),,( γtCI and ),( γtCC  then take the following form: 
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 (4.4-44)* 
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 (4.4-45)* 

 C t C tC I( , ) ( , )0 0=  (4.4-46)* 

These sums are computed so that convergence is achieved using a value of N ≤ 100. The following 
abbreviations will be used for the [C] matrix elements: 

 C C tR R= ( , )0  (4.4-47) 

 C C tI I= ( , )0  (4.4-48) 

 C C tC C= ( , )0  (4.4-49) 

In the above equations, Re is the Earth’s equatorial radius, R(t) is the magnitude of the spacecraft 
position vector, and ψ(t) is the displacement in the central angle measured in the orbit plane, such 
that 

 U U t t( ) ( ) ( )τ ψ τ= + −  (4.4-50) 

where U(τ) is the argument of latitude, i.e., the angle in the orbit plane between the ascending node 
and the radius vector to the instantaneous position of the spacecraft at time τ. 
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According to References 18 through 20, ρ(γ) is insensitive to small variations in R(t). Therefore, 
the expressions for CR(t, γ), CI(t, γ), and CC(t, γ) can be evaluated for a constant value of R(t), 
typically chosen to be perigee 

 R(t) ≈ R     (at perigee) (4.4-51) 

Thus, the constant components of the [T] matrix are precomputed using an offline utility for a 
given orbit, gravity model, and degree of truncation. The [T] matrix is therefore composed of 
uplinkable parameters as defined below: 

 [ ]T
T

T
T

R

C

=
















0 0
0 0
0 0

1  (4.4-52) 

where 

 TR = radial correlation time (seconds) 

 TI = in-track correlation time (seconds) 
 TC = cross-track correlation time (seconds) 

 (Equation deleted) (4.4-53) 

In the derivation of the Earth gravity state noise matrix, the following RIC transition matrix, φ, is 
used for the RIC position and velocity vector components: 

 ( )
( )

φ
∂
∂

( , )t t
RIC t
RIC t

T
T

T
k k

k

k
+

+= =

























1
1

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

∆
∆

∆
 (4.4-54) 

Matrix B is a [6 × 3] matrix that consists of the partial derivatives of the RIC coordinates with 
respect to the velocity vector expressed in orbit plane coordinates (i.e., radial, in-track, and cross-
track), with the following components: 

 ( )  ,  , R r r rop R I C=  (4.4-55) 
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 B RIC
Rop

= =

























∂
∂ 

0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

 (4.4-56) 

The [φ] [B], [C], and [T] matrices are multiplied out as shown below: 

[ ]Q

C T T C T T
C T T C T T

C T T C T T
C T T C T

C T T C T
C T T C T

dRIC EG

R R R R

I I I I

C C C C

R R R R

I I I I

C C C C

, =



























∫
∆ ∆

∆ ∆

∆ ∆
∆

∆
∆

2

2

2

0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

τ  (4.4-57) 

 

The derivation is completed by evaluating the integral as shown below: 

[ ]Q

C T T C T T

C T T C T T

C T T C T T

C T T C T T

C T T C T T

C T T C T T

RIC EG

R R R R

I I I I

C C C C

R R R R

I I I I

C C C C

, =







































∆ ∆

∆ ∆

∆ ∆

∆
∆

∆
∆

∆
∆

3 2

3 2

3 2

2

2

2

3
0 0

2
0 0

0
3

0 0
2

0

0 0
3

0 0
2

2
0 0 0 0

0
2

0 0 0

0 0
2

0 0

 (4.4-58)* 

 

The equivalent Earth gravity state noise variance rates are then computed as shown below: 

 Q C Tr eg R R, =  (4.4-59)* 

 Q C Ti eg I I, =  (4.4-60)* 

 Q C Tc eg C C, =  (4.4-61)* 
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The Earth gravity state noise variance rates given in Equations 4.4-59 through 4.4-61 were derived 
assuming that the satellite orbit is nearly circular.  To accommodate eccentric LEO orbits, the 
option is provided to scale the Earth gravity state noise spectral densities as shown below: 

 Q C T R t
Rr eg R R

ref

Nr

,
( )

=








  (4.4-59a)* 

 Q C T R t
Ri eg I I

ref

Ni

,
( )

=








  (4.4-60a)* 

 Q C T R t
Rc eg C C

ref

Nc

,
( )

=








  (4.4-61a)* 

where 

 Rref = Reference radius at which the autocorrelation times were computed, a 
commandable parameter 

 Nr = Exponent to be used to scale the radial gravity noise variance rate, a 
commandable parameter 

 Ni = Exponent to be used to scale the in-track gravity noise variance rate, a 
commandable parameter 

 Nc = Exponent to be used to scale the cross-track gravity noise variance rate, a 
commandable parameter 

 

4.4.2.3 Earth Gravity State Noise Model for Geostationary Satellites 
GEONS also includes an Earth gravity state noise model for geostationary satellites.  This model 
takes into account the fact that the satellite remains in essentially a constant position with respect 
to the Earth’s surface.  For geostationary satellites, the error contribution from errors of omission 
and commission are negligible. The dominant contribution is in the radial direction arising from 
the error in the Earth’s gravitational constant.  

For geostationary satellites, the Earth gravity state noise in RIC coordinates is derived from the 
following integral: 

 [ ( )] ( , ) ( )d  ( ) ( , ) d,Q t t t B t t K B t t t tk RIC t

t

k t

t T T
k

k

k

k

k

µ φ φ= 











+ +

∫ ∫+ +
1 1

1 1   

where 

 [Q]RIC,µ = [6 × 6] RIC Earth gravity state noise matrix for geostationary satellites 

 [φ] = [6 × 6] RIC state transition matrix given in Equation (4.4-54) 
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 [B] = [6 × 3] RIC matrix of partial derivatives of the RIC coordinates with respect to 
the velocity vector, given in Equation (4.4-56) 

 [K] = [3 × 3] RIC Earth gravitational acceleration error matrix given below 





















 σ

=

µ

000
000

00
)( 4

2

tR
K  

where 
 σµ = error in the Earth’s gravitational constant µΕ , with a default value of 2 x 107 

meters3/second2 (note that IERS Technical Note 36, Reference 49, provides the 
error as 8 x 105 meters3/second2) 

In this case the contribution to the process noise covariance matrix is the following 

[ ]Q

Q T Q T

Q T Q T
RIC ,µ

µ µ

µ µ

=





























∆ ∆

∆
∆

4 3

3
2

4
0 0

2
0 0

0 0 0 0 0 0
0 0 0 0 0 0

2
0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

0  

where 

 Qµ = 4

2

)(tR
µσ  (4.4-61b) 

4.4.3 Time Propagation 
When using UDUT factorization of the state error covariance matrix, [U] and [D] are propagated 
directly. The state error covariance matrix [P] is not propagated directly but can be reformed from 
the propagated [U] and [D]. Propagation of [U] and [D] still requires the state transition matrix 
[Φ] and the state noise matrix [Q], computed as shown in Section 4.4.2. The time propagation of 
[U] and [D] is shown below. This algorithm was taken from Reference 5. Note the difference 
between the vector or matrix subscript k, and the time subscript ti . 

Define a [N × 2N] matrix [Y], where N is the dimension of the total estimation state vector, 
partitioned as follows: 

 [ ][ ] ( ) |Y U t Gi d= Φ  (4.4-62)* 
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where: 

 Φ = [N × N] state transition matrix (see Section 4.4.1) 
 Gd = upper triangular matrix factor of Qi–1, computed using the covariance 

factorization algorithm defined in Section 2.2.1 

Define a [2N × 2N] state diagonal matrix [ ~D ] as follows: 

 [ ]~ ( )
D

D t
Q

i

d

=










0
0

 (4.4-63)* 

where 

 [U(ti)] = [U] at time (ti) 

 [D(ti)] = [D] at time (ti) 
 Qd = diagonal matrix factor of Qi–1 computed using the covariance factorization 

algorithm defined in Section 2.2.1 

In the following algorithm sequence, a a cj k k, , ,  and dk  each represent N vectors with 
2N elements, not [2N × N] matrices; and ck,j and ak,j represent element (j) in vector (k), not matrix 
element (k, j). 

N vectors, each of dimension 2N, are initialized as follows: 

 [ ] [ ]a a a YN
T

1 2 . . . . . . =  (4.4-64)* 

and iterated on the following relations for k = N, N-1, ..., 1: 

 c D ak k= [ ~]  (4.4-65)* 

Because [ ~D ] is diagonal, ck  is computed as shown below: 

 c D a j Nk j j j k j, , ,
~ , , ,= = 1 2 2  (4.4-66)* 

 D t a ck k i k
T

k, ( )+ =1  (4.4-67)* 

 d
c

D tk
k

k k i

=
+, ( )1

 (4.4-68)* 

 
U t a d

a a U t a
j

j k i j
T

k

j j j k i k

,

,

( )

( )
, , ,

+

+

=

← −









= −
1

1

1 2  k 1 (4.4-69)* 

where ← arrow denotes replacement or writing over. 

On the last iteration, for k = 1, only the equations for ck, j and Dk, k are computed. 
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4.5 Spacecraft Maneuver Covariance and Clock Variance Increments  
This section discusses the algorithms that are provided for incrementing the process noise 
covariance during maneuvers and for incrementing the time bias and drift variances during specific 
time intervals. The uncertainty due to maneuver errors can be modeled by additional process noise 
active during maneuvers. This process noise can be modeled in multiple ways as described in this 
section. In all cases the process noise is integrated over the propagation interval, and its effect at 
the update time can be modeled as an additive increment to the covariance as part of the full 
covariance propagation. The process noise models in Sections 4.5.1.2 and 4.5.2.2 are variations of 
a technique commonly referred to as State Noise Compensation (see Section 2.2.3.1.2 of Reference 
59).  
Section 4.5.1 discusses process noise models that use RIC position and velocity variances or 
variance rates to model the maneuver uncertainty. Section 4.5.2 provides maneuver process noise 
models that can be used when planned or measured maneuver accelerations are available in 
GEONS. Section 4.5.3 discusses the augmentation of the spacecraft state covariance to include the 
maneuver process noise covariance. Section 4.5.4 discusses the capability for increasing the time 
bias and drift variances. Note that each of the maneuver process noise models in Sections 4.5.1 
and 4.5.2 assume that each propagation interval within a maneuver is small compared to the orbit 
period, but there is no assumption on the length of the maneuver.  

4.5.1 Maneuver Process Noise Models Based on Maneuver Variances and 
Variance Rates  
GEONS V3.0 provides two options for computing additional process noise to accommodate 
maneuver-associated velocity errors that are assumed to be an uncorrelated random walk with 
intensity in the orbit-fixed RIC frame. The “legacy RICSNC” maneuver process noise model is 
defined in terms of RIC position and velocity variances. The new “RICSNC” maneuver process 
noise model is defined in terms of RIC position and velocity variance rates.  

4.5.1.1 Legacy RIC  Maneuver Process Noise Model 
The “legacy RICSNC” maneuver process noise model uses the following approach: 

1. Prior to the execution of a scheduled spacecraft maneuver, uplink the planned maneuver 
start and stop times and the radial, cross-track, and in-track components of the process 
noise variances associated with the magnitude of the expected velocity change, referenced 
to the central body frame. 

2. Optionally ignore all measurements received during the planned maneuver. 

3. At every GEONS propagation step during the maneuver, transform the commanded RIC 
position and velocity variances to the mean of J2000.0 coordinate frame. Prior to 
propagating the state error covariance, add the maneuver position and velocity covariance 
increments to the [3 × 3] position and velocity portions of the state error covariance matrix 
using the procedure provided in Section 4.5.3.  

The radial, cross-track and in-track components of the position and velocity maneuver variances 
are computed externally and uplinked to the spacecraft: 
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 ( )σ ∆ ∆ ∆ΤR r rV,
2 2

=   (4.5-1) 

 ( )σ ∆ ∆ ∆ΤR i iV,
2 2=   (4.5-2) 

 ( )σ ∆ ∆ ∆ΤR c cV,
2 2=   (4.5-3) 

 ( )σ ∆ ∆V r rV,
2 2=  (4.5-4) 

 ( )σ ∆ ∆V i iV,
2 2=  (4.5-5) 

 ( )σ ∆ ∆V c cV,
2 2=  (4.5-6) 

where 
2

,
2

,
2

, ,, cRiRrR ∆∆∆ σσσ  = RIC components of maneuver position variance with respect to the central 
body, commanded parameters (meters2) 

2
,

2
,

2
, ,, cViVrV ∆∆∆ σσσ  = RIC components of maneuver velocity variance with respect to the central 

body, commanded parameters (meters2/second2) 

cir VVV ∆∆∆ ,,  = RIC components of the planned maneuver velocity change with respect to the 
central body (meters/second2) 

 ∆T =  GEONS state propagation time step (seconds), nominally equal to the 
frequency at which the estimation process is performed 

The commanded maneuver position and velocity variances are transformed from RIC coordinates 
referenced to the central body into Mean of J2000.0 coordinates as shown below: 

 𝑃𝑃𝑇𝑇(𝛥𝛥𝛥𝛥) = [𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅←𝑋𝑋𝑋𝑋𝑋𝑋]𝐶𝐶
𝑇𝑇 �
𝜎𝜎𝛥𝛥𝛥𝛥, 𝑟𝑟
2 0 0
0 𝜎𝜎𝛥𝛥𝛥𝛥, 𝑖𝑖

2 0
0 0 𝜎𝜎𝛥𝛥𝛥𝛥, 𝑐𝑐

2
�  [𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅←𝑋𝑋𝑋𝑋𝑋𝑋]𝐶𝐶 (4.5-7)* 

 ( ) [ ] [ ]CXYZRIC

cV

iV

rV
T

CXYZRICT TTVP ←

∆

∆

∆

←

















σ
σ

σ
=∆

2
,

2
,

2
 ,

00
00
00

 (4.5-8)* 

where ( )P RT  ∆  and ( )P VT  ∆  are the [3 × 3] maneuver position and velocity covariances, 
respectively, in J2000.0 coordinates and the transformation matrix [ ]CXYZRICT ←  is defined in 
Section 3.2.4. 
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4.5.1.2 RIC Maneuver SNC Process Noise Model  
GEONS V3.0 also supports a maneuver process noise model that is based on the state noise 
compensation model (SNC) defined in Section 2.2.3.1 of Reference 59, which is very similar to 
the velocity process noise model defined in Section 4.4.2. Reference 59 only includes velocity 
variance rates, but the model defined below additionally includes position variance rates.  The 
position and velocity submatrix is computed in RIC components with respect to the central body 
and then transformed into mean of J2000 coordinates as shown below; where the transformation 
matrix, [ ]CXYZRICT ← , is computed using the position and velocity in the central body frame at time 
(ti–1): 

 𝑃𝑃𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 = �
𝑀𝑀𝑇𝑇𝑄𝑄𝑟𝑟𝑟𝑟𝑟𝑟𝑀𝑀∆𝑇𝑇 + 𝑀𝑀𝑇𝑇𝑄̇𝑄𝑟𝑟𝑟𝑟𝑟𝑟𝑀𝑀

𝛥𝛥𝑇𝑇3

3
𝑀𝑀𝑇𝑇𝑄̇𝑄𝑟𝑟𝑟𝑟𝑟𝑟𝑀𝑀

𝛥𝛥𝑇𝑇2

2

𝑀𝑀𝑇𝑇𝑄̇𝑄𝑟𝑟𝑟𝑟𝑟𝑟𝑀𝑀
𝛥𝛥𝑇𝑇2

2
𝑀𝑀𝑇𝑇𝑄̇𝑄𝑟𝑟𝑟𝑟𝑟𝑟𝑀𝑀∆𝑇𝑇

� (4.5-8a)* 

where 

 𝑄𝑄𝑟𝑟𝑟𝑟𝑟𝑟 = �
𝑞𝑞𝑟𝑟 0 0
0 𝑞𝑞𝑖𝑖 0
0 0 𝑞𝑞𝑐𝑐

�  (4.5-8b)* 

 𝑄̇𝑄𝑟𝑟𝑟𝑟𝑟𝑟 = �
𝑞̇𝑞𝑟𝑟 0 0
0 𝑞̇𝑞𝑖𝑖 0
0 0 𝑞̇𝑞𝑐𝑐

�   (4.5-8c)* 

 

                    M = [𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅←𝑋𝑋𝑋𝑋𝑋𝑋]𝐶𝐶 

 qr = radial maneuver position noise variance rate (meters2/second) in the central 
body frame 

 qi = in-track maneuver position noise variance rate (meters2/second) in the central 
body frame 

 qc = cross-track maneuver position noise variance rate (meters2/second) in the 
central body frame 

 𝑞̇𝑞𝑟𝑟 = radial maneuver velocity noise variance rate (meters2/second3) in the central 
body frame 

 𝑞̇𝑞𝑖𝑖 = in-track maneuver velocity noise variance rate (meters2/second3) in the central 
body frame 

 𝑞̇𝑞𝑐𝑐 = cross-track maneuver velocity noise variance rate (meters2/second3) in the 
central body frame 

 ∆T = ti – ti–1 = time step (seconds) 
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4.5.2 Maneuver Process Noise Models Using Maneuver Acceleration   
GEONS V3.0 provides two options for computing additional process noise to accommodate 
maneuver errors when the maneuver acceleration is modeled using externally measured or planned 
accelerations as defined in Sections 4.1.5. The “legacy MANSNC” maneuver process noise model 
is defined in terms of a fractional error in the maneuver acceleration. The new “MANSNC” 
maneuver process noise model is defined in terms of a fractional error in the maneuver acceleration 
magnitude and a fractional error in the maneuver direction. 

The following procedure is suitable for maneuvers of any length. The GEONS state error 
covariance is augmented with the computed maneuver velocity covariance every GEONS 
propagation step during the maneuver time span as described in Section 4.5.3. Optionally, when 
this model is used, measurements received during the maneuver timespan are not processed in the 
GEONS filter. 

4.5.2.1 Legacy Maneuver Magnitude Process Noise Model 
The “legacy MANSNC” process noise model uses the following approach. The mean of J2000.0 
inertial components of the velocity maneuver covariance are computed as follows using the 
externally measured accelerations: 

 ( )2,
2

, Ta XextTXV ∆=∆ εσ  (4.5-9)* 

 ( )2,
2

, Ta YextTYV ∆=∆ εσ  (4.5-10)* 

 ( )2,
2

, Ta ZextTZV ∆=∆ εσ  (4.5-11)* 

where 
2

,
2

,
2

, ,, ZVYVXV ∆∆∆ σσσ  = Components of maneuver velocity variance in the mean of J2000 frame 
(meters2/second2) 

  Tε  = fractional error in modeling the maneuver acceleration, a commanded 
parameter 

ZextYextXext aaa ,,, ,,  = Components of the maneuver accelerations transformed from the input 
frame to the mean of J2000 frame (meters/second2), as described in Section 
4.1.5 

  ∆T = GEONS state propagation time step (seconds) 

The velocity maneuver covariance in the mean of J2000.0 frame is as shown below: 
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∆
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 (4.5-12)* 
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The maneuver velocity variances is then added to the [3 × 3] velocity portion of the state error 
covariance matrix at the start of the propagation time step for which the maneuver acceleration 
was computed using the procedure discussed in Section 4.5.3, except that the position process 
noise is not included. 

4.5.2.2 Maneuver Magnitude and Direction SNC Process Noise Model 
GEONS V3.0 also supports a maneuver process noise model that is based on the state noise 
compensation model for maneuvers defined in Section 2.2.3.2 of Reference 59 that is computed 
using the fractional error in the magnitude of the maneuver acceleration and the intensity of the 
maneuver direction noise. The contribution from the error in the maneuver magnitude error is 
given by 

 𝑃𝑃𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 = �
𝑄̇𝑄𝑚𝑚𝑚𝑚𝑚𝑚

𝛥𝛥𝑇𝑇3

3
𝑄̇𝑄𝑚𝑚𝑚𝑚𝑚𝑚

𝛥𝛥𝑇𝑇2

2

𝑄̇𝑄𝑚𝑚𝑚𝑚𝑚𝑚
𝛥𝛥𝑇𝑇2

2
𝑄̇𝑄𝑚𝑚𝑚𝑚𝑚𝑚∆𝑇𝑇

� (4.5-12a)* 

where 

 𝑄̇𝑄𝑚𝑚𝑚𝑚𝑚𝑚(𝛥𝛥𝛥𝛥) = �
𝜎𝜎𝛥𝛥𝛥𝛥,𝑋𝑋
2 0 0
0 𝜎𝜎𝛥𝛥𝛥𝛥,𝑌𝑌

2 0
0 0 𝜎𝜎𝛥𝛥𝛥𝛥,𝑍𝑍

2
�  (4.5-12b)* 

 𝜎𝜎𝛥𝛥𝛥𝛥, 𝑋𝑋
2 = �𝜀𝜀𝑇𝑇𝛥𝛥𝛥𝛥𝑁𝑁𝑁𝑁𝑁𝑁,𝑋𝑋�

2
 (4.5-12c)* 

 𝜎𝜎𝛥𝛥𝛥𝛥, 𝑌𝑌
2 = �𝜀𝜀𝑇𝑇𝛥𝛥𝛥𝛥𝑁𝑁𝑁𝑁𝑁𝑁,𝑌𝑌�

2
 (4.5-12d)* 

 𝜎𝜎𝛥𝛥𝛥𝛥, 𝑍𝑍
2 = �𝜀𝜀𝑇𝑇𝛥𝛥𝛥𝛥𝑁𝑁𝑁𝑁𝑁𝑁,𝑍𝑍�

2
 (4.5-12e)* 

 ∆𝑉𝑉�𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑎𝑎�𝑒𝑒𝑒𝑒𝑒𝑒𝛥𝛥𝛥𝛥 (4.5-12f)* 

                Tε  = fractional error in modeling the maneuver acceleration, a commanded parameter 

The contribution from the maneuver direction error is given by 

 𝑃𝑃𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑 = �
𝑄̇𝑄𝑑𝑑𝑑𝑑𝑑𝑑

𝛥𝛥𝑇𝑇3

3
𝑄̇𝑄𝑑𝑑𝑑𝑑𝑑𝑑

𝛥𝛥𝑇𝑇2

2

𝑄̇𝑄𝑑𝑑𝑑𝑑𝑑𝑑
𝛥𝛥𝑇𝑇2

2
𝑄̇𝑄𝑑𝑑𝑑𝑑𝑑𝑑∆𝑇𝑇

� (4.5-12g)* 

where ∆𝑉𝑉�𝑁𝑁𝑁𝑁𝑁𝑁×   is the 3x3 skew-symmetric cross product matrix  

 𝑄̇𝑄𝑑𝑑𝑑𝑑𝑑𝑑(𝛥𝛥𝛥𝛥) = −𝑞𝑞𝜃𝜃[∆𝑉𝑉�𝑁𝑁𝑁𝑁𝑁𝑁× ]2 (4.5-12h)* 

and ∆𝑉𝑉�𝑁𝑁𝑁𝑁𝑁𝑁×   is the 3x3 skew-symmetric cross product matrix of ∆𝑉𝑉�𝑁𝑁𝑁𝑁𝑁𝑁 

 𝑞𝑞𝜃𝜃 = intensity of the maneuver direction noise, a commanded parameter 
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4.5.3 Addition of the Maneuver Covariance to the State Covariance 
The state error covariance matrix exists in UDUT factored form. To modify the state error 
covariance matrix, it must first be reformed from its [U] and [D] components. After the state 
covariance matrix is modified, symmetry is forced by averaging off-diagonal elements. The new 
state error covariance matrix is then factored into new [U] and [D] components. It is simpler to 
reform and modify the state error covariance matrix, rather than modify the [U] and [D] factors 
directly. In the navigation flight software, the state error covariance matrix will already be 
reformed for telemetry purposes. The covariance matrix modifications are summarized below 
when the legacy models in Section 4.5.1.1 and 4.5.2.1 are used (Note the GEONS 3.0 also uses 
the following procedure for the new RICSNC and MANSNC models): 

1. At the start of the propagation time step, reform the state error covariance matrix from its 
[U] and [D] factors. 

2. Add the maneuver variances ( )XPT ∆  and/or ( )VPT ∆  to the corresponding [3 × 3] position 
and/or velocity portion of the state error covariance matrix. 

3. Force symmetry by averaging off-diagonal elements. 

4. Compute new [U] and [D] factors for the state error covariance matrix. 

5. Propagate the new [U] and [D] factors. 

The covariance matrix modifications are summarized below when the models in Section 4.5.1.2 
and 4.5.2.2 are used:  

1. Propagate the [U] and [D] factors. 

2. At the end of the propagation time step, reform the state error covariance matrix from its 
[U] and [D] factors. 

3. Add the maneuver variances 𝑃𝑃𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚  and/or 𝑃𝑃𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑  to the corresponding [3 × 3] position 
and/or velocity portion of the state error covariance matrix. 

4. Force symmetry by averaging off-diagonal elements. 

5. Compute new [U] and [D] factors for the state error covariance matrix. 

 
4.5.4 Addition of the Clock Covariance to the State Covariance 
The following approach is available for increasing the time bias and time drift variances during 
specified time intervals.  This capability is provided to support a change in clock behavior such as 
might occur for a HEO during a time period when clock steering using point solutions is not 
possible because fewer than four GPS satellite are visible. 

1. Prior to the expected change in the clock behavior, uplink the variance increment start and 
stop times and the time bias and time bias drift process noise variances associated with the 
magnitude of the expected change in the clock behavior. 
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2. At every GEONS propagation step during the specified time period, prior to propagating 
the state error covariance, 

a. Reform the state error covariance matrix from its [U] and [D] factors. 

b. Add the time bias and time drift variance increments to the associated diagonal 
elements of the state error covariance matrix  

c. Compute new [U] and [D] factors for the state error covariance matrix. 

d. Propagate the new [U] and [D] factors. 
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4.6 Ground Receiver State Propagation  
This section provides equations used for propagating the position, velocity, and covariance of a 
ground-based GPS receiver. This capability is provided to support ground testing of a GPS 
receiver. 

4.6.1 Ground Receiver State Vector Prediction 
The ground receiver is assumed to be located at a fixed position on the surface of the Earth. In 
which case, the position and velocity are constant in the ECEF frame. To compute the ground 
receiver state at a future time, kt , in the mean equator and equinox of J2000.0 frame, given the 
ground receiver state at the current time, 1−kt , in the mean equator and equinox of J2000.0 frame, 
the following method is used.  

The receiver state at the current time is transformed from the mean equator and equinox of 
J2000.0 to the ECEF frame 

 200011111 )()()()()( JkkkgkECEFk tRtCtRtBtr −−−−− =  (4.6-1)* 

[ ] 2000111120001111 )()()()()()()()()(
1

JkkkgkJkk
tt

gkECEFk tRtCtRtBtRtCaR
dt
dtBtr

k

−−−−−−
=

−− +





=

−

 (4.6-2)* 

where the transformation matrices [ ] )(and,)(,)(),( 111
1

−−
=

−

−









kgk
tt

gk tRtCaR
dt
dtB

k

are defined in 

Equations (3.2-47),(3.2-33), (3.2-26), (3.2-31), respectively. 

The ECEF state vector is then transformed back to the mean equator and equinox of J2000.0 
frame at time kt  

 ECEFkk
T

k
T
gk

T
Jk trtBtRtCtR )()()()()( 2000 =  (4.6-3)* 

 [ ] ECEFkk
T

k
T
gk

T
ECEFkk

T
T

tt
gk

T
Jk trtBtRtCtrtBaR

dt
dtCtR

k

)()()()()()()()()( 2000
 +






=

=

(4.6-4)* 

where  

 
ECEFkECEFk

ECEFkECEFk

trtr
trtr

)()(
)()(

1

1

−

−

=

=


 (4.6-5)* 

Note that these equations replace those defined for a satellite-based receiver in Sections 4.1 and 
4.2. 
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4.6.2   State Transition Matrix 
Computation of state transition matrix for space-based receivers is discussed in Section 4.4.1. 
For the ground-based user, the position and velocity submatrix of the state transition matrix is 
identity in the ECEF coordinate frame.  Because the solar radiation pressure coefficient and 
atmospheric drag coefficient corrections are not applicable to this ground-based user, they will 
be “estimated” using initial coefficient values of zero, near-zero initial variances, and zero 
process noise variances.   

The position and velocity components of state transition matrix for a ground-based receiver in 
the mean of J2000.0 frame are approximated as follows:  

 [ ]

[ ]

)()()()()()(
)(

)(

)()()()()()(

)()()()()()(
)(

)(

0
)(

)(

)()()()()()(
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=
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∂

∂


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



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∂
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∂

∂
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∂
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T
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







 (4.6-6)* 

Note that these partial derivatives are used in Equation (4.4-1) in place those defined for a 
satellite-based receiver in Equation (4.4-2). 

The atmospheric drag correction components are computed as follows 

 







=













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





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∆
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i
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i
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∂
∂

∂
∂


 (4.6-7)* 
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These partial derivatives are used in Equation (4.4-1) in place those defined for a satellite-based 
receiver in Equation (4.4-5). 

The solar radiation pressure coefficient correction components are computed as follows 

 







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

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
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∂
∂

∂
∂


 (4.6-8)* 

These partial derivatives are used in Equation (4.4-1) in place of those defined for a satellite-
based receiver in Equation (4.4-5a). 

The remaining partial derivatives are as follows: 

 1
)(

)(

1

=
∆∂
∆∂

−iD

iD

tC
tC  (4.6-9)* 

 1
)(

)(

1

=
∆∂
∆∂

−iR
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tC  (4.6-10)* 

 






 −
=

∂
∂ −

− 10
1

)(
)( 1

1

ii

iR

iR tt
tb
tb  (4.6-11)* 

4.6.3 Process Noise Matrix 
Computation of the process noise matrix for space-based users is discussed in Section 4.4.2. For 
the ground-based receiver, the position and velocity submatrix of the process matrix will be 
computed using nonzero values for other RIC variance rates and zero values for the Earth gravity 
variance rates in Equations 4.4-32 through 4.4-34.  Because the solar radiation pressure 
coefficient and atmospheric drag coefficient corrections are not applicable to this ground-based 
user, they will be “estimated” using zero process noise variance rates. All of these variance rates 
are set via command parameters. 
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4.7 Moon-Based Receiver State Propagation  
This section provides equations used for propagating the position, velocity, and covariance of a 
Moon-based receiver.  

4.7.1 Moon-Based Receiver State Vector Prediction 
The moon-based receiver is assumed to be located at a fixed position on the surface of the Moon. 
In which case, the position and velocity are constant in the Moon-fixed frame. To compute the 
Moon-based receiver state at a future time, kt , in the mean equator and equinox of J2000.0 frame, 
given the receiver state at the current time, 1−kt , in the mean equator and equinox of J2000.0 frame, 
the following method is used.  

The receiver state at the propagation start time is transformed from the mean equator and equinox 
of J2000.0 to Lunar Principal Axis (LPA) frame using the transformation defined in Section 3.2.9 
and the fact that the receiver is fixed in the LPA frame 

𝑟̄𝑟(𝑡𝑡𝑘𝑘−1)𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑇𝑇(𝑡𝑡𝑘𝑘−1)𝐿𝐿𝐿𝐿𝐿𝐿←𝐽𝐽2000𝐿𝐿𝐿𝐿𝐿𝐿𝑅̄𝑅(𝑡𝑡𝑘𝑘−1)𝐽𝐽2000𝐿𝐿𝐿𝐿𝐿𝐿  
𝑟̇̄𝑟(𝑡𝑡𝑘𝑘−1)𝐿𝐿𝐿𝐿𝐿𝐿 = 0  (4.7-1)* 

where 
ECIECILCI MoonkJkJk tRtRtR )()()( 12000120001 −−− −=  (4.7-2)* 

and the transformation matrix 𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿←𝐽𝐽2000𝐿𝐿𝐿𝐿𝐿𝐿 is defined in Equation (3.2-74). 

The LPA state vector is then transformed back to the mean equator and equinox of J2000.0 frame 
at the propagation end time kt  

 
ECILCIECI

ECILCIECI

MoonkJkJk

MoonkJkJk

tRtRtR

tRtRtR

)()()(

)()()(

20002000

20002000

 +=

+=
 (4.7-3)* 

where 

𝑅̄𝑅(𝑡𝑡𝑘𝑘)𝐽𝐽2000𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑇𝑇(𝑡𝑡𝑘𝑘)2000𝐿𝐿𝐿𝐿𝐿𝐿←𝐿𝐿𝐿𝐿𝐿𝐿𝑟̅𝑟(𝑡𝑡𝑘𝑘−1)𝐿𝐿𝐿𝐿𝐿𝐿 

𝑅̇̄𝑅(𝑡𝑡𝑘𝑘)𝐽𝐽2000𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑇̇𝑇(𝑡𝑡𝑘𝑘)2000𝐿𝐿𝐿𝐿𝐿𝐿←𝐿𝐿𝐿𝐿𝐿𝐿𝑟̄𝑟(𝑡𝑡𝑘𝑘−1)𝐿𝐿𝐿𝐿𝐿𝐿  (4.7-4)* 

since  

𝑟̄𝑟(𝑡𝑡𝑘𝑘)𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑟̄𝑟(𝑡𝑡𝑘𝑘−1)𝐿𝐿𝐿𝐿𝐿𝐿 
𝑟̇̄𝑟(𝑡𝑡𝑘𝑘)𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑟̇̄𝑟(𝑡𝑡𝑘𝑘−1)𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑇𝑇(𝑡𝑡𝑘𝑘)2000𝐿𝐿𝐿𝐿𝐿𝐿←𝐿𝐿𝐿𝐿𝐿𝐿0 (4.7-5)* 

and the transformation matrices 𝑇𝑇(𝑡𝑡𝑘𝑘)2000𝐿𝐿𝐿𝐿𝐿𝐿←𝐿𝐿𝐿𝐿𝐿𝐿 = �𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿←𝐽𝐽2000𝐿𝐿𝐿𝐿𝐿𝐿�
𝑇𝑇
 and  𝑇̇𝑇(𝑡𝑡𝑘𝑘)2000𝐿𝐿𝐿𝐿𝐿𝐿←𝐿𝐿𝐿𝐿𝐿𝐿 =

�𝑇̇𝑇𝐿𝐿𝐿𝐿𝐿𝐿←𝐽𝐽2000𝐿𝐿𝐿𝐿𝐿𝐿�
𝑇𝑇

 are defined in Equations (3.2-74) and (3.2-91a), respectively. 

Note that these equations replace those defined for a satellite-based receiver in Sections 4.1 and 
4.2. 
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4.7.2   State Transition Matrix 
Computation of state transition matrix for space-based receivers is discussed in Section 4.4.1. For 
the Moon-based user, the position and velocity submatrix of the state transition matrix is identity 
in the LPA coordinate frame.  Because the solar radiation pressure coefficient and atmospheric 
drag coefficient corrections are not applicable to this Moon-based user, they will be “estimated” 
using initial coefficient values of zero, near-zero initial variances, and zero process noise 
variances.   

The position and velocity components of state transition matrix for a Moon-based receiver in the 
mean of J2000.0 frame are approximated as follows:  

 𝜕𝜕𝑅̄𝑅(𝑡𝑡𝑖𝑖)𝐽𝐽2000
𝜕𝜕𝑅̄𝑅(𝑡𝑡𝑖𝑖−1)𝐽𝐽2000

= 𝑇𝑇(𝑡𝑡𝑘𝑘)2000𝐿𝐿𝐿𝐿𝐿𝐿←𝐿𝐿𝐿𝐿𝐿𝐿𝑇𝑇(𝑡𝑡𝑘𝑘−1)𝐿𝐿𝐿𝐿𝐿𝐿←𝐽𝐽2000𝐿𝐿𝐿𝐿𝐿𝐿 

𝜕𝜕𝑅̄𝑅(𝑡𝑡𝑖𝑖)𝐽𝐽2000
𝜕𝜕𝑅̇̄𝑅(𝑡𝑡𝑖𝑖−1)𝐽𝐽2000

= 0 

𝜕𝜕𝑅̇̄𝑅(𝑡𝑡𝑖𝑖)𝐽𝐽2000
𝜕𝜕𝑅̄𝑅(𝑡𝑡𝑖𝑖−1)𝐽𝐽2000

= 𝑇̇𝑇(𝑡𝑡𝑘𝑘)2000𝐿𝐿𝐿𝐿𝐿𝐿←𝐿𝐿𝐿𝐿𝐿𝐿𝑇𝑇(𝑡𝑡𝑘𝑘−1)𝐿𝐿𝐿𝐿𝐿𝐿←𝐽𝐽2000𝐿𝐿𝐿𝐿𝐿𝐿  

                               𝜕𝜕𝑅̇̄𝑅(𝑡𝑡𝑖𝑖)𝐽𝐽2000
𝜕𝜕𝑅̇̄𝑅(𝑡𝑡𝑖𝑖−1)𝐽𝐽2000

= 0  (4.7-6)* 

Note that these partial derivatives are used in Equation (4.4-1) in place those defined for a satellite-
based receiver in Equation (4.4-2). 

The atmospheric drag correction components are computed as follows 

 







=





















∆

∆

−

−

0
0

)(
)(

)(
)(

1

1

iD

i

iD

i

tC
tR

tC
tR

∂
∂

∂
∂


 (4.7-7)* 

These partial derivatives are used in Equation (4.4-1) in place those defined for a satellite-based 
receiver in Equation (4.4-5). 

The solar radiation pressure coefficient correction components are computed as follows 

 







=





















∆

∆

−

−

0
0

)(
)(

)(
)(

1

1

iR

i

iR

i

tC
tR

tC
tR

∂
∂

∂
∂


 (4.7-8)* 

These partial derivatives are used in Equation (4.4-1) in place of those defined for a satellite-based 
receiver in Equation (4.4-5a). 

The remaining partial derivatives are as follows: 
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4.7.3 Process Noise Matrix 
Computation of the process noise matrix for space-based users is discussed in Section 4.4.2. For 
the Moon-based receiver, the position and velocity submatrix of the process matrix will be 
computed using nonzero values for other RIC variance rates and zero values for the Earth gravity 
variance rates in Equations 4.4-32 through 4.4-34.  Because the solar radiation pressure coefficient 
and atmospheric drag coefficient corrections are not applicable to this Moon-based user, they 
cannot be estimated. All of these variance rates are set via command parameters. 
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Section 5.  Measurement Models 

This section contains the mathematical specifications for the measurement models used in 
GEONS. See Section 2.3 for a description of the estimation processing mode options available in 
GEONS V3.0. Section 5.1 provides an overview of the measurement selection and processing 
algorithm. Section 5.2 discusses the computation of the GPS SV ephemeris. Sections 5.3 through 
5.9 describe the standard GNSS/WAAS measurement, singly differenced GNSS/WAAS 
measurement, cross-link measurement, Ground Station (GS) measurement, point solution, 
celestial object measurement, and TDRSS measurement models and associated measurement 
partial derivatives; respectively. 

5.1 Measurement Selection and Processing Overview 
Prior to the disabling of Selective Availability (SA) in 2000, the major source of error in the GPS 
SPS measurements arose from the Selective Availability (SA) corruption applied to the signals so 
as to limit geometric solutions to approximately 100 meters (two-dimensional, 95 percent of the 
time). The corruption could be applied via dithering of the GPS SV clocks or corruption of the 
GPS SV ephemeris data. References 23, 24, and 25 indicate that the impact of SA on pseudorange 
measurement is approximately 25 to 35 meters (1σ) with an autocorrelation time of approximately 
5 minutes. The impact on the Doppler measurement is approximately 0.15 to 0.35 meter per second 
or approximately 1 hertz. If measurements from a specific SV are sampled at a 5-minute rate, the 
corruption appears to be white noise. 

GEONS’ measurement selection algorithm is outlined in Figure 5-1. Measurements are selected 
and processed based on a minimum measurement sampling interval, which is a commandable 
parameter for each measurement type. In addition, measurements are not processed during 
uplinked maneuver time spans. The only GNSS SVs and WAAS GEOs considered valid in this 
selection process are those for which (1) processing is enabled, (2) up-to-date SV Navigation data 
is available, (3) SV health is nominal, and (4) SV accuracy is nominal.  

Two GNSS SV measurement selection options are available in GEONS. The “cyclic” option 
cycles through all GPS SVs that are being tracked at (or near) each processing epoch to select 
measurements from only one valid GNSS SV, based on the minimum SV sampling frequency, 
which is a commandable parameter nominally equal to 300 seconds. Note that if measurements 
for a specific SV were selected and subsequently edited in the filter processing, they are still 
considered to have been selected. The “all-available” option selects all measurements available 
from valid GPS SVs at each measurement epoch. The “all-available” option is always used to 
select WAAS GEO, cross-link, GS, point solution, celestial object, and TDRSS measurements. 

When multiple satellite states are being estimated, the option is available to process common GPS 
SV and WAAS GEO measurements either as independent measurements or as singly-differenced 
measurements. When singly-differenced GNSS and/or WAAS measurement processing is used, 
the option for “Select Common Transmitters” can be used to select and process only measurements 
from GNSS SVs and WAAS GEOs that have measurements to both the local and remote receivers. 
Note that this selection algorithm assumes that when multiple receiver states are estimated 
simultaneously they will be in sufficiently close formation to see essentially the same set of GNSS 
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SVs/WAAS GEOs. In conjunction with this option, the “Force Standard on Local” option can be 
used to also process all local receiver measurements as standard measurements in addition to the 
singly-differenced processing. Only cross-link measurements from the remote receivers to the 
local receiver are processed. 
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If the current measurement update time does not occur during a maneuver time span, select and process 
GNSS, WAAS GEO, cross-link, GS, point solution, and celestial object measurement(s) for each of the SN  
receiver states being estimated: 
1 If GNSS measurements are enabled and the elapsed time from the last successful GNSS 

measurement update is greater than or equal to the minimum GNSS measurement sampling interval, 
perform the following tests to select and process GNSS measurements for each of the SN  receivers: 

1.1 If “All Available” selection is enabled, select and process measurements as follows: 
1.1.1 If standard measurement processing is selected, process standard measurements to the local 

and/or remote receivers from all GNSS SVs that pass the validation tests (i.e. is enabled for 
processing, has recent navigation data1, has valid SV health indicator2  (= 0), and has SV 
accuracy indicator3  in acceptable range (≤15) and TASS message integrity flag set to valid for 
this SV if available) 

1.1.2 If singly-differenced measurement processing of pseudorange and/or Doppler is selected and 
“Select Common Transmitters” option is enabled and 

1.1.2.1  If “Force Standard on Local” option is enabled and  
1.1.2.1.1 If common measurements from 4 or more GNSS SVs to the local and at least one 

remote receiver are available, select all GNSS SVs that pass the validation tests. 
Form and process singly-differenced measurements for the selected GNSS SVs that 
have common measurements to the local receiver and at least one remote receiver 
and in addition process standard measurements from all selected GNSS SVs to the 
local satellite.  

1.1.2.1.2 If common measurements from 4 or more GNSS SVs to the local and at least one 
remote receiver are not available, select all GNSS SVs that pass the validation tests. 
Form and process singly-differenced measurements for the selected GNSS SVs that 
have common measurements to the local receiver and at least one remote receiver, 
process standard measurements for the remaining selected GNSS SVs to the remote 
satellites, and in addition process standard measurements from all selected GNSS 
SVs to the local satellite.  

1.1.2.2  If “Force Standard on Local” option is disabled and  
1.1.2.2.1 If common measurements from 4 or more GNSS SVs to the local and at least one 

remote receiver are available, form and process only singly-differenced 
measurements for only the GNSS SVs that pass the validation tests and have 
measurements to the local receiver and at least one remote receiver. 

1.1.2.2.2 If common measurements from 4 or more GNSS SVs to the local and at least one 
remote receiver are not available, select all GNSS SVs that pass the validation tests. 
Form and process singly-differenced measurements for the selected GNSS SVs that 
have measurements to the local receiver and at least one remote receiver and 
process measurements for the remaining selected GNSS SVs as standard 
measurements. 

Notes: 
1 Determined based on the associated time of epoch (toe) available in the Broadcast Orbit-3 data record of a 
RINEX Navigation Data File and in subframes 2/3 of the GNSS Navigation Message. The navigation data is 
recent if t toe− ≤ 2 hours, where t is the measurement time. 

2Available in the Broadcast Orbit-6 data record of a RINEX Navigation Data File and in word 3 of subframe 1 and 
page 25 of subframes 4 and 5 of the GNSS Navigation Message  

3Available in the Broadcast Orbit-6 data record of a RINEX Navigation Data File and in word 3 of subframe 1 of 
the GNSS Navigation Message 

Figure 5-1.  Measurement Selection/Processing Algorithm (1 of 3) 
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1.1.3 If singly-differenced measurement processing of pseudorange and/or Doppler is selected and 
“Select Common Transmitters is disabled: 

1.1.3.1  If “Force Standard on Local” option is enabled, select all GNSS SVs that pass the validation 
tests. Form and process singly-differenced measurements for the selected GNSS SVs that 
have common measurements to the local receiver and at least one remote receiver, 
process standard measurements for the remaining selected GNSS SVs to the remote 
satellites, and in addition process standard measurements from all selected GNSS SVs to 
the local satellite. 

1.1.3.2  If “Force Standard on Local” option is disabled, select all GNSS SVs that pass the validation 
tests. Form and process singly-differenced measurements for the selected GNSS SVs that 
have measurements to the local receiver and at least one remote receiver and process 
measurements for the remaining selected GNSS SVs as standard measurements. 

1.1.4 If singly-differenced measurement processing of carrier phase is selected, form and process 
singly-differenced carrier phase measurements for only the GNSS SVs that pass the validation 
tests and have measurements to the local receiver and at least one remote receiver. 

1.2 If “Cyclic” selection is enabled, select and process measurements from one GNSS SV (note that 
cyclic option was removed in GEONS Release 3.0) 

1.2.1 If standard measurement processing is selected, select the next GNSS SV that passes the 
validation tests and cyclic test (i.e. the elapsed time during which this GNSS SV has not been 
selected for processing is greater than or equal to the minimum sampling frequency for the 
same GNSS SV). Process standard measurements from the selected GNSS SV to the local 
and/or remote receivers 

1.2.2 If singly-differenced measurement processing is selected and  
1.2.2.1 If “Force Standard on Local” option is enabled, select the next GNSS SV that passes the 

validation test and the cyclic test. If the selected GNSS SV has common measurements to 
the local receiver and at least one remote receiver, form and process as singly-differenced 
measurements. In addition process standard measurements from the selected GNSS SV to 
the local satellite. If the selected GNSS SV does not have common measurements, process 
standard measurements to the local or remote satellites from the selected GNSS SV. 

1.2.2.2 If “Force Standard on Local” option is disabled, select the next GNSS SV that passes the 
validation tests and the cyclic test. If the selected GNSS SV that has common 
measurements to the local receiver and at least one remote receiver, form and process 
singly-differenced measurements from the selected GNSS SV. If the selected GNSS SV 
does not have common measurements, process standard measurements to the local or 
remote satellites.  

 
2 If WAAS GEO measurements are enabled and the elapsed time from the last successful WAAS GEO 

measurement update is greater than or equal to the minimum WAAS GEO measurement sampling 
interval, perform the following tests to select and process WAAS GEO measurements for each of the 

SN  receivers: 

2.1 If standard measurement processing is selected, select each WAAS GEO that passes the 
validation tests (i.e. is enabled for processing, has recent navigation data, has valid health 
indicator, and has acceptable accuracy indicator and process standard measurements from the 
selected GNSS SVs to the local and/or remote receivers. 

2.2 If singly-differenced measurement processing of pseudorange and/or Doppler is selected and 
“Select Common Transmitters” option is enabled,  

2.2.1       If “Force Standard on Local” option is enabled, select all GNSS SVs that pass the validation 
tests.  Form and process singly-differenced measurements for all GNSS SVs that have 
common measurements to the local receiver and at least one remote receiver and in addition 
process standard measurements from all selected GNSS SVs to the local satellite. 

2.2.2       If “Force Standard on Local” option is disabled, select all GNSS SVs that pass the validation 
tests and have common measurements to the local receiver and at least one remote receiver. 
Form and process singly-differenced measurements for the selected GNSS SVs.  
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Figure 5-1.  Measurement Selection/Processing Algorithm (2 of 3) 

 
2.3 If singly-differenced measurement processing of pseudorange and/or Doppler is selected and 

“Select Common Transmitters” option is disabled, 
2.3.1       If “Force Standard on Local” option is enabled, select all GNSS SVs that pass the validation 

tests. Form and process singly-differenced measurements for all GNSS SVs that have 
common measurements to the local receiver and at least one remote receiver, process 
standard measurements from all other selected GNSS SVs to the remote satellites, and in 
addition process standard measurements from all selected GNSS SVs to the local satellite. 

2.3.2       If “Force Standard on Local” option is disabled, select all GNSS SVs that pass the validation 
tests. Form and process singly-differenced measurements for all GNSS SVs that have 
common measurements to the local receiver and at least one remote receiver and process 
standard measurements for all other selected GNSS SVs 

2.4 If singly-differenced measurement processing of carrier phase is selected, form and process 
singly-differenced carrier phase measurements for only the GNSS SVs that pass the validation 
tests and have measurements to the local receiver and at least one remote receiver. 

3 If cross-link measurements are enabled and the elapsed time from the last successful cross-link 
measurement update is greater than or equal to the minimum cross-link measurement sampling 
interval, perform the following tests to select and process cross-link measurements to the each 
receiver: 

3.1 Select each transmitting satellite that passes the validation tests (i.e. is enabled for processing, 
has recent state vector)  

3.2 Process measurements from all valid transmitting satellites to the local satellite 
4 If ground station measurements are enabled and the elapsed time from the last successful ground 

station measurement update is greater than or equal to the minimum ground station measurement 
sampling interval, process most recent ground station measurements within the selection window for 
each of the SN  receivers 

5 If point solution measurements are enabled and the elapsed time from the last successful point solution 
measurement update is greater than or equal to the minimum point solution measurement sampling 
interval, process most recent point solution measurements within the selection window for each of the 

SN  receivers 

6 If celestial object measurements are enabled and the elapsed time from the last successful celestial 
object measurement update is greater than or equal to the minimum celestial object measurement 
sampling interval, process most recent measurements within the selection window from each enabled 
celestial object sensor on each of the SN  receivers 

7 If TDRSS measurements are enabled and the elapsed time from the last successful TDRSS 
measurement update is greater than or equal to the minimum TDRSS measurement sampling interval, 
process most recent measurement within the selection window from each enabled TDRSS satellite for 
each of the SN  receivers 

Figure 5-1.  Measurement Selection/Processing Algorithm (3 of 3) 

5.2  GPS/Galileo Space Vehicle/WAAS GEO Ephemeris Computation 
The transmitting satellite position and velocity are needed to model the GPS/WAAS and Galileo 
pseudorange and Doppler measurements. The section presents the algorithms for computing the 
GPS/Galileo SV position and velocity from the broadcast ephemeris message data, which is the 
primary method used in flight operation. In addition, the transmitting satellite position and velocity 
vectors can be computed by interpolation on position and velocity vectors equally spaced in time. 
Note that, if the TDRSS Augmentation Service for Satellites (TASS) supports GPS-like ranging 
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from the TDRSS GEO transmitters, these transmitters would be handled as WAAS GEOs in 
GEONS. Section 5.2.4 discusses application of the GPS differential corrections that are broadcast 
by the TASS.  Section 5.2.5 discusses the application of the GPS Improved Clock and Ephemeris 
(ICE) differential correction parameters, which are provided as part of the GPS Broadcast message 
in message types 34 or 13 and 14. 

5.2.1  GPS/Galileo Broadcast Ephemeris Parameters 
Table 5-2 lists the GPS ephemeris parameters that are contained in the broadcast navigation legacy 
messages (LNAV message parameters listed in Table 20-III in Reference 10). References 10 and 
63 provide a detailed description of the GPS and Galileo broadcast ephemeris message parameters, 
respectively. The definition of the Galileo LNAV ephemeris parameters is the same as for the GPS 
ephemeris parameters. Note that GEONS 3.0 does not support the modernized CNAV broadcast 
messages defined in Table 30-I in Reference 10. 

Table 5-2.  Ephemeris Parameters Contained in the LNAV Broadcast Navigation 
Message 

Parameter Description Units 
toe Ephemeris reference time Seconds from the 

beginning of GPS week 
Mo Mean anomaly at reference time (toe) Radians 

∆n Mean motion correction  Radians per second 
e Eccentricity Unitless 

A  Square-root of the semimajor axis meters  

Ωo Longitude of ascending node at weekly epoch (at t=0, not 
at t=toe)  

Radians 

ιo Uncorrected orbit inclination at toe  Radians 

ω Argument of perigee  Radians 
Ω Ω ( - dot)  Inertial rate of change of right ascension of ascending 

node 
Radians per second 

 (ι ι  - dot)  Rate of orbit inclination Radians per second 

Cuc, Cus Argument of latitude corrections due to second harmonic 
perturbations 

Radians  

Cic, Cis Inclination corrections due to second harmonic 
perturbations  

Radians 

Crc, Crs Radius corrections due to second harmonic perturbations Meters 

IODE Age of ephemeris data − 
   

It should be noted that some parameters in Table 5-1 are given in units different from those used 
in the original navigation message. Navigation messages telemetered down from the GPS SVs 
describe M0 0 0, , ,Ω ι ω and in semicircles (i.e., π radians) and ∆ Ωn,  ,  and ι  in semicircles/per 
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second. The value of π to be used to convert from semicircles to radians is 3.1415926535898. The 
following user algorithm for GPS ephemeris computations use the parameters with units given in 
Table 5-1, not the ones coming from the navigation message. 

5.2.2 User Algorithm for GPS/Galileo SV Antenna Phase Center Position 
Computation 

The GPS SV broadcast ephemeris parameters provide the GPS SV antenna phase center position 
in the WGS 84 ECEF frame that is consistent with the definition of the ITRF. Section 30.3.3.5.1.1 
in Reference 10 states that “The full coordinate transformation for translating to the corresponding 
ECI SV antenna phase center position may be accomplished in accordance with the computations 
detailed in Chapter 5 of IERS Technical Note 36: IERS Conventions (2010) and equations for 
UT1, xp and yp as documented in Table 30-VIII. Ongoing WGS 84 re-adjustment at NGA and 
incorporating the 2010 IERS Conventions, are expected to bring Earth based coordinate agreement 
to within 2 cm. In the context of the Conventions, the user may as a matter of convenience choose 
to implement the transformation computations via either the "Celestial Intermediate Origin (CIO) 
based approach” or the “Equinox based approach”.” 
The following algorithm for computing the ECEF coordinates of the GPS SV antenna phase center 
is based on Table 20-IV in Reference 10. The algorithm for computing the ECEF/GTRF Galileo 
antenna phase center position is identical except that the algorithm must be evaluated using GST 
times vs the GPS time used for computation of the GPS SV position. The transformation from the 
ECEF/ITRF to the ECI/GCRF is discussed in Section 3.2. 

The semimajor axis and the uncorrected mean motion are given by: 

 ( )A A=
2
 (5.2-1)* 

 n A0
3= µ /  (5.2-2)* 

The signal transmit time is expressed relative to the ephemeris reference time, toe , as follows:1 

 ∆t t tk T oe= −  (5.2-3)* 

Then, the corrected mean motion and the mean anomaly are given by 

 n n n= +0 ∆  (5.2-4)* 

 
1 The time tT  appearing on the right-hand side of Equation (5.2-3) is GPS system time at the time of signal 

transmission, i.e., GPS signal receive time corrected for signal transit time. Furthermore, ∆tk shall be the actual total 
time difference between the time t and the epoch time toe and must account for beginning or end of week crossovers. 
This can be achieved as follows: If ∆tk is less than –302400 seconds, then add 604800 seconds to ∆tk; if ∆tk is greater 
than 302400 seconds, then subtract 604800 seconds from ∆tk. This procedure will guarantee that the magnitude of 
∆tk is less than 302400 seconds. 
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 M M n tk k= +0 ∆  (5.2-5)* 

If the eccentric anomaly (Ek) is required, it can be obtained using the following Kepler’s equation: 

 M E e Ek k k= − sin  (5.2-6)* 

This equation is solved by the following iteration scheme: 

 ( )f E E e E Mk
n

k
n

k
n

k= − −sin  (5.2-7)* 

 ( )[ ]D e E f En
k
n

k
n= − −1 0 5cos .  (5.2-8)* 

 
( )

E E
f E

Dk
n

k
n k

n

n
+ = −1  (5.2-9)* 

where  

 E M e Mk k k
0 = + sin  (5.2-10)* 

The following relations between the true anomaly (νk) and the eccentric anomaly will be used to 
compute the true anomaly from the eccentric anomaly or vice versa: 

 νk
k k

k k

e E e E
E e e E

=
− −

− −












−tan sin /( cos )

(cos ) / ( cos )
1

21 1
1

 (5.2-11)* 

 E
e

ek
k

k

=
+
+









−cos
cos
cos

1

1
ν
ν

 (5.2-12)* 

The argument of latitude is defined as follows: 

 Φ k k= +ν ω  (5.2-13)* 

The corrections to the argument of latitude, inclination, and radius due to the second-order 
harmonic perturbations are computed using the following equations: 

 δu C Ck us k uc k= +sin cos2 2Φ Φ  (5.2-14)* 

 δι k is k ic kC C= +sin cos2 2Φ Φ  (5.2-15)* 

 δR C Ck rs k rc k= +sin cos2 2Φ Φ  (5.2-16)* 

Then, the corrected argument of latitude, inclination, and radius are given by 

 u uk k k= +Φ δ  (5.2-17)* 
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 R A e E Rk k k= − +( cos )1 δ  (5.2-18)* 

 ι ι δι ιk k kt= + +0 ∆  (5.2-19)* 

Using the orbital parameters computed above, the Cartesian components of the position vector in 
the orbital plane and ECEF systems can be obtained as follows. The SV position components in 
the orbital plane coordinates are given by 

 
′ =
′ =





X R u
Y R u

k k k

k k k

cos
sin

 (5.2-20)* 

The corrected longitude of the ascending node is needed to convert these orbital plane components 
into the ECEF components. The required longitude of ascending node is obtained as follows: 

 Ω Ω Ω ∆k e k e oet t= + − −0 (  )ω ω   (5.2-21)* 

Then, the ECEF Cartesian components of the GPS spacecraft position vector are given by 

 x X Yk k k k k k= ′ − ′cos sin cosΩ Ω ι  (5.2-22)* 

 y X Yk k k k k k= ′ + ′sin cos cosΩ Ω ι  (5.2-23)* 

 z Yk k k= ′ sinι  (5.2-24)* 

Note that the following World Geodetic System-84 (WGS-84) values are to be used in the 
equations given above: 

14 3 2

14 3 2

3.986005 10   / ;
3.986004418 10   / ;

m s GPS
m s Galileo

µ
×
×


= 


 WGS-84 Earth’s gravitational constant 

     
ωe = 7.2921151467 × 10−5 radians/second: WGS-84 value of the Earth’s rotation rate 

The ECEF components defined above are transformed into the Cartesian components in the mean 
equator and equinox of J2000.0 coordinate system using the following rotation matrices defined 
in Section 3.2: 

 R C R B rJ
T

g
T T

EF2000 =  (5.2-25)* 

where 

C = transformation matrix from J2000.0 to true of date coordinate frame 

Rg = transformation matrix from true of date to pseudo-Earth-fixed coordinate frame 

B = transformation matrix from pseudo-Earth-fixed to ECEF coordinate frame 
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5.2.3 GPS/Galileo Antenna Phase Center Velocity Computation 

The following algorithm for velocity computation is based on the algorithm given in Table 20-IV 
sheet 3 and sheet 4 in Reference 10. For notational simplicity, the subscript k will be dropped from 
all the expressions given in this section. Equations (5.2-22) through (5.2-24), which compute the 
position components along the ECEF axes, can be rewritten as follows:  

 r
x
y
z

M REF

EF

EF

EF

≡















≡ ′2  (5.2-26) 

where a 3×2 matrix M and a two-dimensional position vector ′R2 are, respectively, defined as 
follows:  

 M ≡
−















cos
sin

cos sin
cos cos

sin

Ω
Ω

Ω
Ω

0

ι
ι

ι
  (5.2-27) 

 ′ ≡
′
′







R

X
Y2   (5.2-28) 

Rewriting Equation (5.2-25), the mean of J2000.0 (inertial) position vector can be obtained as 
follows: 

 R C R B M RT
g
T T= ′2  (5.2-29) 

It will be assumed that the C and B matrices are time-independent. Then, in Equation (5.2-29), Rg, 
M and ′R2  are the only ones that depend on time. Differentiating Equation (5.2-29) with respect 
to time, the following expression for the J2000.0 velocity vector is obtained: 

    R C R B M R C R B M R C R B M RT
g
T T T

g
T T T

g
T T= ′ + ′ + ′2 2 2         (5.2-30)* 

or equivalently 

 EF
TT

g
T

EF
TT

g
T rBRCrBRCR  +=   (5.2-30b)* 

where 

 22      RMRMrEF ′+′=   (5.2-30c)* 

The velocity vector  ′R2  represents the spacecraft velocity in the orbit plane coordinate system and 
is determined by the rate of change in time of the ′ ′X Y and  (given by Equation 5.2-20): 

   cos  sin′ = −X R u Ru u   (5.2-31)* 
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   sin  cos′ = +Y R u Ru u   (5.2-32)* 

where 

  sin  R A e E E R= + δ  (5.2-33)* 

 [ ]δ ν ν ω ν ω  cos ( ) sin ( )R C Crs rc= + − +2 2 2  (5.2-34)* 

and  

   u u= +ν δ  (5.2-35)* 

 [ ]δ ν ν ω ν ω  cos ( ) sin ( )u C Cus uc= + − +2 2 2  (5.2-36)* 

In Equations (5.2-33) through (5.2-36), δ δ R u and denote the time derivatives of δ δR u and , 
respectively. The time derivatives of orbital parameters given above can be obtained from the time 
derivatives of E (eccentric anomaly) and ν (true anomaly).  E and ν  may be computed as follows: 

 
( cos )

E n
e E

=
−1

  (5.2-37) 

 
( )

( cos )
( cos )

ν ν
=

−

+
−

n

e

e
e E1

1
12

 (5.2-38) 

 

Using these relations, the terms containing the rates of change of R and u can be computed as 
follows:  

 [ ] sin
( )

( cos ) cos ( ) sin ( )R
n A
R

A e E
e

e C Crs rc= +
−

+ + − +












2

1
1 2 2

2
ν ν ω ν ω   

(5.2-39)* 

and  

 
( )[ ]

( )[ ]
Ru R C C

R n
e

e
e E

C C

us uc

us uc

  cos ( ) sin ( )

( )
( cos )
( cos )

cos ( ) sin ( )

= + + − +

=
−

+
−

+ + − +

ν ν ω ν ω

ν ν ω ν ω

1 2 2 2

1
1
1

1 2 2 2
2

  (5.2-40)* 

In Equation (5.2-39), the quantity n denotes the mean motion. This completes the computation of 
 ′ ′X Y and  given by Equations (5.2-31) and (5.2-32).  

The time derivative of the matrix Rg is given by Equation (3.2-33) in Section 3.2.3.1. From the 
definition of M given by Equation (5.2-27), the time derivative of M is given by: 
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  (  )
sin
cos

cos cos
cos sin 

sin sin
sin cos

cos
M e tot≡ − − −
















+ −

















Ω
Ω
Ω

Ω
Ω

Ω
Ωω

ι
ι ι

ι
ι
ι0 0

0
0
0

 (5.2-41) 

In the above equation, ιtot  denotes the time derivative of the inclination and can be computed 
using the following equation: 

  
( )ι ι δι

tot t
= +

d
d

 (5.2-42)* 

where 

  
( )

( )

d
d
( )

 cos sin

( )

( cos )
( cos )

cos sin

δι ν

ν
t

C C

n

e

e
e E

C C

is ic

is ic

= −

=
−

+
−

−

2 2 2

2

1

1
1

2 2
2

Φ Φ

Φ Φ
 (5.2-43)* 

5.2.4 TASS GPS Differential Corrections 
The TDRSS Augmentation Service for Satellites (TASS) will provide precise GPS differential 
corrections and other ancillary data to enable decimeter level orbit determination accuracy and 
nanosecond time-transfer accuracy, onboard in real-time. TASS will broadcast its message on the 
S-band multiple access channel of NASA’s TDRSS. Broadcasts will be available from three or 
more TDRSS satellites, providing global coverage. In addition to the GPS differential corrections, 
TASS will provide real-time Earth orientation and solar flux information and GPS integrity 
information (which can be used to screen GPS SV measurements for processing).  

When available the TASS differential corrections are added to the ECEF GPS SV position and 
velocity vectors computed using Equations (5.2-22) through (5.2-24) and (5.2-30c) prior to 
transforming these vectors to the ECI frame in Equation (5.2-25) and (5.2-30b): 
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 (5.2-44) 

where  

kDCt = time tag of TASS differential correction value closest to the request time t 

)(
kDCEF tr∆ = position differential correction at time 

kDCt  from the TASS message 

)(
kDCEF tr∆ = rate of change of position differential correction at time 

kDCt  from the TASS 
message 
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5.2.5 GPS Improved Clock and Ephemeris (ICE) Differential Correction 
Parameters 

To enable decimeter level orbit determination in real time, differential correction parameters are 
provided as part of the GPS Broadcast message in message types 34 or 13 and 14. Section 30.3.3.7 
of Reference 10 provides a detailed discussion of these corrections. In addition to the normal quasi-
Keplerian elements, 0A , ne , ni −0 , no−Ω , nω and nM −0 , discussed in Section 5.2.1, the differential 
correction parameters listed in Table 5-3 are provided. These parameters apply to the clock and 
ephemeris data transmitted by other GPS SVs.  
 
Table 5-3. Clock and Ephemeris Differential Correction Parameters Contained in 

the Broadcast Navigation Message Types 34 or 13 and 14 

Parameter Description Units 
PRN ID PRN of satellite to which correction applies  

ODt  Reference Time of week of the Differential Correction 
data relative to the GPS week 

Seconds from the 
beginning of GPS week 

0faδ  SV Clock Bias Correction Seconds 

1faδ  SV Clock Drift Correction Seconds per second 

UDRA  User Differential Range Accuracy Index dimensionless 

α∆  Alpha Correction to Ephemeris Parameters dimensionless 

β∆  Beta Correction to Ephemeris Parameters dimensionless 

γ∆  Gamma Correction to Ephemeris Parameters Radians 

i∆  Angle of Inclination Correction Radians 

∆Ω  Angle of Right Ascension Correction Radians  

A∆  Semi-Major Axis Correction Meters 

ARUD   Change Rate of User Differential Range Accuracy Index dimensionless 

 
Note that some of the parameters in Table 5-3 are given in units of radians not semicircles (i.e., π 
radians) as in the raw navigation message. The value of π to be used to convert from semicircles 
to radians is 3.1415926535898. The following user algorithm for GPS ephemeris computations 
assume parameters with units listed in Table 5-2. 

A set of corrected quasi-Keplerian parameters is computed as follows. First construct a set of initial 
(uncorrected) elements for SV n using the parameters listed in Table 5-1.: 

 ( )2ni AA =  

 ni ee =  

 ni ii −= 0  
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 ni −Ω=Ω 0  (5.2-45) 

 )cos( nni e ωα =  

 )sin( nni e ωβ =  

 nni M ω+=γ −0  

The terms iα , iβ  and iγ  form a subset of stabilized ephemeris elements which are corrected as 
follows: 

 α∆+α=α ic   

 β∆+β=β ic  (5.2-46) 

 γ∆+γ=γ ic  

The corrected quasi-Keplerian elements are then given by 

 AAA ic ∆+=  

 ( ) 2/122
ccce β+α=  

 iii ic ∆+=  (5.2-47) 

 ∆Ω+Ω=Ω ic  

 )/(tan 1
ccc αβω −=  

 00 MM ccc ∆+−=− ωγ  
where 

 𝛥𝛥𝑀𝑀0 = −3∆𝐴𝐴
2𝐴𝐴𝑐𝑐

�
𝜇𝜇𝐸𝐸
𝐴𝐴𝑐𝑐3

[(𝑡𝑡𝑜𝑜𝑜𝑜 + 604800 ∗ 𝑊𝑊𝑁𝑁𝑜𝑜𝑜𝑜) − (𝑡𝑡𝑂𝑂𝑂𝑂 + 604800 ∗ 𝑊𝑊𝑊𝑊)] (5.2-48) 

where 𝑊𝑊𝑁𝑁𝑜𝑜𝑜𝑜 is the week number associated with 𝑡𝑡𝑜𝑜𝑜𝑜 , the reference time of the broadcast 
message parameters, and WN is the current week number associated with 𝑡𝑡𝑂𝑂𝑂𝑂,   the reference 
time of the differential correction data. The 𝛥𝛥𝑀𝑀0 term in serves to propagate the mean anomaly 
at the reference time to the epoch time of the navigation message being corrected. The 
corrections calculated by the fitting process are good at the epoch time of the specific broadcast 
elements being corrected. 
The corrected quasi-Keplerian elements are then used to compute the position and velocity of the 
GPS SV using equations provided in Sections 5.2.2 and 5.2.3.  
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5.3 GNSS Pseudorange, Doppler, and Carrier Phase Measurement 
Models 

The computational algorithms for the GNSS C/A code pseudorange, Doppler, and integrated 
carrier phase measurements are discussed in this section. GNSS sources supported in GEONS are 
GPS, WAAS, and Galileo. The general form of the measurement model is as follows: 

 𝑌𝑌𝑘𝑘 = 𝐺𝐺 [𝑋̄𝑋(𝑡𝑡𝑘𝑘), 𝑡𝑡𝑘𝑘] + 𝜀𝜀 (5.3-1) 

where tk is the true measurement time, referenced to UTC, and 𝜀𝜀 is the measurement error. It is 
assumed that 𝜀𝜀 has a zero-mean Gaussian distribution with standard deviation σ, which is 
commandable for each measurement type. The measurement standard deviation is typically 
determined through analysis of the random component of the measurement error as part of the 
filter tuning process. GEONS models the GPS measurement standard as a constant value; however, 
in situations where there is a large variation in the received signal strength, computing the 
pseudorange measurement standard as a function of the received signal strength can provide a 
more realistic value of the noise contribution. Section 12.4 provides GPS pseudorange noise model 
that have been used to simulate weak GPS signals. 

For GEONS, the estimation state vector, X t( )  includes the receiver position vector, R ; velocity 

vector, R ; optional corrections to the atmospheric drag and solar radiation pressure coefficients, 
∆CD and ∆CR; GNSS receiver bias, bR; and GNSS receiver bias rate, d R , for one or more receivers; 
ionospheric delay scale factor, Iγ ; and measurement-dependent biases. In addition, when GNSS 
pseudorange and Doppler measurements are processed, one pseudorange bias and one Doppler 
bias can be estimated for each GPS SV, WAAS GEO, and Galileo SV that is tracked.  When 
integrated carrier phase measurements are processed, one integer ambiguity bias is estimated for 
each GNSS SV-receiver pair. When a ground-based receiver state is estimated, corrections to the 
drag and solar radiation pressure coefficients are not estimated. 

Section 5.3.1 addresses preprocessing of pseudorange measurements obtained from the GNSS 
receiver. The measurement model for the one-way pseudorange measurements from the GPS 
SV/WAAS GEO to the user receiver is presented in Section 5.3.2. The one-way Doppler 
measurement model is defined in Section 5.3.3. The integrated carrier beat phase measurement 
model is defined in Section 5.3.4. Note that, if the TDRSS Augmentation Service for Satellites 
(TASS) supports GPS-like ranging from the TDRSS GEO transmitters, these transmitters would 
be handled as WAAS GEOs in GEONS. Section 5.3.5 discusses the ionospheric correction model 
using GPS navigation data. Sections 5.3.6 through 5.3.8 present the Galileo pseudorange, Doppler, 
and integrated carrier phase measurement models, respectively.  

5.3.1 Pseudorange Measurement Preprocessing 
GEONS processes full pseudorange measurements. This section provides algorithms that can be 
used to compute the full pseudorange measurement given raw measurement data provided by 
typical GPS receivers. Section 5.3.1.1 provides an algorithm for computing the full pseudorange 
given a fractional measurement. Section 5.3.1.2 provides an algorithm for computing the full 
pseudorange given the transmit time measured by the receiver. 
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5.3.1.1 Fractional Pseudorange Measurement Preprocessing (not implemented in 
GEONS) 

The preprocessing of fractional GPS/WAAS pseudorange measurements is discussed in this 
section. Note that the units in which the fractional C/A code is expressed vary with the type of 
receiver. For the Loral Tensor receiver, the fractional C/A code pseudoranges are given in units of 
one-sixteenth (1/16th) of a code phase chip. The nominal C/A code chipping is 1.023 megahertz, 
which gives a one-C/A-code chip length of (1/1.023) microseconds. Thus, 1/16th of a C/A code 
chip is given by 

 γ ≡ 10–6/(16×1.023)] seconds in time  

 = c γ meters in equivalent distance (5.3-2) 

where c denotes the speed of light (c = 299792458 meters/second).  

The observed fractional pseudoranges given in units of 1/16th chip, ′ℜ obs , can be converted into 
meters as follows: 

 
~
ℜobs (in meters) = c obsγ ′ℜ  (in units of 1/16th chip) (5.3-3) 

Note that the time interval γ is defined in terms of the reference receiver clock. The fractional 
pseudorange measurement obtained from Equation (5.3-3) does not include the C/A code 
pseudorange integer ambiguity. This range ambiguity is generally given by an integer times 
1 millisecond, which is the repetition interval of C/A code. Let Iamb denote this integer ambiguity 
(in milliseconds), then the observed full preudorange will be given by 

 ℜobs (in meters) = c γ ′ℜobs (in units of 1/16th chip) + c Iamb×10–3   (5.3-4) 

where ′ℜobs (in units of 1/16th chip) and the associated measurement timetag referenced to the GPS 
system time are provided by the receiver. 

If Iamb (in milliseconds) is not available from the GPS receiver, it can be computed as follows. 

Define q such that 

 q ≡ c ⋅ (10−3 seconds) = 299792.458 meters (5.3-5) 

Then, the observed full pseudorange, ℜobs, from GPS SV/WAAS GEO j to user receiver n can be 
expressed as: 

 ( ) obsamb
n

WGobs qI
j

ℜ+⋅=ℜ ~
/  (5.3-6) 

where Iamb denotes the integer millisecond ambiguity of the pseudorange measurement and ~
ℜobs , 

whose value lies between zero and ±q, represents the actual fractional pseudorange measurement 
expressed in meters. The integer ambiguity, Iamb, can be obtained from the computed pseudorange 
[given later in Equation (5.3-20)] based on the predicted user position vector and user clock offset 
at the time of each measurement processing, as follows: 
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Define Nc (an integer) and 
~
ℜ  (a real number between 0 and ± q) as 

 N
qc

INT

=
ℜ







  (5.3-7) 

 
~
ℜ ≡ ℜ− ⋅N qc    (5.3-8) 

where ℜ is the computed pseudorange obtained using Equation (5.3-20).  In the first expression 
above, [ ]INT denotes the integer part of the quotient enclosed by the square brackets. Note that Nc 
and 

~
ℜ  obtained from Equations (5.3-7) and (5.3-8) can be both positive or negative depending on 

the sign of ℜ. The integer Nc obtained in this manner can, in most cases, be used for Iamb, which is 
needed in Equation (5.3-6) to construct the observed full pseudorange. However, there are some 
cases where this simple replacement may not work due to errors associated with the computed full 
pseudorange. These exceptions will most likely occur when (1) 

~
ℜ ≈obs q  and 

~
ℜ ≈ 0 or (2) 

~
ℜ ≈obs 0  and 

~
ℜ ≈ q . These conditions can be stated in a more quantitative manner as follows: 

Case (1): and     

Case (2):     and

q q

q q
obs

obs

− ≤ ℜ < ≤ ℜ ≤

≤ ℜ ≤ − ≤ ℜ <

ε ε

ε ε

~ ~

~ ~
0

0
 

where ε denotes an assumed maximum range error magnitude (on the order of 20 kilometers). The 
measurement diagrams shown in Figure 5-2 illustrate these two cases graphically. The diagrams 
suggest that the magnitude of Iamb for Case (1) should be (|Nc |– 1), and that for Case (2) should be 
(|Nc |+ 1). In all other cases, Iamb should be equal to Nc. The appropriate values of Iamb for these 
various cases are summarized in Table 5-2. 

 

Figure 5-2.  Special Cases for Computing the Pseudorange Integer Ambiguity 
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~
ℜobs
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~
ℜ
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Table 5-4.  Relationship Between Iamb and Nc  
  Sign of ℜ Case Iamb 

Positive Case (1) 
Case (2) 
All other cases 

Nc - 1 
Nc + 1 
Nc 

Negative Case (1) 
Case (2) 
All other cases 

Nc + 1 
Nc - 1 
Nc 

5.3.1.2 Transmit Time and Carrier Frequency Measurement Preprocessing (not 
implemented in GEONS) 

The preprocessing of raw GPS/WAAS transmit time and carrier frequency measurements is 
discussed in this section.  

Many GPS receivers are built using the Plessey GPS Builder chip set, which performs pseudorange 
and Doppler measurements at multiples of “TICs” of the processor clock. The measurement times 
in TICs, TICN , can be converted to a raw GPS receive time, )(RC

Rt , as follows:  

 TICTICNAV
RC

R
RC

R tNttt ∆+δ+= *)()(
0

 (5.3-8b) 

where 

 )(
0

RC
Rt  = offset of receiver clock at TICN = 0 from GPS time, set at power-on or initialized 

by command 

 NAVtδ  = offset of the current receiver clock from GPS time computed using the Time of 
Word (TOW) from the GPS navigation message, which can be determined to 
within ±0.5 second 

 TICt∆  = time interval per TIC, nominally 0.0999999 seconds 

Whenever the receiver is in contact with the GPS constellation, the raw GPS receive time should 
be within ±0.5 second of GPS system time. 

The Plessey GPS Builder chip set provides the following raw measurements: 

20N = number of 20 millisecond code epochs 

1N = number of 1 millisecond code epochs 

cφ = number of half chips of code phase  

dcoφ = fractional code digitally controlled oscillator (DCO) phase below one half chip, 
with resolution of 1/2048 of a chip 
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dcoN = Carrier DCO cycle count in whole cycles between TICs (nominally over 
0.0999999 seconds) 

The code transmit time (modulo 1 second), )(SC
Tt ′ , is constructed as follows from these raw 

measurements  

 
FRAC

dcocSC
T NNt 








+







 −+++=′ 17660002443792.0

1024*20462046
20

1000
1

120
)( φφ  (5.3-8c) 

In the expression above, [ ]FRAC denotes the fractional part of the quotient enclosed by the square 
brackets. 

The observed code time delay, τ~∆ , can then be computed as follows: 

 )()(~ SC
T

RC
R tt ′−′=∆τ  (5.3-8d)* 

where the code receive time (modulo 1 second), )(RC
Rt ′ , equals the fractional number of seconds in 

the measured raw receive time, )(RC
Rt ,  

 [ ]FRAC
RC

R
RC

R tt )()( =′  (5.3-8e) 

For pseudoranges of less than 150,000 kilometers, the true code time delay will lie between 0 and 
0.5 seconds.  Assuming that the current raw receiver time estimate is accurate to within 0.5 
seconds, τ~∆  should lie between -0.5 and 0.5 seconds.  Therefore if τ~∆ > 0.5, subtract 1 second 
and if τ~∆ < -0.5 seconds add 1 second.  

The full raw pseudorange measurement is then given by 

 
~
ℜobs (in meters) =c τ~∆  (5.3-8f) 

where c denotes the speed of light (c = 299792458 meters/second). 

The Doppler measurement is computed as follows from the raw carrier DCO cycle count, dcoN  

 ( ) dcoNomNdcoobs RCFNF −∆−= /  (5.3-8g) 

where 

 NF∆ = Carrier DCO cycle scale factor 

 NomC = Nominal carrier DCO 

 dcoR = Carrier DCO resolution 

5.3.1.3 Dual-Frequency Pseudorange Preprocessing 
If GPS measurements are available simultaneously on more than one frequency (i.e., L2 C or L5 
in addition to L1 C/A), the pseudorange measurements are corrected for the group delay effects 
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using the following relationships defined in Reference 10 (Section 30.3.3.3.1.1.2) and Reference 
46 (Sections 20.3.3.3.1.2.2): 

  

( ) ( )

( ) ( )
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 (5.3-8h) 

where 

 obsℜ  = Pseudorange in meters corrected for ionospheric and group delay effects 

 i
obsℜ  = Pseudorange in meters measured on the L-band channel indicated by i 

 i
jISC  = Inter-signal correction for SV j for the channel indicated by i in seconds; 

measured values of the mean SV group delay differential between the L1 P(Y)-
code and i code are provided as message type 30 data (Table 20-IV in 
Reference 46) 

 
jGDT  = Associated group delay correction for jSV  in seconds, which is available in 

message type 30 

 ijγ  = Ratio of nominal center frequencies 
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 (5.3-8i) 

If Galileo measurements are available simultaneously on more than one frequency (i.e., E5a or 
E5b in addition to E1), the pseudorange measurements are corrected for the group delay effects 
using the following relationships: 
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( ) ( )

( ) ( )
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 (5.3-8k) 

5.3.2  GPS/WAAS Pseudorange Measurement Model and Associated Partial 
Derivatives 

This section provides an expression that can be used to compute the observed pseudorange given 
by Equation (5.3-3) in terms of the GPS/WAAS and receiver states and the corresponding times. 
The pseudorange is obtained from the signal transit time interval, which is defined as 

 ∆τ ≡ −t tR
RC

T
SC( ) ( )  (5.3-9) 

where tR
RC( )  denotes the receive time measured by the receiver clock and tT

SC( )  is the transmit time 
measured by the GPS SV/WAAS GEO clock. The pseudorange ℜ is then defined as the speed of 
light (c) times the time interval ∆τ given by Equation (5.3-9): 

 ℜ ≡ c∆τ  (5.3-10) 

Equation (5.3-9) can be written in terms of the GPS/WAAS system times t tR T and  corresponding 
to t tR

RC
T

SC( ) ( ) and  and the respective clock offset terms δtR and δtS as follows: 

  
∆τ

∆
= + − +
≡ + −

( ) ( )
( )

t t t t
t t t
R R T S

R S

δ δ
δ δ

 (5.3-11) 

where  

 ∆t t tR T≡ −   (5.3-12) 

Some GPS receivers provide the measurement timetag tR
RC( )  corrected to within 500 microseconds 

of tR .  In such cases, the residual receiver clock bias, ~ ( )b tR , can be estimated and used in Equation 
(5.3-19).  

The GPS SV/WAAS GEO clock offset term, δtS, is computed using Equation (3.3-9) and may be 
assumed to be known. 

The definition of the pseudorange defined by Equation (5.3-10) can be written as  
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 ℜ = + −c t c t tR S∆ ( )δ δ  (5.3-13) 

The above equation will be used to compute the pseudorange measurement in terms of the position 
vectors and clock offset parameters of the GPS SV/WAAS GEO and the receiver.  

The time interval ∆t  appearing in the first term on the right-hand side of Equation (5.3-13) 
represents the true signal travel time from the GPS SV/WAAS GEO to the receiver. The first term 
on the right-hand side of Equation (5.3-13) can be expressed as 

 𝑐𝑐𝑐𝑐𝑐𝑐 = 𝜌𝜌𝐺𝐺/𝑊𝑊𝑗𝑗
𝑛𝑛,𝑖𝑖 + 𝛿𝛿𝜌𝜌𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 + 𝛿𝛿𝜌𝜌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝛿𝛿𝜌𝜌𝑒𝑒𝑒𝑒 + 𝛿𝛿𝜌𝜌ℎ𝑤𝑤 (5.3-14) 

with 

 )()( /
,
/ TjWG

n
R

n
iA

in
jWG tRtR −=ρ  (5.3-15) 

In the above equation, in
jWG

,
/ρ  denotes the distance between the position of GPS SV/WAAS GEO 

j at the signal transmit time tT and the position of receiver n’s ith antenna at the signal receive time 
tR. The 𝛿𝛿𝜌𝜌𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 and 𝛿𝛿𝜌𝜌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 terms represent the time delay due to the ionospheric and tropospheric 
refraction effects, the 𝛿𝛿𝜌𝜌𝑒𝑒𝑒𝑒 term represents the effects of the GPS SV/WAAS GEO ephemeris and 
time errors (after the δtS correction is applied), and the 𝛿𝛿𝜌𝜌ℎ𝑤𝑤 term represents a possible (receiver 
and SV) hardware-related delay. In Equation (5.3-15), the position of the transmitting antenna of 
the GPS SV/WAAS GEO at the time (tT) of signal transmission is denoted by )(/ TWG tR

j
, and the 

position of the ith receiving antenna at the time of the signal reception )( n
Rt  is denoted by )( n

R
n
iA tR . 

Combining Equations (5.3-13) and (5.3-14) yields the following expression for the pseudorange:  

 hwettropoIonoS
n
R

in
WG

n
WG ttc

jj
δρ+δρ+δρ+δρ+δ−δ+ρ≡ℜ )(,

//  (5.3-16) 

The correction terms representing the tropospheric refraction effect and hardware-related delays 
are not modeled in GEONS. Then, Equation (5.3-16) reduces to the following equation: 

 SIonoet
n
R

in
WG

n
WG tctc

jj
δ−δρ+δρ+δ+ρ=ℜ ,

//   (5.3-17) 

with 

 )()( /
,
/ TjWG

n
R

n
iA

in
jWG tRtR −=ρ   (5.3-18) 

For a spacecraft-based receiver, the location of the ith receiving antenna with respect to the 
spacecraft’s center of mass can be modeled in terms of constant offsets with respect to the 
spacecraft body frame ( ) ( ) ( )[ ]

B
n
AB

n
AB

n
A iii

zyx ∆∆∆ ,, . In this case, the position of the receiving antenna 
is computed using Equation 3.2-61 in Section 3.2.8.   

The computation of ρ using Equation (5.3-18) requires knowledge of the signal transmit time (tT) 
given the signal receive time ( n

Rt ). Note that the equivalent UTC signal receive time will be needed 
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for the propagation of the user state vector to the signal receive time. The equivalent measurement 
time with respect to UTC can be computed using the procedure given in Section 3.3.1.  

The following Newton-Raphson iterative scheme is used to solve for the actual signal transmit 
time, tT, as follows 

 𝑡𝑡𝑇𝑇,𝑚𝑚+1 = 𝑡𝑡𝑇𝑇,𝑚𝑚 +
𝑐𝑐⋅(𝑡𝑡𝑅𝑅

𝑛𝑛−𝑡𝑡𝑇𝑇,𝑚𝑚)−�𝑅̄𝑅𝐴𝐴𝑖𝑖
𝑛𝑛 (𝑡𝑡𝑅𝑅

𝑛𝑛)−𝑅̄𝑅𝐺𝐺/𝑊𝑊𝑗𝑗(𝑡𝑡𝑇𝑇,𝑚𝑚)�

𝑐𝑐−�𝑢𝑢�𝑚𝑚𝑛𝑛 ⋅𝑅̇̄𝑅𝐺𝐺/𝑊𝑊𝑗𝑗(𝑡𝑡𝑇𝑇,𝑚𝑚)�
  

where 

 tT m, +1  = (m+1)th  approximation for Tt  

 tT m,  = mth  approximation for Tt  

 n
mû  = mth  approximation for the unit vector 

)()(

)()(

,/

,/

mTjWG
n
R

n
iA

mTjWG
n
R

n
iA

tRtR

tRtR

−

−
 

 )( ,/ mTWG tR
j

  = velocity of the transmitting GPS SV/WAAS GEO j at time tT m,  

 n
Rt  = signal reception time at the receiver n 

Ignoring negligible terms, the above equation reduces to  

 
c

tRtR
tt

mTjWG
n
R

n
iAn

RmT

)()( ,/

1,

−
−=+   

The iterative solution of the above equation is started by setting n
RT tt =0, , such that 

)()( /0,/
n
RWGTWG tRtR

jj
= . This iterative scheme is continued until the condition ε≤−+ mTmT tt ,1,  is 

satisfied, where ε is a small tolerance (nominally equal to 10-8 second). 

This algorithm requires the knowledge of 
jWGR /

 , the velocity vector of GPS SV/WAAS GEO j 
(the computation of the velocity vectors was discussed in Section 5.1). Computations of 
measurements and associated partial derivatives will be performed using state vectors given in the 
mean of J2000.0 coordinate system. 

The residual receiver time offset δtR  is computed as follows: 

 )(tbtc n
R

n
R =δ  (5.3-19) 

where the computation of b tR
n ( )  or optionally ~ ( )b tR

n is discussed in Section 4.3.  

The correction due to the ionospheric refraction in Equation (5.3-17), Ionoδρ , can be modeled 
using the algorithm defined in Section 5.3.5 and the ionospheric delay scale factor I γ  can be 
estimated. Alternatively, measurements with large ionosphere delays can be edited based on the 
height of the signal path above the Earth. The measurement corrections due to GPS SV ephemeris 
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errors and time dithering (SA effects) in Equation (5.3-17), δρ et  , are known to be sizable. 
Pseudorange biases, jWGb / ρ , can also be estimated to absorb the combined effects of the 
ionospheric and GPS SV/WAAS GEO ephemeris and clock errors. One pseudorange bias is 
estimated for each GPS SV/WAAS GEO tracked by the local receiver. The last term on the right-
hand side of Equation (5.3-17) represents the GPS SV time correction, which is given in Section 
3.3.2. Currently, a WAAS GEO time correction is not implemented. 

Each receiver timetags its measurements using a receive time based on its own clock, nRC
Rt

)( . 
Therefore, when multiple spacecraft states are estimated, the measurement timetags for each 
spacecraft will generally not be at exactly the same times. The GEONS filter propagates and 
updates all spacecraft states at a common UTC epoch time, which is determined based on the 
estimation mode as discussed in Section 2.3.  To account for the offset of the true UTC receive 
time for spacecraft n measurements, 𝑡𝑡𝑅𝑅

𝑈𝑈𝑈𝑈𝐶𝐶𝑛𝑛 , from the UTC filter state epoch, Equation (5.3-18) is 
linearized about the current filter state time, tk: 
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in
WGk
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UTC
R
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WG tttt

jj

n

j
∆ρ−ρ=ρ )()()( ,

/
,
/

,
/   (5.3-19b) 

where the offset of the true UTC receive time for spacecraft n measurements from the UTC filter 
state epoch is given by 
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Note that in Release 2.7 and prior releases, n
Rt∆  is implemented assuming that nRC

Rk tt )(= ; this is 
corrected in Release 2.8. Under these conditions, Equations (5.3-17) and (5.3-18) can be rewritten 
as 
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In the above equations, the subscript j indicates the jth GPS SV/WAAS GEO.  The timetag of the 
kth measurement, tk, is equal to the value of the measured receive time, )(RC

Rt , and t′k  is the signal 
transmit time, tT, computed based on tk.  The receiver clock bias b tR

n ( )  or optionally ~ ( )b tR
n  is 

computed using the estimated parameters b tR
n

k( ) and   ( )b tR
n

k , as defined in Equation 4.3-14a 
and 4.3-14 of Section 4.3.  The term n

Rk
in
WG tt

j
∆ρ− )(,

/  is significant when the receiver time bias or 

measurement timetag difference is large. The GPS-system pseudorange bias, jWGb / ρ , is defined in 
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Section 4.3. For single frequency measurements, the ionospheric delay correction, SF
Ionoδρ , can be 

modeled using the algorithm defined in Section 5.3.5, where )(tIγ  is the ionospheric delay scale 
factor, which can be estimated. The last two terms on the right-hand side of Equation (5.3-20) 
represent the total SV time correction, which is computed using Equations 3.3-10 or 3.3-11 (for 
single and dual frequency GPS users) and Equation 3.3-12 (only for single frequency GPS users) 
in Section 3.3.2 evaluated at the signal transmit time t′k. Currently, a WAAS GEO time correction 
is not implemented in GEONS. The position and velocity of the receiving antenna are computed 
using Equation 3.2-61 in Section 3.2.8. 

 (Equation deleted) (5.3-23) 

The matrix (a row vector in this case) of partial derivatives of the pseudorange measurement with 
respect to the estimation state vector, X tk( ) , is defined as follows: 
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≡ℜ  (5.3-24) 

The partial derivatives with respect to those parameters that are not explicitly included in the 
pseudorange measurement equation will be zeros. The following are the only nonzero elements if 
the state vector consists of absolute states for both the local and remote satellites:  
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where 
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 (5.3-28d)* 

The superscript T on the right-hand sides of Equations (5.3-28b) through (5.3-28d) denote the 
transpose, indicating that these partial derivatives are given as row vectors. Equation (5.3-28c) is 
an approximation in which the dependence of ′tk , the argument of )(/ kWG tR ′  and )(/ kWG tR ′ , on 
R tk( )  is ignored.  

If the state vector includes relative states for the nonlocal satellites, the associated nonzero 
pseudorange measurement partial derivatives are as follows: 
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5.3.3  GPS/WAAS Doppler Instantaneous Measurement Model and Associated 
Partial Derivatives  

An instantaneous Doppler shift data extracted at the receiver can be defined as 

 F t F t FD R REF( ) ( )= −   (5.3-29) 

where )(tFR  is Doppler-shifted receive carrier frequency and REFF  is the receiver-generated local 
reference frequency. When the receiver and the transmitter use the same frequency standards, the 
receiver-generated reference frequency, FREF , will be equal to the transmit frequency, FT . For 
GPS tracking, this is not the case. There will be small difference between the two frequency 
standards used by the receiver and the transmitter. The frequency difference due to this difference 
will be interpreted as the receiver reference frequency bias. Even when the two frequency 
standards are the same, the frequency difference obtained from Equation (5.3-29) does not 
represent a pure Doppler effect. It will include contributions from non-Doppler sources such as the 
atmospheric refraction effects, which are not modeled in GEONS. 

A procedure to compute the Doppler shift is discussed below. The first term on the right-hand side 
of Equation (5.3-28), FR , the instantaneous Doppler shifted carrier frequency observed at the 
receiver, can be represented by the following equation: 

 F F
c

F FR T iono et= ′ −




+ +1

ρ
δ δ   (5.3-30) 

where 

′FT  = actual GPS SV/WAAS GEO transmit carrier frequency 

ρ  = time rate of change of the light-time-corrected range from the SV to the 
      receiving antenna ρ [defined in Equation (5.3-22)] 

δFiono = frequency perturbation due to the ionospheric refraction effect  

δFet = frequency uncertainty due to limited accuracy in FT and ρ due to SA effects 
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Doppler biases, jWG
db / , can be estimated to absorb the combined effects of the ionospheric and 

GPS SV/WAAS GEO ephemeris and clock errors. One Doppler bias is estimated for each GPS 
SV/WAAS GEO tracked by the local receiver.  

The second term on the right-hand side of Equation (5.3-29), REFF  , the receiver-generated 
reference frequency, can be written as 

 F F FREF T REF= + δ  (5.3-31) 

In Equation (5.3-31), TF  denotes the nominal transmit frequency, which may be different from 
the actual transmit frequency, ′FT , used in Equation (5.3-30). Using Equations (5.3-30) and (5.3-
31), Equation (5.3-29) can be written as  

 𝐹𝐹𝐷𝐷 = 𝐹𝐹𝑇𝑇′ �1 − 𝜌̇𝜌
𝑐𝑐
� + 𝑏𝑏𝑑𝑑

𝐺𝐺/𝑊𝑊𝑗𝑗 − (𝐹𝐹𝑇𝑇 + 𝛿𝛿𝐹𝐹𝑅𝑅𝑅𝑅𝑅𝑅)  (5.3-32) 

Neglecting the second- and higher-order terms,  

 𝐹𝐹𝐷𝐷 = −𝐹𝐹𝑇𝑇′
𝜌̇𝜌
𝑐𝑐

+ 𝑏𝑏𝑑𝑑
𝐺𝐺/𝑊𝑊𝑗𝑗 + 𝛿𝛿𝐹𝐹𝑇𝑇 + 𝛿𝛿𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟′ − 𝛿𝛿𝐹𝐹𝑅𝑅𝑅𝑅𝑅𝑅  (5.3-33) 

where δFT  denotes the difference between ′FT  and FT  and can be approximated for GPS SVs 
using the SV clock correction parameters discussed in Section 3.3.2, 

 TjS
SV

Sj
TT Ft

t
t

FF δ≅







∂

∂δ
=δ   (5.3-34) 

The term δ ′Frel  on the right-hand side of Equation (5.3-33) represents the relativistic correction to 
the Doppler measurement. This term can be computed using the following approximate 
expression: 
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The first term on the right-hand side of this equation is due to the special relativistic effect, and 
the second term is due to the general relativistic effect.  

However, in the case of a GPS SV/WAAS GEO, the transmit frequency is already adjusted to 
reduce this effect. With such an adjustment in the transmit frequency, almost 100 percent of the 
relativistic effect is compensated for the receiver located on the ground. However, for Earth-
orbiting satellites, the compensation is not as complete. The fractional frequency correction 
computed using Equation (5.3-35) for a low-Earth satellite is approximately 0.714×10–9. This is 
equivalent to 1.125 hertz in terms of the L1 carrier frequency (L1 carrier frequency) = 1.57542×109 
hertz). According to the GPS frequency plan (Reference 10, Paragraph 3.3.1.1), the amount of the 
fractional frequency correction (used for all SV transmit frequencies to compensate the relativistic 
frequency shift for the ground receiver) is 0.44647×10–9. When this correction is applied to a low-
Earth satellite, there is a residual relativistic effect amounting to a fractional frequency shift of 
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approximately 0.269×10–9 (≈ 0.42 hertz). The term δ ′Frel  on the right-hand side of Equation (5.3-
33) represents this residual relativistic effect. The amount of the fractional frequency shift due to 
the relativistic effect does not change much as long as the GPS SV/WAAS GEO and the user 
receiver each maintains a relatively constant geocentric radius. The residual relativistic effect for 
GEONS orbit determination is computed using the following equation: 
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where 

 ( )δFrel cor  = fractional frequency correction applied to the GPS SV transmit frequency 
(0.44647×10–9) or the WAAS GEO transmit frequency (TBD) 

The last term on the right-hand side of Equation (5.3-33) represents the receiver frequency bias, 
which can be expressed in terms of the receiver time bias rate parameter introduced earlier in 
discussing the pseudorange modeling as follows: 
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Thus, using Equations (5.3-34), (5.3-35), and (5.3-37), Equation (5.3-33) can be rewritten as 
follows (note that ionospheric refraction and SA effects are not included): 
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 (5.3-38)* 

In this equation, the subscript j indicates the GPS SV/WAAS GEO number; and the transmit 
frequency, FT , is assumed to be known (nominally 1575.42 Mhertz for the L1 carrier, 1227.6 
Mhertz for the L2 carrier, and 1176.45 Mhertz for the L5 carrier). 

In most GPS receivers, Doppler measurements are obtained by averaging the instantaneous 
Doppler shift over a short interval of 500 milliseconds centered about the measurement output. 
Considering the short averaging interval, it is appropriate to use a formulation based on the 
instantaneous Doppler shift for GEONS. The instantaneous Doppler shift is given by 
Equation (5.3-38). The instantaneous range-rate ( ρ ) that appears on the right-hand side of this 
equation can be expressed in terms of the position and velocity vectors of the transmitter and the 
receiver. The expression for the instantaneous range rate ( ρ ) is defined by 
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where ρ( )tk was defined earlier by Equation (5.3-21), which can be equivalently rewritten as 
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Note that, in Equation (5.3-40), the transmit time ( ′tk ) is a function of )(,
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Differentiating both sides of Equation (5.3-40) with respect to tk yields 
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Using the line-of-sight unit vector, )(ˆ ,
/ k
in

jWG tρ , defined by 
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Equation (5.3-43) can be rewritten as 
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Solving for )(,
/ k
in

jWG tρ from the above equation, 
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The desired instantaneous Doppler shift is obtained using Equations (5.3-38) and (5.3-45), where 
the position and velocity of the receiving antenna are computed using Equation (3.2-61).  

From Equation (5.3-38), the following nonzero partial derivatives of the Doppler shift are obtained 
if the state vector consists of absolute states for both the local and remote satellites: 
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The state partial derivatives of  ( )ρ j kt on the right-hand side of Equation (5.3-46) can be obtained 
using the following equations:  
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The superscript T on the right-hand sides of Equations (5.3-48) and (5.3-49) denote the transpose, 
indicating that these partial derivatives are given as row vectors. Also note that Equation (5.3-48) 
is an approximation in which the dependence of ′tk , the argument of )(/ kWG tR

j
′  and )(/ kWG tR

j
′ , on 

R tn
k( )  is ignored.  

If the state vector includes relative states for the nonlocal satellites, the associated nonzero Doppler 
measurement partial derivatives are as follows: 

 

( )

( )














∂

ρ∂
−=

∂

∂















∂

ρ∂
−=

∂

∂

)(

)(

)(

)(

 
)(

)(

)(

)(

,
/

1

/

,
/

1

/

k
n

k
in

jWGT

k

n

jWGkD

k
n

k
in

jWGT

k

n

jWGkD

tR

t

c
F

tR

tF

tR

t

c
F

tR

tF








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5.3.4  GPS/WAAS Integrated Carrier Phase Measurement Model and Associated 
Partial Derivatives 

This section provides an expression that is used to compute the integrated carrier beat phase 
measurement in terms of the GPS/WAAS and receiver states and the corresponding times. The 
carrier beat phase measurement is formed in a GPS receiver as the difference between the phase 
of the local receiver oscillator and the phase of the received carrier signal. The measurement is 
ambiguous with respect to the number of integer cycles ( )(/

acq
jWG

n
tNφ ) at the time ( acqt ) when the 

signal is first acquired from each GPS SV. At any epoch other than the initial acquisition epoch, 
the receiver measures the fractional phase difference and the number of integer cycles accumulated 
since that epoch. Prior to processing in GEONS, the resulting raw integrated carrier beat phase 
observation (in cycles), )()( /

n

jobs

UTC
R

n
WG tφ , is multiplied by the wavelength of the carrier ( TC Fc /=λ

, where TF = 1575.42 Mhertz for L1, 1227.6 Mhertz for L2 carrier frequency, and 1176.45 Mhertz 
for L5 ) to scale the carrier phase observation to meters: 
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The integrated carrier beat phase measurement (in meters), n
WG j/Φ , can be modeled as follows: 
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where the offset of the true UTC receive time for spacecraft n measurements from the UTC filter 
state epoch is given by 
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Note that in Release 2.7 and prior releases, n
Rt∆  is implemented assuming that nRC

Rk tt )(= ; this is 
corrected in Release 2.8. 

In the above equations, the superscript n indicates the nth receiver, the superscript i indicates the ith 
antenna, and subscript j indicates the jth GPS SV/WAAS GEO.  The time tag tk is the measured 
receive time of the kth measurement, and kt ′  is the signal transmission time.  The geometrical range 
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( in
jWG

,
/ρ ) and range rate ( in

jWG
,
/ρ ) are computed as described in Sections 5.3.2 and 5.3.3, respectively. 

The receiver clock bias, b tR
n ( ) , is in meters.  The correction due to the ionospheric refraction, 

)( k
SF
Iono tδρ , can be modeled using the algorithm defined in Section 5.3.5 and the ionospheric scale 

factor, )( kI tγ , can be estimated. The terms Sjtδ  and SF
S j

tδ  are the SV time offset from GPS system 
time and group delay correction for single-frequency users, defined in Equations (3.3-10) and (3.3-
12), respectively. The term )()( //

acq
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Ck
WG tNtb j
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j

n φφ λ=  is the estimated carrier phase bias between 

GPS SV/WAAS GEO j and receiver n at the carrier phase acquisition time ( acqt ), scaled to meters.  

The carrier phase bias )(/
k

jWG

n
tbφ  is different for each acquisition of a GPS SV/WAAS GEO by a 

receiver. The carrier phase bias is reinitialized at the start of each new acquisition based on the 
difference between the predicted pseudorange )(/ acq

n
jWG tℜ  (defined in Equation 5.3-20) and the 

observed integrated carrier phase at the acquisition time acqt : 
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Similarly, the carrier phase bias variance is reinitialized at the start of each new acquisition to the 
predicted carrier phase residual variance computed as described in Step 3 in Section 2.3.1.  

The matrix (a row vector in this case) of partial derivatives of the integrated carrier beat phase 
measurement with respect to X tk( )  is defined as follows: 
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The partial derivatives with respect to those parameters that are not explicitly included in the 
measurement equation will be zeros. The following are the only nonzero elements if the state 
vector consists of absolute states for both the local and remote satellites:  
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where the partial derivatives of the geometrical range ( in
jWG

,
/ρ ) and range rate ( in

jWG
,
/ρ ) are computed 

as defined in Equations 5.3-28b through 5.3-28d in Section 5.3.2. 

If the state vector includes relative states for the nonlocal satellites, the associated nonzero 
pseudorange measurement partial derivatives are as follows: 
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5.3.5  Ionospheric Refraction Delay Using GPS Ionospheric Parameters 
This section provides a general model for computing ionospheric pseudorange and carrier phase 
delays between transmitting and receiving satellites that is appropriate for single frequency GPS 
receivers. Uncorrected ionospheric delays can be a significant source of error in the absolute 
position and clock estimates for orbits with a long path through the ionosphere. 



 
 

 5-35                                                        
 

This model has the following characteristics: 
• Suitable for a wide range of GPS-user geometries including  

- High and low elevation from below the GPS constellation 
- Across the Earth’s limb from above the GPS constellation 

• Models the overall physical characteristics of the delay, i.e. account for variations in 
the ionosphere with latitude, longitude, height, and time of day 

• Models the value of the delay to within about 50% and include a parameter that can be 
estimated in real-time to correct the modeled delay  

• Suitable for implementation as part of an autonomous navigation system integrated 
with the flight receiver 

This model makes use of the ionospheric parameters provided in page 18 of Subframe 4 of the 
GPS broadcast navigation message (Reference 35). These parameters model the ionospheric time 
delay from ground receivers to a GPS space vehicle (SV), based on a model developed by 
Klobuchar (Reference 36) and validated by Feess and Stephens (Reference 37).  

Figure 5-3 illustrates one possible signal path from a GPS SV to a receiver on a user spacecraft.  
In this example, the user spacecraft (S/C) is located at point S  within the ionosphere, points A and 
B are at the upper limits of the ionosphere in the direction of the signal path, and the signal path 
segment within the ionosphere is from point S  to point B. The ionospheric delay model numerically 
integrates the delay along the signal path segment within the ionosphere  

∫ φλ=δρ N

iiii

P

P

L
PPPPe

T
k

SF
Iono dsthN

f
t

0

),,,(3.40)( 2  (meters)  (5.3-65) 

where Tf  is the GPS transmission frequency (1.57542 GHz for the L1 frequency, 1.2276 GHz for 
L2 frequency, and 1.17645 for L5 frequency), 0P  and NP  are the end points of the signal path 

segment within the ionosphere, ),,,( L
PPPPe iiii

thN φλ  is the local electron density at a point iP  on 

the signal path, which is expressed in electrons per cubic meter, and 
iPλ  and 

iPϕ are the geodetic 

longitude and latitude of the subpoint, 
iPh  is the height of the point above the Earth, and L

Pi
t  is the 

local time at the subpoint. 
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Figure 5-3  Signal Path Geometry 

At any point Pi along the signal path segment, ),,,( L
PPPPe iiii

thN φλ  is computed using a modified 
Chapman profile that relates the local electron density values along the path to 

),0,,( L
PPPK iii

tTEC φλ , the total vertical electron content computed using the GPS broadcast 
ionospheric correction parameters. 

The Chapman electron density altitude profile relates ),,,( L
PPPPe iiii

thN φλ , the local electron 

density at a point with altitude 
iPh , to ( )L

PmPPm iii
thN ,,,φλ , the maximum electron density at height 

hm ,  

 ( ) ( )z

iiiiiii

ezL
PmPPm

L
PPPPe ethNthN

−−−φλ=φλ 1,,,),,,(  (5.3-66) 

where 

 
s

mP

h
hh

z i
−

=  

Typically, hm , the maximum density height, is selected to be 350 kilometers and hs , the 
ionospheric scale height ≈ 100 to 200 kilometers, which is a commandable parameter. 

The value of the maximum density in the Chapman profile  thN L
PmPPm iii

),,,( φλ for a point along 

the ray path segment, is computed by equating ),,( L
PiiC i

tTEC φλ , the total vertical electron content 

computed based on the Chapman profile, to ),,( L
PPPK iii

tTEC φλ , the total vertical electron content 
computed using the GPS broadcast ionospheric correction parameters. 
The total vertical electron content based on a Chapman profile is given by: 
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
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 (5.3-67) 

Equating  CTEC  to  TECK gives    

 ( )  
eh

tTEC
tN

s

L
PPPKL

PPPm
iii

iii

),,(
  ,h,, m

φλ
=φλ  (5.3-68) 

The value of ),,( L
PPPK iii

tTEC φλ  is computed using Equation (5.3-72), which is provided in Section 
5.3.5.1. 

The total ionospheric delay (in meters) is computed over the signal path following Equation 
(5.3-65): 

 ds ))exp(1exp(
),,(3.40)(

B

2 ∫ −−−
φλ

=δρ
A PP

s

L
PPPK

T
k

SF
Iono ii

iii zz
eh

tTEC
f

t  (5.3-69) 

where the parameter s denotes distance along AB and the altitude of P can be expressed in terms 
of this parameter (s) and the factor γI (t) is introduced as an arbitrary overall scale factor, which 
can be estimated. This integral is obtained using a simple trapezoidal summation rule:    

 szztTEC
ehf
tt

i

iiiii
P

PP
L
PPPK

sT

kI
k

SF
Iono ∆−−−φλ

γ
=δρ ∑ ))exp(1exp(),,()(3.40)( 2  (5.3-70)* 

The integration algorithm is described in Section 5.3.5.2. Alternatively, a numerical quadrature 
rule could be used but was not selected since it was unlikely that the more complex algorithm 
would improve the overall accuracy of the computation. 

5.3.5.1 Algorithm for Computing Total Vertical Electron Content  
The GPS single-frequency user ionospheric correction algorithm provides the ionospheric delay 
for an L1 signal (in seconds) along the path from a user located on the ground at geodetic latitude 
and longitude Uλ  and Uφ to a specific GPS SV at an elevation el and azimuth az with respect to the 
user 

 seconds)(),,(
sin

3.40),,( 2
1

L
IIIK

L

L
UUUIono tTEC

elcf
tT φλ≅φλ  (5.3-71) 

where Iλ  and Iφ  are the geodetic longitude and latitude of the ionospheric subpoint (i.e. the 
geographic point where the ray path intersects the mean ionospheric height, chosen to be a vertical 
height of 350 kilometers) and 1Lf  is the L1 transmission frequency (1.57542 GHz).  
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If the correction algorithm is evaluated for the case where the GPS SV is directly above the ground 
location,  

 ),,(
3.40

),,(
2
1 L

IIIIono
LL

IIIK tTcftTEC φλ≅φλ  (5.3-72)* 

The following algorithm is used to compute ),,( L
IIIIono tT φλ . This algorithm is adapted from 

References 35 and 38 and simplified for the case where the GPS SV is directly above the ground 
location. The coefficients nα  and nβ  are transmitted in page 18 of Subframe 4 of the GPS 
navigation message. 

1. Compute Iλ  and Iφ  (in semicircles) corresponding to the position vector of Pi expressed 
in the ECEF frame, 2000)()( JPgECEFP ii

RCBRr =  

 

π
φ

≅φ

π
λ

≅λ

i

i

P
I

P
I

 (semicircles) (5.3-73a)* 

where 
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−
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i
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P

P
ECEFP

ECEFP
P

r
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y

 (radians) (5.3-73b)* 

2. Compute the local time L
It  at the subionospheric point.  

 (seconds)    1032.4 4
kI

L
I tt +λ×=  (5.3-74)* 

           where kt  is the current UTC seconds of day. If It >86,400, use L
It = L

It -86400. If L
It <0,  

            use L
It = L

It +86400. 

3. Compute the geomagnetic latitude mφ  of the subionospheric location  

 ( ) es)(semicircl    617.1cos064.0 −λπ+φ=φ IIm  (5.3-75)* 

4. Compute P, the period of the ionospheric time delay 
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5. Compute x 
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P
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L
I 504002 −π

=  (radians) (5.3-77)* 

6. Compute the amplitude A 
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7. Compute the ionospheric time delay 

 


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xxxA
tT L

IIIiono  (seconds) (5.3-79)* 

5.3.5.2 Algorithm for Integrating Along the Ray Path  
In Figure 5-3, h denotes the altitude of the receiver, and HORP denotes the height of the ray path 
above the Earth. It is assumed that, above a specified altitude (hmax), there are no free electrons 
that contribute to the ionospheric delays in signal propagation. Thus the ionospheric delay 
correction is computed only when HORP is less than hmax.  In Figure 5-3, A and B are two points 
on the ray path for which the altitudes are equal to hmax.  The following parameters are used in this 
computation.      

R  = Position vector of the receiving satellite  

jGPSR   = Position vector of the transmitting GPS SV 

RR =   

hmax = 3000 kilometers, the assumed maximum ionospheric altitude 

Re = mean Earth’s radius 

RRs
jGPS −=  , line-of-sight vector from user s/c to GPS 

s
ss =ˆ  , line-of-sight unit vector from user s/c to GPS 
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( )
e

GPS
GPS R

s

Rss
RHORP j

j
−

⋅
−= 2

  

RA = Re + hmax , radial distance of point A 

RB = RA , radial distance of point B 

RH = Re + HORP , radial distance of point H (point with h= HORP) 

θ = 





−

R
RH1sin , 0 ≤ θ <π radians 

θmin= 






−

A

H

R
R1sin , 0 ≤ θmin <π radians 

∆s : line integration step size, a commandable parameter 
When computing the line integral defined by Equation (5.3-70), the following cases are considered 
separately. 

Case 1:  When HORP > hmax , the ionospheric correction is 0  
Case 2:  When HORP ≤ hmax, and θ < π/2 

(i)  if  h < hmax, the integration is performed from the user S/C position to B  
     (ii)  if  h ≥ hmax, the integration will be performed from A  to  B   
Case 3:  When HORP ≤ hmax, and θ ≥ π/2 
    (iii)  if  h < hmax, the integration will be performed from the user S/C position to B  
    (iv)  if  h ≥ hmax, the ionospheric correction is 0   
 

Thus, there are three cases where the finite ionospheric corrections are computed: 
(i)  HORP ≤ hmax, θ < π/2, and h < hmax 
In this case, the line integral defined in Equation (5.3-70) is computed by integrating the electron 
density function from the user S/C position to B. The total distance from the user spacecraft to the 
point B is given by 

 mincoscos θ+θ= BRRd  (5.3-80)* 

The number of points at which the Chapman electron profile computation is required is computed 
as follows: 
Using  N = [d/∆s]int (integer part of the quotient), redefine ∆s as 

 ∆s = d/N   (5.3-81)* 

The (N +1) position vectors needed for the Chapman profile computation are given by: 

 ( )ssiRR
iP ˆ∆+=  : i = 0, 1, 2, …., N   (5.3-82)* 



 
 

 5-41                                                        
 

Now { }tR
iP ,  is converted into the corresponding geographical latitude, longitude, height, and local 

solar time: { }L
PPPP iiii

th ,,,λφ  using Equations (5.3-73) and (5.3-74).  The associated altitudes are 
computed approximately as follows: 

 ePP RRh
ii
−=  (5.3-83)* 

Using { }Nith L
PPPP iiii

,,2,1,0|,,, =λφ , )(tIonoρ∆ given by Equation (5.3.70) can be obtained.  

(ii)  HORP ≤ hmax, θ < π/2, and h ≥ hmax  

In this case, the line integral defined in Equation (5.3.70) will be computed by integrating the 
electron density function from A to B. The total distance from A to B is given by 

 mincos2 θ= ARd  (5.3-84)* 

The position vector of the point A is given by: 

 sdRRA ˆ1+=  (5.3-85)* 

where  

 min1 coscos θ−θ= ARRd  (5.3-86)* 

and the (N +1) position vectors needed for the Chapman profile computation are given by: 

 ( )ssiRR APi
ˆ∆+=  : i = 0, 1, 2, …., N   (5.3-87)* 

The computation of ∆s and N , and of the final integral can be performed following the steps given 
above for case (i).. 

(iii)  HORP ≤ hmax, θ ≥ π/2, and h < hmax  

In this case, the line integral defined in Equation (5.3.70) is computed by integrating the electron 
density function from the user S/C position to point B. The total distance from the user S/C to B 
is given by 

 mincoscos θ+θ= BRRd  (5.3-88)* 

and the rest of the computational steps are similar to those given for case (i). 
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5.3.6  Galileo Pseudorange Measurement Model and Associated Partial 
Derivatives 

This section provides an expression that is used to compute the observed pseudorange in terms of 
the Galileo and receiver states and the corresponding times. The pseudorange is obtained from 
the signal transit time interval, which is defined as 

 ∆τ ≡ −t tR
RC

T
SC( ) ( )  (5.3.6-1) 

where tR
RC( )  denotes the receive time measured by the receiver clock and tT

SC( )  is the transmit 
time. The pseudorange ℜ is then defined as the speed of light (c) times the time interval ∆τ given 
by Equation (5.3.6-1): 

 ℜ ≡ c∆τ  (5.3.6-2) 

Calculation of the Galileo pseudorange measurement follows the same procedure that is 
discussed in Section 5.3.2 for the GPS/WAAS pseudorange. The pseudorange measurement 
equation is as follows:  
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 (5.3.6-3)* 

 , ( ) ( ) ( )
j i j

n i n
GAL k A k GAL kt R t R tρ ′= −  (5.3.6-4)* 
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 (5.3.6-5)* 

In the above equations, the subscript j indicates the jth Galileo SV.  The timetag of the kth 
measurement, tk, is equal to the value of the measured receive time, )(RC

Rt , and t′k  is the signal 
transmit time, tT, computed based on tk.  The receiver clock bias b tR

n ( )  is computed using the 
estimated parameters b tR

n
k( ) and   ( )b tR

n
k , as defined in Equation 4.3-14a and 4.3-14 of 

Section 4.3.  The term , ( )
j

n i n
GAL k Rt tρ− ∆  is significant when the receiver time bias or measurement 

timetag difference is large. The Galileo pseudorange bias,  jGALbρ , is defined in Section 4.3. For 

single frequency measurements, the ionospheric delay correction, SF
Ionoδρ , can be modeled using 

GPS ionospheric coefficients in the algorithm defined in Section 5.3.5, where )(tIγ  is the 
ionospheric delay scale factor, which can be estimated. The last two terms on the right-hand side 
of Equation (5.3.6-3) provide the total Galileo satellite time correction, which is defined in 
Section 3.3.9. This correction is evaluated at the signal transmit time t′k converted to GST using 
Equation 3.3.9-2 for both single and dual frequency GPS users and in addition Equation 3.3.9-4 



 
 

 5-43                                                        
 

for single frequency GPS users. The position and velocity of the receiving antenna are computed 
using Equation 3.2-61 in Section 3.2.8. 

The matrix (a row vector in this case) of partial derivatives of the pseudorange measurement 
with respect to the estimation state vector, X tk( ) , is defined as follows: 

  [ ]
( )

( )
( )

j R
n
GAL j

n UTC
GAL

k
k

t
H t

X t

∂

∂ℜ

ℜ
≡  (5.3.6-6) 

Note that the equations for the partial derivatives of the Galileo pseudorange measurements are 
the same as for the GPS pseudorange measurements. The partial derivatives with respect to those 
parameters that are not explicitly included in the pseudorange measurement equation will be 
zeros. The following are the only nonzero elements if the state vector consists of absolute states 
for both the local and remote satellites:  
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The superscript T on the right-hand sides of Equations (5.3.6-13) through (5.3.6-15) denote the 
transpose, indicating that these partial derivatives are given as row vectors. Equation (5.3.6-14) 
is an approximation in which the dependence of ′tk , the argument of ( )GAL kR t′  and ( )GAL kR t′ , on 
R tk( )  is ignored.  

If the state vector includes relative states for the nonlocal satellites, the associated nonzero 
pseudorange measurement partial derivatives are as follows: 
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5.3.7  Galileo Instantaneous Doppler Measurement Model and Associated Partial 
Derivatives  

An instantaneous Doppler shift data extracted at the receiver can be defined as 

 F t F t FD R REF( ) ( )= −   (5.3.7-1) 

where )(tFR  is Doppler-shifted receive carrier frequency and REFF  is the receiver-generated 
local reference frequency. When the receiver and the transmitter use the same frequency 
standards, the receiver-generated reference frequency, FREF , will be equal to the transmit 
frequency, FT . For Galileo tracking, there will be small difference between the frequency 
standards used by the receiver and the transmitter. The frequency difference due to this 
difference is modeled as the receiver reference frequency bias. Even when the two frequency 
standards are the same, the frequency difference obtained from Equation (5.3.7-1) does not 
represent a pure Doppler effect since it includes contributions from non-Doppler sources such as 
the atmospheric refraction effects, which are not modeled in GEONS. 

Calculation of the Galileo Doppler measurement follows the same procedure that is discussed in 
Section 5.3.2 for the GPS/WAAS Doppler. The desired instantaneous Doppler shift is obtained 
using Equations (5.3.7-2) and (5.3.7-3), where the position and velocity of the receiving antenna 
are computed using Equation (3.2-61). Note that unlike GPS the Galileo satellite frequency is not 
adjusted to compensate for the relativistic bias experienced by a receiver located on the ground. 
This bias is absorbed in the total apparent frequency offset of the satellite clock given by af1 in 
Equation (3.3.9.2). 

  

( )
,

2 2

2

2

( ) ( ) 1( )
2

1 1                        ( )

j

j jj

j

j

n i n
GAL kn nR k

D k T GAL GALGAL

GAL
d kn

GAL

t d tF t F t R R
c c c

b t
c R R

ρ
δ

µ

  = − + − + −  
 

 
 + − +
 
 

  

 (5.3.7-2)* 



 
 

 5-46                                                        
 

where 
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In this equation, the subscript j indicates the Galileo SV number; and the transmit frequency, FT , 
is assumed to be known (i.e., 1575.42 Mhertz for the E1 carrier, 1176.45 Mhertz for the E5a 
carrier, and 1207.14 Mhertz for the E5b carrier for the Galileo Open Service). Doppler biases, 
 jGAL

db , can be estimated to absorb the combined effects of the ionospheric and Galileo SV 
ephemeris and clock errors. One Doppler bias is estimated for each Galileo SV tracked by the 
local receiver. 

jGALtδ  is computed using the Galileo SV clock correction parameters discussed in 
Section 3.3.9. 

Note that the equations for the partial derivatives of the Galileo Doppler measurements are the 
same as for the GPS Doppler measurements. From Equation (5.3.7-2), the following nonzero 
partial derivatives of the Doppler shift are obtained if the state vector consists of absolute states 
for both the local and remote satellites: 
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The state partial derivatives of  ( )ρ j kt on the right-hand side of Equation (5.3-46) can be obtained 
using the following equations:  
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The superscript T on the right-hand sides of Equations (5.3.7-7) and (5.3.7-8) denote the 
transpose, indicating that these partial derivatives are given as row vectors. Also note that 
Equation (5.3.7-7) is an approximation in which the dependence of ′tk , the argument of ( )

jGAL kR t′  

and ( )
jGAL kR t′ , on R tn

k( )  is ignored.  

If the state vector includes relative states for the nonlocal satellites, the associated nonzero 
Doppler measurement partial derivatives are as follows: 
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5.3.8  Galileo Integrated Carrier Phase Measurement Model and Associated Partial 
Derivatives  

This section provides an expression that is used to compute the integrated carrier beat phase 
measurement in terms of the Galileo and receiver states and the corresponding times. The carrier 
beat phase measurement is formed in a GNSS receiver as the difference between the phase of the 
local receiver oscillator and the phase of the received carrier signal. The measurement is 
ambiguous with respect to the number of integer cycles ( ( )j

n

GAL
acqN tϕ ) at the time ( acqt ) when the 

signal is first acquired from each Galileo SV. At any epoch other than the initial acquisition 
epoch, the receiver measures the fractional phase difference and the number of integer cycles 
accumulated since that epoch. Prior to processing in GEONS, the resulting raw integrated carrier 
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beat phase observation (in cycles), ( ) ( )n

obs j

UTCn
GAL Rtϕ , is multiplied by the wavelength of the carrier 

( TC Fc /=λ , where TF = 1575.42 Mhertz for the E1 carrier, 1176.45 Mhertz for the E5a carrier, 
and 1207.14 Mhertz for the E5b carrier for the Galileo Open Service) to scale the carrier phase 
observation to meters: 

 C( ) ( ) ( ) ( )n n

obs j obs j

UTC UTCn n
GAL R GAL Rt tλ ϕΦ =  (5.3.8-1) 

The integrated carrier beat phase measurement (in meters), ( )
j

n
GAL ktΦ , can be modeled as 

follows: 

( ), ,( ) ( ) ( ) ( ) ( ) ( ) ( )jn

j j j n j

GALUTCn n i n i n n SF SF
GAL R GAL k GAL k R R k I k Iono k k GALj GALt t t t b t t t b t c t tϕρ ρ γ δρ δ δΦ = − ∆ + − + − + (5.3.8-2)* 

where the offset of the true UTC receive time for spacecraft n measurements from the UTC filter 
state epoch is given by 

 ( ) ( )[ ] ( ) ( )
c
tbtttttttttt k

n
RRC

Rk
n
R

RC
Rk

UTC
R

RC
R

RC
Rk

n
R

nnnnn
)()()()()( +−=δ+−=−+−=∆   (5.3.8-3)* 

Note that in Release 2.7 and prior releases, n
Rt∆  is implemented assuming that nRC

Rk tt )(= ; this is 
corrected in Release 2.8. 

In the above equations, the superscript n indicates the nth receiver, the superscript i indicates the 
ith antenna, and subscript j indicates the jth Galileo satellite.  The time tag tk is the measured 
receive time of the kth measurement, and kt ′  is the signal transmission time.  The geometrical 
range ( ,

j

n i
GALρ ) and range rate ( ,

j

n i
GALρ ) are computed as described in Section 5.3.6. The receiver 

clock bias, b tR
n ( ) , is in meters.  The correction due to the ionospheric refraction, )( k

SF
Iono tδρ , can 

be modeled using the algorithm defined in Section 5.3.5 and the ionospheric scale factor, )( kI tγ , 
can be estimated. The terms GALjtδ  and 

j

SF
GALtδ  are the Galileo satellite time offset from Galileo 

system time and group delay correction for single-frequency users, defined in Equations 3.3.9-2 
and 3.3.9-4 through 3.3.3-9.5, respectively. The term ( ) ( )j j

n n

GAL GAL
k C acqb t N tϕ ϕλ=  is the estimated 

carrier phase bias between Galileo satellite j and receiver n at the carrier phase acquisition time 
( acqt ), scaled to meters.  

The carrier phase bias ( )j

n

GAL
kb tϕ  is different for each acquisition of a Galileo satellite by a 

receiver. The carrier phase bias is reinitialized at the start of each new acquisition based on the 
difference between the predicted pseudorange ( )

j

n
GAL acqtℜ  (defined in Equation 5.3.6-3) and the 

observed integrated carrier phase at the acquisition time acqt : 

  ( ) ( ) ( ) ( )j

n j j

GAL n n
k acq obs GAL acq GAL acqb t t t tϕ = = Φ −Φ  (5.3.8-4)*  

Similarly, the carrier phase bias variance is reinitialized at the start of each new acquisition to the 
predicted carrier phase residual variance computed as described in Step 3 in Section 2.3.1.  
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The matrix (a row vector in this case) of partial derivatives of the integrated carrier beat phase 
measurement with respect to X tk( )  is defined as follows: 

  [ ] ( )

( )
( )

( )
j

n
GAL kj

n
GAL k

k t
k

t
H t

X t

∂

∂Φ

Φ
≡  (5.3.8-5) 

The partial derivatives with respect to those parameters that are not explicitly included in the 
measurement equation will be zeros. The following are the only nonzero elements if the state 
vector consists of absolute states for both the local and remote satellites:  
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where the partial derivatives of the geometrical range ( ,
j

n i
GALρ ) and range rate ( ,

j

n i
GALρ ) are 

computed as defined in Equations 5.3.6-3 through 5.3.6-5 in Section 5.3.6. 

If the state vector includes relative states for the nonlocal satellites, the associated nonzero 
pseudorange measurement partial derivatives are as follows: 
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5.4  Singly Differenced GPS/WAAS Measurement Models 
The computational algorithms for singly differenced GPS/WAAS pseudorange, Doppler, and 
carrier phase measurements are discussed in this section. The general form of the measurement 
model is as follows: 

 𝑌𝑌𝑘𝑘 = 𝐺𝐺 [𝑋̄𝑋(𝑡𝑡𝑘𝑘), 𝑡𝑡𝑘𝑘] + 𝜀𝜀  (5.4-1) 

where tk is the true measurement time, referenced to UTC, and 𝜀𝜀 is the measurement error. It is 
assumed that 𝜀𝜀 has a zero-mean Gaussian distribution with standard deviation σ, which is 
commandable for each measurement type. The measurement standard deviation is typically 
determined through analysis of the random component of the measurement error as part of the 
filter tuning process. 

For GEONS, the estimation state vector, X t( )  includes the receiver position vector, R ; velocity 
vector, R ; optional corrections to the drag and solar radiation pressure coefficients, ∆CD and ∆CR; 
GPS receiver time bias, bR; and GPS receiver bias rate, d R  for one or more receivers. For ground-
based receivers, corrections to the drag and solar radiation pressure coefficients are not estimated. 
There are no measurement biases associated with the singly differenced pseudorange and Doppler 
measurements. When singly differenced integrated carrier phase measurements are processed, a 
singly differenced integer ambiguity bias is estimated for each GPS SV/local receiver/remote 
receiver configuration. 

Section 5.4.1 addresses processing of the pseudorange, Doppler, and carrier phase measurements 
obtained from the GPS receiver to produce the singly differenced measurements. The measurement 
model for the singly differenced pseudorange measurements is presented in Section 5.4.2. The 
singly differenced Doppler measurement model is defined in Section 5.4.3. The singly differenced 
carrier phase measurement model is defined in Section 5.4.4. 

5.4.1 Singly Differenced Measurement Preprocessing 
The preprocessing of standard GPS/WAAS pseudorange, Doppler, and carrier phase 
measurements to form the singly differenced measurements is discussed in this section. The singly 
differenced pseudorange measurements are formed as follows using two pseudorange 
measurements from the same GPS SV/WAAS GEO measured by GPS receivers on the local 
receiver (1) and on one nonlocal receiver (n): 

 ( ) ( ) ( )n
jWGobsjWGobs

n

jWGobs /
1

/
,1

/ ℜ−ℜ=ℜ∆  (5.4-2) 

where 

 ( ) n

jWGobs
,1

/ℜ∆  = singly differenced pseudorange measurement from the jth GPS SV/WAAS 

GEO between the local receiver 1 and the nth nonlocal receiver 

 ( )1 / jWGobsℜ  = Full observed pseudorange from the jth GPS SV/WAAS GEO to local 

receiver 1 
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 ( )n
jWGobs /ℜ  = Full observed pseudorange from the jth GPS SV/WAAS GEO to the nth 

nonlocal receiver 

The singly differenced Doppler measurements are formed as follows using two Doppler 
measurements from the same GPS SV/WAAS GEO measured by GPS receivers on the local 
receiver (1) and on one nonlocal receiver (n): 

 ( ) ( ) ( )n
jWGobsDjWGobsD

n

jWGobsD FFF
/

1

/

,1

/
−=∆  (5.4-3) 

where 

 ( ) n

jWGobsDF ,1

/
∆  = singly-differenced Doppler measurement from the jth GPS SV/WAAS GEO 

between the local user receiver 1 and the nth nonlocal receiver 

 ( )1
/ jobs WGDF  = Observed Doppler from the jth GPS SV/WAAS GEO to local receiver 1 

 ( )n
jWGobsDF

/
 = Observed Doppler from the jth GPS SV/WAAS GEO to the nth nonlocal 

receiver 

The singly differenced carrier phase measurements are formed as follows using two carrier phase 
measurements from the same GPS SV/WAAS GEO measured by GPS receivers on the local 
receiver (1) and on one nonlocal receiver (n): 

 ( ) ( ) ( )n
jWGobsjWGobs

n

jWGobs /
1

/
,1

/ Φ−Φ=∆Φ  (5.4-3a) 

where 

 ( ) n

jWGobs
,1

/∆Φ  = singly differenced carrier phase measurement from the jth GPS SV/WAAS 

GEO between the local receiver 1 and the nth nonlocal receiver  

 ( )1 / jWGobsΦ  = observed carrier phase from the jth GPS SV/WAAS GEO to local receiver 1 

(scaled to meters) 

 ( )n
jWGobs /Φ  = observed carrier phase from the jth GPS SV/WAAS GEO to the nth nonlocal 

receiver (scaled to meters) 

5.4.2  Singly Differenced GPS/WAAS Pseudorange Measurement Model and 
Associated Partial Derivatives 

This section provides the algorithm used to model the observed singly differenced pseudorange 
given by Equation (5.4-2) in terms of the GPS/WAAS and receiver states and the corresponding 
times. The geometric pseudoranges and instantaneous geometric range rates from GPS SV/WAAS 
GEO j to antenna i on local receiver 1 and antenna m on nonlocal receiver n are defined as follows: 
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where 

 n
TT tt ,1  = Transmission times for signals received at time Rt  at receiver 1 and  

receiver n, respectively.  

GEONS computes the geometric pseudoranges and instantaneous geometric range rates using the 
algorithms provided in Sections 5.3.2 and 5.3.3, respectively. 

The predicted singly differenced pseudorange measurement is computed as follows 

        [ ])()(-)(-)()(-)()( ,
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+∆ρρ+∆ρρ=ℜ∆   (5.4-6)* 

where the offset of the true UTC receive time for spacecraft n measurements from the UTC filter 
state epoch is given by 
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Note that in Release 2.7 and prior releases, n
Rt∆  is implemented assuming that nRC

Rk tt )(= . This is 
corrected in Release 2.8. 

Note that, if the GPS receiver resets the clock bias whenever it exceeds ±0.5 milliseconds, )(~
k

n
R tb  

defined in Equation (4.3-2a) should be used above instead of )( k
n
R tb .  

The row vector of partial derivatives of the singly differenced pseudorange measurement with 
respect to the estimation state vector, X tk( ) , is defined as follows: 
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The partial derivatives with respect to those parameters that are not explicitly included in the 
differenced pseudorange measurement equation will be zeros.  The following are the only nonzero 
partial derivatives if the state vector consists of absolute states for both the local and remote 
satellites, where 1>n : 
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The partial derivatives of the geometric range and range-rate are defined in Equations (5.3-28b) 
through (5.3-28d). 

If the state vector includes relative states for the nonlocal satellites, the associated nonzero 
pseudorange measurement partial derivatives are as follows, where 1>n : 
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5.4.3  Singly Differenced GPS/WAAS Doppler Measurement Model and Associated 
Partial Derivatives  

This section provides the algorithm used to model the observed singly differenced Doppler given 
by Equation (5.4-3) in terms of the GPS/WAAS and receiver states and the corresponding times. 
The instantaneous geometric range rate from GPS SV/WAAS GEO j to local receiver 1 and 
nonlocal receiver i are computed as follows using the algorithms provided in Section 5.3.3 
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where the line-of-sight unit vector, mn
jWG

,
/ρ̂ , defined by 
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The singly differenced Doppler measurement is then computed as follows 
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The computation of the state partial derivatives of the Doppler shift is presented below. The 
following are the nonzero elements of the vector of measurement partial derivatives if the state 
vector consists of absolute states for both the local and remote satellites, where 1>n : 
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The state partial derivatives of )(,
/ k
mn

jWG tρ on the right-hand side of Equations (5.4-15) and (5.4-16) 

are computed using Equations 5.3-28c and 5.3-28d, where 1>n . 

If the state vector includes relative states for the nonlocal satellites, the associated nonzero Doppler 
measurement partial derivatives are as follows, where 1>n : 
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5.4.4  Singly Differenced GPS/WAAS Carrier Phase Measurement Model and 
Associated Partial Derivatives 

This section provides the algorithm used to model the observed singly differenced carrier phase 
given by Equation (5.4-3a) in terms of the GPS/WAAS and receiver states and the corresponding 
times and defines the associated partial derivatives. 

The predicted singly differenced carrier phase measurement is computed as follows 
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where the offset of the true UTC receive time for spacecraft n measurements from the UTC filter 
state epoch is given by 
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Note that in Release 2.7 and prior releases, n
Rt∆  is implemented assuming that nRC

Rk tt )(= . This is 
corrected in Release 2.8. 

Note that, if the GPS receiver resets the clock bias whenever it exceeds ±0.5 milliseconds, )(~
k

n
R tb  

defined in Equation (4.3-2a) should be used above instead of )( k
n
R tb .  

The geometric pseudoranges and instantaneous geometric range rates from GPS SV/WAAS GEO 
j to local receiver 1 ( )(),( ,1

/
,1

/ k
i

jWGk
i

jWG tt ρρ  ) and nonlocal receiver n ( )(),( ,
/

,
/ k

mn
jWGk

mn
jWG tt ρρ  ) are 

defined in Equations (5.4-4) and (5.4-5). 

The singly differenced carrier phase bias )(/
1 k
WG tb j

nφ∆  is the estimated difference between the carrier 
phase bias between GPS SV/WAAS GEO j and receiver 1 and the carrier phase bias between GPS 
SV/WAAS GEO j and receiver i at the carrier phase acquisition time ( acqt ), scaled to meters. The 
singly differenced carrier phase bias is different for each acquisition of a GPS SV/WAAS GEO by 
a receiver. Therefore, )(/

1 k
WG tb j

nφ∆  is reinitialized at the start of each acquisition based on the 

difference between the predicted singly differenced pseudorange )(,1
/ acq

n
jWG tℜ∆  (defined in 

Equation 5.4-6) and the observed singly differenced carrier phase at the acquisition time acqt : 
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Similarly, the singly differenced carrier phase bias variance is reinitialized at the start of each new 
acquisition to the predicted singly differenced carrier phase residual variance computed as 
described in Step 3 in Section 2.3.1. 

The row vector of partial derivatives of the singly differenced carrier phase measurement with 
respect to the estimation state vector, X tk( ) , is defined as follows: 
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The partial derivatives with respect to those parameters that are not explicitly included in the 
differenced carrier phase measurement equation will be zeros.  The following are the only nonzero 
partial derivatives if the state vector consists of absolute states for both the local and remote 
satellites, where 1>n : 
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The partial derivatives of the geometric range and range-rate are defined in Equations (5.3-28b) 
through (5.3-28d). 

If the state vector includes relative states for the nonlocal satellites, the associated nonzero singly 
difference carrier phase measurement partial derivatives are as follows, where 1>n : 
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5.5 Cross-Link Measurement Models 
The computational algorithms for the one-way and round-trip cross-link measurement types are 
discussed in this section. The general form of the measurement model is as follows: 

 𝑌𝑌𝑘𝑘 = 𝐺𝐺 [𝑋̄𝑋(𝑡𝑡𝑘𝑘), 𝑡𝑡𝑘𝑘] + 𝜀𝜀  (5.5-1) 

where UTC
kt  is the true measurement time, referenced to UTC, and 𝜀𝜀 is the measurement error. 

For GEONS, the estimation state vector, X t( )  includes the receiver position vector, R ; velocity 

vector, R ; optional corrections to the drag and solar radiation pressure coefficients, ∆CD and ∆CR; 
GPS receiver bias, bR; and GPS receiver drift, d R , for one or more receivers and tracking-system 
dependent biases. For ground-based receivers, corrections to the drag and solar radiation pressure 
coefficients are not estimated. 

The measurement model for the one-way pseudorange measurements from a remote transmitter to 
a local receiver is presented in Section 5.5.1. The one-way Doppler measurement model is defined 
in Section 5.5.2. The round-trip crosslink range and Doppler measurement models are defined in 
Sections 5.5.3 and 5.5.4, respectively.  

5.5.1   One-Way Cross-Link Pseudorange Measurement Model and Associated 
Partial Derivatives 

The one-way cross-link pseudorange is obtained by measuring the signal transit time interval, 
which is defined as 

 ∆τ ≡ −t tR
RC

T
TC( ) ( )  (5.5-2) 

where tR
RC( )  denotes the receive time measured by the receiver clock and tT

TC( )  is the transmit time 
measured by the transmitter clock. The cross-link pseudorange ℜ is then defined as the speed of 
light (c) times the time interval ∆τ given by Equation (5.5-2): 

 ℜ ≡CL c∆τ  (5.5-3) 

Equation (5.5-2) can be written in terms of the true UTC times UTC
T

UTC
R tt  and  corresponding to 

t tR
RC

T
TC( ) ( ) and  and the respective receiver clock offset terms δtR and δtT as follows: 
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 (5.5-4) 

where  

 UTC
T

UTC
R ttt −≡∆   (5.5-5) 

The definition of the one-way crosslink pseudorange can be written as  
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 )(1
TR

CL ttctc δ−δ+∆=ℜ  (5.5-6) 

The time interval ∆t  appearing in the first term on the right-hand side of Equation (5.5-6) 
represents the true signal travel time from the transmitting spacecraft to the receiver. The first term 
on the right-hand side of Equation (5.5-6) can be expressed as 

 hwionotc ρδ+ρδ+ρ=∆  (5.5-7) 

with 
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T

T
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R
A tRtR

im
−=ρ  (5.5-8) 

In the above equation, ρ denotes the geometric distance between the position of the transmitting 
satellite’s antenna at the true signal transmit time UTC

Tt  and the position of the receiver’s antenna 
at the true signal receive time  UTC

Rt . The second term represents the time delay due to ionospheric 
refraction effects and the third term represents a (receiver and/or transmitter) hardware-related 
delay. In Equation (5.5-8), the position of the transmitting satellite’s antenna (i) at the time of 
signal transmission is denoted by )( UTC

T
T
A tR

i
, and the position of the receiving antenna (m) at the 

time of the signal reception is denoted by )( UTC
R

R
A tR

m
.  

Combining Equations (5.5-6) and (5.5-7), the following expression for the cross-link pseudorange 
is obtained:  

 ( )TR
CLCL ttcb δ−δ++ρ=ℜ ρ

11   (5.5-9) 

with 
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−=ρ   (5.5-10) 

 hwiono
CLb δρ+δρ=ρ

1   (5.5-11) 

where 1CLbρ  is the cross-link pseudorange bias exclusive of clock bias effects, an optional element 
of the estimated state vector defined in Section 4.3.  

The following Newton-Raphson iterative scheme is used to solve for the signal transmit time, tT: 
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T
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R
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where 

 tT n, +1  = (n+1)th  approximation for Tt  

 tT n,  = nth  approximation for Tt  

 Rt  = signal reception time at the receiving spacecraft 



 
 

5-62 
 

 

The iterative solution of the above equation is started by setting t tT R,0 = , such that 
R t R tT

T
T

R( ) ( ),0 = .  

The position of the transmitter at time tT n,  is computed using linear interpolation. This iterative 

scheme is continued until the condition t tT n T n, ,+ − ≤1 ε  is satisfied, where ε is a small tolerance 
(nominally equal to 10-8 second). 

Generalizing Equations (5.5-9) through (5.5-10) to a formation of NS satellites yields 

 ( )  ;,..,1;,..,1;)()()( 11 njNjNnttctbtt SS
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T
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R

UTC
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CLUTC
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where satellite n is the receiving satellite and satellite j is the transmitting satellite. The position of 
the j transmitting satellites can either be estimated or obtained from an ephemeris message 
provided via the cross-link communications signal. The cross-link pseudorange bias, 1 CL

j
bρ , is 

defined in Section 4.3. The position of each cross-link transmitting and receiving antenna is 
computed using Equation 3.2-61 in Section 3.2.8.  In Equation 3.2-61, the position of the receiving 
satellite is always a component of the estimated state vector and the position of the transmitting 
satellite can be either a component of the estimated state vector or a state vector that is either 
propagated or extracted from a ephemeris file (ground processing only). The transmitter and 
receiver clock offsets are related to the time bias estimates for the transmitting and receiving 
satellites at UTC

Rt  as follows: 
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The receiver timetags each crosslink measurement using the measured receive time, )(RC
Rk tt = . To 

account for the offset of the measured receive time from the true UTC receive time, Rk
UTC
R ttt δ−=

, Equation (5.5-14) is linearized about the measured receive time: 
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where 
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where kt′  is the signal transmission time computed based on the measured receive time. The 
position and velocity of each cross-link transmitting and receiving antenna are computed using 
Equation 3.2-61 in Section 3.2.8. Using this approximation, Equation (5.5-13) can be rewritten in 
terms of quantities computed at the measured receive time: 
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where the offset of the true UTC receive time for spacecraft n measurements from the UTC filter 
state epoch is given by 

 ( ) ( )[ ] ( ) ( )
c
tbtttttttttt k

n
RRC

Rk
n
R

RC
Rk

UTC
R

RC
R

RC
Rk

n
R

nnnnn
)()()()()( +−=δ+−=−+−=∆   (5.5-14g)* 

Note that in Release 2.7 and prior releases, n
Rt∆  is implemented assuming that nRC

Rk tt )(= . This is 
corrected in Release 2.8. The optional cross-link pseudorange bias state, 1 CL

j
bρ , and associated 

covariance are reset when a programmable time lapse is detected in the provided measurement. 

In Equation 5.5-14f, the additional bias term )(2 ktb  is a correction developed in Reference 47 to 
account for second-order effects that can be significant prior to convergence of the absolute filter 
states. Optionally, this second-order bias is computed as follows  
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The 3x3 relative covariance submatrix of the relative position of satellite n with respect to satellite 
j is defined as 
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If absolute states are being estimated, this submatrix is computed using components of the absolute 
covariance matrix  

 [ ] [ ] [ ] [ ]jn
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posk PPPPP −−+=,

,  (5.5-14j)* 

where [ ]nj
posP  is the 3x3 submatrix of the full absolute predicted covariance matrix [ ]P  

corresponding to the covariance of the satellite n position and the satellite j position. In the case 
where satellite j is not being estimated (i.e. its location is provided in a precise ephemeris), 

[ ]nn
pos

njrel
posk PP =,

, .  
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If relative states are being estimated, the njrel
poskP ,

,  submatrix is computed using components of the 

relative covariance matrix [ ]relP  
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poskP ,  is the 3x3 submatrix of the full relative predicted covariance matrix [ ]relP  

corresponding to the covariance of the satellite n relative position and the satellite j relative 
position. 

The 3x3 njD  matrix is given by 
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where the range vector, geometric range, and range unit vector are given by 
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When the second-order correction term )(2 ktb  is included in the predicted measurement, a second-
order variance correction term kB  is also included in the cross-link range measurement variance 
calculation such that  

 kk
T
kkkk BRHPHV ++=  (5.5-14p)* 
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This is done by augmenting the value of a0 used to start the recursive computation of kV  
discussed in Section 2.3, such that: 

 kk BRa +=0  (5.5-14q)* 

where the second order variance term Bk for a cross-link range measurement is given by  
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The matrix (a row vector in this case) of partial derivatives of the pseudorange measurement with 
respect to the estimation state vector, X tk( ) , is defined as follows when X tk( )  consists of NS 
satellite state vectors: 
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The following are the nonzero elements of the partial derivative vector when the estimation state 
vector consists of absolute state vectors for the receiving satellite n and the transmitting satellite j, 

omitting terms of )
c
1O( 2  and higher: 
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If the estimation state vector consists of an absolute state for the local satellite (1) and relative 
states for the remote satellites (>1), where n and j are >1 -- Note that this option is not implemented 
in GEONS 3.0: 
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The following are the nonzero partial derivatives of the one-way crosslink pseudorange 

measurement, omitting terms of )
c
1O( 2  and higher: 
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Computations of measurements and associated partial derivatives are performed using state vectors 
given in the mean of J2000.0 coordinate system. 



 
 

5-68 
 

 

5.5.2  One-Way Cross-Link Averaged Doppler Measurement Model and 
Associated Partial Derivatives  

An instantaneous Doppler shift between transmitting satellite j and receiving satellite n can be 
defined as 

 )()()(1 tFtFtF REFR
CL

Dnj
−=   (5.5-18) 

where 

)(tFR = Doppler-shifted cross-link carrier frequency  

)(tFREF = receiver-generated local reference frequency 

When the receiver and the transmitter use the same frequency standards, the receiver-generated 
reference frequency, FREF , will be equal to the transmit frequency, FT.  For cross-link tracking, 
this is not the case. There will be small difference between the two frequency standards used by 
the receiver and the transmitter.  

The procedures to compute the instantaneous (not implemented in Release 2.2) and averaged one-
way cross-link Doppler shift are presented below. The first term on the right-hand side of Equation 
(5.5-18), FR , the instantaneous Doppler shifted carrier frequency observed at the receiver, can be 
represented by the following equation: 
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where 

′FT  = true cross-link transmit frequency 

njρ  = time rate of change of the light-time-corrected range from transmitting antenna i on  
satellite j to receiving antenna m on satellite n [defined in Equation (5.5-14d)] 

atmFδ  = frequency perturbation due to the atmospheric refraction effects 

The second term on the right-hand side of Equation (5.5-18), )(tFREF , the receiver-generated 
reference frequency, can be written as 
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where )(td n
R  is the receiver’s time bias rate. In Equation (5.5-20), FT denotes the nominal transmit 

frequency, which may be different from the actual transmit frequency, ′FT , used in Equation (5.5-
19),  
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where )(td j
R  is the transmitter’s time bias rate. Using Equations (5.5-19) through (5.5-21), 

Equation (5.5-18) can be written as  
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Neglecting terms of )
c
1O( 2  and higher, the instantaneous one-way Doppler shift reduces to 
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In the case of receivers that provide an instantaneous Doppler shift measurement, the instantaneous 
Doppler shift from antenna i on the jth transmitter to antenna m on the receiving satellite n is 
modeled as follows: 
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where 1CL
d j

b  is the instantaneous one-way cross-link Doppler bias. 

In the case of receivers that average the instantaneous Doppler shift over an interval ∆T, 
nominally equal to 10 seconds, the resulting averaged one-way crosslink Doppler shift 
measurement from antenna i on the jth transmitter to antenna m on the receiving satellite n is 
modeled as follows:  
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where  
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and )( k
nj tρ , the range between the transmitting and receiving antennas, is defined in Equation 

(5.5-14c) and the optional one-way cross-link Doppler bias, 1CL
d j

b , can be an estimated.  
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The optional cross-link Doppler bias state, 1 CL
j

bρ , and associated covariance are reset when a 
programmable time lapse is detected in the provided measurement. In the above equations, satellite 
n is the receiving satellite and satellite j is the transmitting satellite. The position of the j 
transmitting satellites can either be estimated or obtained from an ephemeris message provided via 
the cross-link communications signal. 

The computation of the nonzero state partial derivatives of the averaged cross-link Doppler shift 
is presented below. From Equation (5.5-26), the following equations are obtained for the receiving 
satellite for the case where X tk( )  consists of NS absolute state vectors for both the local (1) and 
remote satellites: 
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and for the j transmitting satellites being estimated, where nj ≠  
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The partial derivatives of the range in Equations (5.5-29) through (5.6-36) are defined in Equation 
(5.5-16) in Section 5.5.1. These derivatives are evaluated at the current measurement timetag, tk, 
and at the time tk−∆T, where ∆T is the Doppler averaging interval. The partial derivatives of the 
measurement with respect to the atmospheric drag coefficient and solar radiation pressure 
coefficient corrections in Equations (5.5-31), (5.5-32), (5.5-35) and (5.5-36) are computed only if 
these state parameters are being estimated. 

The matrix of partial derivatives of the position vector at time tk−∆T with respect to the estimation 
state vector in Equations (5.5-29) through (5.6-34) is related to the components of the state 
transition matrix defined by Equation (4.4-1a) in Section 4.4.1 as follows 

 ( ) 3,2,1;3,2,1)(
)(

 ===






 ∆−
ji

k
n
k

n

W
tR

TtR
∂

∂
 (5.5-38)* 

 ( ) 6,5,4;3,2,1
)(

)(
 ===









 ∆−
ji

k
n
k

n

W
tR

TtR
∂

∂
 (5.5-38a)* 

 ( ) 7;3,2,1
)(

 ===







∆

∆−
jin

D

k
n

W
C

TtR
∂

∂  (5.5-38b)* 

 ( ) 8;3,2,1
)(

 ===







∆

∆−
jin

R

k
n

W
C

TtR
∂

∂  (5.5-38c)* 

where 



 
 

5-72 
 

 

           

1

3131

3131

1000
0100

)(
)(

)(
)(

)(
)(

)(
)(

)(
)(

)(
)(

)(
)(

)(
)(

 

−



























∆−∆∆−∆∆−∆−

∆−∆∆−∆∆−∆−

=

xx

xx

k
n
R

k
n

k
n
D

k
n

k
n

k
n

k
n

k
n

k
n
R

k
n

k
n
D

k
n

k
n

k
n

k
n

k
n

TtC
tR

TtC
tR

TtR
tR

TtR
tR

TtC
tR

TtC
tR

TtR
tR

TtR
tR

W
∂

∂
∂

∂

∂

∂
∂

∂

∂
∂

∂
∂

∂

∂
∂

∂









 (5.5-38d)* 

If the atmospheric drag coefficient correction and/or the solar radiation pressure coefficient 
correction are not estimated, the matrix W does not include the columns associated with these state 
components. 

If the estimation state vector consists of an absolute state for the local satellite (n, j=1) and relative 
states for the remote satellites (n, j>1), the following are the nonzero partial derivatives of the 
crosslink Doppler measurement -- Note that this option is not implemented in GEONS 3.0: 
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The partial derivatives of the measurement with respect to the atmospheric drag coefficient and 
solar radiation pressure coefficient corrections in Equations (5.5-31), (5.5-32), (5.5-35) and (5.5-
36) are computed only if these state parameters are being estimated. 

The partial derivatives of the relative position vector at the time tk−∆T with respect to the estimated 
relative state vector components in Equations (5.5-30a) through (5.5-36a) are related to the 
components of the inverse of the state transition matrix defined by Equation (4.4-1b) in Section 
4.4.1 as follows: 
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If the atmospheric drag coefficient correction and/or the solar radiation pressure coefficient 
correction are not estimated, the state transition matrix does not include the columns associated 
with these state components. 
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5.5.3   Two-Way Cross-Link Range Measurement Model and Associated Partial 
Derivatives 

The two-way cross-link range is obtained by measuring the round-trip signal transit time from the 
source satellite n to target satellite j and back to satellite n. This interval is defined as 

 n
T

n
R tt −≡τ∆  (5.5-39) 

where n
Rt  denotes the receive time measured by the receiver clock on satellite n and n

Tt  is the 
transmit time measured by the clock on source satellite n. The two-way cross-link range 
measurement is defined as one-half of the speed of light (c) times the time interval ∆τ: 
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where 
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and 2CLbρ  is the round-trip cross-link range bias exclusive of clock bias effects, an optional element 
of the estimated state vector defined in Section 4.3.  
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The offset of the true UTC receive time for spacecraft n measurements from the UTC filter state 
epoch is given by 
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Note that in Release 2.7 and prior releases, n
Rt∆  is implemented assuming that nRC

Rk tt )(= . This is 
corrected in Release 2.8. The optional cross-link range bias state, 2 

j

CLbρ , and associated covariance 
are reset when a programmable time lapse is detected in the provided measurement. The optional 
bias term )(2 ktb , which is a correction developed in Reference 47 to account for second-order 
effects that can be significant prior to convergence of the absolute filter states, is computed as 
discussed in Section 5.5.1. 

The initial transmission time from satellite n ( kt ′′ ), the intermediate receive and transmission times 
(assumed to be equal) from satellite j ( kt′ ), and the associated transmitter and receiver positions 
and velocities are computed using the Newton Ralphson iterative scheme defined in Section 5.5.1 
(Equation 5.5-12) to solve for kt′  given kt  and then for kt ′′  given kt′ . The position of each cross-
link transmitting and receiving antenna is computed using Equation 3.2-61 in Section 3.2.8.  In 
Equation 3.2-61, the position of the satellite n is always a component of the estimated state vector 
and the position of the intermediate satellite j can be either a component of the estimated state 
vector or a state vector that is either propagated or extracted from an ephemeris file (ground 
processing only). 

In Equation 5.5-43, the additional bias term )(2 ktb  is a correction developed in Reference 47 to 
account for second-order effects that can be significant prior to convergence of the absolute filter 
states. This second-order bias is computed as defined in Equations 5.5-14g through 5.5-14o in 
Section 5.5.1. When the optional second-order correction term )(2 ktb  is included in the predicted 
measurement, a second-order variance correction term kB  is also included in the cross-link range 
measurement variance calculation such that  

 kk
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The second-order variance correction kB  is computed using Equation 5.5-14r in Section 5.5.1. 

The following are the nonzero elements of the partial derivative vector when the estimation state 
vector consists of absolute state vectors for the receiving satellite n and the satellite j, omitting 

terms of )
c
1O( 2  and higher: 
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If the estimation state vector consists of an absolute state for the local satellite (1) and relative 
states for the remote satellites (>1), where n and j are >1 -- Note that this option is not implemented 
in GEONS 3.0: 
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The following are the nonzero partial derivatives of the round-trip crosslink range measurement, 

omitting terms of )
c
1O( 2  and higher 
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5.5.4   Two-Way Cross-Link Averaged Doppler Measurement Model and 
Associated Partial Derivatives  

The instantaneous two-way cross-link Doppler is obtained by measuring the round-trip signal 
frequency shift from source satellite n to target satellite j and back to satellite n.  

 )()()(2 tFtFtF REFR
CL

Dnj
−=   (5.5-76) 

where 

)(tFR = Doppler-shifted cross-link carrier frequency  

)(tFREF = receiver-generated local reference frequency 
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For two-way measurements, satellite n generates both the transmitted and local reference 
frequencies. Therefore, the receiver-generated reference frequency, FREF , will be equal to the true 
transmit frequency, ′FT .   

The first term on the right-hand side of Equation (5.5-76), FR , the instantaneous Doppler shifted 
carrier frequency observed at the receiver, can be represented by the following equation: 
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where 

′FT  = true cross-link transmit frequency from satellite n 
nj

1ρ  = time rate of change of the light-time-corrected range from transmitting antenna m 
on satellite n to receiving antenna i on target satellite j [defined in Equation (5.5-
46)] 

nj
2ρ  = time rate of change of the light-time-corrected range from transmitting antenna i on 

target satellite j to receiving antenna m on satellite n [defined in Equation (5.5-47)] 

atmFδ  = frequency perturbation due to the atmospheric refraction effects 

The true transmit frequency, ′FT , is related to the nominal transmit frequency, FT, as follows 
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Using Equation (5.5-78), Equation (5.5-76) can be written as  
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Neglecting terms of )
c
1O( 2  and higher, the instantaneous two-way Doppler shift reduces to 
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In the case of receivers that provide an instantaneous Doppler shift measurement, the instantaneous 
two-way Doppler shift from antenna i on the jth transmitter to antenna m on the receiving satellite 
n would be modeled as follows -- note that this model is not implemented in GEONS 3.0: 
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In the case of receivers that average the instantaneous Doppler shift over an interval ∆T, nominally 
equal to 10 seconds, the resulting averaged two-way crosslink Doppler shift measurement is 
modeled as follows:  
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where 2 ( )CL
d kb t  is the averaged two-way Doppler measurement bias and 
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 2 2 2( ) ( ) ( )nj nj nj
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The optional cross-link Doppler bias state, 2 CL
db , and associated covariance are reset when a 

programmable time lapse is detected in the provided measurement. 

For the source satellite n for the case where X tk( )  consists of NS absolute state vectors for both 
the local (1) and remote satellites: 

 
𝜕𝜕𝐹𝐹𝐷𝐷𝑛𝑛𝑛𝑛

𝐶𝐶𝐶𝐶2(𝑡𝑡𝑘𝑘)

𝜕𝜕𝑅̄𝑅𝑛𝑛(𝑡𝑡𝑘𝑘)
= − 𝐹𝐹𝑇𝑇

𝑐𝑐𝑐𝑐𝑐𝑐
�
−𝜌𝜌�1

𝑛𝑛𝑛𝑛(𝑡𝑡𝑘𝑘)𝑇𝑇 + 𝜌𝜌�1
𝑛𝑛𝑛𝑛(𝑡𝑡𝑘𝑘 − 𝛥𝛥𝛥𝛥)𝑇𝑇 𝜕𝜕𝑅̄𝑅

𝑛𝑛(𝑡𝑡𝑘𝑘
′′−𝛥𝛥𝛥𝛥)

𝜕𝜕𝑅̄𝑅𝑛𝑛(𝑡𝑡𝑘𝑘)

+𝜌𝜌�2
𝑛𝑛𝑛𝑛(𝑡𝑡𝑘𝑘)𝑇𝑇 − 𝜌𝜌�2

𝑛𝑛𝑛𝑛(𝑡𝑡𝑘𝑘 − 𝛥𝛥𝛥𝛥)𝑇𝑇 𝜕𝜕𝑅̄𝑅
𝑛𝑛(𝑡𝑡𝑘𝑘−𝛥𝛥𝛥𝛥)
𝜕𝜕𝑅̄𝑅𝑛𝑛(𝑡𝑡𝑘𝑘)

� (5.5-83)* 
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∂ ∂ ∂ρ ρ
∂ ∂ ∂

 − ∆ −∆
= − −∆ + −∆ 

∆   
  
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( ) ( ) ( )ˆ ˆ( ) ( )
( ) ( ) ( )

nj

CL n n
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F t R t T R t TF t T t T
C t c T C t C t

∂ ∂ ∂ρ ρ
∂ ∂ ∂

 − ∆ −∆
= − −∆ + −∆ ∆ ∆ ∆ ∆ 
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2

1 2

( ) ( ) ( )ˆ ˆ( ) ( )
( ) ( ) ( )

nj

CL n n
D k nj T nj Tk kT

k kn n n
R k R k R k

F t R t T R t TF t T t T
C t c T C t C t

∂ ∂ ∂ρ ρ
∂ ∂ ∂

 − ∆ −∆
= − −∆ + −∆ ∆ ∆ ∆ ∆ 

 (5.5-86)* 

 ( )
2

1 2
( ) ( ) ( ) 

( )
nj

CL nj nj
D k k kT T

k kn
R k

F t t tF Ft t
c c cd t

∂ ρ ρ
∂

 +′′= − − = −  
   (5.5-87)* 

 

and for the target satellite j being estimated, where nj ≠  

 
2 1 1

2 2

( )ˆ ˆ( ) ( )
( ) ( )

( ) ( )ˆ ˆ( ) ( )
( )

nj

j
nj T nj T k

CL k k j
D k kT

j j
k nj T nj T k

k k j
k

R t Tt t T
F t R tF
R t c T R t Tt t T

R t

∂ρ ρ
∂ ∂
∂ ∂ρ ρ

∂

 − ∆
− + −∆ 
 =
 ∆ −∆
+ − −∆ 
  

 (5.5-88)* 
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( ) ( ) ( )ˆ ˆ( ) ( )
( ) ( ) ( )

nj

CL j j
D k nj T nj Tk kT

k kj j j
k k k

F t R t T R t TF t T t T
c TR t R t R t

∂ ∂ ∂ρ ρ
∂ ∂ ∂

 − ∆ −∆
= − − −∆ + −∆ 

∆   
  

 (5.5-89)* 
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( ) ( ) ( )ˆ ˆ( ) ( )
( ) ( ) ( )

nj

CL j j
D k nj T nj Tk kT

k kj j j
D k D k D k

F t R t T R t TF t T t T
C t c T C t C t

∂ ∂ ∂ρ ρ
∂ ∂ ∂

 − ∆ −∆
= − − −∆ + −∆ ∆ ∆ ∆ ∆ 
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( ) ( ) ( )ˆ ˆ( ) ( )
( ) ( ) ( )

nj

CL j j
D k nj T nj Tk kT

k kj j j
R k R k R k

F t R t T R t TF t T t T
C t c T C t C t

∂ ∂ ∂ρ ρ
∂ ∂ ∂

 − ∆ −∆
= − − −∆ + −∆ ∆ ∆ ∆ ∆ 

 (5.5-91)* 

 
2

2

( )
 1

( )
nj

j

CL
D k
CL
d k

F t

b t

∂

∂
=  (5.5-92)* 

The matrix of partial derivatives of the position vector at time tk−∆T with respect to the estimation 
state vector in the equations above are related to the components of the state transition matrix. 
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5.6 GS Measurement Models 
The computational algorithms for one-way range and Doppler measurements from ground stations 
to a satellite receiver are discussed in this section. Although a ground station-to-satellite range 
measurement capability is not currently available, one-way range measurement processing is 
included in GEONS to support ground processing applications. The general form of the 
measurement model is as follows: 

 𝑌𝑌𝑘𝑘 = 𝐺𝐺 [𝑋̄𝑋(𝑡𝑡𝑘𝑘), 𝑡𝑡𝑘𝑘] + 𝜀𝜀 (5.6-1) 

where tk is the true measurement time, referenced to UTC, and 𝜀𝜀 is the measurement error. It is 
assumed that 𝜀𝜀 has a zero-mean Gaussian distribution with standard deviation σ, which is 
commandable for each measurement type. The measurement standard deviation is typically 
determined through analysis of the random component of the measurement error as part of the 
filter tuning process. 

For GEONS, the estimation state vector, X t( )  includes the receiver position vector, R ; velocity 

vector, R ; optional corrections to the drag and solar radiation pressure coefficients, ∆CD and ∆CR; 
receiver time bias, bR; and receiver time bias rate, d R , for one or more receivers. Optionally, a GS 
range bias can be estimated. There are no additional measurement bias parameters associated with 
the GS Doppler measurements. 

Section 5.6.1 addresses preprocessing of the raw GS Doppler measurements obtained from either 
a GS S-band receiver or a transceiver capable of providing integrated Doppler extracted from an 
forward link signal. The measurement model for the one-way range from the GS to the receiver, 
which is also used in the computation of the GS Doppler measurement, and associated partial 
derivatives are presented in Section 5.6.2. The GS one-way forward Doppler measurement model 
and associated partial derivatives are defined in Section 5.6.3. Section 5.6.4 provides an algorithm 
for preprocessing round-trip range-rate measurements so that they can be processed as one-way 
Doppler measurements, which is not appropriate for autonomous navigation but is useful in 
preflight analysis of the expected performance using the one-way range and Doppler 
measurements. 

5.6.1  Raw GS Doppler Measurement Preprocessing ( not implemented in GEONS) 
The GS tracking signal path is shown in Figure 5-4. An S-band signal is transmitted from the GS 
and the Doppler shifted signal is received at the local satellite. One-way GS tracking can be 
operated using either a fixed radiated carrier frequency (FRCF) with onboard Doppler 
compensation (OBDC) or a GS frequency sweep to aid signal acquisition. In either case, the 
nominal RCF after acquisition is 2106.406250 megahertz. Note that the discussion below is based 
on the Doppler extractor flown as an experiment on the Extreme Ultraviolet Explorer (EUVE) 
spacecraft. 
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f 'RCF = Doppler-Shifted GS RCF
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Dk = Raw Doppler Frequency Sum at Time t k

Frequency
Reference

  

Figure 5-4. GS Forward-Link Signal Path 

The GS receiver measures the Doppler shift of the forward-link signal with respect to an internal 
frequency reference. The Doppler measurement function is accomplished via a software 
accumulation of a scaled and biased nondestruct Doppler shift to provide a Doppler frequency sum 
measurement. The stability requirements for this frequency reference are dependent on the 
accuracy requirements of the user spacecraft. To achieve the highest accuracy, the frequency 
reference should be stable to 1 part in 1012 (1σ) over 10 to 100 seconds, with a drift of less than 1 
part in 1010 per day (3σ). All timing associated with the Doppler measurement process should be 
synchronized with the spacecraft’s timing reference.  

The receiver’s raw Doppler measurement output consists of the nondestruct frequency sum, Dk. 
The raw Doppler frequency sums are available nominally every 1.024 seconds. The navigation 
software samples the Doppler frequency sums, nominally every 8.192 or 16.384 seconds, checks 
and corrects the measurements for accumulator rollover, and converts them to the averaged 
Doppler measurements that are input to GEONS. 

The navigation software driver performs the following checks on the receiver’s telemetry to 
validate the sampled Doppler frequency sum measurements: 
1. Set a Valid Doppler Frequency Sum indicator if all the following receiver conditions are 

true: 

a) Carrier Lock 

b) Receiver Lock 

c) STDN Mode 

d) Subcarrier Detect/Lock 

e) Non-Zero Doppler Frequency Sum 
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f) External Frequency Reference Selected 

g) External Frequency Reference Status is healthy 

2. Check the cycle slip indicator every 1.024 seconds and set a cycle slip indicator if a cycle 
slip was detected at any time between successive Doppler frequency sum samples. 

3. Check the carrier drop pending indicator every 1.024 seconds and set a carrier drop pending 
indicator if a carrier drop pending was detected at any time between successive 
measurement collections, or during the first 1.024 second major cycle after the second 
Doppler frequency sum. 

When two successive valid Doppler frequency sums are available, the navigation software driver 
differences successive S-band receiver Doppler frequency sums to compute a Doppler frequency 
sum difference, ∆Dk .  If this difference is negative, accumulator rollover has occurred.  In this 
case, the maximum value that the accumulator can hold is added to the difference. 

The kth  average measured frequency difference measurement between the Doppler-shifted GS 
radiated carrier frequency (RCF) and the receiver’s frequency reference, obsk

GS
D tF )( , is then 

computed as follows: 

 Dkobsk
GS

D BD
M
KtF −∆=)(  (5.6-2) 

where 

 K = resolution of the receiver’s carrier tracking numerically controlled oscillator 
(NCO) in hertz per bit 

 M = product of the number of accumulated NCO samples in each Doppler 
accumulation interval with the number of 1.024-second intervals in the 
Doppler averaging interval, ∆T; where the the number of accumulated NCO 
samples in each Doppler accumulation interval may be a function of the 
command rate 

 ∆Dk  = difference between successive valid Doppler frequency sum samples at times 
tk and tk −∆T, accounting for the accumulator rollover 

 ∆T = Doppler averaging interval, typically 8.192 or 16.384 seconds 
 BD = constant frequency bias that ensures that each frequency sum is a positive 

number 

The measured average frequency difference is related to the kth  average Doppler shift of the actual 
GS RCF over the Doppler averaging interval, f kD ( ) , as follows: 

 fobsk
GS

DD FtFkf ∆−= )()(  (5.6-2a) 

where 
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 ∆Ff  = difference between the actual GS RCF, fRCF, and the receiver’s S-band Doppler 
frequency reference, fref 

The navigation software driver performs the following checks to validate the average Doppler 
frequency difference measurements: 
1. Sets an indicator if the Doppler measurement exceeds a ground commandable maximum 

value. 
2. Sets a Valid Doppler Measurement indicator if the following conditions are true: 

a) The number of 1.024 second cycle slip indicators is below a ground commandable 
threshold, and  

b) The number of 1.024 second carrier drop pending indicators is below a ground 
commandable threshold, and  

c) The Doppler measurement is less than a ground commandable maximum value. 

d) The Doppler measurement does not span a day boundary. 

The first valid average Doppler frequency difference measurement following a time interval 
without measurements larger than a commandable maximum time interval is considered to be at 
the start of a new tracking contact. 

5.6.2  GS One-Way Forward Range and Associated Partial Derivatives 
The timetag associated with the kth measurement is the UTC receive time of the signal at the local 
receiver as measured with respect to the spacecraft/receiver clock, )(RC

Rt . In the presence of a 
spacecraft timing bias, the true measurement receive time is given by 

  
𝑡𝑡𝑅𝑅𝑈𝑈𝑈𝑈𝑈𝑈 = 𝑡𝑡𝑅𝑅

(𝑅𝑅𝑅𝑅) − 𝛿𝛿𝑡𝑡𝑅𝑅 (5.6-3) 

where Rtδ  is the offset of the receiver’s timing reference from UTC, given by 

 𝛿𝛿𝑡𝑡𝑅𝑅 = 𝑏𝑏𝑅𝑅(𝑡𝑡)
𝑐𝑐

  

The accumulated receiver clock bias, )(tbR , can be estimated using one-way GS range 
measurements alone or in combination with GNSS measurements.  

If the forward-link GS signal is transmitted from GS j at time tT and received at satellite receiver 
n at time tR (equal to the measurement time), the measured pseudorange is given by:  

       ℜ𝐺𝐺𝑆𝑆𝑗𝑗
𝑛𝑛 (𝑡𝑡𝑅𝑅𝑈𝑈𝑈𝑈𝑈𝑈) = 𝑐𝑐 ⋅ (𝑡𝑡𝑅𝑅 − 𝑡𝑡𝑇𝑇) = 𝜌𝜌𝐺𝐺𝑆𝑆𝑗𝑗

𝑛𝑛,𝑖𝑖 (𝑡𝑡𝑅𝑅𝑈𝑈𝑈𝑈𝑈𝑈) + 𝛿𝛿𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡𝑇𝑇) + 𝑏𝑏𝑅𝑅(𝑡𝑡𝑅𝑅𝑈𝑈𝑈𝑈𝑈𝑈) + 𝑏𝑏𝜌𝜌
𝐺𝐺𝑆𝑆𝑗𝑗(𝑡𝑡𝑅𝑅𝑈𝑈𝑈𝑈𝑈𝑈) (5.6-4) 

In this equation, c is the speed of light, )( Tatm tδρ  is the modeled tropospheric delay associated 

with a signal transmitted at time tT in meters, jGSbρ  is an additional time delay due to hardware 
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and unmodeled atmospheric signal delays, and 𝜌𝜌𝐺𝐺𝑆𝑆𝑗𝑗
𝑛𝑛,𝑖𝑖 (𝑡𝑡𝑅𝑅𝑈𝑈𝑈𝑈𝑈𝑈) is the distance traversed by the signal 

from the GS j to antenna i 

 𝜌𝜌𝐺𝐺𝑆𝑆𝑗𝑗
𝑛𝑛,𝑖𝑖 (𝑡𝑡𝑅𝑅𝑈𝑈𝑈𝑈𝑈𝑈) = �𝑅̄𝑅𝐴𝐴𝑖𝑖

𝑛𝑛 (𝑡𝑡𝑅𝑅) − 𝑅̄𝑅𝐺𝐺𝑆𝑆𝑗𝑗(𝑡𝑡𝑇𝑇)� (5.6-4a)* 

where 

 )( TjGS tR  = position of the transmitting GS j at time tT 

 )( R
n
iA tR  = position of the ith receiving antenna on satellite n at time tR,, which is computed 

using Equation 3.2-61 in Section 3.2.8.   

The backward signal-trace method is used to determine time tT when the signal was transmitted 
from the GS. This method uses the following Newton-Raphson iterative scheme to solve for the 
time tT  

 
c

tRtR
tt

mTjGSR
n
iA

RmT

)()( ,

1,

−
−=+  (5.6-5)* 

where 

 1, +mTt  = (m+1)th approximation for Tt  

 mTt ,  = mth approximation for Tt  

 Rt  = signal reception time at the satellite receiver 

The iterative solution of Equation (5.6-5) is started by setting  

 RT tt =0,  (5.6-6)* 

such that 

 )()( 0, RjGSTjGS tRtR =  (5.6-7)* 

The position vector for the transmitting GS is available in ECEF coordinates and must first be 
transformed to J2000.0 inertial coordinates using the transformations defined in Sections 3.2.1 
through 3.2.3. This iterative scheme is continued until the condition ε≤−+ mTmT tt ,1,  is satisfied, 

where ε is a small tolerance (nominally equal to 10-8 second). After the GS signal transmit time, 
Tt , is found, the distance between the local satellite receiver and the GS can be calculated using 

Equation (5.6-4a). 

The tropospheric delay associated with a signal transmitted at time tT in meters, )( Tatm tδρ , is 
computed using the following empirical formula 
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( ) 4.1sin06483.0

340
8958.1

)(
E

tTatm
+







 α

=δρ  (5.6-8)* 

where 

  α  is the monthly surface refractivity index for the GS in parts per million 

  E is elevation angle from the GS to the spacecraft, which is computed as follows: 

   𝑠𝑠𝑠𝑠𝑠𝑠 𝐸𝐸 =
𝜌̄𝜌𝐺𝐺𝑆𝑆𝑗𝑗
𝑛𝑛 (𝑡𝑡𝑅𝑅

𝑈𝑈𝑈𝑈𝑈𝑈)⋅𝑅̄𝑅𝐺𝐺𝑆𝑆𝑗𝑗(𝑡𝑡𝑇𝑇)

𝜌𝜌𝐺𝐺𝑆𝑆𝑗𝑗
𝑛𝑛 (𝑡𝑡𝑅𝑅

𝑈𝑈𝑈𝑈𝑈𝑈)�𝑅̄𝑅𝐺𝐺𝑆𝑆𝑗𝑗(𝑡𝑡𝑇𝑇)�
  (5.6-9)* 

                       𝜌̄𝜌𝐺𝐺𝑆𝑆𝑗𝑗
𝑛𝑛,𝑖𝑖 (𝑡𝑡𝑅𝑅𝑈𝑈𝑈𝑈𝑈𝑈) = 𝑅̄𝑅𝐴𝐴𝑖𝑖

𝑛𝑛 (𝑡𝑡𝑅𝑅) − 𝑅̄𝑅𝐺𝐺𝑆𝑆𝑗𝑗(𝑡𝑡𝑇𝑇)  (5.6-10)* 

The GEONS filter propagates and updates all spacecraft states at a common UTC filter state epoch 
𝑡𝑡𝑘𝑘.  

Note that linearization of the GS PR measurement is not implemented in GEONS 3.0. To account 
for the offset of the true UTC receive time for spacecraft n measurements from the UTC filter state 
epoch, Equation (5.6-4) can be linearized about the current filter state time: 

 𝜌𝜌𝐺𝐺𝑆𝑆𝑗𝑗
𝑛𝑛,𝑖𝑖 (𝑡𝑡𝑅𝑅

𝑈𝑈𝑈𝑈𝐶𝐶𝑛𝑛) = 𝜌𝜌𝐺𝐺𝑆𝑆𝑗𝑗
𝑛𝑛,𝑖𝑖 (𝑡𝑡𝑘𝑘) − 𝜌̇𝜌𝐺𝐺𝑆𝑆𝑗𝑗

𝑛𝑛,𝑖𝑖 (𝑡𝑡𝑘𝑘)𝛥𝛥𝑡𝑡𝑅𝑅𝑛𝑛 (5.6.2-1) 

where the offset of the true UTC receive time for spacecraft n measurements from the UTC filter 
state epoch is given by 

          ( ) ( )[ ] ( ) ( )
c
tbtttttttttt k

n
RRC

Rk
n
R

RC
Rk

UTC
R

RC
R

RC
Rk

n
R

nnnnn
)()()()()( +−=+−=−+−=∆ δ   (5.6.2-2)* 

Taking this offset into account, Equation (5.6-4) can be rewritten as follows: 

  ℜ𝐺𝐺𝑆𝑆𝑗𝑗
𝑛𝑛 (𝑡𝑡𝑅𝑅

𝑈𝑈𝑈𝑈𝐶𝐶𝑛𝑛) = 𝜌𝜌𝐺𝐺𝑆𝑆𝑗𝑗
𝑛𝑛,𝑖𝑖 (𝑡𝑡𝑘𝑘) − 𝜌̇𝜌𝐺𝐺𝑆𝑆𝑗𝑗

𝑛𝑛,𝑖𝑖 (𝑡𝑡𝑘𝑘)𝛥𝛥𝑡𝑡𝑅𝑅𝑛𝑛 + 𝛿𝛿𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡𝑘𝑘) + 𝑏𝑏𝑅𝑅
𝑛𝑛(𝑡𝑡𝑘𝑘) − 𝑑𝑑𝑅𝑅

𝑛𝑛(𝑡𝑡𝑘𝑘)𝛥𝛥𝑡𝑡𝑅𝑅𝑛𝑛 + 𝑏𝑏𝜌𝜌
𝐺𝐺𝑆𝑆𝑗𝑗(𝑡𝑡𝑘𝑘) (5.6.2-3)* 

where 

 𝜌𝜌𝐺𝐺𝑆𝑆𝑗𝑗
𝑛𝑛,𝑖𝑖 (𝑡𝑡𝑘𝑘) = �𝑅̄𝑅𝐴𝐴𝑖𝑖

𝑛𝑛(𝑡𝑡𝑘𝑘) − 𝑅̄𝑅𝐺𝐺𝐺𝐺𝑗𝑗(𝑡𝑡𝑘𝑘
′ )� (5.6.2-4)* 

 𝜌̇𝜌𝐺𝐺𝑆𝑆𝑗𝑗
𝑛𝑛,𝑖𝑖 (𝑡𝑡𝑘𝑘) =

𝜌𝜌�𝐺𝐺𝑆𝑆𝑗𝑗
𝑛𝑛,𝑖𝑖 (𝑡𝑡𝑘𝑘)⋅�𝑅̇̄𝑅𝐴𝐴𝑖𝑖

𝑛𝑛 (𝑡𝑡𝑘𝑘)−𝑅̇̄𝑅𝐺𝐺𝑆𝑆𝑗𝑗(𝑡𝑡𝑘𝑘
′ )�

1−𝜌𝜌�𝐺𝐺𝑆𝑆𝑗𝑗
𝑛𝑛,𝑖𝑖 (𝑡𝑡𝑘𝑘)⋅�𝑅̇̄𝑅𝐺𝐺𝑆𝑆𝑗𝑗(𝑡𝑡𝑘𝑘

′ )/𝑐𝑐�
 (5.6.2-5)* 

In the above equations, the subscript j indicates the jth GS, tk is the current filter epoch time, and 
t′k  is the signal transmit time, tT, computed based on tk.  The receiver clock bias b tR

n ( )  is computed 
using the estimated parameters b tR

n
k( ) and   ( )b tR

n
k  as defined in Equation 4.3-14a and 4.3-14 

of Section 4.3.  The term −𝜌̇𝜌𝐺𝐺𝑆𝑆𝑗𝑗
𝑛𝑛,𝑖𝑖 (𝑡𝑡𝑘𝑘)𝛥𝛥𝑡𝑡𝑅𝑅𝑛𝑛 is significant when the receiver time bias or measurement 
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timetag difference is large. The GS pseudorange bias,  𝑏𝑏𝜌𝜌
𝐺𝐺𝑆𝑆𝑗𝑗, is defined in Section 4.3. The position 

and velocity of the receiving antenna are computed using Equation 3.2-61 in Section 3.2.8. 

The following are the nonzero components of the row vector of partial derivatives of the GS range 
with respect to the components of the estimation state vector, )( ktX , consisting of absolute states 
for the local and nonlocal satellites: 

 
𝜕𝜕ℜ𝐺𝐺𝑆𝑆𝑗𝑗

𝑛𝑛 (𝑡𝑡𝑅𝑅
𝑈𝑈𝑈𝑈𝑈𝑈)

𝜕𝜕𝑅̄𝑅𝑛𝑛(𝑡𝑡𝑘𝑘)
=

𝜕𝜕𝜌𝜌𝐺𝐺𝑆𝑆𝑗𝑗
𝑛𝑛,𝑖𝑖 (𝑡𝑡𝑘𝑘)

𝜕𝜕𝑅̄𝑅𝑛𝑛(𝑡𝑡𝑘𝑘)
−

𝜕𝜕𝜌̇𝜌𝐺𝐺𝑆𝑆𝑗𝑗
𝑛𝑛,𝑖𝑖 (𝑡𝑡𝑘𝑘)

𝜕𝜕𝑅̄𝑅𝑛𝑛(𝑡𝑡𝑘𝑘)
𝛥𝛥𝑡𝑡𝑅𝑅𝑛𝑛  (5.6.2-6)* 

 
𝜕𝜕ℜ𝐺𝐺𝑆𝑆𝑗𝑗

𝑛𝑛 (𝑡𝑡𝑅𝑅
𝑈𝑈𝑈𝑈𝑈𝑈)

𝜕𝜕𝑅̇̄𝑅𝑛𝑛(𝑡𝑡𝑘𝑘)
= −

𝜕𝜕𝜌̇𝜌𝐺𝐺𝑆𝑆𝑗𝑗
𝑛𝑛,𝑖𝑖 (𝑡𝑡𝑘𝑘)

𝜕𝜕𝑅̇̄𝑅𝑛𝑛(𝑡𝑡𝑘𝑘)
𝛥𝛥𝑡𝑡𝑅𝑅𝑛𝑛  (5.6.2-7)* 

 
𝜕𝜕ℜ𝐺𝐺𝑆𝑆𝑗𝑗

𝑛𝑛 (𝑡𝑡𝑅𝑅
𝑈𝑈𝑈𝑈𝑈𝑈)

𝜕𝜕𝑏𝑏𝜌𝜌
𝐺𝐺𝑆𝑆𝑗𝑗(𝑡𝑡𝑅𝑅

𝑈𝑈𝑈𝑈𝑈𝑈)
= 1 (5.6.2-8)* 

 
𝜕𝜕ℜ𝐺𝐺𝑆𝑆𝑗𝑗

𝑛𝑛 (𝑡𝑡𝑅𝑅
𝑈𝑈𝑈𝑈𝑈𝑈)

𝜕𝜕𝑏𝑏𝑅𝑅(𝑡𝑡𝑘𝑘)
= 1 (5.6.2-9)* 

 
𝜕𝜕ℜ𝐺𝐺𝑆𝑆𝑗𝑗

𝑛𝑛 (𝑡𝑡𝑅𝑅
𝑈𝑈𝑈𝑈𝑈𝑈)

𝜕𝜕𝑑𝑑𝑅𝑅𝑛𝑛(𝑡𝑡𝑘𝑘)
= −𝛥𝛥𝑡𝑡𝑅𝑅𝑛𝑛 (5.6.2-10)* 

Where 

 
𝜕𝜕𝜌𝜌𝐺𝐺𝑆𝑆𝑗𝑗

𝑛𝑛,𝑖𝑖 (𝑡𝑡𝑘𝑘)

𝜕𝜕𝑅̄𝑅𝑛𝑛(𝑡𝑡𝑘𝑘)
=

𝜌̄𝜌𝐺𝐺𝑆𝑆𝑗𝑗
𝑛𝑛,𝑖𝑖 (𝑡𝑡𝑘𝑘)𝑇𝑇

𝜌𝜌𝐺𝐺𝑆𝑆𝑗𝑗
𝑛𝑛,𝑖𝑖 (𝑡𝑡𝑘𝑘)

 (5.6.2-11)* 

       
𝜕𝜕𝜌̇𝜌𝐺𝐺𝑆𝑆𝑗𝑗

𝑛𝑛,𝑖𝑖 (𝑡𝑡𝑘𝑘)

𝜕𝜕𝑅̄𝑅𝑛𝑛(𝑡𝑡𝑘𝑘)
≅ 1

𝜌𝜌𝐺𝐺𝐺𝐺𝑗𝑗
𝑛𝑛,𝑖𝑖 (𝑡𝑡𝑘𝑘)� 1−𝜌𝜌�𝐺𝐺𝑆𝑆𝑗𝑗

𝑛𝑛,𝑖𝑖 (𝑡𝑡𝑘𝑘)⋅�𝑅̇̄𝑅𝐺𝐺𝑆𝑆𝑗𝑗(𝑡𝑡𝑘𝑘
′ )/𝑐𝑐��

��𝑅̇̄𝑅𝑛𝑛(𝑡𝑡𝑘𝑘) − 𝑅̇̄𝑅𝐺𝐺/𝑊𝑊𝑗𝑗(𝑡𝑡𝑘𝑘
′ )� − 𝜌̇𝜌𝐺𝐺𝑆𝑆𝑗𝑗

𝑛𝑛,𝑖𝑖 (𝑡𝑡𝑘𝑘)�𝜌𝜌�𝐺𝐺𝑆𝑆𝑗𝑗
𝑛𝑛,𝑖𝑖 (𝑡𝑡𝑘𝑘) −

𝑅̇̄𝑅𝐺𝐺𝑆𝑆𝑗𝑗(𝑡𝑡𝑘𝑘
′ )

𝑐𝑐
��

𝑇𝑇

         (5.6.2-12)* 

 
𝜕𝜕𝜌̇𝜌𝐺𝐺𝑆𝑆𝑗𝑗

𝑛𝑛,𝑖𝑖 (𝑡𝑡𝑘𝑘)

𝜕𝜕𝑅̇̄𝑅𝑛𝑛(𝑡𝑡𝑘𝑘)
=

�𝜌𝜌�𝐺𝐺𝑆𝑆𝑗𝑗
𝑛𝑛,𝑖𝑖 (𝑡𝑡𝑘𝑘)�

𝑇𝑇

1−𝜌𝜌�𝐺𝐺𝑆𝑆𝑗𝑗
𝑛𝑛,𝑖𝑖 (𝑡𝑡𝑘𝑘)⋅�𝑅̇̄𝑅𝐺𝐺𝑆𝑆𝑗𝑗(𝑡𝑡𝑘𝑘

′ )/𝑐𝑐�
 (5.6.2-13)* 

If the estimated state vector includes relative states for the nonlocal satellites, the following are the 
nonzero components of the row vector of partial derivatives of the GS range with respect to the 
components of the estimation state vector, )( ktX : 

 
𝜕𝜕ℜ𝐺𝐺𝑆𝑆𝑗𝑗

𝑛𝑛 (𝑡𝑡𝑅𝑅
𝑈𝑈𝑈𝑈𝑈𝑈)

𝜕𝜕𝑅̄𝑅1(𝑡𝑡𝑘𝑘)
=

𝜕𝜕𝜌𝜌𝐺𝐺𝑆𝑆𝑗𝑗
𝑛𝑛,𝑖𝑖 (𝑡𝑡𝑘𝑘)

𝜕𝜕𝑅̄𝑅𝑛𝑛(𝑡𝑡𝑘𝑘)
−

𝜕𝜕𝜌̇𝜌𝐺𝐺𝑆𝑆𝑗𝑗
𝑛𝑛,𝑖𝑖 (𝑡𝑡𝑘𝑘)

𝜕𝜕𝑅̄𝑅𝑛𝑛(𝑡𝑡𝑘𝑘)
𝛥𝛥𝑡𝑡𝑅𝑅𝑛𝑛  (5.6.2-14)* 

                                                        
𝜕𝜕ℜ𝐺𝐺𝑆𝑆𝑗𝑗

𝑛𝑛 (𝑡𝑡𝑅𝑅
𝑈𝑈𝑈𝑈𝑈𝑈)

𝜕𝜕𝑅𝑅�𝑟𝑟𝑟𝑟𝑟𝑟
𝑛𝑛 (𝑡𝑡𝑘𝑘)

=
𝜕𝜕𝜌𝜌𝐺𝐺𝑆𝑆𝑗𝑗

𝑛𝑛,𝑖𝑖 (𝑡𝑡𝑘𝑘)

𝜕𝜕𝑅𝑅�𝑛𝑛 (𝑡𝑡𝑘𝑘)
−

𝜕𝜕𝜌̇𝜌𝐺𝐺𝑆𝑆𝑗𝑗
𝑛𝑛,𝑖𝑖 (𝑡𝑡𝑘𝑘)

𝜕𝜕𝑅𝑅�𝑛𝑛 (𝑡𝑡𝑘𝑘) 𝛥𝛥𝑡𝑡𝑅𝑅
𝑛𝑛;𝑛𝑛 ≠ 1 (5.6.2-15)* 

    
𝜕𝜕ℜ𝐺𝐺𝑆𝑆𝑗𝑗

𝑛𝑛 (𝑡𝑡𝑅𝑅
𝑈𝑈𝑈𝑈𝑈𝑈)

𝜕𝜕𝑅𝑅�̇1 (𝑡𝑡𝑘𝑘)
= −

𝜕𝜕𝜌̇𝜌𝐺𝐺𝑆𝑆𝑗𝑗
𝑛𝑛,𝑖𝑖 (𝑡𝑡𝑘𝑘)

𝜕𝜕𝑅𝑅�̇𝑛𝑛 (𝑡𝑡𝑘𝑘)
𝛥𝛥𝑡𝑡𝑅𝑅𝑛𝑛 (5.6.2-16)* 
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𝜕𝜕ℜ𝐺𝐺𝑆𝑆𝑗𝑗

𝑛𝑛 (𝑡𝑡𝑅𝑅
𝑈𝑈𝑈𝑈𝑈𝑈)

𝜕𝜕𝑅𝑅�̇𝑟𝑟𝑟𝑟𝑟𝑟
𝑛𝑛 (𝑡𝑡𝑘𝑘)

= −
𝜕𝜕𝜌̇𝜌𝐺𝐺𝑆𝑆𝑗𝑗

𝑛𝑛,𝑖𝑖 (𝑡𝑡𝑘𝑘)

𝜕𝜕𝑅𝑅�̇𝑛𝑛 (𝑡𝑡𝑘𝑘)
𝛥𝛥𝑡𝑡𝑅𝑅𝑛𝑛;𝑛𝑛 ≠ 1 (5.6.2-17)* 

 
𝜕𝜕ℜ𝐺𝐺𝐺𝐺

𝑛𝑛
𝑗𝑗(𝑡𝑡𝑅𝑅

𝑈𝑈𝑈𝑈𝑈𝑈)

𝜕𝜕𝑏𝑏𝑅𝑅
1(𝑡𝑡𝑘𝑘)

=
𝜕𝜕ℜ𝐺𝐺𝐺𝐺

𝑛𝑛
𝑗𝑗(𝑡𝑡𝑅𝑅

𝑈𝑈𝑈𝑈𝑈𝑈)

𝜕𝜕𝑏𝑏𝑅𝑅
𝑛𝑛(𝑡𝑡𝑘𝑘)

 𝜕𝜕𝑏𝑏𝑅𝑅
𝑛𝑛(𝑡𝑡𝑘𝑘)

𝜕𝜕𝑏𝑏𝑅𝑅
1(𝑡𝑡𝑘𝑘)

= 1-
𝜌̇𝜌𝐺𝐺𝑆𝑆𝑗𝑗
𝑛𝑛,𝑖𝑖 (𝑡𝑡𝑘𝑘)

𝑐𝑐
− 𝑑𝑑𝑅𝑅

𝑛𝑛(𝑡𝑡𝑘𝑘)
𝑐𝑐

 (5.6.2-18)* 

 
𝜕𝜕ℜ𝐺𝐺𝐺𝐺

𝑛𝑛
𝑗𝑗(𝑡𝑡𝑅𝑅

𝑈𝑈𝑈𝑈𝑈𝑈)

𝜕𝜕𝑏𝑏𝑟𝑟𝑟𝑟𝑟𝑟
𝑛𝑛 (𝑡𝑡𝑘𝑘)

=
𝜕𝜕ℜ𝐺𝐺𝐺𝐺

𝑛𝑛
𝑗𝑗(𝑡𝑡𝑅𝑅

𝑈𝑈𝑈𝑈𝑈𝑈)

𝜕𝜕𝑏𝑏𝑅𝑅
𝑛𝑛(𝑡𝑡𝑘𝑘)

  𝜕𝜕𝑏𝑏𝑅𝑅
𝑛𝑛(𝑡𝑡𝑘𝑘)

𝜕𝜕𝑏𝑏𝑟𝑟𝑟𝑟𝑟𝑟
𝑛𝑛 (𝑡𝑡𝑘𝑘)

= 1-
𝜌̇𝜌𝐺𝐺𝑆𝑆𝑗𝑗
𝑛𝑛,𝑖𝑖 (𝑡𝑡𝑘𝑘)

𝑐𝑐
− 𝑑𝑑𝑅𝑅

𝑛𝑛(𝑡𝑡𝑘𝑘)
𝑐𝑐

;  𝑛𝑛 ≠ 1 (5.6.2-19)* 

     
𝜕𝜕ℜ𝐺𝐺𝑆𝑆𝑗𝑗

𝑛𝑛 (𝑡𝑡𝑅𝑅
𝑈𝑈𝑈𝑈𝑈𝑈)

𝜕𝜕𝑑𝑑𝑅𝑅1(𝑡𝑡𝑘𝑘)
= −𝛥𝛥𝑡𝑡𝑅𝑅1           (5.6.2-20)* 

     
𝜕𝜕ℜ𝐺𝐺𝑆𝑆𝑗𝑗

𝑛𝑛 (𝑡𝑡𝑅𝑅
𝑈𝑈𝑈𝑈𝑈𝑈)

𝜕𝜕𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛(𝑡𝑡𝑘𝑘)
= −𝛥𝛥𝑡𝑡𝑅𝑅𝑛𝑛;  𝑛𝑛 ≠ 1         (5.6.2-21)* 

 
𝜕𝜕ℜ𝐺𝐺𝑆𝑆𝑗𝑗

𝑛𝑛 (𝑡𝑡𝑘𝑘)

𝜕𝜕𝑏𝑏𝜌𝜌
𝐺𝐺𝑆𝑆𝑗𝑗(𝑡𝑡𝑘𝑘)

= 1 (5.6.2-22)* 

5.6.3  GS One-Way Forward Averaged Doppler Measurement Model and 
Associated Partial Derivatives  

If the transmitting GS is not known, the GS associated with the first measurement in each tracking 
contact is identified by the process of elimination. All visible GSs are identified using the algorithm 
provided in Section 7.1 of this document to test the visibility of each GS located in the onboard 
GS catalog. For each the visible GSs, the GS-to-satellite Doppler measurement is modeled using 
the model provided below.  The GS that produces the smallest measurement residuals is selected 
as the transmitting station for that contact.  

The instantaneous Doppler-shifted RCF received at the spacecraft is equal to 

 relatmRCFRCF FF
c

ff δ+δ+





 ρ
−=′


1   (5.6-12) 

 atmRCFRCF F
c

ff δ+





 ρ
−≅′


1   (5.6-12a) 

where 

 ′fRCF  = Doppler-shifted RCF 

 fRCF  = transmitted GS RCF 

  = time rate of change of the light-time-corrected range from the GS to the 
receiving spacecraft antenna, ρ [defined in Equation (5.6-4)] 

 δFatm  = signal delay due to atmospheric effects 

ρ
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 δFrel  = signal delay due to relativistic effects 

GEONS models the atmospheric correction due to tropospheric refraction near the GS. The 
corrections for relativistic effects are not applied in the GS measurement model. 

The true instantaneous Doppler shift is given by 

 ( )f f fD true RCF RCF= ′ −   (5.6-13) 

The Doppler shift is measured onboard with respect to the receiver’s S-band frequency reference, 
such that the instantaneous Doppler measurement is given by 

 ( ) ( )f f f tD ext RCF ref= ′ −   (5.6-14) 

where 

 f tref ( )  = receiver’s S-band frequency reference at time t, nominally equal to 
2106.406250 megahetz 

Substituting Equation (5.6-12) into Equation (5.6-14), omitting the relativistic corrections, and 
averaging over the Doppler averaging interval, ∆T, the averaged Doppler measurement from the 
jth GS to satellite n can be expressed as 

 ( ) ∫
∆−∆

=
kt

Tkt

n
extD

n
jGSkD dttf

T
tF )()(1)(   (5.6-15) 

 ( ) )()(11)(
,

k
jGS

d

kt

Tkt

n
refatm

in
jGS

RCF
n

jGSkD tbdttfF
c

f
T

tF +











−δ+













 ρ
−

∆
= ∫

∆−


  (5.6-16) 

 ( ) )()(
)()(

1)(
,

k
jGS

dk
n

ref
katmk

in
jGS

RCF
n

jGSkD tbtf
Tc

t
Tc

t
ftF +−















∆
ρ∆

−
∆

ρ∆
−=   (5.6-17)* 

where 

 )()()( ,,, Tttt k
in

jGSk
in

jGSk
in

jGS ∆−ρ−ρ=ρ∆   (5.6-18)* 

 )()()( Tttt katmkatmkatm ∆−δρ−δρ=ρ∆  (5.6-19)* 

The range between transmitting ground station j and receiving antenna i on satellite n, )(,
k

in
GS t

j
ρ , is 

computed using Equation (5.6-4); )( katm tδρ  is the tropospheric delay associated with a signal 
transmitted at time tk  in meters, which is computed using Equation (5.6-8); )( k

GS
d tb j  is the value 

of the GS Doppler measurement bias in Hertz associated with the jth GS; and )( k
n

ref tf is the 
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averaged value of )( k
n

ref tf  over the time t Tk − ∆  to tk . The value of )( k
n

ref tf  is approximated as 
follows, neglecting the effects of frequency drift over the averaging interval: 

 







+=≅

c
td

tftftf k
n
R

refk
n

refk
n

ref
)(

1)()()( 0  (5.6-20)* 

where )( k
n
R td , the receiver time bias rate, is computed using Equation 4.3-19 and )( 0tf ref  is the 

initial value of the S-band Doppler reference frequency, a commanded parameter nominally equal 
to 2106406250 Hertz.   

Note that the measurement model as currently implemented in GEONS assumes that the Doppler 
averaging interval is equal to the interval between calls to the state estimation task, or equivalently 
the integration stepsize. 

Note that because the Doppler measurement model requires the computation of the range at an 
earlier time, )( Ttk

n
jGS ∆−ρ , the first Doppler measurement in a contact is rejected if the state vector 

is not available at that time. 

The nonzero components of the row vector of partial derivatives of the GS Doppler measurements 
with respect to the components of the estimation state vector, )( ktX , consisting of absolute states 
for the local and nonlocal satellites are as follows: 
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The partial derivatives of the range in Equations (5.6-21) and (5.6-22) are defined in Equation 
(5.6.2-11) in Section 5.6.2. These derivatives are evaluated at the current measurement timetag, tk, 
and at the time tk−∆T, where ∆T is the Doppler averaging interval. 

The partial derivatives of the position vector at the time tk−∆T with respect to the estimated state 
vector are related to the components of the state transition submatrix defined by Equation (4.4-1a) 
in Section 4.4.1 as follows 
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If the atmospheric drag coefficient correction and/or the solar radiation pressure coefficient 
correction are not estimated, the matrix W does not include the columns associated with these state 
components. 

If the estimated state vector consists of an absolute state for the local satellite (n=1) and relative 
states for the nonlocal satellites (n>1), the nonzero partial derivatives of a GS Doppler 
measurement with respect to the components of the estimation state vector, )( ktX , are computed 
as follows: 
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The partial derivatives of the range are defined in Equation (5.6.2-11) in Section 5.6.2. These 
derivatives are evaluated at the current measurement timetag, tk, and at the time tk−∆T, where ∆T 
is the Doppler averaging interval. The partial derivatives of position vector at the time tk−∆T with 
respect to the estimated state vector components are related to the components of the inverse of 
the state transition matrix defined by Equation (4.4-1b) in Section 4.4.1  
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5.6.4 GS Round-Trip Range-Rate Measurement Preprocessing (not implemented in 
GEONS) 

Round-trip measurements are not suitable for onboard processing. However, since the capability 
to measure one-way forward GS Doppler measurements has been implemented on very few 
spacecraft, the following procedure can be used to preprocess real range-rate measurements so that 
they can be processed in GEONS using the one-way GS Doppler measurement model given in 
Section 5.6.3.  

The GS round-trip range-rate measurements are accumulated over a Doppler averaging interval, 
∆T, equal to 10 seconds.  These measurements reflect the total Doppler shift of the signal from the 
transmitting GS, through the receiving/transmitting satellite, to the receiving GS averaged over the 
Doppler averaging interval. The real round-trip GS measurements provided by the ground tracking 
network are timetagged at the receive time of the signal at the GS associated with the end of the 
averaging interval. For compatibility with the one-way GS Doppler model given in Section 5.6.3, 
the measurement timetag must be modified to reflect the receive time at the satellite. This 
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adjustment, which is performed external to GEONS, is computed based on a reference “truth” 
satellite ephemeris ( )(),( tRtR refref

 ). 

The round-trip signal is transmitted from the GS transmitter (node 1) at time 1t , received at the 
spacecraft receiver (node 2) at time 2t  (equal to tk), and received at the GS receiver (node 3) at 
time 3t . The following Newton-Raphson iterative scheme is used to solve for the signal 
receive/transmission time at the satellite, t2: 

 
c

tRtR
tt nrefGS

n

)()( ,23
31,2

−
−=+  (5.6-31) 

where 

 1,2 +nt  = (n+1)th  approximation for 2t  

 nt ,2  = nth  approximation for 2t  

 )( 2tRref  = position of the transmitting satellite at time t2 

 )( 3tRGS  = position of the GS at time the reception time t3 

The iterative solution of Equations (5.6-31) is started by setting  

 30,2 tt =  (5.6-32) 

 )()( 30,2 tRtR refref =  (5.6-33) 

The receiving GS position vector is available in ECEF coordinates and is transformed to J2000.0 
inertial coordinates using the transformations defined in Sections 3.2.1 through 3.2.3. This iterative 
scheme is continued until the condition ε≤−+ nn tt ,11,1  is satisfied, where ε is a small tolerance 
(nominally equal to 10-8 second).  
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5.7  Geometric Point Solution Measurement Models 
As an alternative to processing the GPS pseudorange and Doppler measurements discussed in 
Sections 5.3 and 5.4, the GPS receiver’s geometric point solutions can be processed as 
measurements in GEONS.  The geometric point solutions, which are typically available every 0.5 
to 1 second, are sampled based on a specified minimum measurement spacing, nominally every 
10 seconds. The general form of the measurement model is as follows: 

 𝑌𝑌𝑘𝑘 = 𝐺𝐺 [𝑋̄𝑋(𝑡𝑡𝑘𝑘), 𝑡𝑡𝑘𝑘] + 𝜀𝜀 (5.7-1) 

where tk is the true measurement time, referenced to UTC, and 𝜀𝜀 is the measurement error. It is 
assumed that 𝜀𝜀 has a zero-mean Gaussian distribution with standard deviation σ, which is 
commandable for each measurement type. The measurement standard deviation is typically 
determined through analysis of the random component of the measurement error as part of the 
filter tuning process. 

When GEONS processes the point solution measurements, the estimation state vector, X t( )  

includes the receiver position vector, R ; velocity vector, R ; corrections to the drag and solar 
radiation pressure coefficients, ∆CD and ∆CR; GPS receiver bias, bR; and GPS receiver bias rate, 
d R  for one or more receivers. 

Section 5.7.1 addresses preprocessing of the raw geometric point solution measurements obtained 
from the GPS receiver.  The geometric point solution measurement and partial derivative models 
are presented in Section 5.7.2.  Section 5.7.3 provides the measurement update processing 
algorithm to be used in conjunction with the geometric point solution vector measurements. 

5.7.1 Geometric Point Solution Measurement Preprocessing 
The measurement model defined in Section 5.7.2 assumes that the raw geometric point solutions 
consist of the three Cartesian components of the spacecraft position vector referenced to the 
instantaneous ECEF coordinate frame, ( )r x y z* * * *= , and a time bias from GPS time, b*  

 ( )**,* brp =  

with a GPS-referenced receiver time tag, tR
RC( ) . Note that if the measurement time tag has been 

corrected by the receiver to account for the current estimate of the receiver clock’s time bias 
with respect to GPS time, the measurement component b* should be set to 0.  

5.7.2 Geometric Point Solution Measurement Model and Associated Partial 
Derivatives 

This section provides the algorithm used to model the observed point solution measurements, 
( )**,* brp = . The true point solution time Rt  is related to the point solution measurement timetag, 

tR
RC( ) , as follows: 

 t t tR R
RC

R= −( ) δ   (5.7-2)* 
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where δt R  is the measurement timetag error, which is related to the residual receiver clock bias, 
)(tbR , defined in Section 4.3: 

 
c

tbt R
R

)(
=δ   (5.7-3)* 

Optionally the current estimate of the measurement timetag error, δt R , can be used to correct the 
measurement timetag following Equation (5.7-2). This option is normally exercised when the point 
solution timetags have not been corrected by the receiver using the point solution time bias 
estimates. 

The geometric point solution measurement model corresponding to the nth spacecraft is computed 
as follows: 

 )()(* 2000 kJ
n

gk
n

ECEF tRCBRtrr ==  (5.7-4)* 

where B R Cg, ,  are the pseudo-body-fixed to ECEF, True-of-Date to pseudo-body-fixed, and 
J2000.0 to True-of-Date transformation matrices defined in Section 3.2, respectively, and 

)(2000 kJ
n tR  is the predicted value of the spacecraft position at the UTC-referenced measurement 

time, kt , corresponding to the GPS-referenced receiver’s measurement time tag, Rt .  The GPS 
time to UTC time conversion algorithm is provided in Section 3.3.1. 

The computation of partial derivatives of the geometric point solution measurement model with 
respect to the estimation state vector, X tk( ) , is as follows.  The matrix of partial derivatives of 
the geometric point solution measurements with respect to X tk( )  is defined as follows: 

 [ ]
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∂
=  (5.7-5) 

The following are the nonzero elements with respect to an estimation state vector consisting of 
absolute state vector for all satellites: 
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The following are the nonzero elements with respect to an estimation state vector consisting of an 
absolute state vector for the local satellite and relative state vectors for all remote satellites: 
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5.7.3 Measurement Update for Geometric Point Solution Processing 
At each valid measurement time, tk, the measurement update processing is performed successively 
for each component of the point solution measurement for each of the n spacecraft being estimated.  
The height of ray path editing test, defined as step 1 in the measurement update procedure 
presented in Section 2.3.2 is not applicable for this measurement type. 

Given the results of the time update (defined in Section 2.3.1), ( ) ( ) ( ) , , ,X U Dk k k− − −and  compute 

the updated total state vector, ( )X k + , and the updated state error covariance matrix factors, Uk (+) 
and Dk (+), successively for the four components of the observed measurement, [ ]inr * , i = 1, 2, 3; 

nb * , i = 4: 

1. Compute the point solution measurement model, ( n
Rk

n
ECEF btr ),( ), and the measurement 

partial derivative matrix, H tk( ) , at time tk, as defined in Equation 5.7-5.  Compute the 
J2000 to ECEF coordinate rotation matrix, BR Cg , only for i = 1 and save for use with 
the i = 2 and 3 components. 

2. Compute the measurement residual, n
ky , for the ith measurement component  
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3. Perform the following n-sigma measurement residual edit test for the ith measurement 
component before measurement updating the state vector and state error covariance 
matrix.  Compute the predicted measurement residual variance, Vk, using the [ ]U − and 

[ ]D−  factors following the algorithms given in step 3 of Section 2.3.2. 

4. Edit the ith measurement component as follows: 

Calculate the sigma ratio 

 D
y
Vk

k

k

=  (5.7-10)* 
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 If |Dk| ≤ Nσ, accept the ith measurement component and continue the measurement update 
processing.  If |Dk| > Nσ, reject the entire point solution measurement, and the calculation 
is complete. In these tests, N is a specifiable integer with a default value of 4. 

5. Update the state error covariance factors, based on the ith measurement component for 
spacecraft n following the algorithm given in step 5 of Section 2.3.2. 

6. Compute the Kalman gain vector for the ith measurement component following step 6 in 
Section 2.3.2. 

7. Update Xk ( )−  based on the ith measurement component following step 7 in Section 
2.3.2. 

8. For the i= 1, 2, and 3 components, reset the predicted covariance elements and the 
predicted estimation state elements as follows and return to step 1 to process the 
remaining measurement component(s) 

 [ ] [ ]U U− +=  (5.7-11)* 

 [ ] [ ]D D− +=  (5.7-12)* 

  X Xk k( ) = ( )− +  (5.7-13)* 

9. If fault detection is enabled, perform the navigation fault detection tests on the updated 
state and covariance after the entire point solution measurement is processed, as defined 
in step 8 of Section 2.3.2. 
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 5.8 Celestial Object Measurement Models                                                                                                                                                             

This section contains the mathematical specifications for the celestial object measurement models.  

The general form of the measurement model is as follows: 

 𝑌𝑌𝑘𝑘 = 𝐺𝐺 [𝑋̄𝑋(𝑡𝑡𝑘𝑘), 𝑡𝑡𝑘𝑘] + 𝜀𝜀 (5.8-1) 

where tk is the measurement time, referenced to the satellite timing reference, and 𝜀𝜀 is the 
measurement error. It is assumed that 𝜀𝜀 has a zero-mean Gaussian distribution with standard 
deviation σ, which is commandable for each measurement type. The measurement standard 
deviation is typically determined through analysis of the random component of the measurement 
error as part of the filter tuning process. Note that GEONS models the measurement standard 
deviation as a constant value. However, in situations such as relative range and bearing 
measurements where there is a large variation in the sensor’s measurement noise with relative 
distance, computing the measurement standard deviation as a function of distance to the target 
based on calibrated sensor performance can provide a more realistic value of the noise 
contribution. 

The timetag associated with the kth measurement is the sensor measurement time as measured with 
respect to satellite time, tk

S C/ . In the presence of a satellite timing bias, the true measurement time 
is given by 

 t t tk k
S C B= +/

2  (5.8-2) 

where t B
2  is the offset of the satellite timing reference from UTC.  

For GEONS, the estimation state vector, X t( ) , includes the user satellite position vector, R ; 

velocity vector, R ; receiver time bias and time bias rate, and optional corrections to the solar 
radiation pressure coefficient, ∆CR and atmospheric drag coefficient, ∆CD. When celestial object 
measurements are processed, the estimation state vector can be augmented to include sensor 
measurement biases. 

Section 5.8.1 describes the satellite attitude models used for three-axis stabilized Sun-pointing and 
Earth-pointing satellite and for spin-stabilized satellite. Section 5.8.2 provides the models for 
processing line-of-sight (LOS) measurements to either a celestial object or another satellite and 
the associated measurement partial derivatives. Section 5.8.3 provides the models for processing 
planetary sensor measurements for spin-stabilized satellite and the associated measurement partial 
derivatives. Section 5.8.4 provides the models for the processing measurements of the angular 
separation of the line-of-sight vectors to two bodies and the associated measurement partial 
derivatives. 
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5.8.1 Satellite Models 
This section defines the satellite configuration and attitude models used by GEONS to simulate 
and model celestial object measurements. Sections 5.8.1.1 and 5.8.1.2 provide the models used for 
three-axis stabilized and spin-stabilized satellite, respectively.  
Three-Axis Stabilized Sun-Pointing Satellite 

This model is based on the nominal attitude configuration of the Solar and Heliospheric 
Observatory (SOHO) satellite.  Figure 5-5a illustrates the nominal sun-pointing satellite absolute 
reference frame.  The satellite is controlled to maintain the roll, pitch and yaw angles about these 
axes near zero.  The origin of the absolute reference frame is the center of mass of the satellite.  
The absolute reference frame xA-axis is aligned with the satellite-to-sun vector, the yA-axis is 
perpendicular to the plane that contains the xA-axis and the normal vector to the ecliptic plane, and 
the zA-axis is orthogonal to the xA-and yA-axes.  The boresight of the sun sensor is assumed to be 
located along the xA-axis. The boresight of the star sensor is assumed to be nominally located along 
the zA-axis.  Figure 5-5b illustrates the relationship of the normal vector to the true ecliptic 
coordinate frame to the inertial frame.  Figure 3-7 illustrates the relationship of the true ecliptic 
coordinate frame to the inertial Mean of J2000.0 frame. 

User S/C

Earth

(North Ecliptic Pole)
IN̂

Sun
SunR

Ax̂

Aŷ

Aẑ

R

 

Figure 5-5a. Definition of Sun-Pointing 3-Axis Stabilized Absolute Reference 
Frame 
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Figure 5-5b. Definition of True Ecliptic Coordinate Frame 
The components of the normal vector to the ecliptic in the inertial frame are given as follows: 

  ( , sin , cos )N I
T

m m= −0 ε ε  (5.8-4)* 

where εm is the mean obliquity of the ecliptic defined in Equation 3.2-17 in Section 3.2.2. 

In this case the absolute reference frame unit vectors referenced to the inertial frame are computed 
as follows: 

 

AAA

IA

IA
A

Sun

Sun
A

yxz

Nx
Nxy

RR
RR

x

ˆˆˆ

ˆˆ

ˆˆˆ

ˆ

×=

×

×
−=

−
−

=

 (5.8-5)* 

The corresponding matrix M tAI ( )  that transforms from the geocentric inertial frame to the 
absolute reference frame at time t is given by 

 
















=
T

A

T
A

T
A

AI

z
y
x

tM
ˆ
ˆ
ˆ

)(  (5.8-6)* 

The corresponding matrix A t( )  that transforms from the absolute reference frame to the satellite 
body frame at time t is given by 

Earth 

(North Ecliptic Pole)INz ˆ,ˆε

εŷ

 Ixx ˆ,ˆε (Vernal Equinox)
True Ecliptic of  J2000 
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A t( )
cos cos cos sin sin

cos sin sin sin cos cos cos sin sin sin sin cos
sin sin cos sin cos sin cos cos sin sin cos cos

=
−

− + +
+ − +

















θ ψ θ ψ θ
φ ψ φ θ ψ φ ψ φ θ ψ φ θ
φ ψ φ θ ψ φ ψ φ θ ψ φ θ

 (5.8-7)* 

where 

 φ, θ, ψ = satellite body roll, pitch, and yaw angles at time t with respect to the xA, yA, 
and zA axes, respectively, corresponding to the 3-2-1 sequence of Euler angle 
rotations used for SOHO 

or equivalently 
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tA  (5.8-8)* 

where 

 4321 ,,, qqqq  = quaternions or Euler symmetric parameters defining the orientation of the 
satellite body at time t with respect to the xA, yA, and zA axes 

The capability is available to input an attitude history file into GEONS.  Operationally, this attitude 
information could be provided by an onboard attitude estimator operating in parallel with the 
GEONS orbit estimator or by an advanced star tracking system that provides the attitude 
quaternion directly. 

5.8.1.2 Spin-Stabilized Satellite  
This model is based on the nominal attitude configuration of the Polar Plasma Laboratory (Polar) 
satellite.  Figure 5-6 illustrates the nominal spinning satellite reference frame.  The satellite spins 
at a rate ω about the satellite spin axis, nominally parallel to the geometric axis of the satellite, +Z 
axis. The orientation of the spin-axis with respect to the inertial frame is expressed as follows:  

 
















δ
δα
δα

=
sin

cossin
coscos

Â  (5.8-9)* 

where 

 Â  = unit vector along the spacecraft spin axis, referenced to the geocentric inertial 
frame 

 α = the right ascension of the spin axis 

 δ = declination of the spin axis 
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Figure 5-6. Definition of Spin-Stabilized Attitude Reference Frame 

5.8.1.3 Three-Axis Stabilized Earth-Pointing Satellite (not implemented in GEONS) 
This model is based on the nominal attitude configuration for an Earth-pointing satellite.  The 
satellite is controlled to maintain the roll, pitch and yaw angles about the orbital coordinate system 
(OCS) axes near zero.  The origin of the OCS is the center of mass of the satellite.  The OCS zo-
axis points to the center of the Earth, the yo-axis is aligned with the negative orbit normal, and the 
xo-axis is orthogonal to the yo-and zo-axes.   

The OCS axes referenced to the inertial frame are computed as follows. 

 

R
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RR

RRy

zyx
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OOO

−
=

×
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ˆ
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ˆˆˆ




 (5.8-10)* 

The corresponding matrix )(tM OI  that transforms from the geocentric inertial frame to the OCS 
frame at time t is given by 
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The corresponding matrix A t( )  that transforms from the OCS frame to the satellite body frame at 
time t is given by 
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
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)(    (5.8-12)* 

where 

 r, p, y = satellite body roll, pitch, and yaw angles at time t with respect to the xo, yo, and 
zo axes, respectively, corresponding to the 3-1-2 sequence of Euler angle 
rotations typically used for 3-axis stabilized satellites 

or equivalently 
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tA  (5.8-13)* 

where 

 4321 ,,, qqqq  = quaternions or Euler symmetric parameters defining the orientation of the 
satellite body at time t with respect to the xo, yo, and zo axes 

5.8.2 Celestial Object and Intersatellite Measurements For a Three-Axis 
Stabilized Satellite 

This section presents measurement models that are appropriate for visual and infrared cameras and 
digital Sun sensors. These models are not appropriate for the scanning horizon sensors and static 
Earth sensors typically flown on Earth-orbiting, three-axis-stabilized satellite; these models are 
provided in Sections 5.8.2.4 and 5.8.2.5, respectively. Section 5.8.2.1 provides models for line-of-
sight measurements to a celestial body or another satellite. Section 5.8.2.1 provides models for 
bearing measurements to another satellite and Section 5.8.2.3 provides models for bearing 
measurements to a celestial body and landmarks located on that body.  

5.8.2.1 Line-of-Sight Measurements for a Three-Axis Stabilized Satellite 
This measurement model is appropriate for the type of sensor typically flown on a three-axis 
stabilized satellite where the celestial object (CO) is a point source, e.g. a digital Sun sensor. This 
model is also appropriate for intersatellite LOS measurements, such as those described in 
Reference 29 that are derived from an optical sensor combined with specific light sources (i.e. 
beacons).  

This model was used to process measurements from the Adcole fine pointing sun sensors (FPSS) 
on the SOHO satellite. Similar sensors have flown on the Solar Maximum Mission (SMM) and 
Upper Atmosphere Research Satellite (UARS) satellite. Figure 5-7 illustrates the geometry of the 
SOHO FPSS measurements.  
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Figure 5-7. SOHO Fine Pointing Sun Sensor Measurements 
The raw sensor measurements are the pitch and yaw angles of the LOS unit vector from the satellite 
to the CO (Sun, Moon, or planet) or another satellite, with respect to the sensor frame of reference.  
These angles are equivalent to the projection angles of the LOS vector onto the FSS X-Z and X-Y 
planes, respectively. These angles are related to the satellite-to-CO LOS unit vector components 
as follows 

 
)/arctan(

)/arctan(

xy

xz

PP
PP

−=β
=α

 (5.8-14) 

where 

 α = pitch angle measurement in radians 

 β = yaw angle measurement in radians 

( )zyx
k

S PPPP ,,ˆ =  = components of the sensor k-to-CO or sensor k-to target-satellite unit vector in 

the sensor k frame (e.g. FSSFSSFSS ZYX ˆˆˆ
,, , as defined in Figure 5-7) 

Equation 5.8-14 is used external to GEONS to convert the raw angle measurements to components 
of the sensor k-to-CO or sensor k-to target-satellite LOS unit vector in the sensor k frame, k

SP̂ . 
The observed LOS measurement unit vector is then transformed to the imaging satellite body 
frame, applying corrections for calibrated misalignments between the sensor and satellite body 
frames  

 ( ) k
S

Tk
SBobs

k
B PMP ˆˆ =  (5.8-14b) 

where 

 k
SBM  = transformation matrix from the imaging satellite body frame, BBB ZYX ˆˆˆ

,, , to 
the sensor k frame 
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For the SOHO satellite, the FSS frame, FSSFSSFSS ZYX ˆˆˆ
,, , is nominally aligned (i.e. except for 

sensor misalignments) with the satellite body frame, BBB ZYX ˆˆˆ
,, . 

GEONS uses the following equation to model the components of the LOS unit vector to the CO 
from sensor k on imaging satellite j in the body frame:  
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BIk

B bPVM
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= ˆˆ
ˆˆˆ

,

,

 (5.8-15)* 

where 

 j
BIM  = rotation matrix from the geocentric inertial to the satellite j body frame, 

j
B

j
B

j
B ZYX ˆ,ˆ,ˆ , equal to the attitude matrix defined in Section 3.2.8.1 

 Pk
IV ,ˆ  = Sensor k-to-CO LOS unit vector, referenced to the geocentric inertial frame 

(J2000.0) 

 k
BP̂∆  = calibrated line-of-sight measurement biases for sensor k (an input to the orbit 

estimation process) 

 k
Pb  = estimated line-of-sight measurement biases for sensor k 

GEONS uses the following equation to model the components of the intersatellite LOS 
measurement in the body frame from sensor k on imaging satellite j to a beacon on target satellite 
n:  
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,

 (5.8-15a)* 

where 

 j
BIM  = rotation matrix from the geocentric inertial to the satellite j body frame, 

j
B

j
B

j
B ZYX ˆ,ˆ,ˆ   

 mk
IV ,ˆ  = LOS unit vector from sensor k on satellite j to beacon m on satellite n, 

referenced to the geocentric inertial frame (J2000.0) 

 k
BP̂∆  = calibrated line-of-sight measurement biases for sensor k (an input to the orbit 

estimation process) 

 k
Pb  = estimated line-of-sight measurement biases for sensor k 

The rotation matrix j
BIM , which is provided by an onboard attitude determination process, is the 

product of the following two rotations 

 j
AI

jj
BI MtAM )(=  (5.8-15b) 
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where 

 )(tA j  = rotation matrix from the absolute reference frame, AAA zyx ˆ,ˆ,ˆ  to the satellite 

body frame, j
B

j
B

j
B ZYX ˆ,ˆ,ˆ , at time t, as defined in Equations 5.8-7 and 5.8-8. 

 j
AI

M  = transformation matrix from the geocentric inertial to absolute reference frame, 
j
A

j
A

j
A

zyx ˆ,ˆ,ˆ , such as that given by Equation (5.8-6) for the SOHO satellite 

For the SOHO satellite, the satellite attitude is controlled to maintain the BX̂  axis in alignment 
with the absolute reference frame Ax̂  axis defined in Equation (5.8-5).  

The predicted inertial LOS unit vector from sensor k on satellite j to the CO P is computed as 
follows 

 centerimagesensorofoffsetsignoring
RR
RRV

j
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P
IPk

I ;ˆ ,

−
−

≅  (5.8-15c)* 

where 

 j
IR  = position vector of satellite j, referenced to the geocentric inertial frame 

(J2000.0) 

 P
IR  = Position vector of the CO P referenced to the geocentric inertial frame 

(J2000.0) 

The Earth is at the origin of the geocentric reference frame.  The inertial position vectors for the 
Sun, Moon, and other planets are computed using the planetary ephemeris algorithms given in 
Section 4.1.1.  

The predicted inertial LOS unit vector from the image center of sensor k on satellite j to beacon m 
on satellite n is computed as follows 
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=  (5.8-15d)* 

where 

 kj
IR ,  = position vector of the image center of sensor k on satellite j, referenced to the 

geocentric inertial frame (J2000.0), which is computed as follows, given the 
locations of the image center in the satellite body frame ( )kj

I
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I
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I zyx ,,, ,, ∆∆∆  
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,  (5.8-15e)* 
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 mn
IR ,  = position vector of beacon m on satellite n, referenced to the geocentric inertial 

frame (J2000.0), which is computed as follows, given the locations of the 
beacon in the satellite body frame ( )mn

I
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I
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I zyx ,,, ,, ∆∆∆  
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,  (5.8-15f)* 

The CO’s position as viewed from the satellite, PR - jR , is not its true position. Equation 5.8-15c 
can be modified to account for planetary aberration. For the case of Sun sensor measurements, the 
following is the apparent satellite-to-Sun unit vector in the geocentric inertial frame (Reference 
28): 
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where  

 S
IR  = Position vector of the Sun referenced to the geocentric inertial frame (J2000.0) 
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where δt = 1 second 

 j
IR  = instantaneous velocity of the satellite relative to the Earth 

                      j
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1τ  

 c = speed of light 

Note that this correction is not currently implemented in GEONS for Sun sensor measurement 
processing. 

If the estimation state vector consists of only absolute state vectors, the nonzero components of 
the row vector of partial derivatives of the ith component of CO LOS vector measurement by 
sensor k on satellite j, ignoring aberration effects, are equal to the ith row of the matrix of partial 
derivatives computed as follows: 
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where 
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If the estimation state vector consists of the absolute state vector for the local satellite and relative 
state vectors for nonlocal satellites, the nonzero components of the row vector of partial derivatives 
of the ith component of the CO LOS vector measurement by sensor k on satellite j, ignoring 
aberration effects, are equal to the ith row of the matrix of partial derivatives computed as follows: 
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If the estimation state vector consists of only absolute state vectors, the nonzero components of 
the row vector of partial derivatives of the ith component of the intersatellite LOS vector 
measurement from sensor k on satellite j to beacon m on satellite n are equal to the ith row of the 
matrix of partial derivatives computed as follows: 
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If the estimation state vector consists of the absolute state vector for the local satellite and relative 
state vectors for nonlocal satellites,  
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The nonzero components of the row vector of partial derivatives of the ith component of the 
intersatellite LOS vector measurement from sensor k on satellite j to beacon m on satellite n are 
equal to the ith row of the matrix of partial derivatives computed as follows: 
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5.8.2.2 Intersatellite Bearing Measurements  
The following intersatellite model assumes that the sensor provides dimensionless bearing 
measurements ( )obs

jk
S

jk
S yx ,, , , derived from the line-of-sight vector from a sensor on the imaging 

satellite to the centroid (or center of mass) of the target satellite, measured with respect to the 
sensor frame, with distortion corrections applied.  
The predicted bearing measurements from sensor k on the imaging satellite i to the target location 
j on the target satellite at measurement time tR are defined as follows 
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 (5.8.2.2-1)* 

where 

 jk
S

jk
S yx ,, ,  = predicted bearing measurements from sensor k on the imaging satellite (i.e. 

chaser) to the target location j on the target satellite with respect to the sensor 
frame 

 k
S

k
S yx ∆∆ ,  = calibrated bearing measurement bias corrections for sensor k in the sensor 

frame (optional input to the orbit estimation process   
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 k
y

k
x bb ,  = estimated bearing measurement biases for sensor k 

 jk
S

jk
S

jk
S ZYX ,,, ,,  = components of the sensor-to-target vector, jk

SP , , from sensor k to target location 
j with respect to the sensor frame  

The sensor k-to-target j position vector with respect to the sensor frame, jk
SP , , is computed by 

rotating the sensor-to-target position vector in the imaging satellite body frame, jk
BP , , to the sensor 

body frame  

 jk
B

k
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S

k
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S

k
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 (5.8.2.2-2)* 

where 

 k
SBM  = rotation matrix from the imaging satellite body frame to the sensor k frame, 

computed using sensor quaternions (updated periodically via commands if 
thermal and other effects have changed the attitude of the sensor with respect 
to the body frame of the spacecraft). 

 ,k j
BP  = sensor k-to-target j position vector in the body frame of satellite i given by 

 , ,k j i k j
B BI IP M P=  (5.8.2.2-3)* 

 i
BIM  = rotation matrix from the inertial frame to the satellite i body frame, computed 

using the attitude quaternions provided as input from an external subsystem 
(or file) 

 ,k j
IP  = sensor k-to-target j position vector, referenced to the inertial frame, which is 

computed as follows 

 ( ) ( ), [ ]
T Tk j j j j i i k

I I BI B I BI BP R M R R M R= + ∆ − + ∆  (5.8.2.2-4)* 

 j
IR  = predicted position vector of the target satellite j at the measurement time, 

referenced to the inertial frame (components of the estimated state vector) 

 j
BIM  = rotation matrix from the inertial frame to the target satellite j body frame, 

computed using the attitude quaternions (an input to the orbit estimation 
process) 

 j
BR∆  = coordinates of the target location j with respect to the target satellite body 

frame (an input to the orbit estimation process) 

 i
IR  = predicted position vector of imaging satellite i at the measurement time, 

referenced to the inertial frame (components of the estimated state vector) 
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 k
BR∆  = coordinates of the sensor k image center with respect to the imaging satellite 

body frame (an input to the orbit estimation process) 

If the estimation state vector consists of only absolute state vectors, the partial derivatives of the 
( )jk

S
jk

S yx ,, ,  bearing measurements from sensor k on satellite i to the target j with respect to the 
chaser satellite i and target satellite j position vectors are computed as follows: 
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∂ ∂      

 (5.8.2.2-5) 

Which reduces to 

 
( ) ( )

( ) ( )

, ,

2, ,

, ,

2, ,

( ) ( )1 0
( ) ( ) ( )

( ) ( )10
( ) ( ) ( )

k j k j
k iS R S k
SB BIi k j k j

k S k S k

k j k j
k iS R S k
SB BIi k j k j

k S k S k

x t X t M M
R t Z t Z t

y t Y t M M
R t Z t Z t

 
∂ − = −

 ∂
 
 

∂ − = −
 ∂
 

 (5.8.2.2-6)* 

Similarly 
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 (5.8.2.2-7)* 

If the estimation state vector consists of the absolute state vector for the local satellite and relative 
state vectors for nonlocal satellites, the partial derivatives of the ( )jk

S
jk

S yx ,, ,  bearing measurements 
from sensor k on satellite i to the target location j with respect to the position of reference satellite 
1 and non-local satellites i and/or j are computed as follows: 
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 (5.8.2.2-8)* 

And the non-zero partial derivatives are as follows: 
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 (5.8.2.2-10)* 

Partial derivatives of the ( )jk
S

jk
S yx ,, ,  bearing measurements with respect to the bearing 

measurement biases for sensor k, k
y

k
x bb , , are computed as follows:  
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 (5.8.2.2-13)* 

 

 

5.8.2.3 Landmark/Celestial Object Bearing Measurements  
The following model assumes that the sensor k provides dimensionless bearing measurements 
( )obs

Lk
S

Lk
S yx ,, , , computed from the line-of-sight vector from a sensor on the imaging satellite to a 

landmark on/centroid of a celestial body measured with respect to the sensor frame, with distortion 
corrections applied. Note that in the following discussion, a bearing measurement to the centroid 
of a celestial body is treated as a landmark located at the centroid of the target body. 
The predicted bearing measurements from sensor k on the imaging satellite i to landmark L on the 
target body at the measurement time tR is defined as follows 
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 (5.8.2.3-1)* 

where 

 Lk
S

Lk
S yx ,, ,  = predicted bearing measurements from sensor k on the imaging satellite to 

landmark L on the target body with respect to the sensor frame 
Lk

S
Lk

S
Lk

S ZYX ,,, ,,  = components of the sensor-to-landmark vector, Lk
SP , , from sensor k to landmark 

L with respect to the sensor frame  
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 k
S

k
S yx ∆∆ ,  = calibrated bearing measurement biases for sensor k (an input to the orbit 

estimation process). Note this input would not be required if totally accounted 
for in measurement pre-processing. 

 k
y

k
x bb ,  = estimated bearing measurement biases for sensor k 

The sensor k-to-landmark position vector with respect to the sensor frame, Lk
SP , , is computed by 

rotating the sensor-to-landmark position vector in the satellite body frame, Lk
BP , , to the sensor body 

frame  

 Lk
B

k
SB

Lk
S PMP ,, =  (5.8.2.3-2)* 

where 

 k
SBM  = rotation matrix from the satellite body frame to sensor k frame, computed using 

sensor quaternion periodically updated via commands  

 ,k L
BP  = sensor-to-landmark vector measured by sensor k on satellite i in the body 

frame (where i=1 for single-satellite asteroid missions) given by 

 , ,k L i k L
B BI IP M P=  (5.8.2.3-3)* 

 i
BIM  = rotation matrix from the inertial to the satellite i body frame, computed using 

the attitude quaternion provided as input from an external subsystem (or file) 

 ,k L
IP  = Sensor k-to-landmark L position vector, referenced to the inertial frame, which 

is computed as follows 

 ( ), [ ]
Tk L L i i k

I I I BI BP R R M R= − + ∆  (5.8.2.3-4)* 

 

 L
IR  = Position vector of landmark L referenced to the inertial frame given by 

 ( )TL T L
I I TI TR R M r= +  (5.8.2.3-5)* 

 i
IR  = predicted position vector of satellite i at the measurement time, referenced to 

the inertial frame (components of the estimated state vector) 

 k
BR∆  = coordinates of the sensor k image center with respect to the satellite body frame 

(an input to the orbit estimation process) 

 T
IR  = Center of mass (COM) position vector of the target body on which the 

landmarks are located, referenced to the inertial frame. This position is either 
computed based on a planetary ephemeris available in GEONS or an 
externally-provided ephemeris for a body such as an asteroid. 
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 TIM  = rotation matrix from the target-centered inertial (TCI) frame to the target body 
frame (TBF), computed using the cartographic coordinates of the body 
consisting of the orientation (i.e. right ascension and declination of date) of the 
axis of rotation (north pole) and the location and rotation rate of the prime 
meridian of the object with respect to the inertial ICRF.  

 L
Tr  = coordinates of landmark L referenced to the target body frame. This position 

vector is provided along with the measurements. 
The measurement model for the ( )Tk

S
Tk

S yx ,, ,  bearing measurements of the target body centroid with 
respect to the sensor k frame is the same as the model for the ( )Lk

S
Lk

S yx ,, ,  bearing measurements of 
landmark locations on the target body except that the “landmark” is the COM of the target body. 
If the estimation state vector consists of only absolute state vectors, the partial derivatives of the 
( )Lk

S
Lk

S yx ,, ,  bearing measurements from sensor k on satellite i to Landmark on the target body, with 
respect to the position of satellite i are computed as follows: 
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Which reduces to the following 
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 (5.8.2.3-7)* 

If the estimation state vector consists of the absolute state vector for the local satellite and relative 
state vectors for nonlocal satellites, the partial derivatives of the ( )Lk

S
Lk

S yx ,, ,  bearing measurements 
from sensor k on satellite i to Landmark L with respect to the position of satellite i are computed 
as follows: 
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 (5.8.2.3-9)* 

Partial derivatives of the ( )Lk
S

Lk
S yx ,, ,  bearing measurements with respect to the bearing 

measurement biases for sensor k, k
y

k
x bb , , are computed as follows:  
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 (5.8.2.3-10)* 

5.8.2.4 Camera Range Measurement  
The camera range model assumes that sensor k provides a 1D range measurement ( )

obs
xk ,ρ  to some 

3D point of interest x attached to a target body with known location in the inertial frame. The target 
body can be a celestial object or another satellite state that is being estimated. Note that in the 
following discussion, a range measurement to the centroid of a celestial body is treated as a point 
of interest located at the centroid of the target body. 
 
The predicted range measurement from the camera sensor center k on the imaging satellite i to 
point of interest x on the target body T at measurement time tR is computed as follows 
 

 , ,( ) ( ) ( )k x k x k k
R I R Rt P t b tρρ ρ= + ∆ +  (5.8.2.4-1)* 

where  

 ,k x
IP  = vector from camera sensor k to point of interest x, referenced to the inertial 

frame  

 kρ∆  = calibrated range measurement bias for sensor k (an input to the orbit estimation 
process). Note this input would not be required if totally accounted for in 
measurement pre-processing. 

 kbρ  = estimated range measurement bias for sensor k 
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The following equation is used to compute the components of the camera sensor-to-point of 
interest vector measured by sensor k on satellite i in the inertial frame, (where i=1 for single-
satellite asteroid missions):  

 ( ),
( ) ( ) ( )

Tk x kx i i
I BR I R I R BIP t R t R t M R = − + ∆  

 (5.8.2.4-2)* 

where 

 x
IR  = vector from the inertial frame origin to point x at the measurement time, 

referenced to the inertial frame, given by 

 x
TIT

T
I

x
I rMRR +=  (5.8.2.4-3)* 

 T
IR  = position vector of the origin of the target body frame on which the point x is 

located, referenced to the inertial frame. This position is computed based on a 
planetary ephemeris available in GEONS, an externally-provided ephemeris 
for a target body such as an asteroid, or predicted state of a second satellite j 

 ITM  = rotation matrix from the target body frame (TBF) to the inertial frame 

 x
Tr  = coordinates of the point of interest x in the target body frame. This position 

vector is provided along with the measurements. 

 i
IR  = vector from the inertial frame origin to origin of the imaging satellite i body 

frame at the measurement time, referenced to the inertial frame (components 
of the predicted satellite state vector) 

 i
BIM  = rotation matrix from the inertial to the imaging satellite i body frame, computed 

using the attitude quaternion provided as input from an external subsystem (or 
file) 

 k
BR∆  = vector from the origin of the imaging satellite i body frame to the camera sensor 

k image center, referenced to the satellite body frame (input to the orbit 
estimation process) 

If the estimation state vector consists of only absolute state vectors, the only non-zero partial 
derivatives of the camera range measurement from sensor k on satellite i to the point of interest on 
the target body are with respect to the inertial position of imaging satellite i, computed as follows, 
ignoring the linearization correction 

 
, , , ,

, ,

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

T
k x k x k x k x

k k I k I k
i k x i k x
I k I k I k I k

t t P t P t
R t P t R t P t
ρ ρ  ∂ ∂ ∂  = = −
∂ ∂ ∂   

 (5.8.2.4-4)* 

Similarly, if the target body is another satellite j that is being estimated:  
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 (5.8.2.4-5)* 

If the estimation state vector consists of the absolute state vector for the local satellite (i=1) or 
target satellite (j=1) and relative state vectors for nonlocal satellites,  

 
, ,

1

( ) ( )
; if target body state is not estimated

( ) ( )

k x k x
k k

i
I k I k

t t
R t R t
ρ ρ∂ ∂

=
∂ ∂

 (5.8.2-4.6)* 
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The following are the nonzero partial derivatives of the range measurement for the relative state 
vectors:  

 
, , ,

,
,

( ) ( ) ( ) ; 1
( ) ( ) ( )

T
k x k x k x

k k I k
i i k x
rel I k I k I k

t t P t i
R t R t P t
ρ ρ  ∂ ∂  = = − >

∂ ∂   
 (5.8.2.4-8)* 

Similarly, if the target body is another satellite j that is being estimated:  
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The partial derivative of the camera range with respect to the range measurement bias for sensor 
k, kbρ , is computed as follows:  

 1
,

=
∂

∂
k

xk

bρ

ρ
 (5.8.2.4-10)* 

5.8.3 Planetary Sensor Measurement Models for Spin-Stabilized Satellite  
This section presents models used to process CO sensor measurements for spin-stabilized satellite. 

5.8.3.1 Sun Angle Measurements from a Spinning Satellite  
This model is appropriate for the Sun sensor assemblies (SSAs) flown on spinning satellites such 
as WIND and POLAR. The SSA measures the angle between the Sun sensor-to-Sun LOS unit 
vector and the satellite spin axis when the sun is in the measurement plane, i.e. the plane containing 
the spin axis and a vector normal to the sensor.  Figure 5-8 illustrates the measurement geometry.  
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Figure 5-8. Sun Angle Measurement Geometry 
The SSA generates a command eye pulse (CEP) when the Sun is in the measurement plane. The 
time of the CEP, CEPt , provides the measurement timetag. The accuracy of the sun angle 
measurement is nominally ±0.10 degree. The sun angle is related to the satellite-to-Sun LOS unit 
vector components as follows 

 Sun
kk

Sun
jj

SI
k
Sun bAV β+β∆+⋅=β )ˆˆarccos(  (5.8-17)* 

where 

 k
Sunβ  = sun angle measurement in radians from sensor k on satellite j 

 j
SIV̂  = satellite-to-Sun line-of-sight (LOS) unit vector at CEPt , referenced to the 

geocentric inertial frame (J2000.0)  

 jÂ  = unit vector along the satellite j spin axis at CEPt , referenced to the geocentric 
inertial frame (J2000.0) (input to this process) 

 k
Sunβ∆  = calibrated sun angle measurement bias for sensor k in radians (an input to the 

orbit estimation process) 

 k
Sun

bβ  = estimated sun angle measurement bias for sensor k in radians  

The predicted inertial LOS unit vector from satellite j to the Sun is computed as follows 
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where 

 )( CEP
j tR  = satellite j position vector at CEPt , referenced to the geocentric inertial frame 

(J2000.0) 

 )( CEPS tR  = Position vector of the Sun at CEPt  referenced to the geocentric inertial frame 
(J2000.0) 

The inertial position vector for the Sun is computed using the analytic algorithms for the solar 
positions given in Section 4.1.2.  

If the estimation state vector consists of only absolute state vectors, the nonzero components of 
the row vector of partial derivatives are computed as follows for measurements associated with 
sun sensors on satellite j: 
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 (5.8-19)* 
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 (5.8-19a)* 

where 
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If the estimation state vector consists of the absolute state vector for the local satellite and relative 
state vectors for nonlocal satellites, the nonzero components of the row vector of partial derivatives 
are computed as follows for measurements associated with sun sensors on satellite j: 
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∂
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 (5.8-20c)* 

5.8.3.2 Horizon Scanning Measurements from a Spinning Satellite  
This model is appropriate for horizon sensor assemblies (HSAs) flown on spinning satellites such 
as the Barnes HSAs flown on WIND and POLAR. Figure 5-9 illustrates the measurement 
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geometry. The accuracy of the Earth horizon sensor measurement is nominally 0.1 degree. 
However, this accuracy is degraded by fluctuations in the Earth’s horizon radiance that produce 
errors of about 10 kilometers in the measurement of the horizon.  
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Figure 5-9. Earth-Out Crossing Measurement Geometry 

The horizon sensor measures the elapsed time from the Sun sensor’s CEP at CEPt  to the Earth-in 
pulse at int  and the elapsed time from the Sun sensor’s CEP at CEPt  to the Earth-out pulse at outt . 
Each of these measurements is processed independently in the estimation processing. These times 
are computed as follows, where horizon sensor k and Sun sensor m are on satellite j 
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 (5.8-21)* 

where 

 mk
out

mk
in tt ,, , ∆∆  = elapsed time in seconds from the CEP from Sun sensor m to the Earth-in/-out 

pulse from horizon sensor k, normalized to a value between 0 and one spin 
period 

 jω  = satellite j spin rate in radians per second (an input from the attitude 
determination process) 

 j
out

j
in AA ,  = dihedral angle on satellite j from the plane containing the spin axis and the 

satellite-to-Sun vector and the plane containing the spin axis and the satellite-
to-Earth-cross-in/out point in radians 



 
 

5-124 
 
 

 mkmk ,, , φφ  = nominal azimuth from the Sun sensor m to the Earth sensor k in radians (an 
input sensor configuration parameter) 

 n  = integer number of revolutions such that ( ) ππφ 220 , ≤+−≤ nA mkj
inin

: 
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 (5.8-21b)* 

 mk
out

mk
in

tt ,, ,δδ  = calibrated measurement biases between the Sun sensor m and the Earth sensor 
k at Earth-cross-in/-out in seconds  

 mk
outt

mk
int bb ,, , ∆∆  = estimated measurement biases between the Sun sensor m and the Earth sensor 

k at Earth-cross-in/-out in seconds  

The dihedral angles j
out

j
in

AA ,  are computed as follows 
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where 

 
)ˆˆ)(ˆˆ(ˆˆ),ˆˆ(ˆ

)ˆˆ)(ˆˆ(ˆˆ),ˆˆ(ˆ

jj
out

jj
SI

j
SI

j
out

j
out

j
out

j
SI

jj
out

jj
in

jj
SI

j
SI

j
in

j
in

j
in

j
SI

jj
in

AHAVVHDHVAN

AHAVVHDHVAN

⋅⋅−⋅=×⋅=

⋅⋅−⋅=×⋅=
 (5.8-23)* 

 j
SI

V̂  = Satellite-to-Sun line-of-sight (LOS) unit vector at CEPt , referenced to the 
geocentric inertial frame (J2000.0), computed as in Equation 5.8-18 

 jÂ  = unit vector along the satellite j spin axis at CEPt , referenced to the geocentric 
inertial frame (J2000.0) (input to this process) 

 j
out

j
in

HH ˆ,ˆ  = unit vector from the satellite j to the Earth cross-in/-out point at outint / , 
referenced to the geocentric inertial frame (J2000.0) 

The components of j
in

Ĥ / j
out

Ĥ are derived based on the following relationships, illustrated in 
Figure 5-10: 
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 (5.8-24) 

where  

 k
S

γ  = measured HSA k mounting angle with respect to the spin axis 

 outin ρρ ,  = Earth angular radius at the crossing point 

)(ˆ),(ˆ
out

j
in

j tEtE  = unit vector from satellite j to the center of the Earth at outint / , referenced to 
the geocentric inertial frame (J2000.0) 
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Figure 5-10. Earth/Out Measurement Geometry 
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The corresponding partial derivative matrices: 
)(

ˆ
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j

j
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∂
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system of equations  
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Necessary conditions for Equation 5.8-24 to admit two unique solutions, 1Ĥ and 2Ĥ , is that the 

two vectors jÂ  and jR̂  are independent, that is 0ˆˆ ≠× jj RA . The following procedure is used to 
compute these solutions.  

The first set of solutions for 1Ĥ and 2Ĥ  is computed using )(ˆ
/ CEPoutin

j ttR ≅ , )(ˆ
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where  

 NR  = Earth spherical radius, equal to 6371.38 kilometers 

 Nh  = nominal carbon dioxide height, 38 kilometers  

in the following: 
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If the value of c in Equation (5.8-28) is imaginary, the measurement is discarded as invalid. To 
identify which solution to Equation (5.8-28) corresponds to j

outin
H

/
ˆ , the dihedral angle (more 

precisely, the rotational angle for the spinning satellite) Θ from the 1
ˆˆ HA× plane to the 2

ˆˆ HA×
plane is computed as follows: 

 ( ) ( ) ( )( )[ ]
  2 ,0 if

ˆˆˆˆˆˆ,ˆˆˆ2arctan 2112121
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⋅⋅−⋅×⋅=Θ HAHAHHHHA  (5.8-29)* 

If Θ < π, inĤ = 1Ĥ and outĤ = 2Ĥ . If Θ ≥ π, inĤ = 2Ĥ and outĤ = 1Ĥ .   

Next updated Earth cross-in/out times are computed as outinCEPoutin ttt // ∆+= , where outint /∆  is 
computed using the initial outinH /

ˆ solutions to compute the dihedral angles outinA / in Equation 
(5.8-21). Then two sets of updated values for 1Ĥ  and 2Ĥ  are computed using nR  evaluated at 

inCEPin ttt ∆+=  and outCEPout ttt ∆+=  to compute )(ˆ
intE  and )(ˆ

outtE  and correcting outin ρρ  and  
to account for the Earth’s oblateness. The updated values for )( in

j tR  and )( out
j tR  are 

approximated as follows: 
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The corrected Earth angular radii are computed as follows 
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 eR  = Earth’s equatorial radius, 6378.1363 kilometers  

 Ef  = Earth’s flattening coefficient, equal to 1/298.257 

 outinER /  = magnitude of the vector from the center of the Earth to the Earth in/out crossing 
point 

 outinER /
ˆ  = unit vector from the center of the Earth to the Earth in/out crossing point 

expressed in the inertial frame 

 zoutinER )ˆ( /  = z-component of unit vector from the center of the Earth to the Earth in/out 
crossing point  

 j
outin

H
/

ˆ  = unit vector from the satellite j to the Earth in/out crossing point based in initial 
solution of Equation (5.8-28) 

The test given in Equation (5.8-29) is then used to determine which of the two solutions at int  
corresponds to j

in
Ĥ  and which of the two solutions at outt  corresponds to j

out
Ĥ . Updated values 

for the measurements are then computed using the updated j
in

Ĥ  and j
out

Ĥ  solutions to compute 
the dihedral angles j

outin
A

/
in Equation (5.8-21). 

If the estimation state vector consists of only absolute state vectors, the nonzero components of 
the row vector of partial derivatives associated with the Earth crossing sensors on satellite j are 
computed as follows. Note that in the partial derivative computations, the value of the satellite 
position vector at CEPt  is used. 
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Finally let      
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Solving the system of equations (5.8-26) yields 
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 Similarly let      
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then   
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If the estimation state vector consists of the absolute state vector for the local satellite and relative 
state vectors for nonlocal satellites, the nonzero components of the row vector of measurement 
partial derivatives associated with the Earth crossing sensors k and m on satellite j are computed 
as follows: 
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5.8.4 Pseudoangle Measurements  
In Reference 30, Battin describes an approach for computing a celestial position fix based on the 
measurement of the angular distance between a planet and a star or two planets.  Because typical 
satellite star and planetary sensors do not provide direct measures of this angular separation, 
Battin’s method has been adapted to use the angle between simultaneously measured LOS unit 
vectors to the planet and star or two planets. (Note that if simultaneous measurements are not 
available one of the measurements will be interpolated to the time of the other measurement.) 

The advantage of this method is that the resultant pseudoangle measurements eliminate the need 
for direct input of the attitude matrix, A(t).  Disadvantages of this method are that it requires 
simultaneous measurements and that it requires the processing of star sensor measurements, which 
requires access to an onboard star catalog.  In addition, it should be noted that in the future 
advanced star sensor systems will output the attitude quaternion directly rather than the individual 
LOS vectors to the stars. 

5.8.4.1 Pseudoangle Measurement Preprocessing (not implemented in GEONS) 

The pseudoangle measurement is the cosine of the angle between the LOS unit vectors to a planet 
and a star.  It is formed as follows from the LOS measurements to the planet and star or another 
planet, after rotating them to the common satellite body frame: 

 )ˆ()ˆ(, j
sB

k
B

mk
Ps wPD •=  (5.8-41)* 

where 

 BP̂  = LOS measurement from planet sensor k on satellite j, referenced to the satellite 
body frame  

 j
sBŵ  = LOS measurement from star sensor m on satellite j to the sth star, referenced 

to the satellite body frame  
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If the raw planet/star measurements are the pitch and yaw angle measurements in the sensor frame 
(typical for a sun sensor), the components of the measured LOS unit vector to the planet/star in the 
sensor frame can be computed by inverting Equation (5.8-14) and then rotated to the satellite body 
frame using Equation (5.8-14b). If the raw planet/star measurements are the yS and zS coordinates 
of the LOS unit vector to each planet/star with respect to the sensor focal frame (typical for a star 
tracker), the components of the measured LOS unit vector to the planet/star in the sensor frame 
can be computed as follows  
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where the star angles, Ω Ωy z, , are related to the sensor yS and zS coordinates as follows 
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where 

 Ω Ωy z,  = star angles in the star sensor yS and zS directions 

 npixels per ree_ _deg  = number of pixels corresponding to one degree 

 nC units per pixel_ _ _  = number of subpixels in a pixel 

and then rotated from the sensor frame to the satellite body frame using Equation (5.8-14b). 
Similarly the pseudoangle measurement between the LOS unit vectors to two near bodies (e.g. the 
sun and Mars) is formed as follows: 
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PP PPD •=  (5.8-44) 

where 

 k
BP̂  = LOS measurement from planet sensor k, referenced to the satellite body frame 

5.8.4.2 Pseudoangle Measurement Model and Partial Derivatives 
Because the angle between the LOS vectors is independent of the coordinate frame in which the 
vectors are expressed, the following relationship is used to compute the predicted planet-to-star 
measurement:  
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where 

 j
PIV̂  = LOS unit vector from satellite j to the planet, referenced to the inertial 

geocentric frame  

 j
sIŵ  = LOS unit vector from satellite j to the sth star, referenced to the inertial 

geocentric frame (which is identified by the star tracker and provided along 
with the pseudoangle measurement) 

 mk
Ps

D ,∆  = calibrated residual pseudoangle measurement bias between planet sensor k and 
star tracker m on satellite j (unitless) (an input to the orbit estimation 
processing) 

 mk
PsDb ,  = estimated residual pseudoangle measurement bias between for planet sensor k 

and star tracker m on satellite j (unitless)  

If the estimation state vector consists of only absolute state vectors, the nonzero components of 
the row vector of partial derivatives for planet-to-star pseudoangle measurements associated with 
sensors on satellite j are computed as follows: 
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If the estimation state vector consists of the absolute state vector for the local satellite and relative 
state vectors for nonlocal satellites, the nonzero components of the row vector of measurement 
partial derivatives for planet-to-star pseudoangle measurements associated with sensors on satellite 
j are computed as follows: 
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Similarly the pseudoangle measurement between the LOS unit vectors to two near bodies (e.g. the 
sun and Mars) is modeled as follows: 

  



 
 

5-134 
 
 

 mk

PPD
mk
PP

j
IP

Tj
IP

mk

PPD
mk
PP

j
IP

j
IP

mk
PP bDVVbDVVD ,

21

,
2112

,

21

,
2121

,
21

ˆˆˆˆ +∆+=+∆+•=  (5.8-47)* 

If the estimation state vector consists of only absolute state vectors, the nonzero components of 
the row vector of associated measurement partial derivatives are computed as follows: 
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If the estimation state vector consists of the absolute state vector for the local satellite and relative 
state vectors for nonlocal satellites, the nonzero components of the row vector of partial derivatives 
for pseudoangle measurements between the LOS unit vectors to two near bodies associated with 
sensors on satellite j are computed as follows: 
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5.9 TDRSS Measurement Models  
The computational algorithms for one-way TDRSS Doppler measurements are discussed in this 
section. The general form of the measurement model is as follows: 

 𝑌𝑌𝑘𝑘 = 𝐺𝐺 [𝑋̄𝑋(𝑡𝑡𝑘𝑘), 𝑡𝑡𝑘𝑘] + 𝜀𝜀 (5.9-1) 

where tk is the true measurement time, referenced to UTC, and 𝜀𝜀 is the measurement error. It is 
assumed that 𝜀𝜀 has a zero-mean Gaussian distribution with standard deviation σ, which is 
commandable for each measurement type. The measurement standard deviation is typically 
determined through analysis of the random component of the measurement error as part of the 
filter tuning process. For GEONS, the estimation state vector, X t( )  includes the receiver position 

vector, R ; velocity vector, R ; optional corrections to the drag and solar radiation pressure 
coefficients, ∆CD and ∆CR; receiver time bias, bR; receiver time bias rate, d R , for one or more 
receivers; and measurement-dependent biases. The Tracking and Data Relay Satellite (TDRS) 
state vectors are propagated in the navigation filter.  

Section 5.9.1 addresses preprocessing of the raw TDRSS Doppler measurements obtained from a 
TDRSS S-band receiver onboard the spacecraft. The model for the one-way forward link range 
from the TDRSS Ground Terminal (TGT) to the TDRS to the local satellite receiver, which is used 
in the computation of the TDRSS Doppler measurement, is presented in Section 5.9.2. The TDRSS 
one-way forward Doppler measurement model and associated partial derivatives are defined in 
Section 5.9.3. Section 5.9.4 provides the measurement model and associated partial derivatives for 
TDRSS differenced one-way Doppler (DOWD) measurements, which are appropriate for ground 
processing using GEONS.  

5.9.1  Raw TDRSS Doppler Measurement Preprocessing (not implemented in GEONS) 
The TDRSS tracking signal path is shown in Figure 5-11. A K-band signal is transmitted from an 
antenna at the TGT to the space-to-ground link (SGL) antenna on a TDRS. The TDRS translates 
the signal to the required transmit frequency by converting to S-band and removing a pilot 
frequency. The S-band signal is then transmitted from either the TDRS multiple access (MA) 
antenna system or a single-access (SA) antenna to the user satellite. One-way TDRSS tracking is 
operated using a fixed radiated carrier frequency (FRCF) with onboard Doppler compensation 
(OBDC). The nominal RCF is 2106.406250 megahertz. 

 
Figure 5-11. TDRSS Forward-Link Signal Path 
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The user satellite can have more than one TDRSS receiver/transponder, often with one tied to an 
omnidirectional antenna and one tied to a single-access antenna. The receiver on the user satellite 
extracts the Doppler frequency by differencing the incoming frequency with the S-band reference 
frequency. The Doppler measurement function is accomplished via a software accumulation of a 
scaled and biased nondestruct Doppler shift to provide a Doppler frequency sum measurement. 
The receiver’s raw Doppler measurement output consists of the nondestruct frequency sum. The 
raw Doppler frequency sums are available nominally every 1.024 seconds. The navigation 
software samples the Doppler frequency sums, nominally every 8.192 or 16.384 seconds, validates 
and corrects the measurements for accumulator rollover, and converts them to the averaged 
Doppler measurements that are input to GEONS. Section 20.9 in Reference 3 describes the 
measurement validation and conversion processing that was implemented for the TDRSS Doppler 
extraction capability on the Terra spacecraft. 

5.9.2  TDRSS Pseudorange and Associated Partial Derivatives 
The timetag associated with the kth  measurement is the UTC receive time of the signal at the local 
receiver as measured with respect to the spacecraft/receiver clock, )(RC

Rt . In the presence of a 
spacecraft timing bias, the true measurement time is given by 

 R
RC

Rk ttt δ−= )(  (5.9-2) 

where Rtδ  is the offset of the receiver’s timing reference from UTC, given by 

 
c
tb

t kR
R

)(
=δ  (5.9-3) 

If the receiver time offset, Rtδ , is larger than 1 millisecond, it should be used to correct the 
measurement receiver time tag as shown in Equation 5.9-2. The accumulated receiver clock bias, 

)(tbR , can be estimated if GPS/WAAS measurements are processed in GEONS in addition to 
TDRSS Doppler measurement data. However, if only TDRSS Doppler measurements are 
processed, the receiver time offset correction is not observable and would have to be provided by 
another satellite subsystem.  

TDRSS tracking does not provide a measurement of the TGT-to-TDRS-to-satellite pseudorange; 
however, the TGT-to-TDRS-to-satellite range is computed as part of the Doppler measurement 
model. The backward signal-trace method is used to determine when the signal was transmitted 
from the TGT and the TDRS. After the actual transmit times are determined, the range between 
the TGT and the TDRS and the TDRS and local satellite receiver are computed. 

If the forward-link signal is transmitted from an antenna at the TGT at time 
1Tt , received by the 

SGL antenna on TDRS p and transmitted from MA or SA antenna q on TDRS p at time 
2Tt , and 

received at antenna i on satellite n at time Rt  (equal to kt ), the distance traversed by the signal is 

given by the range, in
TDRS p

,ρ : 
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where 

 c = speed of light 

 )( R
n
A tR

i
 = position of antenna i on receiving satellite n at time Rt , which is computed 

using Equation 3.2-61 in Section 3.2.8 

 )(
2, TTDRS tR

qp
 = position of transmitting MA or SA antenna q on TDRS p at time 

2Tt  (currently 
the TDRS antenna offsets are not modeled in GEONS) 

 )(
2SGL, TTDRS tR

p
 = position of receiving SGL antenna on TDRS p at time 

2Tt  (currently the TDRS 
antenna offsets are not modeled in GEONS) 

 )(
1TTGT tR

p
 = position of the transmitting ground antenna associated with TDRS p at the TGT 

at time 
1Tt  

The transponder delay on the TDRS or the user satellite is not modeled. 

The Newton-Raphson iterative scheme is used to solve for the actual signal transmit time, 
2Tt , as 

follows 
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where 

 1, +mTt  = (m+1)th  approximation for Tt  

 mTt ,  = mth  approximation for Tt  

 Rt  = signal reception time at the satellite receiver 

The iterative solution of Equation (5.9-5) is started by setting  

 RT tt =0,2
 (5.9-6)* 

such that 

 )()(
,2, 0, RTDRSTTDRS tRtR
qpqp

=  (5.9-7)* 

The TDRS state vector is propagated to the time kR tt =  using a Runge-Kutta integrator and the 
full acceleration model. The TDRS positions at the updated transmission times are computed as 
follows 

 )()()(
,,2, , RTDRSmRTDRSmTTDRS tRttRtR
qpqpqp

∆−=  (5.9-8)* 
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where 

 mTRm ttt ,2
−=∆  (5.9-9)* 

This iterative scheme is continued until the condition ε≤−+ mTmT tt ,1,  is satisfied, where ε is a 
small tolerance (nominally equal to 10-8 second). The TGT transmission time 

1Tt  is then computed 
using the same iterative scheme to solve: 
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After the signal transmission times are found, the distance between the local satellite receiver and 
the TDRS and the TDRS and the associated TGT antenna are calculated using Equation (5.9-4). 
The position and velocity vectors for the TGT antennas are available in ECEF coordinates and 
must be transformed to J2000.0 inertial coordinates using the transformations defined in Sections 
3.2.1 through 3.2.3.  

If the estimation state vector consists of absolute states for the local and remote satellites, the 
following are the nonzero partial derivatives of the range with respect to the components of the 
estimation state vector, )( ktX , where )( k

n tR is the receiving satellite state vector: 
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If the estimation state vector includes relative states for the remote satellites, the following are the 
nonzero partial derivatives of the range with respect to the components of the estimation state 
vector, )( ktX : 
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5.9.3 TDRSS Forward-Link Averaged Doppler Measurement Model and 
Associated Partial Derivatives  

The TDRS associated with the first valid measurement in each tracking contact is identified by the 
process of elimination. All visible TDRSs are identified using the HORP test defined in Section 
7.4 of this document. For each the visible TDRS, the TGT-to-TDRS-to-satellite Doppler 
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measurement is modeled using the model provided below.  The TDRS that produces the smallest 
measurement residual is selected as the transmitting TDRS for that contact.  

The instantaneous Doppler-shifted RCF received at the spacecraft is equal to 

 relatmRCFRCF FF
c

ff δ+δ+





 ρ
−=′


1   (5.9-14) 

where 

 ′fRCF  = Doppler-shifted RCF 

 fRCF  = transmitted TDRSS RCF, a commandable parameter, nominally equal to 
2106406250 Hertz 

  = time rate of change of the light-time-corrected range from the TGT to the 

TDRS to the spacecraft receiver, in
TDRS j

,ρ  [defined in Equation (5.9-4)] 

 δFatm  = signal delay due to atmospheric effects 

 δFrel  = signal delay due to relativistic effects 

GEONS does not apply corrections for atmospheric and relativistic effects in the TDRS 
measurement model. 

 
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
1   (5.9-15) 

The true instantaneous Doppler shift is given by 

 ( )f f fD true RCF RCF= ′ −   (5.9-16) 

The Doppler shift is measured onboard with respect to the receiver’s S-band frequency reference, 
such that the instantaneous Doppler measurement is given by 

 ( ) ( )f f f tD ext RCF ref= ′ −   (5.9-17) 

where 

 f tref ( )  = receiver’s S-band frequency reference at time t, nominally equal to 
2106.406250 megahetz 

Substituting Equation (5.9-15) into Equation (5.9-17) and averaging over the Doppler averaging 
interval, ∆T, the averaged Doppler measurement can be expressed as 
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where 
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 and )( k
TDRS
d tb p  is the current value of the Doppler bias associated with TDRS p in Hertz and 

)( k
n

ref tf is the averaged value of )( k
n

ref tf  over the time t Tk − ∆  to tk . This value is approximated 
as follows, neglecting the effects of frequency drift over the averaging interval: 
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where )( k
n
R td , the receiver time bias rate, is computed using Equation 4.3-19 and )( 0tf ref  is the 

initial value of the S-band Doppler reference frequency, a commanded parameter nominally equal 
to 2106406250 Hertz.   

Note that the measurement model as currently implemented in GEONS assumes that the Doppler 
averaging interval is equal to the interval between calls to the state estimation task, or equivalently 
the integration stepsize. 

Note that because the Doppler measurement model requires the computation of the range at an 
earlier time, )( Ttk ∆−ρ , the range is computed at the time of the first Doppler measurement in a 
contact but the measurement update is not performed. In addition, the measurement update process 
is not performed for the first Doppler measurement following the uplink of a new TDRS vector 
because the discontinuity in the TDRS state will produce a large Doppler residual. 

If the estimation state vector consists of absolute states for the local and remote satellites, the 
nonzero partial derivatives of the Doppler measurements with respect to the components of the 
estimation state vector, )( ktX , for the receiving satellite n are computed as follows: 
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The partial derivatives of the range in Equations (5.9-23) through (5.9-26) are defined in Equation 
(5.9-11) in Section 5.9.2. These derivatives are evaluated at the current measurement timetag, tk, 
and at the time tk−∆T, where ∆T is the Doppler averaging interval. 

The matrix of partial derivatives of position in Equations (5.9-23) through (5.9-26) is related to 
the components of the state transition matrix defined by Equation (4.4-1a) in Section 4.4.1 as 
follows 
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where 
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If the atmospheric drag coefficient correction and/or the solar radiation pressure coefficient 
correction are not estimated, the matrix W does not include the columns associated with these state 
components. 

If the estimation state vector includes the relative states for the remote satellites (n≠1), the nonzero 
partial derivatives of the Doppler measurements with respect to the components of the estimation 
state vector, )( ktX , for the receiving satellite n are computed as follows: 
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The partial derivatives of the range are defined in Equations (5.9-12) and (5.9-13). The partial 
derivatives of position vector at the time tk−∆T with respect to the estimated state vector 
components are related to the components of the inverse of the state transition matrix defined by 
Equation (4.4-1b) in Section 4.4.1  
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5.9.4 TDRSS Differenced One-Way Doppler (DOWD) Measurement Model and 
Associated Partial Derivatives  

The DOWD measurements are suitable for ground processing. With a wide-beam antenna system, 
the one-way return signal generated from the user spacecraft can be received by more than one 
TDRS. By differencing the one-way return Doppler measurements, most of the spacecraft 
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oscillator’s frequency bias is cancelled. The following discussion is based on the description 
provided in Section 7.3 and Appendix A.8 of the Goddard Trajectory Determination System 
(GTDS) Mathematical Theory (Ref. 27).  

The observed DOWD measurements are formed by differencing averaged (nondestruct) one-way 
return Doppler measurements from the transmitting antenna i on spacecraft n via two different 
return-link TDRS (p and q) to the TGT that are measured at time TR.  

 ( ) ( ) ( ), , ,( ) ( ) ( )
obs p q obs p obs q

n i n i n i
D R TDRS D R TDRS D R TDRSF t F t F t

−
∆ = −   (5.9.4-1)* 

The corresponding DOWD measurements are modeled as follows 
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p q p q

TDRSn i n i n i
D R TDRS D R TDRS D R TDRS dF t F t F t b −

−
∆ = − + ∆   (5.9.4-2)* 

where ( ) ,( )
p

n i
D R TDRSF t is the one-way return link Doppler shift via TDRS p averaged over the 

Doppler count interval T∆ from TR - T∆ to TR and p qTDRS
db −∆  is a DOWD measurement bias. 

Calculation of ( ) ,( )
p

n i
D R TDRSF t  and ( ) ,( )

q

n i
D R TDRSF t is discussed below. 

In the case of TDRS return link tracking, the Doppler shifted signal is made of two components. 
The long-trip path component, which is transmitted at time T1 from the user spacecraft, 
received/retransmitted at time T2  at the TDRS, and measured at time TR at the TGT, is given by 

( ) 2 1 2

, ( ) ( ) ( ) ( ) ( )
p p i p

n i n
TDRS R TDRS T A T TGT R TDRS Tl

t R t R t R t R tρ = − + −        (5.9.4-3)* 

where the signal transmission times T2 and T1 and associated state vectors are computed via 
backward tracing using the Newton-Raphson iterative procedure described in Section 5.9.2.   

The phase of the Doppler signal is maintained by transmitting a coherent pilot-tone frequency to 
the return-link TDRS. This short-trip path component, which is transmitted at time T3 from the 
TGT, received/retransmitted at time T4  at the TDRS, and received at time TR at the TGT, is given 
by  

 (𝜌𝜌𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆𝑝𝑝
𝑛𝑛,𝑖𝑖 )𝑠𝑠(𝑡𝑡𝑅𝑅) = �𝑅𝑅�𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆𝑝𝑝�𝑡𝑡𝑇𝑇4� − 𝑅𝑅�𝑇𝑇𝑇𝑇𝑇𝑇(𝑡𝑡𝑇𝑇3)� + �𝑅𝑅�𝑇𝑇𝑇𝑇𝑇𝑇(𝑡𝑡𝑅𝑅) − 𝑅𝑅�𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆𝑝𝑝�𝑡𝑡𝑇𝑇4��   (5.9.4-4)* 

where the times T4 and T3 and associated state vectors are computed using the Newton-Raphson 
iterative procedure described in Section 5.9.2.  

The two Doppler-shifted frequencies are mixed in the transponder of the return link TDRS 
according to a fixed ratio to produce the observed Doppler shift. The resulting Doppler shift 
averaged over the Doppler count interval T∆ is modeled as follows:  
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c T
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  (5.9.4-5)* 

where 
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In this equation A is the effective transmit frequency from the user provided with the tracking data 
and B is the pilot-tone frequency translation from the return-link TDRS. The values of the pilot-
tone frequency translation depend on both the return-link service type and the frequency band of 
the link. Table ANX-1 in Reference 77 lists the values of the translation frequency for each service 
type associated with the TDRSS ground terminals prior to the Space Network Ground Segment 
Sustainment (SGSS) changes and after SGSS.   

The partial derivative of a DOWD measurement with respect any solve-for parameter, s, can be 
written as follows 
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 is discussed below. 

The non-zero partial derivatives of a DOWD measurement with respect to the components of the 
estimation state vector are computed as follows for TDRS p and similarly for TDRS q. Note that 
the partial derivatives of the short range with respect to the user satellite state vector are zero and 
the partial derivatives with respect to the user spacecraft time bias parameters are not computed 
because they would cancel out when differenced. In addition, the GEONS estimation state vector 
does not include the TDRS state vectors or TDRS transponder delays. 
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and 
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The partial derivatives of the long range in Equations (5.9.4-9) through (5.9.4-12) are computed 
as follows where these derivatives are evaluated for TR equal to the current measurement timetag, 
tR, and at the time tR−∆T. 
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Note that in the calculation of measurement partial derivative, the partial derivative 1
( )
( )

n
T

n
R

R t
R t
∂

∂
will 

be small and likely can be ignored. The matrix of partial derivative of position in Equations 
(5.9.4-9) through (5.9.4-12) are relative to the components of the state transition matrix as 
defined previously in Equations (5.9-31) through (5.9-35) in Section 5.9.2. 
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5.10 X-Ray Pulsar Navigation Measurement Models 
X-ray observations of celestial sources can provide useful navigation information for spacecraft in 
a range of applications from Low-Earth Orbit (LEO) to interplanetary and even interstellar space. 
X-ray emitting pulsars, which are neutron stars whose X-ray emission is modulated at the 
rotational period of the star, are a source of such information. A subset of pulsars, the millisecond 
pulsars, are highly stable clocks, with long-term stability comparable to laboratory atomic clocks. 
The X-ray navigation (XNAV) concept implemented in GEONS uses X-ray observations of such 
pulsars. For these pulsars, a physical model with a handful of parameters can predict the arrival 
time of pulses to microsecond accuracy over months or years. A measurement of the difference 
between the measured arrival time of a pulse at a spacecraft and the predicted arrival time 
according to an onboard navigation solution can provide an error signal that can be used to measure 
the location of the spacecraft in a manner similar to GPS. 

X-ray pulsar measurement models were implemented in GEONS to support the Station Explorer 
for X-ray Timing and Navigation Technology (SEXTANT) technology demonstration on the 
Neutron-star Interior Composition Explorer (NICER) mission. References 60 and 61 provide 
additional details about the implementation of the X-ray pulsar measurement models and 
associated simulation structure for the SEXTANT demonstration.  

The general form of the pulsar measurement model is as follows: 

 𝑌𝑌𝑘𝑘 = 𝐺𝐺 [𝑋̄𝑋(𝑡𝑡𝑘𝑘), 𝑡𝑡𝑘𝑘] + 𝜀𝜀 (5.10-1) 

where tk is the true measurement time, referenced to UTC, and 𝜀𝜀 is the measurement error. It is 
assumed that 𝜀𝜀 has a zero-mean Gaussian distribution with standard deviation σ, which is 
commandable for each measurement type. The measurement standard deviation is typically 
determined through analysis of the random component of the measurement error as part of the 
filter tuning process. 

When GEONS processes the x-ray pulsar navigation measurements, the estimation state vector, 
X t( )  includes the receiver position vector, R ; velocity vector, R ; receiver time bias, bR; and 

receiver time bias rate, d R , per pulsar phase bias, δϕ ,  and corrections to the drag and solar 
radiation pressure coefficients, ∆CD and ∆CR; for one or more spacecraft. 

Section 5.10.1 addresses preprocessing of the raw measurements.  The x-ray pulsar measurement 
and partial derivative models are presented in Section 5.10.2.   

5.10.1 X-Ray Pulsar Navigation Measurement Preprocessing 
The key measurable for an XNAV detector are the pulse arrival times determined from a set of 
detected X-ray photons. For the SEXTANT demonstration, preprocessing consists of collecting 
photon events, identifying the source pulsar, and buffering photon events from the X-ray Timing 
Instrument until a target accumulated observation time from a single pulsar is met. The photon 
events are then batch processed using a Maximum Likelihood (ML) estimation algorithm to 
produce single pulsar phase and frequency measurements. A detailed description of the associated 
algorithms is provided in Sections 3 and 7 of the SEXTANT ADD (REF 73). 
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5.10.2 X-Ray Pulsar Navigation Measurement Model and Associated Partial 
Derivatives 

This section provides the algorithms used to model the observed X-ray pulsar phase and frequency 
measurements. A pulsar almanac, which consists of a list of pulsars, with their associated timing 
models, X-ray light-curve templates, count rate estimates, and energy distributions, and associated 
raw data, is maintained in the ground system. The SEXTANT ground system relies on the Tempo2 
pulsar timing software for the generation of timing models by fitting parameterized models to 
measured radio and X-ray pulse time-of-arrival data and for generating the piecewise polynomial 
approximations to the full timing models that are used for efficient onboard processing.  
The pulsar pulse phase observed at the detector on the spacecraft at time kt , )( ktφ , is modeled as 

 ( )( )k REF At tϕ ϕ δϕ= +   (5.10-2)* 

where )( AREF tφ  is the phase evolution at a hypothetical reference observatory, At  is the arrival 
time of the pulse wavefront at a hypothetical reference observatory, and δϕ  is a constant per pulsar 
phase bias. The delayed arrival time at the reference observatory is given by 

 
( ) ( )R

A k k
b tt t t

c
τ= − +   (5.10-3)* 

where kt  is the arrival time of the pulse wavefront at the spacecraft detector, bR is the receiver time 
bias, and )(tτ  is the light propagation time of the pulse wavefront moving from the detector to the 
reference observatory.  
For a geocentric reference observatory, the model for the light propagation time from the detector 
to the reference observatory is the first order approximation 

 

( )ˆ ( )
( )

R
k

k

b tn R t
ct

c
τ

⋅ −
≅   (5.10-4)* 

where n̂  is the pulsar direction unit vector and R is the spacecraft position in a coordinate frame 
centered at the reference observatory. For the geocentric reference observatory, GEONS evaluates 
the phase model, as referenced to Universal Coordinated Time (UTC), at the reference observatory 
and accounts for the Romer, or geometric, delay. In this case, the relative parallax and solar system 
Shapiro delays, etc., are negligible. 

For a SSB reference observatory, additional terms are needed to meet high accuracy timing 
requirements. These terms include timing parallax, orbital parallax, Shapiro delays due to Sun and 
planets, which are discussed in References 60 and 61. For the SSB reference observatory, GEONS 
transforms the spacecraft state to barycentric coordinates and time and evaluates the phase model, 
as referenced to barycentric time, accounting for parallax, Romer delay, and Solar Shapiro delay. 

The frequency measurement model is determined by differentiating Eq. (5.10-2), with respect to 
time leading to 
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The SEXTANT flight software relies on the pulsar timing software TEMPO2 (REF 73) to provide 
a model for phase evolution at a hypothetical reference observatory. TEMPO2 models are least-
squares fits to radio observatory data of the form 

 ( ))()( ttptREF ∆−=φ   (5.10-6)* 

where p is a quadratic or cubic polynomial shifted by timing correction )(t∆  that includes terms 
for Romer, Einstein, and Shapiro, and binary delays. TEMPO2 also provides piecewise polynomial 
approximations to the full timing model ( )REF tϕ , which are used by the SEXTANT flight software 
to compute the phase and frequency at the arrival time at the reference observatory: 
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 )()( 0tt REFAREF φφ  =   (5.10-9)* 

The following are the nonzero partial derivatives of the X-ray pulse measurements with respect to 
the estimation state vector, X tk( ) , consisting of absolute state vector for all satellites and the 
constant phase bias: 
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5.11 Two-Leg GPS Pseudorange Measurement Model 
This section provides the computational algorithms for one-way range measurements transmitted 
by a GPS SV, received and retransmitted by a relay satellite, and received by a ground station. 
These measurements are referred to as “Two-Leg GPS” pseudorange measurements in GEONS. 
The general form of the measurement model is as follows: 

 𝑌𝑌𝑘𝑘 = 𝐺𝐺 [𝑋̄𝑋(𝑡𝑡𝑘𝑘), 𝑡𝑡𝑘𝑘] + 𝜀𝜀 (5.11-1) 

where tk is the true measurement time, referenced to UTC, and 𝜀𝜀 is the measurement error. It is 
assumed that 𝜀𝜀 has a zero-mean Gaussian distribution with standard deviation σ, which is 
commandable for each measurement type. The measurement standard deviation is typically 
determined through analysis of the random component of the measurement error as part of the 
filter tuning process. 

For GEONS, the associated estimation state vector, X t( )  includes the receiver position vector, R
; velocity vector, R ; optional corrections to the drag and solar radiation pressure coefficients, ∆CD 
and ∆CR; receiver time bias, bR; and receiver time bias rate, d R , for one or more receivers.  There 
are no two-leg GPS measurement bias parameters in the estimation state vector. 

Note that the timetag for the two-leg GPS pseudorange should be the signal reception time 
measured at the GS. However, in the current implementation of the two-leg GPS pseudorange 
measurement model, the timetag associated with the kth measurement is the UTC receive time of 
the signal at the local receiver as measured with respect to the spacecraft/receiver clock, )(RC

Rt . 
This is a simplification made for a preliminary implementation to evaluate expected performance.   

Assuming that the forward-link L-band signal is transmitted from GPS SV j at time tT , received 
at the local receiver n at time tk, retransmitted with delay ∆t2G due to signal processing on the relay 
satellite, and received at GS m at time tGS with delay ∆tGS, the two-leg GPS pseudorange is modeled 
as follows:  
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In the above equations, the subscript j indicates the jth GPS SV and the subscript m indicates the 
mth GS.  The timetag of the kth measurement, tk, is equal to the value of the receive time, )(RC

Rt at 
the local receiver. In the presence of a spacecraft timing bias, the true receive time on the relay 
satellite is given by 
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 R
RC

Rk ttt δ−= )(  (5.11-5) 

where Rtδ  is the offset of the receiver’s timing reference from UTC, given by 
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m
ρ  is the distance traversed by the signal from antenna i on the relay satellite to GS m where 

 )( GSGS tR
m

 = position of the receiving GS m at time GSt . The position vector of the 
transmitting GS is transformed from ECEF coordinates to J2000.0 inertial coordinates at the time 
tGS using the transformations defined in Sections 3.2.1 through 3.2.3. 

)( k
n
A tR

i
 = position of the ith receiving antenna on relay satellite n at time tk,, which is 

computed using Equation 3.2-61 in Section 3.2.8.  

In the current preliminary implementation, this signal receive time on the relay satellite is assumed 
to be known; however, actual two-leg GPS measurements would be timetagged with the time of 
reception at the ground station and the time of signal transmission from the relay would be 
computed using the Newton Raphson iterative scheme defined for the spacecraft-to-GS segment 
in Section 5.6.4.  

in
jWG

,
/ρ  denotes the distance between the position of the jth GPS SV at the signal transmit time tT 

and the position of receiver n’s ith antenna at the signal receive time tk where 

 )(/ TWG tR
j

 = position of the the transmitting GPS SV j at the transmission time Tt , which is 
computed based on tk using the Newton-Raphson iterative scheme defined in Section 5.3.3. 

The receiver clock bias b tR
n ( )  is computed using the estimated parameters b tR

n
k( ) and   ( )b tR

n
k

, as defined in Equation 4.3-14a and 4.3-14 of Section 4.3.   

The atmospheric delay, )( Tatm tδρ , is not currently implemented. The last two terms on the right-
hand side of Equation (5.11-3) represent the total SV time correction, which is computed using 
Equations 3.3-10 or 3.3-11 (for single and dual frequency GPS users) and Equation 3.3-12 (only 
for single frequency GPS users) in Section 3.3.2 evaluated at the signal transmit time tT.  

Note that the linearization correction to account for the offset of the true UTC receive time from 
the UTC filter state epoch, e.g. see Equation 5.3-19b and 5.3-19c, is not implemented for the two-
leg GPS measurements.  

The matrix (a row vector in this case) of partial derivatives of the pseudorange measurement with 
respect to the estimation state vector, X tk( ) , is defined as follows: 
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The partial derivatives with respect to those parameters that are not explicitly included in the 
pseudorange measurement equation will be zeros. The following are the only nonzero elements if 
the state vector consists of absolute states for both the local and remote satellites:  
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where 
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The superscript T on the right-hand sides of Equations (5.3-28b) through (5.3-28d) denote the 
transpose, indicating that these partial derivatives are given as row vectors.  
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Section 6.  Real-Time State Propagation  

The GEONS real-time state propagation function takes the near-real-time output of the GEONS 
filter and propagates it forward to a requested time. Figure 6-1 illustrates the relationship between 
the GEONS filter and real-time prediction processes for a filter execution frequency of 10 seconds. 

Section 6.1 defines the algorithm used to propagate the user position and velocity filter estimates 
to real-time. Section 6.2 provides the simplified acceleration model used in the real-time 
propagation.  

6.1 Real-Time Propagation Algorithm 
The real-time propagation algorithm is defined as follows: 

Sequence: Shown in Table 6-1 for a filter execution frequency of 10 seconds 
Integrator: 4th-order Runge-Kutta defined in Section 4.2 
Accelerations included: Central body point mass and Earth J2 zonal harmonic when the 
central body is the Earth 

where  

CC RR  and  = user position and velocity vector in the central-body mean of J2000.0 
coordinate frame 

CC RR  and  = real-time user position and velocity vectors in the central-body mean of 
J2000.0 coordinate frame 

6.2 Real-Time Propagation Acceleration Model 
For real-time propagation, the spacecraft acceleration, a , includes the following components:  

• Gravitational acceleration (point-mass contribution) due to the central-body mass ( Ca ) 

• Gravitational acceleration due to the oblateness of the Earth’s gravitational potential, if 
the Earth is the central body  ( Ja 2

)  

The acceleration, a ,  is expressed in terms of these components as 
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The central body point mass acceleration is computed as follows  
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where 

 Cµ  = gravitational constant of the central body 

Section 4.1.2 of this document discusses the computation of the complete nonspherical 
gravitational acceleration. The acceleration due to the oblateness of the Earth’s gravitational 
potential is obtained by including only the effects due to the ~C2

0  term in the computation. In this 
case, the TOD components of the acceleration vector, defined in Equations (4.1-55) through 
(4.1-57), reduce to the following: 
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The partial derivatives of the oblateness portion of the Earth’s potential with respect to r and φ  
are given by 
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where 

 sinφ = z
r  (6.2-8)* 

 cosφ =
+x y
r

2 2

 (6.2-9)* 

The TOD components of the Earth’s J2 acceleration are then transformed to the mean of J2000.0 
reference frame using Equation (4.1-39). 
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Figure 6-1.  GEONS Real-Time Interface Sequence 
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Table 6-1. Real-Time State Propagation Sequence 

Current Spacecraft Time Action System Component* 
ti GPS measurement GPS Receiver 
ti + 1 second to ti + 10 seconds Propagate: 

  

If GPS measurement is selected, process 
measurement and update state: 

  

GEONS Filter 

ti + 10 seconds to ti + 11 seconds Propagate: 

  

GEONS Real-Time 
State Propagator 

ti + 11 seconds to ti + 12 seconds Propagate: 

 

GEONS Real-Time 
State Propagator 

• 
• 
• 

• 
• 
• 

GEONS Real-Time 
State Propagator 

ti + 19 seconds to ti + 20 seconds Propagate: 

 

GEONS Real-Time 
State Propagator 

*For illustration purposes, the GEONS Filter sequence shows only position and velocity vector propagation  
and update; it does not show the propagation and update of other state vector elements and the state error 
covariance matrix. 
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Section 7.  Doppler Compensation Prediction  

This section provides the algorithms used in computing the predicted Doppler shift and creating 
the associated frequency control word (FCW). 

Onboard Doppler Compensation (OBDC) involves calculating the predicted frequency shift of 
the forward-link GS or TDRSS signal due to user spacecraft dynamics. By offsetting the 
receiver’s center frequency appropriately, the Doppler shift due to user spacecraft dynamics can 
be compensated to assist user acquisition of the GS or TDRSS signal. Assuming fixed radiated 
carrier frequency (RCF) operation, OBDC can be performed autonomously by the user 
spacecraft. 

GEONS computes FCWs for all GSs or TDRSs visible to the spacecraft at the next real-time 
state output time, nominally as part of the real-time state prediction function, which is typically 
executed every 1.0 or 1.024 seconds. GEONS outputs these FCWs ordered in terms of increasing 
GS/TDRS-to-satellite range. Selection of the FCW to send to the receiver would be performed 
by a receiver control function in the spacecraft primary computer. If FCWs are needed at a 
higher rate than every 1.0 or 1.024 seconds for the receiver to achieve carrier lock, the 
spacecraft's receiver control function could use a linear interpolator to compute intermediate 
values. Section 7.1 discusses the algorithm used to identify the visible GSs. Sections 7.2 and 7.3 
present the algorithms used to compute the GS and TDRSS FCWs, respectively. 

7.1  GS Visibility Test 
GEONS identifies which GS(s) are visible at time t using the following procedure.  

The instantaneous line-of-sight vector from the satellite to each GS in the GEONS GS catalog is 
computed as follows:  

 )()( tRtR i
GS

i −=ρ  (7.1-1)* 

where 

 )(tR  = position vector of the satellite at time t, referenced to the Mean of J2000. 
inertial reference frame 

 )(tR i
GS  = position of the ith GS at time t, referenced to the Mean of J2000. inertial 

reference frame 

The position vectors for each GS are available in ECEF coordinates. The GS position vector is 
transformed from the ECEF frame to the J2000.0 reference frame using the transformations 
defined in Sections 3.2.1 through 3.2.3.  

Visibility is determined based on whether the elevation angle, E, of the line-of-sight vector with 
respect to the local horizon is greater than a minimum elevation angle,

vis
Emin .  Figure 7-1 

illustrates a visible (A) and not visible (B) case. The GS is visible if the following is true:   



 
. 
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 sin sin minE E
vis

>  (7.1-2)* 

where 
vis

Emin  is a commandable minimum elevation angle within the 0 to +90 degrees range, 

vis
Emin  and E are positive above the local horizon and negative below the horizon, and 

 
)(

)(
sin

tR

tR
E

i
GS

i

i
GS

i

ρ

⋅ρ
=  (7.1-3)* 

 

Figure 7-1. Line-of-Sight Visibility Cases 

7.2  GS FCW Computation 
FCWs are computed for all GSs that pass the visibility test defined in Section 7.1. If no GS 
passes the visibility test, a zero FCW is output. 

The following algorithm is used to compute the predicted instantaneous frequency offset of the 
GS’s Doppler-shifted RCF with respect to the receiver’s frequency reference: 

 
[ ] [ ]

)(1)( tff
RRc

RRRR
tf refRCF

GS

GSGS
D −













−

−⋅−
−=


 (7.2-1)* 

RGS
i GSi

User S/C

R

ρ i

E

Eminvis

User S/C

Case A: sin E>sin Eminvis Case B: sin E<sin Eminvis

RGS
i GSi

R

ρ i

E

Eminvis
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where  

 f tD ( )  = predicted frequency shift at time t in Hertz 

 R  = satellite position vector at time t 

 R  = satellite velocity vector at time t 

 RGS  = ground station position vector at time t 

 RGS  = ground station velocity vector at time t 

 c = speed of light 

 f RCF  = GS radiated carrier frequency in Hertz (a commanded parameter nominally 
equal to 2106406250 Hertz) 

 f tref ( )  = Doppler frequency reference at time t [defined in Equation (5.6-20)] 

The formula for computing the frequency control words is then given by 

 FCW
f t
f
D

res

=
( )  (7.2-2)* 

where  

 f res  = frequency resolution of the receiver FCW in hertz per bit (a commanded 
parameter) 

For input the receiver, the interface driver must convert the FCW to the appropriate serial 
command format. 

The receiver uses the FCW to adjust its receive frequency. The receiver frequency will be offset 
by this FCW according to the following equation: 

 f F FCW f F f tout CF res CF D= + × = +( ) ( )  (7.2-3) 

where  

 f out  = receiver output frequency 

 FCF  = receiver’s assigned center frequency, nominally equal to 2106.406250 
megahertz 

 f res  = frequency resolution of the receiver FCW, in Hertz per bit 

GEONS outputs these FCWs and the associated GS identifiers ordered in terms of increasing 
GS-to-satellite range, iρ , where the line-of-sight vector iρ  is defined by Equation (7.1-1). 
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7.3  TDRSS FCW Computation 
FCWs are computed for all TDRSs that pass the visibility test defined in Section 7.4. If no TDRS 
passes the visibility test, a zero FCW is output. 

The following algorithm is used to compute the predicted instantaneous frequency offset of the 
TDRS’s Doppler-shifted RCF with respect to the receiver’s frequency reference: 

 
[ ] [ ] [ ] [ ]

)(1)( tf
cRR

RRRR

cRR

RRRR
ftf ref

TGTTDRS

TGTTDRSTGTTDRS

TDRS
i

TDRS
i

TDRS
i

RCFD

jj

jjjj

j

jj −














−

−⋅−
+

−

−⋅−
−=



(7.3-1)* 

where  

 f tD ( )  = predicted frequency shift at time t in Hertz 

 iR  = receiving satellite i position vector at time t 

 iR  = receiving satellite i velocity vector at time t 

 
jTDRSR  = TDRS j position vector at time t 

 
jTDRSR  = TDRS j velocity vector at time t 

 
jTGTR  = position vector of TGT ground antenna associated with TDRS j at time t 

 
jTGTR  = velocity vector of TGT ground antenna associated with TDRS j at time t 

 c = speed of light (meters per second) 

 f RCF  = TDRS radiated carrier frequency in Hertz (a commanded parameter 
nominally equal to 2106406250 Hertz) 

 f tref ( )  = Doppler frequency reference at time t in Hertz [defined in Equation (5.9-22)] 

The formula for computing the frequency control words is then given by 

 FCW
f t
f
D

res

=
( )  (7.3-2)* 

where  

 f res  = frequency resolution of the receiver FCW in hertz per bit (a commanded 
parameter) 

For input the receiver, the interface driver must convert the FCW to the appropriate serial 
command format. 
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The receiver uses the FCW to adjust its receive frequency. The receiver frequency will be offset 
by this FCW according to the following equation: 

 f F FCW f F f tout CF res CF D= + × = +( ) ( )  (7.3-3) 

where  

 f out  = receiver output frequency 

 FCF  = receiver’s assigned center frequency, nominally equal to 2106.406250 
megahertz 

 f res  = frequency resolution of the receiver FCW, in Hertz per bit 

GEONS outputs these FCWs and the associated TDRS identifiers ordered in terms of increasing 
TDRS-to-satellite range. 

7.4  TDRS Visibility Test 
GEONS identifies which TDRS(s) are visible at time t using the following procedure for each 
TDRS. 

a. Verify that the TDRS is not occulted by the Earth. Compute the distance 

 
( )

2x

Rxx
Rdd j

j

TDRS
TDRS

⋅
−==  (7.4-1)* 

where 

 
jTDRSRRx −=  (7.4-2)* 

and 

 
jTDRSR  = TDRS j position vector at the measurement time 

  R   = receiver position vector at the measurement time 

 x  = magnitude of x   

The TDRS is not occulted if eRd≥ [case (a) in Figure 7-2], where eR  equals the mean equatorial 
radius of the Earth. 

If eRd<  [case (b) in Figure 7-2], compute 

 ( ) 22 dRx e −−′=δ  (7.4-3)* 

where 
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x

Rx
x jTDRS⋅

=′  (7.4-4)* 

If x < δ, the TDRS is not occulted. Otherwise, the TDRS is not visible. 

b. Verify that the signal path is within the TDRS antenna field of view. For each TDRS, 
compute the angle  

 













⋅=β −

j

j

TDRS

TDRS

R
R

x
x1cos  (7.4-2)* 

If maxβ≤β , the TDRS is visible, where maxβ  is a commandable parameter. For multiple access 
users, the field of view is ±13 degrees with respect to the nadir vector. For single-access users, 
the field of view is ±22.5 degrees East-West and ±31 degrees North-South. 
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Figure 7-2.  TDRS Visibility 
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Section 8.  Averaged Orbital Element Ephemeris 

As part of the GEONS fault detection process, the difference between the estimated state vector 
and a comparison state vector is computed and tested against a commanded tolerance to detect 
degradation in GEONS performance prior to filter divergence. In addition, this comparison state 
vector can be used for (re)initialization of the GEONS state estimation process. This section 
provides an averaged ephemeris method that can be used to provide a comparison state vector if 
another source (e.g. GPS point solutions) is not available.  

Section 8.1 describes the overall procedure for computing the averaged state vector. The 
algorithm for computing the reference averaged equinoctial elements and equinoctial element 
rates is given in Section 8.2. The transformations between equinoctial elements and spacecraft 
position and velocity are defined in Section 8.3. 

8.1 Computation of the Averaged State Vector 
The averaged state vector is computed using a set of reference averaged equinoctial elements and 
equinoctial element rates. The reference averaged equinoctial elements and equinoctial element 
rates can be computed using state vectors from two orbital periods previous to the current period, 
as presented in Section 8.2. Alternatively, reference averaged equinoctial elements and 
equinoctial element rates could be uplinked to the spacecraft. The equinoctial system, defined is 
Section 8.3.1, was selected because all of its elements are slowly varying for any orbital 
eccentricity and inclination. 

The averaged state vector at the request time, tc, is computed as follows 

a. Compute the averaged equinoctial elements at the request time, tc, as follows 

 tEEtE refrefc ∆+= −− 22)(   (8.1-1)* 

   where 

 )( ctE  = vector of averaged equinoctial elements ),,,,,( λqpkha  evaluated at the 
request time tc  

 2−
refE  = vector of reference averaged equinoctial elements associated with the 

reference time 2−
reft  

 2−
refE   = vector of reference averaged equinoctial element rates associated with the 

reference time 2−
reft  

 2−
reft  = reference time for the reference averaged equinoctial elements computed over 

the next-to-last orbital period 
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 ∆t   = tc − 2−
reft  

b. Compute the averaged state vector by converting the averaged equinoctial elements at 
the request time to position and velocity using the transformation provided in Section 
8.3.2. 

8.2 Computation of Reference Averaged Equinoctial Elements and 
Rates 

Reference averaged equinoctial elements are computed over each successive spacecraft orbital 
period as follows: 

 
)()(

5,1 ,)(
1

1)(

0
6

0
0

0

refref

N

n
irefi

tE

itntE
N

E

λ=

=δ+
+

= ∑
=  (8.2-1)* 

where 

 0
refE   = reference averaged equinoctial element vector ),,,,,( λqpkha  associated 

with the current reference time reft  

 reft  = reference time for new set of reference averaged equinoctial elements, equal 
to the center of the averaging interval 

 0t  = time of the first point in the current summation interval 

 )(tEi  = component of osculating equinoctial element vector at time t obtained from 

the osculating position and velocity vectors ))(),(( tRtR  using the 
transformation given in Section 8.3.3 

 N = number of osculating equinoctial element sets included in the summation 

 tδ  = time interval between successive osculating equinoctial elements included in 
the summation, a commanded parameter typically 1.0 or 1.024 seconds 

The value of N is chosen so that the average is performed over one spacecraft orbital period, P, 
to within <1.024 seconds: 

 















δ
δ+

=
t

tPN
2

int2  (8.2-2)* 
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where 

 
E

refa
P

µ
π=

− 31 )(
2  (8.2-3)* 

and 

 µ E  = gravitational constant of the Earth 

 1−
refa  = reference averaged semimajor axis associated with previous set of the 

reference averaged equinoctial elements 

The averaged equinoctial element rates for the semimajor axis, a, and mean longitude, λ, are 
computed as follows using the averaged semimajor and mean longitude computed over the 
current and previous orbital periods 

 

[ ]
[ ]π+λ−λ
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−

=
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aa
tt

a





 (8.2-4)* 

The rates for the remaining reference averaged equinoctial elements are assumed to be zero. 

To minimize the amount of data that must be stored onboard, the summation in Equation (8.2-1) 
is accumulated incrementally.  Note that the algorithm must be restarted following a spacecraft 
maneuver.  The algorithm is as follows: 

For n = 0, first execution:  

a. Set the initial value of 0t  equal to the current osculating state vector time tag  

b. Convert the predicted osculating position and velocity at time 0t  to equinoctial 
elements using the transformation in Section 8.3.3, and initialize the summation for 
elements 1 through 5 

SUMi = )( 0tEi   

c. Compute N  and tref 

E

ta
P

µ
π=

)(
2 0

3
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tNttref
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For 0<n<N:  

Convert the predicted osculating position and velocity at time tnt δ+0  to equinoctial 
elements and continue to accumulate the summation for elements 1 through 5: 

SUMi = SUMi + )( 0 tntEi δ+  

For n=N:  

a. Convert the predicted osculating position and velocity at time tNt δ+0 to equinoctial 
elements 

b. Complete the summation for elements 1 through 5 

SUMi = SUMi + )( 0 tNtEi δ+  

c. Compute the reference averaged equinoctial elements using Equation (8.2-1) 

)()(

5,1,
1

1)(

0
6

0

refref

irefi

tE

iSUM
N

E

λ=

=
+

=
 

d. If this is the first time reference averaged equinoctial elements are computed, set 

tN

a

ref

ref

δ
π

=λ

=

2
0

0

0





 

Otherwise, compute the reference averaged equinoctial element rates using Equation 
(8.2-4): 
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e. If this is not the first time that reference averaged equinoctial elements and 
equinoctial element rates have been computed, update the saved values for the 
reference averaged equinoctial elements and equinoctial element rates for the next-to-
last orbital period 

21

21

21

−−

−−

−−

→

→

→

refref

refref
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EE
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Update the saved values for the reference averaged equinoctial elements and 
equinoctial element rates for the last orbital periods 

1

10

10

−

−

−

→

→

→

refref

refref

refref

tt

EE

EE

  

f. Compute N for the next orbital period average using Equations (8.2-2) and (8.2-3),  

E

refa
P

µ
π=

− 31 )(
2  

















δ
δ+

=
t

tPN
2

int2  

g. Update the value of tref for the next orbital period where 0t  is the first time point in the 
next averaging interval, equal to the last point in the last averaging interval 

20
tNttref
δ

+=  

h. Initialize the summation for n = 0, i = 1 through 5 for the next orbital period average 

SUMi = )( 0tEi  

Note that only the current value of N and the reference averaged equinoctial elements and rates 
over the previous two orbital periods must be saved onboard. 

8.3 Equinoctial Element Transformations 
This section provides the algorithms used to transform between the equinoctial elements and 
position and velocity. Section 8.3.1 provides a definition of the equinoctial elements. Section 
8.3.2 discusses the transformation from equinoctial elements to Cartesian coordinates and 
Section 8.3.3 discusses the transformation from Cartesian coordinates to equinoctial elements. 

8.3.1 Definition of Equinoctial Elements 
The equinoctial elements are defined as follows: 

 a = semimajor axis 

 h = projection of the eccentricity vector e  on the yep  axis 

 k = projection of the eccentricity vector e  on the xep  axis 

 p = projection of the nodal vector N  on the yep  axis 
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 q = projection of the nodal vector N  on the xep  axis 

 λ = mean longitude 
where 

 e  = eccentricity vector pointing in the direction of the xp  axis (perifocus) and 
having a magnitude equal to the orbital eccentricity 

 N  = nodal vector pointing in the direction of the ascending node and having a 
magnitude equal to tan(i/2)j, where i denotes the orbital inclination and j=+1 
for direct orbits and -1 for retrograde orbits 

The equinoctial system, which is denoted by xep, yep, and zep, has its xep  axis (principal direction) 
directed toward the “origin of longitudes.” The “origin of longitudes” lies in the plane of the 
orbit and is displaced by the angle Ω from the ascending node N , where Ω is the right ascension 
of the ascending node. Unit vectors along the coordinate directions, xep, yep, and zep, are denoted 
by f , g , and w , respectively. The equinoctial system is illustrated in Figure 8-1. In this figure, 
x , y , and z  indicate the inertial coordinate frame. 

zep
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xep
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yep
^

ŷ

x̂

ẑ

i

N
_

xp
^

Perifocus

Orbit Plane
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Line of Nodes

Ω

Ω
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Figure 8-1. Equinoctial Coordinate System 
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8.3.2 Transformation From Equinoctial Elements to Cartesian Coordinates 

Conversion from equinoctial elements, )(tE = (a, h, k, p, q, λ), to inertial Cartesian coordinates, 

)(tR  and )(tR , is performed in the following manner. First, the generalized Kepler equation for 
the equinoctial elements, 

 λ = + −F h F k Fcos sin  (8.3-1)* 

is solved for the eccentric longitude F, which is the sum of the eccentric anomaly, the argument 
of perigee, and the right ascension of the ascending node. 

This equation is solved by the following iteration scheme: 

 ( )f F F h F k Fn n n n= + − −cos sin λ  (8.3-2)* 

 ( )[ ] ( )[ ]D h F f F k F f Fn n n n n= − − − −1 05 05sin . cos .  (8.3-3)* 

 
( )

F F
f F
Dn n

n

n
+ = −1  (8.3-4)* 

where  

 F h k0 = − +λ λ λcos sin  (8.3-5)* 

 

Next, the position and velocity coordinates in the equinoctial coordinate system (xep, yep, zep) are 
obtained as follows for the direct and retrograde cases:  

 [ ]X a h F hk F k1
21= − + −( ) cos sinβ β  (8.3-6)* 

 [ ]Y a k F hk F h1
21= − + −( ) sin cosβ β  (8.3-7)* 

 [ ] cos ( ) sinX na
R

hh F h F1

2
21= − −β β  (8.3-8)* 

 [ ] ( ) cos sinY na
R

k F hk F1

2
21= − −β β  (8.3-9)* 

where 

 β =
+ − −

1
1 1 2 2h k

 (8.3-10)* 
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The transformation from the equinoctial system to the inertial Cartesian system is given by 

 R X f Y g= +1 1
   (8.3-11)* 

     R X f Y g= +1 1  (8.3-12)* 

where f  and g  are unit vectors directed along the xep  and yep  axes, respectively. These vectors 
in inertial Cartesian coordinates are as follows: 

 [ ]   ( )
( )

f g w
p q

p q pqj p
pq p q j q
pj q p q j

=
+ +

− +
+ − −

− − −

















1
1

1 2 2
2 1 2
2 2 1

2 2

2 2

2 2

2 2

 (8.3-13)* 

where 

 j = 1 for direct orbits (0 ≤ i < 90 degrees) 
 j = -1 for retrograde orbits (90 < i ≤ 180 degrees) 

In the GEONS, the operational choice of direct or retrograde elements is an input option. 

8.3.3 Transformation From Cartesian Coordinates to Equinoctial Elements  

Conversion from inertial Cartesian coordinates, )(tR  and )(tR , to equinoctial elements, )(tE  = 
(a, h, k, p, q, λ), is performed in the following manner. The semimajor axis is computed as 
follows: 

 a
R

R

E

= −
















−

2
2 1



µ
 (8.3-14)* 

where µE is the gravitational constant of the Earth. 

The mean motion is given by 

 n
a

E=
µ

3
 (8.3-15)* 

and the eccentricity vector is given by  

 ( )e R
R

R R R R
R

R R R R
E E

E= − −
× ×

= −





− ⋅










(  ) 
  

µ µ
µ1 2  (8.3-16)* 



 
 

8-9 
 

 

The unit vector w  is defined as  

 



w R R

R R
=

×

×
 (8.3-17)* 

The unit vectors f  and g  can then be computed as follows:  

 f
w

w j
w w

w j
w jx

z

x y

z
x= −

+
−

+
−









1

1 1

2

 (8.3-18)* 

   g w f= ×  (8.3-19)* 

The equinoctial elements h, k, p, and q are then given by 

 h e g= ⋅   (8.3-20)* 

 k e f= ⋅   (8.3-21)* 

 p
w
w j
x

z

=
+1

 (8.3-22)* 

 
jw

w
q

z

y

+
−=

1
 (8.3-23)* 

The mean longitude is computed using the generalized Kepler equation 

 λ = + −F h F k Fcos sin  (8.3-24)* 

where 

 F F
F

= 





−tan sin
cos

1  (8.3-25)* 

with 

 cos
( )

F k
k X hk Y

a h k
= +

− −

− −

1
1

2
1 1

2 2

β β  (8.3-26)* 

 sin
( )

F h
h Y hk X

a h k
= +

− −

− −

1
1

2
1 1

2 2

β β  (8.3-27)* 
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and 

 β =
+ − −

1
1 1 2 2h k

 (8.3-28)* 

Finally, the position and velocity coordinates, relative to the equinoctial coordinate system, are 
given by  

 X R f1 = ⋅   (8.3-29)* 

 Y R g1 = ⋅   (8.3-30)* 

8.3.4 Transformation From Keplerian Elements to Equinoctial Elements  
Conversion from the classical Keplerian elements, ),,,,,( Miea ωΩ , to equinoctial elements, 

)(tE  = (a, h, k, p, q, λ), is performed in the following manner: 

 

jM

iq

ip

jek
jeh

aa

j

j

Ω+ω+=λ

Ω













=

Ω













=

Ω+ω=
Ω+ω=

=

cos
2

tan

sin
2

tan

)cos(
)sin(

 (8.3-31)* 

where 

 j = 1 for direct orbits (0 ≤ i < 90 degrees) 
 j = -1 for retrograde orbits (90 < i ≤ 180 degrees) 

In the GEONS, the operational choice of direct or retrograde elements is an input option. 

At the time of perigee passage, pτ , 0=M  and Ω+ω=λ . 
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Section 9.  Orbit Control Algorithms  

This section provides a generic maneuver targeting algorithm that can be used to compute a 
change in velocity needed to reach a desired target orbit, i.e. to compute a direct transfer orbit 
maneuver. This algorithm is appropriate for computing intercept maneuvers (employing a single 
impulsive burn) and rendezvous maneuvers (employing two impulsive burns). One specific 
application for this capability is the computation of rendezvous maneuvers that will return a 
satellite to its correct location in a formation. This section also includes more advanced 
formation control algorithms developed by GSFC personnel. 

Section 9.1 discusses the generic maneuver targeting algorithm. Section 9.2 presents the 
advanced formation control algorithms.  

9.1  Generic Maneuver Targeting Algorithm  
Figure 9-1 illustrates the geometry of the two maneuvers associated with the rendezvous 
problem. The intercept problem requires only the first of these maneuvers. Given two position 
vectors [the satellite location at the desired maneuver start time, 0t , ( ))( 0tR  and the target 
trajectory location ( ))( fT tR  at the desired maneuver end time, ft ], the Lambert targeting 

algorithm gives the initial velocity ( ))( 0tRtrans
  that will generate the transfer trajectory connecting 

the two positions ( ))( and)( 0 fT tRtR .  

)( 0tR

)( fT tR

)( 0tV?

)( ftV

)( 0tR

)( fT tR

)( 0tV

)( ftV

)( 0tRtrans


)( ftrans tR

)( fT tR

)( 0tR
)( 0tR )( 0tR

)( fT tR )( fT tR

)( 0tV? )( 0tV?

)( ftV )( ftV

)( 0tR )( 0tR

)( fT tR )( fT tR

)( 0tV )( 0tV

)( ftV )( ftV

)( 0tRtrans


)( ftrans tR

)( fT tR

)( 0tR

 

Figure 9-1 Geometry of Rendezvous Targeting Problem 

Since the Lambert problem is defined in a two-body (i.e. the satellite and the central-body) 
environment and the optimum time of flight is not known, the targeting algorithm is performed 
iteratively to compute both the )( 0tV∆  required for the initial insertion into the transfer 
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trajectory and the )( ftV∆  required for insertion into the target trajectory from the transfer 
trajectory. Figure 9-2 provides an overview of the Lambert targeting algorithm implemented in 
GEONS.  
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Figure 9-2 Overview of the Lambert Targeting Algorithm 
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Because the solution method presented in Section 9.1.1 uses classical f and g functions to 
represent the two-body transfer trajectory, the Lambert problem must be solved in the central-
body coordinate frame. If the central body is not the Earth, the current GEONS ECI state vector 
must be transformed to the central-body frame as discussed in Section 3.2.11. The details of the 
targeting algorithm are as follows, with inputs ),(),(, 000 tRtRt   and )(),(, fTfTf tRtRt   referenced 
to the central-body frame and the convergence tolerance ε : 

1. Initialize ).()(),()( 00 fTf
L

T
L
trans

tRtRtRtR ==  

2. Solve the Lambert problem in the central-body frame to determine the initial and final 
velocity ( )(),( 0 f

L
trans

L
trans tRtR  ) of the transfer trajectory from the satellite position at 0t  

( )( 0tR L
trans ) to the target position at time ft  ( )()( f

L
Tf

L
trans tRtR = ). The solution method is 

provided in Section 9.1.1. If a solution cannot be computed (e.g. degrees180 δν±=ν∆  
or initial and target orbits are normal), exit this procedure. 

3. Compute the change in velocity required for the initial insertion into the transfer 
trajectory )()()( 000 tRtRtV L

trans
 −=∆ . 

4. Propagate the transfer trajectory state from the maneuver time 
( ))()(),()( 0000 tRtRtRtR L

transtranstrans
 ==  to the desired target orbit insertion time, 

ttt f ∆+= 0  to obtain ( ))(),( ftransftrans tRtR  . Determine if the transfer trajectory will 
impact the central body using the procedure defined in Section 9.1.3. If collision occurs, 
exit this procedure. 

5. Compute the targeting position error: )()( fTftrans tRtRR −=∆  

6. If ε>∆R , adjust the Lambert target position to RtRtR f
L

Tf
L

T ∆−= )()(  and repeat the 
process starting at step 2. Figure 9-3 illustrates this iterative process. Exit if the maximum 
number of iterations is exceeded. 

7. If ε<∆R , compute the change in velocity required for insertion into the target trajectory 

from the transfer trajectory )()()( ftransfTf tRtRtV  −=∆ .   

A series of calculations using different times of flight is needed to determine the time of flight 
that requires the minimum )( 0tV∆ . In general, the )( 0tV∆  is larger if the time of flight is longer 
than one satellite orbit. 
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Figure 9-3 First Iteration of the Lambert Targeting Problem 

9.1.1  Solution to Lambert’s Problem 
In Lambert’s problem, two position vectors and the time of flight between them are known but 
the orbit between the endpoints is not known. Many different solutions to this problem have been 
developed. Section 6.7 of Reference 31 provides a detailed discussion of several solution 
methods.   

The solution method presented in this section, uses classical f and g functions expressed in terms 
of universal variables to represent the two-body transfer trajectory between the two position 
vectors. Consequently, the solution must be computed in the central-body coordinate frame. The 
f and g functions can be used as follows to propagate a satellite state vector using two-body 
dynamics:  
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)()()(

00

00

tRgtRftR
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



+=

+=
 (9.1-1) 

Computation of the f and g functions is discussed in Section 9.1.2. 

The following algorithm is used to solve the Lambert problem to determine the velocity 
( )(),( 0 f

L
trans

L
trans

tRtR  ) of the transfer trajectory given the satellite position and velocity at 0t  

(  )( and )()( 000 tRtRtR L
trans

= ), the time of flight )( t∆ , and the target position at time ttt f ∆+= 0  
( )( f

L
trans

tR ). Two distinct solutions exist corresponding to (1) the short way for which the change 
in true anomaly (ν ) <180 degrees (for which 1=mt  below) and (2) the long way for which the 
change in true anomaly ( ν∆ ) >180 degrees (for which 1−=mt  below). The special case of 
ν∆ =180 degrees cannot be solved using this method. 

1. Determine value for mt  that will require the minimum velocity change. The short way 
should be used when the normal vector to the initial orbit plane, 0N , and the normal 
vector to the transfer orbit plane, transN , are in the same direction. The long way should 
be used when the normal vectors are in the opposite directions: 
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 (9.1-2) 

2. Use the universal variable approach provided in Section 9.3 to compute the functions 
ggf  and ,,  for the transfer trajectory from )( 0tR L

trans
 to )()( 0 f

L
trans

L
trans

tRttR =∆+ , for 
the selected value of mt  and t∆ .  

3. Compute the velocity of the transfer trajectory at times 0t  and ft  
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 (9.1-3) 

9.1.2  Computation of f and g Functions 

Using f and g functions, the transfer trajectory state vector at time ft  can be expressed in terms 
of the transfer trajectory at time 0t  as follows:  

 
)()()(

)()()(
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tRgtRftR

tRgtRftR
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trans

L
transf
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trans

L
trans
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 (9.1-4) 

Several different representations for the f and g functions are available. Section 4.3.1 of 
Reference 31 and Sections 4.5, 4.6 and 9.7 in Reference 32 discuss these functions in detail. The 
universal-variable formulation was selected because it provides a single set of equations for all 
the conic sections.  

Reference 31 shows that, for the case when the change is the true anomaly υ∆  is known (as it is 
in the Lambert problem), the f and g functions can be expressed as follows  
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 (9.1-5) 

where Cµ  is the gravitational constant of the central body and  
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 (9.1-6) 

The value of A is determined as follows for either the short or long way: 

 ))cos(1(0 ν∆+= RRtA fm  (9.1-7) 

where 

 
f

f
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L

trans

RR
tRtR

0

0 )()(
)cos(

⋅
=ν∆  (9.1-8) 

For the special case A=0.0 (i.e. degrees180 δν±=ν∆ ), there is no solution using this method.  

The value of the remaining variable in Equation 9.1-5 ( ny ), depends on the value of the variable 
ψ  that corresponds to the specified change in time, t∆ . The value of ψ  is determined iteratively 
using the following bisection technique, which is more robust than the Newton-Ralphson scheme 
for a wider range of orbits. This technique is performed by bounding the correct value of ψ  and 
picking a trial value of ψ  that halfway between these bounds. Subsequent iterations successively 
readjust the upper and lower bounds until the interval is tight enough to locate the correct value 
of ψ .  

The details of the algorithm are as follows with inputs )( 0tR L
trans

 and )()( 0 f
L

trans
L
trans

tRttR =∆+  
referenced to the central-body frame, mt  and t∆ : 

1. Determine the value of A as follows 
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f
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00 )()(
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∆+⋅
=ν∆  

( ))cos(10 ν∆+= RRtA fm  

If degrees180 δν±=ν∆ , exit the procedure; solution cannot be computed. 

2. Set the initial values for the square of the change in the eccentric anomaly, (appropriate 
for single revolution solutions, adjust initial bounds to solve for multiple revolution 
cases) and 32  and , cc : 
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0.0
(radians) 4

(radians) 4

3

2

22

22

=

=

=ψ
π−=ψ

π=ψ

c

c

n

low

up

  
3. Solve for the value of nψ  that corresponds to the desired time of flight t∆  using the 

following iteration bisection technique: 
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2
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c.) Compute the current time of flight based on the current values for 
  andc ,,  30 Cny µχ (gravitational constant of the central body in meters3/second2) 
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d.) Compare the current time of flight to the desired time of flight  
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2

reset  , If
reset  , If

 follows as Adjust 
 ,10 If
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3a. stepat  starting procedureiteration repeat  and  

4. Compute the f and g functions using Equation 9.1-5. 

9.1.3  Central Body Collision Detection Algorithm 
One of the most important factors that determine if a trajectory solution obtained for Lambert’s 
Problem is usable is that the transfer trajectory does not intersect the central body. The standard 
method of calculating a collision involves determining the flight-path angle and the radius of 
perigee ( pR ). For computational efficiency, the flight-path angle will not be calculated; instead 
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an examination of the behavior of the transfer trajectory between apogee and perigee will be 
used to determine a possible collision. The algorithm listed below uses a series of dot products of 
the position and velocity vectors to check if it is necessary to compute the pR  to determine if the 
transfer trajectory intersects the central body. Section 7.7 of Reference 32 provides the detailed 
discussion of the collision detection algorithm listed below.  

The parameters of interest are the following, expressed in the central body frame: 

{ }pftransftranstranstrans RtRtRtRtR ),(),(),(),( 00
  

The flight-path angle is the angular separation between the velocity vector and the local 
horizontal plane. The sign of the flight-path angle is positive when the trajectory travels from 
perigee to apogee and negative from apogee to perigee. The change in sign will be analyzed 
using the dot products of the position and velocity at the start and end of the transfer trajectory 
(maneuver period).  The sign at the start and end of the transfer are used to determine if the 
transfer orbit’s perigee occurred during the maneuver. The central body collision detection 
algorithm is given below.  

1. Compute the dot product of the satellite position vector )()( 00 tRtRtrans =  and the velocity 

vector )( 0tRtrans
  at the start of the transfer trajectory: 

)()( 00 tRtR transtrans
⋅  

2. Compute the dot product of the satellite position vector )( ftrans tR and the velocity vector 

)( ftrans tR  at the end of the transfer trajectory (end of the maneuver): 

)()( ftransftrans tRtR ⋅  

3. Determine if perigee occurs during the transfer and if the pR  should be calculated. 

a) If  NegativeorPositiveBoth
tRtR

tRtR

ftransftrans

transtrans







⋅

⋅

)()(

)()( 00





 

      perigee passage does not occur and collision is not possible. 

b) If  






>⋅

<⋅

apogee)  towardsheaded is (satellite0)()(

perigee)  towardsheaded is (satellite0)()( 00

ftransftrans

transtrans

tRtR

tRtR




 

collision is possible and the following collision test is performed: 

Compute ( )eaRp −= 1  

  where 
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If ( )radiuscollision specifieduser a Cp RR ≤ , collision occurs on the transfer 
trajectory. 

9.2 Formation Control Algorithms  
The GEONS software provides generic interfaces to support integration with user-provided orbit 
and formation control software. 
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Section 10.  Cold-Start Initialization Algorithm 

In low-Earth orbit (LEO), GEONS can be initialized using a point solution – i.e. an instantaneous 
solution for position, velocity, and receiver time bias based on four or more simultaneous GPS 
pseudorange and Doppler measurements.  Point solutions are available from most GPS space 
receivers. This is not the case in high-Earth orbits or highly elliptical orbits, where there are 
rarely, if ever, sufficient satellites visible to compute a point solution.  In these situations, a 
different initialization approach is required.   

This section presents a robust method, developed by the Colorado Center for Astrodynamics 
Research (CCAR), that can be used to provide a satellite state vector for 
initialization/reinitialization of GEONS, when four or more simultaneous GPS measurements are 
not available.  This method processes a batch of pseudorange and/or Doppler measurements 
collected over an orbital arc to compute an initial state estimate.  This algorithm assumes 
knowledge of nominal orbital elements, (e.g. a, e, i, ω, Ω) and performs a search on the mean 
longitude (λinitial) to estimate the host satellite position within the orbit and the approximate 
receiver clock bias and bias rate.  Reference 33 discusses the development of this method and 
presents the results of a simulation using this method, which includes large orbital uncertainties 
and measurement errors. 

10.1  Algorithm Overview 
This method, which is based on an orbital element representation, uses the constraints of orbital 
dynamics to narrow the range of possible initial conditions.  The angular orientation of the orbit 
(inclination, node, and argument of perigee), and the orbital energy are constrained by the 
launch; whereas the position of the spacecraft within the orbital plane is poorly known.  The 
standard injection errors associated with the orbital elements can be estimated based on the 
launch vehicle design and history.  

In this initialization method, the spacecraft state vector is represented using the equinoctial 
orbital elements ( λ,,,,, qpkha ), which are defined in Section 8.3.1 of this document. These 
elements are closely related to the classical orbital elements (a, e, i, Ω, ω, M), but are better 
suited for handling circular, equatorial orbits.  The first five elements, which define the geometry 
of the orbit, are held fixed, e.g. equal to the nominal post-launch orbit insertion values.  The final 
parameter, the mean longitude (λ ), defines the position of the spacecraft within the orbit. This 
value is not well known ahead of time. So, the goal of the initialization process is to determine 
the correct value of λ  at the requested filter initialization time, initialt , and to compute the 
associated initial position and velocity estimates.   

This method assumes that the onboard GPS receiver acquires and tracks as many satellites as 
possible using a cold start or blind search technique. The receiver is assumed to form both 
pseudorange and Doppler measurements and to collect the broadcast GPS satellite ephemeris 
data from all visible satellites at intervals of 1 minute or smaller.   
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Time onboard the spacecraft is assumed to be known to within 1 second after acquisition and 
tracking of the first GPS satellite.  The stability of the clock is assumed to be on the order of 1 
part in 1010.  In this case, the large receiver clock bias will dominate the pseudorange residuals. 
However, by comparing residuals for different satellites, a reliable initial bias value can be 
computed using these measurements.  If measurements from only one satellite are available, it is 
not always possible to isolate the correct starting point in the orbit if there is a large receiver 
clock bias. 

The algorithm assumes knowledge of the orbital elements, ( ω,,,, Ωiea ), and performs a search 
to estimate the remaining unknown – the location within the orbit, characterized by the mean 
longitude at the initialization time, initialλ . To process all the measurements in the batch, the 
nominal spacecraft orbital elements are used to predict the spacecraft position and velocity at 
each of the measurement times.  The expected pseudorange and/or Doppler measurements are 
computed using the spacecraft position and velocity predictions and the GPS satellite positions 
computed from the broadcast ephemerides. These are compared to the actual measurements from 
the receiver and the residuals for the entire data arc are accumulated.   

The characteristics of the measurement residuals for the batch indicate which value of initialλ  is 
best.  For PR measurements without clock biases and for Doppler measurements, the root-mean-
square (RMS) of the residuals is unambiguously smallest for the correct position within the 
orbital plane.  In the presence of a large clock bias, there is an offset in the pseudorange residuals 
that prevents the use of a simple RMS evaluation.  When measurements are available from more 
than one GPS SV within the batch, the correct initialλ  can be identified by the minimum standard 
deviation of the measurement residuals.  The value of initialλ  that minimizes the residual standard 
deviation locates the correct host vehicle position within the orbit.  The mean of the pseudorange 
residuals for this initialλ  provides a coarse estimate of the receiver clock bias.  The mean of the 
Doppler residuals for this initialλ  provides a coarse estimate of the receiver clock bias rate.  The 
position and velocity estimates can then be produced at the initialization time based upon the 
nominal orbital elements and the best initialλ . 

The algorithm starts with a coarse search in increments of the mean longitude, λ∆ , for the value 
initialλ that provides the minimum residual standard deviation. This search provides an initial 

estimate for min
initialλ  and brackets the search region in which the minimum occurs. The location of 

the minimum is then refined using the Golden Section Search method. The accuracy of the 
solution is ultimately limited by the uncertainty in the nominal elements.  The results presented 
in Reference 33 indicate that the search space is well defined for measurement data arcs of 100 
minutes or longer eliminating the possibility of searching in a false null region.  For initialization 
near perigee, data arcs as short as 10 minutes are adequate. 

When the best min
initialλ  is found, the position and velocity at the requested initialization time are 

computed based on the nominal elements and min
initialλ . An initial estimate of the receiver clock 

bias is provided by the mean of the pseudorange residuals associated with the minimum residual 
standard deviation.  An initial estimate of the receiver clock bias rate is provided by the mean of 
the Doppler residuals associated with the minimum residual standard deviation.  The initial 
covariance matrix can be computed from the launch uncertainties.   
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10.2  Initialization Algorithm Summary 
The following steps summarize the algorithm used to successively refine the estimate for the best 

initialλ  ( min
initialλ ) and to compute an initial satellite position and velocity at the requested 

initialization time based on the assumed nominal orbital elements and the computed min
initialλ . This 

algorithm requires the following input values, in addition to the Broadcast ephemeris associated 
with each GPS SV tracked during the measurement data arc: 

 ωΩ,,,, iea = nominal classical orbital elements 

]),(),([ mmobsmobs ttftρ = batch of M observed pseudorange and/or Doppler measurements, 
nominally at 1-minute intervals 

 initialt = initialization time (equal to batch end time)  

 0
Rb = initial value of the receiver time bias in meters, nominally equal to 0 

 0
Rd = initial value of the receiver time bias rate in meters per second, 

nominally equal to 0 

 λ∆ = size of increment in λ , nominally 0.2π radians  

1. Convert the nominal classical orbit elements (a, e, i, Ω, ω) to equinoctial elements 
( qpkha ,,,, ) using the algorithm defined in Section 8.3.4 of this document.  

2. Use the coarse search algorithm defined in Section 10.3 with a search region of s
initialλ = 0 

to π=λ 2f
initial , in increments of λ∆  to obtain an initial estimate for the min

initialλ , the receiver 
clock bias, Rb , and the receiver clock bias rate, Rd , and to bracket the search region. 

3. Refine the estimate for min
initialλ  using the Golden Section Search method described in 

Section 10.4, applying the receiver bias and bias rate estimates computed in step 2, 
narrowing the search region to min

initialλ  (from step 2) ± 0.5 λ∆ . Compute update to the 
receiver clock bias, Rb , and the receiver clock bias rate, Rd , using the best min

initialλ . 

4. Use the transformation defined in Section 8.3.3 to convert the element set 
min,,,,, initialqpkha λ  to obtain the position and velocity at the initialization time, initialt . 

10.3  Coarse Search Algorithm  
This algorithm is used to bracket the region in which the best value min

initialλ  occurs. The search 
algorithm consists of the following steps, given the following input values, in addition to the 
Broadcast ephemeris associated with each GPS SV tracked during the measurement data arc: 

 qpkha ,,,, = nominal equinoctial orbital elements 

 initialt = initialization time  
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]),(),([ mmobsmobs ttftρ = batch of M observed pseudorange and/or Doppler measurements, 
nominally at 1-minute intervals 

 s
initialλ = starting value for initialλ  search (radians) 

 f
initialλ = ending value for initialλ  search (radians) 

 λ∆ = size of increment in λ  (radians) 

 Rb = current value of the receiver time bias (meters) 

 Rd = current value of the receiver time bias rate (meters per second) 

1. For each λλλ ∆+= ii s
initialinitial )( , ,...1,0=i , while f

initialinitial i λλ ≤)(  

a. At each measurement time, mt , in the batch: 

i). Compute the value of the mean longitude at the measurement time mt , 

 ( )initialm
E

initialm tt
a

i −+= 3)( µ
λλ  (10.3-1)* 

Using the algorithm defined in Section 8.3.2, convert the equinoctial elements 
( mqpkha λ,,,,, ) to obtain the position and velocity vectors at mt , )(),( mm tRtR  .  

ii). Compute predicted measurements for all visible GPS SVs at time mt , using the 
following equations:  

 For pseudorange: ( )
1// )()(

LSjRm
n

jWGm
n

jWG tcbtt δ−+ρ=ℜ  (10.3-2)* 
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

 (10.3-3)* 

The terms ( )
1/  ,)(

LSjm
n

jWG tt δρ , correljWGm
n

jWGT FRtF )(,),(, // δρ   are defined in 

Sections 5.3.2 and 5.3.3 of this document. 
iii). Compute measurement residuals for all visible GPS SVs.  

)()()( :ePseudorangFor / m
n

jWGmjobsmj ttt ℜ−ρ=ρ∆  

( )n

jWGmDmjobsmj tFtftf /)()()( :DopplerFor −=∆  
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iv). Accumulate the sum of the residuals and the sum of the squares of the residuals 
over the measurements in the batch. 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
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b. Compute the the mean value, mean squared value, and standard deviation of the 

measurement residuals over the batch  
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2. Determine the best min
initialλ as the value that produces the smallest pseudorange residual 

standard deviations if pseudorange measurements are available or otherwise the value that 
produces the smallest Doppler residual standard deviations.  

3. Set time bias error flag if there are measurements from only one GPS SV. Otherwise, 
compute the receiver clock bias and clock bias rate corrections as the mean of the 
pseudorange and Doppler residuals, respectively, for the best min

initialλ .  
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[ ]
[ ])(

)(

min

min

initial
T

R

initialR

fE
F
cd

Eb

λ∆−=∆

λρ∆=∆
 

     and update the current value of the receiver clock bias and clock bias rate 

RRR

RRR

ddd
bbb
∆+=
∆+=

 

10.4  Golden Section Search for Minimum  
The Golden Section Search method can be used to find the location of a minimum when the 
minimum has been bracketed. A minimum is known to be bracketed in the interval (a, c) if there 
is a triplet of points, a<b<c, such that )()( afbf <  and )()( cfbf < . The following description 
is based on that provided in Reference 34. The Golden Section Search method is analogous to 
the bisection method, which is used to search for the root of a function.  

The search method consists of choosing a new point x, either between a and b or between b and 
c, evaluating )(xf , and then selecting a new bracketing triple of points. For example, if b<x<c is 
selected and )()( xfbf < , the new bracketing triplet of points is (a, b, x). Otherwise, if 

)()( xfbf > , the new bracketing triplet of points is (b, x, c). The middle point of the new triplet 
is the abscissa whose ordinate is the best minimum achieved so far. The process of bracketing is 
continued until the distance between the two outer points of the triplet is tolerably small. 

In this application, the search is performed to find the value of min
initialλ  that minimizes the standard 

deviation of the measurement residuals. The search method consists of the following steps, given 
the following input values, in addition to the Broadcast ephemeris associated with each GPS SV 
tracked during the measurement data arc: 

 qpkha ,,,, = nominal equinoctial orbital elements 

 initialt = initialization time  

]),(),([ mmobsmobs ttftρ = batch of M observed pseudorange or Doppler measurements, 
nominally at 1-minute intervals 

 min
initialλ = initial best estimate for initialλ  that minimizes standard deviation of the 

measurement residuals (radians) 

 λ∆ = size of increment in λ  (radians) 

 Rb = current value of the receiver time bias (meters) 

 Rd = current value of the receiver time bias rate (meters per second) 

 ε = convergence tolerance, nominally equal to 10-7 

 GoldenI max = maximum number of iterations, nominally equal to 50 
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 R= 0.61803 39887 49894  

 C= (1-R)= 0.38196 60112 50105 

1. Set the initial values for the search as follows: 

2)3(
2)0(

min

min

λλλ

λλλ
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∆−=

initialinitial

initialinitial
 

  
( )

min

minmin

)2(
)0()1(
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initialinitialinitialinitial C
λλ
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=

−−=
 

2. Evaluate the residual standard deviation functions f( )1(initialλ ) and f( )2(initialλ ), where 
))(())(( iif initialinitial λσλ ρ=  for pseudorange measurements or ))(())(( iif initialfinitial λσλ =  for 

Doppler measurements, using the following algorithm: 

a. At each measurement time, mt , in the batch: 

i). Compute the value of the mean longitude at the measurement time mt , 

 ( )initialm
E

initialm tt
a

i −+= 3)( µ
λλ  (10.4-1)* 

Using the algorithm defined in Section 8.3.2, convert the equinoctial elements 
( mqpkha λ,,,,, ) to obtain the position and velocity vectors at mt , )(),( mm tRtR  .  

ii). Compute predicted measurements for all visible GPS SVs at time mt , using the 
following equations:  

 ( )
1// )()( :ePseudorangFor 

LSjRm
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jWG tcbtt δ−+ρ=ℜ  (10.4-2)* 
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 (10.4-3)* 

The terms ( )
1/  ,)(

LSjm
n

jWG tt δρ , correljWGm
n

jWGT FRtF )(,),(, // δρ   are defined in 

Sections 5.3.2 and 5.3.3 of this document. 
iii). Compute measurement residuals for all visible GPS SVs.  

)()()( :ePseudorangFor / m
n

jWGmjobsmj ttt ℜ−ρ=ρ∆  
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( )n

jWGmDmjobsmj tFtftf /)()()( :DopplerFor −=∆  

iv). Accumulate the sum of the residuals and the sum of the squares of the residuals 
over the measurements in the batch. 
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b. Compute the the mean value, mean squared value, and standard deviation of the 

measurement residuals over the batch  
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3. Perform iterative search until the distance between the two outer points is tolerably small. 
Use ))(())(( iif initialpinitial λσλ = if pseudorange measurements are available and 

))(())(( iif initialfinitial λσλ =  if only Doppler measurements are available. 

 Do until [ ])2()1()0()3( initialinitialinitialinitial λλελλ +<− , 



10-9 
 

     If ))1(())2(( initialinitial ff λλ < , 
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4. If ))2(())1(( initialinitial ff λλ < , )1(min
initialinitial λλ =  

else )2(min
initialinitial λλ =  

5. Set time bias error flag if there are measurements from only one GPS SV. Otherwise, 
compute the receiver clock bias and clock bias rate corrections as the mean of the 
pseudorange and Doppler residuals, respectively, for the best min

initialλ .  
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Section 11.  Attitude Estimation Algorithms 

The explicit form for the attitude EKF algorithms is based on the Multiplicative EKF (MEKF) 
defined in Reference 39. The attitude state estimation algorithm incorporates the attitude 
determination method using non-aligned antenna presented in Reference 40, which uses an 
extended Kalman filter to process GPS signal-to-noise ratio (SNR) and GPS double-difference 
carrier phase measurements. These algorithms have been demonstrated to provide attitude 
estimates in the 0.5 degree range. Section 11.1 defines the estimation state, Section 11.2 defines 
the state error covariance, Section 11.3 describes the state estimation processing flow, Section 11.4 
discusses attitude state and covariance propagation, Section 11.5 provides the measurement 
models, and Section 11.6 provides an attitude state initialization procedure. These algorithms are 
not currently implemented but could be implemented in a future GEONS release. 

11.1  Attitude Estimation State Vector 
The attitude estimation problem determines the rotation that a body has experienced to take it from 
its nominal orientation to its current orientation, measured in the external reference frame. The 
attitude estimation algorithm estimates an attitude state vector, Ax , for each spacecraft being 
estimated. The spacecraft attitude is parameterized using a unit quaternion to represent the rotation 
from the Mean of J2000.0 inertial reference frame to the body frame.  

The unit quaternion has a three-vector part ( Vq ) and a scalar part  ( 4q ): 
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q V  (11.1-1) 

where e  is the Euler axis of rotation and θ  is the Euler angle of rotation.  

The components of the attitude quaternion are also referred to as Euler symmetric parameters. The 
column vector of Euler symmetric parameters is a special case of the more general quaternion. For 
the Euler symmetric parameters, the inverse quaternion is equal to the conjugate quaternion: 
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The transformation of a vector from the inertial reference frame to the spacecraft body frame is 

performed as follows using the attitude matrix 






← qA XYZB  

 [ ] [ ]XYZXYZBB VqAV 




= ←  (11.1-3) 

where 
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or equivalently 
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The following quaternion multiplication convention is used 

 
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such that )()()( qpAqApA ⊗= . 

The MEKF represents the true attitude as the quaternion product 

 )())(()( tqtqtq ref⊗αδ=  (11.1-8) 

where )(tqref  is the current best estimate of the true attitude unit quaternion, ))(( tq αδ  is a unit 

quaternion representing the rotation from )(tqref  to the true attitude )(tq . Following Reference 39, 

))(( tq αδ  is parameterized such that   
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where )(tα  is a three-component representation of the attitude error in the body frame  

 
4

2)(
q
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δ
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=α  (11.1-10) 

 and 
2

)(tα  is commonly referred to as the Gibbs vector. The associated attitude matrices are 

approximated as follows  
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 [ ] ( )TIItqA αα−α−×α−≅αδ ×× 33
2

33 2
1)))((( , to 2nd order in α  (11.1-11) 
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The nine component attitude state vector estimate for each spacecraft is defined as 
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where )(ˆ tbω∆  is a vector of estimated attitude rate errors. In the case where gyro measurements 

are used to compute the reference angular rate vector ( ))(trefω , )(ˆ tbω∆  is the estimated error in 

the gyro drift vector. Otherwise, )(ˆ tbω∆  is the estimated error in the angular velocity vector.  
Optionally, )(ˆ tscal∆  can be estimated, which is a vector of errors in the antenna gain calibration 
coefficients. 

11.2  Attitude State Error Covariance Matrix 
The attitude state error covariance at time tk is defined as follows: 
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A

C

C
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P  (11.2-1) 
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where 

[PA] = [N × N] attitude error covariance matrix, where N equals 9 
σi = standard deviation of the estimate of attitude state vector element  i 

σ i
2  = variance of the estimate of state vector element  i 

Ci,j = Cj,i   = correlation coefficient for elements  i and j, absolute value < 1 

The state error covariance is initialized or reinitialized using command parameters. The initial 
covariance matrix is diagonal: the initial state error variances σ i

2  are used directly in Equation 
11.2-1 to form [ ]AP with Ci,i = 1 and off-diagonal Ci,j = 0.  The covariance for individual state 
vector elements can be reinitialized by resetting the associated diagonal elements in the full 
covariance matrix to their initial values and the associated off-diagonal elements to zero. 
Whenever the attitude covariance is initialized or reinitialized, it is factored into components [ ]AU  

and [ ]AD  as discussed in Section 2.2.1. 

11.3  Attitude Estimation Algorithm 
The EKF algorithm consists of the following three major processes: 

1. Attitude State Initialization. This process consists of computing an initial estimate for 
the attitude states. 

2. Time Update. This process consists of propagating the attitude state estimate and state 
error covariance from the time of the previous thk )1( −  measurement to the time of the 
current thk)( measurement. 

3. Measurement Update. This process consists of correcting the attitude state and covariance 
to include the effects of the current measurement.  

These steps are described below. 

11.3.1 Attitude State Initialization 
At the time of the first SNR measurement, compute an initial attitude state using the algorithm 
provided in Section 11.6. 

11.3.2 Time Update Process 
The time update is performed at each time ti, where ti is either the time of the next valid 
measurement tk or an intermediate time if the time between measurements is greater than the 
maximum integration step size 

 



δ>−δ+
δ≤−

=
−−

−

maxkkmaxi

maxkkk
i ttttt

tttt
t

11

1

;
;

 (11.3-1)* 

where δtmax is equal to the maximum state vector integration step size. 
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Given the estimated total attitude state vector at the previous measurement time )( 1−kt  (+)ˆ
1−kAx ; 

associated state variables )(ˆ(+)ˆ(+),ˆ
111

+ω
−− k-kk calrefref s,q , and (+),ˆ

1−ωk
b ; the state error covariance 

factors, (+)
1−kAU  and (+)

1−kAD ; and a measurement at time tk denoted by Yk, the following steps are 
performed: 

1. Compute the predicted attitude reference quaternion , reference angular velocity 

vector )(ˆ −ω
iref , gyro bias vector ),(ˆ −ωi

b  antenna gain calibration vector )(ˆ −
icals , and the 

attitude state vector, ),(ˆ −
iAx  at the time  ti using the attitude state prediction algorithms that 

are defined in Section 11.4.  

2 Compute the attitude state transition matrix 
iAφ  and attitude process noise matrix 

iAQ  using 
the algorithms defined in Section 11.4. 

3. Propagate the attitude state error covariance matrix factors to the time ti to obtain )(−
iAU  and 

)(−
iAD  using the attitude covariance propagation algorithm defined in Section 4.4.3. 

 If ti < tk, set )(+
iAU = )(−

iAU , )(+
iAD = )(−

iAD , )(ˆ +
iAx = ),(ˆ −

iAx  )(ˆ +
irefq = , )(ˆ +ω

iref =

)(ˆ −ω
iref , )(ˆ +ωi

b = ),(ˆ −ωi
b  and )(ˆ +

icals = )(ˆ −
icals  and repeat the time update until ti = tk . 

11.3.3 Measurement Update 
The measurement update is performed separately for each measurement at each valid measurement 
time, tk.  Note that implementation of the measurement update using the hybrid batch EKF 
algorithm defined in Section 2.3.2.4 should be considered for processing of multiple measurements 
occurring during the same update time span.  

If resolution of the carrier phase integers has not been successful, all SNR measurements at tk are 
processed before the double-difference carrier phase (DDCP) measurements are processed. If 
resolution of the carrier phase integers has been successful, the SNR measurements are not 
processed to estimate the attitude state but are optionally processed to compute SNR calibration 
coefficients as discussed in Section 11.5.2. 

Given the results of the time update, )(ˆ −
kAx , )(ˆ −

krefq , )(ˆ −ω
kref , )(ˆ −ωk

b , ),(ˆ −
kcals )(−

kAU , and 
)(−

kAD  as well as the measurement variance, Rk, compute the updated total attitude state vector 

and related parameters, )(ˆ +
kAx , )(ˆ +

krefq , )(ˆ +ω
kref , )(ˆ +ωk

b , and )(ˆ +
kcals  and updated state error 

covariance matrix factors )(+
kAU  and )(+

kAD , according to the following steps: 

1. Compute the predicted measurement, kŶ , the measurement residuals, yk, and the measurement 
partial derivatives, Hk, at time tk from 

)(ˆ −
irefq

)(ˆ −
irefq
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 ( )[ ]kAk txGY
k

,ˆˆ −=  (11.3-2)* 

 y Y Yk k k= −   (11.3-3)* 

 
( )−=









∂
∂

=
kAA xxA

k x
GH

ˆ

 (11.3-4)* 

 where Yk is the actual scalar measurement. If the DDCP integer resolution is not currently 
successful, the measurement model equation, G, and associated partial derivatives, H, for SNR 
measurements are given in Section 11.5.1. If the DDCP integer resolution is currently 
successful, the SNR measurements can be optionally processed to estimate the antenna gain 
calibration coefficients using the formulas for G and H, provided in Section 11.5.2. The DDCP 
measurements are processed using the formulas for G and H provided in Section 11.5.3.  

2. Perform the following n-sigma measurement residual edit test before updating the state vector 
and state error covariance matrix. The predicted measurement residual variance is computed 
using the U and D factors. The following algorithms were taken from References 7 and 8: 

 TT HUf )( −=  (11.3-5)* 

 NjfDv jjjj ,,2,1;, == −  (11.3-6)* 

 kRa =0  (11.3-7)* 

where 

 U – = )(−
kAU  

 D – = the diagonal matrix )(−
kAD  

 H = 1 × N measurement partial derivative matrix 
 kR  = measurement variance, a commanded parameter, specific to each measurement 

type  

Then, for j = 1, 2, ..., N, compute 

 aj = aj–1 + fj vj (11.3-8)* 

The predicted measurement residual variance, Vk is then computed as 

 Vk = aN (11.3-9)* 

4. Edit the measurement as follows: 

Calculate the sigma ratio 
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k

k
k V

yS =  (11.3-10)* 

If σ≤NSk , accept the measurement and continue the measurement update. If |Sk| > Nσ, reject 
the measurement, and exit the measurement update procedure. In these tests, Nσ is a specifiable 
number with a default value of 4. 

5. Update the state error covariance factors for  j =1, 2, ..., N, as follows: 

 jjjjjj aaDD /1,, −
−+ =  (11.3-11)* 

 bj ← vj (11.3-12)* 

 pj = – fj / aj–1 (11.3-13)* 

 1,,2,1
,

,, −=






+←
+=

−

−+

ji
vUbb
pbUU

jjiii

jijiji   (11.3-14)* 

where a, f, and v are already available from the measurement residual variance computation and 

 ← arrow = replacement or “writing over” 

 U –  = )(−
kAU  

 U +  = )(+
kAU  

 D –  = )(−
kAD  

 D +  = )(+
kAD  

 The state error covariance matrix )(+
kAP  is computed from its measurement updated U and 

D factors:  

 )()()()()( ++++=+
kkkkk A

T
AAAA PUDUP  (11.3-15)* 

6. Compute the Kalman gain vector 

 K b Vk k=  (11.3-16)* 

where Kk  is the [ ]N × 1  Kalman gain vector and the components of  b  are defined in 
Equation (11.3-14) 

7. Update 
kAx̂  
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 kkAA yKxx
kk

+−+ )(ˆ=)(ˆ  (11.3-17)* 

and reset the reference attitude quaternion and the reference angular velocity vector 

 )(ˆ))(ˆ()(ˆ −⊗+αδ=+
kk refref qqq  (11.3-18)* 

 )(ˆ)(ˆ)(ˆ +∆−−ω=+ω ωkkk
brefref  (11.3-19)* 

If gyro measurements are used to model the angular velocity, reset the gyro drift  

 )(ˆ)(ˆ)(ˆ +∆+−=+ ωωω kkk
bbb  (11.3-20)* 

If antenna gain calibration coefficients are being estimated, reset the calibration coefficient 
vector  

 )(ˆ)(ˆ)(ˆ +∆+−=+
kkk calcalcal sss  (11.3-21)* 

 Note that in the case of DDCP measurements, these are saved as temporary updates. 

8. After processing the double-difference carrier phase measurements for all GPS SVs and all 
spacecraft antenna baselines at time tk, perform the integer resolution check described in 
Section 11.5.4 to detect incorrect assignment of the integer ambiguity. If the test is passed, the 
final state and covariance updates computed at time tk are permanently applied.  

11.4  Attitude State and Covariance Propagation Algorithms 
Reference Quaternion Propagation 

The predicted value of the reference quaternion is computed by integrating the following equation 

 
( ) )()(

2
1

)(
0

)(
2
1)(

tqt

tq
t

tq

refref

ref
ref

ref

ωΩ=

⊗






ω
=

 (11.4-1) 

where )(trefω  is the best estimate of angular velocity of the reference attitude in the body frame 
and  

 
[ ]









ω−

ω×ω−
≡ωΩ

0
)( T  (11.4-2) 

Assuming that the angular velocity is nearly constant over the integration interval, 
Equation (11.4-1) can be analytically integrated to obtain: 
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−iii refirefref qtq  (11.4-3)* 

where, 1−−=∆ iii ttt  and following Equation C-79 in Reference 41, 
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 (11.4-4)* 

where )(ˆ −ω=ω refref  and 321 ,, ωωω  are the components of )(ˆ −ωref . 

Reference Angular Velocity Propagation Using Gyro Measurements 

In the case where a set of gyros provides angular rate measurements in the body frame ))(( tgyroω , 
the true angular velocity is defined as  

 )()()()( ibiigyroi ttbtt η−−ω=ω ω  (11.4-5) 

where )( ib tη  is a zero-mean white noise process with standard deviation bσ  for all components. 
The predicted angular velocity expressed in the body frame is computed as follows 

 )(ˆ)()(ˆ −−ω=−ω ωii
btigyroref  (11.4-6)* 

where )(ˆ −ωi
b  is the predicted value of the gyro drift.   

Gyro Drift Vector Propagation 

The state equation for the true gyro drift is defined as 

 )()( ibiw ttb 
 η=  (11.4-7) 

where )( ib tη  is a zero-mean white noise process with standard deviation bσ  for all components. 
A random walk model is used to model the gyro drift rate noise; therefore, the gyro drift is 
constant over the propagation interval  
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 )(ˆ)(ˆ
1

+=−
−ωω ii

bb  (11.4-8)* 

Reference Angular Velocity Propagation Without Gyro Measurements 

Alternatively, if a set of gyros is not used to provide the angular rates, )(ˆ −ω
iref  is computed by 

numerically integrating Euler’s equations using the fourth-order Runge-Kutta integrator defined 
in Section 4.2:  

 TII +ω×ω−=ω )(  (11.4-9)* 

where I  is the moment of inertial tensor expressed in the body frame (commanded parameters). 
T  is the sum of external torques expressed in the body frame. In GEONS,  

 externalGG TTT +=  (11.4-10)* 

where GGT  is the gravity gradient torque and additional external torques externalT  can be provided 
via command input. The gravity gradient torque is modeled as follows  

 ( )[ ]BB
E

GG rIr
R

T ˆˆ3
3 ⋅×

µ
=  (11.4-11)* 

where )( ktRR = , the magnitude of the spacecraft position vector. The unit vector Br̂  along the 
spacecraft position vector expressed in the body frame is computed by  

 
R

tRqA
R
trr krefkB

B
k

)())(ˆ()(ˆ
−

==  (11.4-12)* 

Antenna Calibration Coefficient Vector Propagation 

The predicted antenna gain calibration coefficient vector propagates as a constant: 

 )(ˆ)(ˆ
1

+=−
−ii calcal ss  (11.4-13)* 

 

 

Attitude State Vector Propagation 

The state equations for the attitude error vector, attitude rate errors, and antenna gain coefficient 
errors are as follows 
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 biirefi bttt η−∆−α×ω−=α ω)()()(  (11.4-14) 

 )()( ibiw ttb 
 η=∆  (11.4-15) 

 )()( isical tts η=∆  (11.4-16) 

where )( ib tη , )( ib tη , and )( is tη  are zero-mean white noise processes with standard deviations bσ

, bσ , and sσ  for all components, respectively. Since the attitude state vector estimates )(ˆ txA  are 

used to reset the values of )(+
irefq , )(ˆ +ω

iref , )(ˆ +ωi
b , and )(ˆ +

icals  in step 7 of the measurement 
update process, the predicted values for the attitude state vector components are identically zero:  
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Attitude State Transition Matrix  

The attitude state transition matrix is obtained by analytically integrating the following state 
equation  
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 (11.4-18) 

assuming that the angular velocity is nearly constant over the integration interval, to obtain 

 ( ) )(ˆexp)(ˆ
1

+∆=−
−ii AiA xtFx  (11.4-19) 

where  
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 (11.4-20) 

Taking the partial derivatives of Equation (11.4-19) yields 
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where )(ˆˆ −ω=ω
irefref , )(ˆ −ω=ω refref , and 

[ ]( ) [ ] ( ) 322 /)sin(ˆ/cos(1ˆ
refirefirefrefrefirefrefii ttttI ω∆ω−∆ω×ω+ω∆ω−×ω−+∆=ψ  (11.4-22)* 

Attitude Process Noise Matrix  

The attitude process noise matrix, 
iAQ , is given by 

 τφτττφ= ∫
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Which yields 
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 (11.4-26)* 

11.5 Attitude Measurement Models 
The attitude estimator processes both SNR and double-differenced GPS carrier phase 
measurements. 
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11.5.1 SNR Measurement Model and Partial Derivatives 
The GPS SNR measurement is a measurement of the signal strength of a received GPS signal, 
which is also referred to as the antenna gain. Assuming that the antenna’s gain pattern is known 
and is invariant in the spacecraft body frame, the received signal strength is dependent on the 
relationship between the direction of the antenna boresight vector, which is constant in the body 
frame, and the line-of-sight vector to the receiving antenna to the GPS SV transmitter. The 
observed SNR measurements (SNR) are either scaled by an uplinked value for the maximum SNR 
( maxSNR ) or used in the antenna calibration equation to form a measurement that is consistent with 
the cosine of the elevation angle of the transmitting GPS SV with respect to the receiving antenna 
boresight vector: 

 






 ++
= otherwise ,

available are tscoefficienn calibratio-self if ,

max

2
210

SNR
SNR

SNRsSNRss
Yk  (11.5-1)* 

where ),,( 210 sss  are components of the antenna gain calibration coefficient vector cals , which can 
be commanded or optionally computed using the self-calibration algorithm defined in Section 
11.5.2. 

The predicted SNR measurement for antenna p on satellite n is computed as follows: 

 [ ] [ ]
Bref

n
GB

pn
k

pn
Gk kjj

quBtSY ))(ˆ(ˆ)(ˆˆ ,, −⋅==  (11.5-2)* 

where 

 [ ]
B

pnB ,  = Boresight unit vector for antenna p on satellite n expressed in the body frame 

(commanded values) 

[ ]
Bref

n
G kj

qu ))(ˆ(ˆ − = Line-of-sight unit vector from receiving satellite n to the GPS transmitter j 

expressed in the body frame  

The line-of-sight vector in the body frame is computed as follows using the predicted value of the 
quaternion at the measurement time: 

 [ ] [ ]
XYZk

n
GrefBref

n
G tuqAqu

jkkj
)(ˆ))(ˆ())(ˆ(ˆ −=−  (11.5-3)* 

where the line-of-sight vector in the inertial reference frame is given by: 
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=  (11.5-4)* 
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In Equation (11.5-4), the position of the transmitting antenna of the GPS SV at the time (tT) of 
signal transmission is denoted by )( TG tR

j
, and the position of the receiver pon satellite n at the 

time of the signal reception )( Rt  is denoted by )( RtR .  

Similarly, the observed SNR measurement for antenna p on satellite n can be expressed as follows 
in terms of the true quaternion )( ktq   
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Gk tquBtSY

jj
))((ˆ)( ,, ⋅==  (11.5-5) 

where the true line-of-sight vector can be expressed by 
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Expanding Equation 11.5-5 to first order in α  about the predicted reference yields: 
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The associated measurement partial derivatives are as follows: 

 [ ] [ ][ ][ ]3131
,

,

00))(ˆ(ˆ
)(

×××−⋅=










∂

∂
=

Bref
n
GB

pn
n
A

k
pn

G
k kj

j quB
x

tS
H  (11.5-8)* 

Note that when the SNR measurements are processed to determine the spacecraft attitude error, 
the antenna gain calibration vector is not estimated (i.e. the associated measurement partial 
derivations are set to 0). 

11.5.2 Self Calibration Using SNR Measurements 

The SNR method of attitude determination works best when a calibration of the receiving antenna 
gain pattern is available. Therefore, when the DDCP integer resolution is successful, antenna self-
calibration is optionally performed using the SNR measurements. The self-calibration is performed 
by using the estimated attitude state and calibrating the SNR map as if the estimated attitude state 
is error-free. The coefficients [ ]Tcal ssss 210=  of a third-degree polynomial are fit to the 
calibration data. This calibration model assumes that all GPS SV transmitting antennas have 
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similar characteristics and all receiving antennas on a given spacecraft have similar gain patterns 
that are symmetric around the boresight. After the calibration coefficient covariance falls below a 
specified value, the calibration polynomial is available for use in Equation 11.5-1 to process SNR 
measurements for attitude state estimation in the event that the carrier phase integer resolution 
procedure fails and carrier phase measurement updates are not performed.  

The calibration polynomial is fit to the dot product between the line-of-sight unit vector and the 
antenna boresight unit vector. The “observed” measurement is given by 

 [ ] [ ]
Bref

n
GB

pn
k kj

quBY )(ˆ(ˆ, −⋅=  (11.5-9)* 

The line-of-sight unit vector is computed using Equations 11.5-3 and 11.5-4 using the predicted 
quaternion estimate obtained from processing DDCP measurements. The predicted measurement 
is given by 

 2
210 )()(ˆ SNRsSNRssYk ++=  (11.5-10)* 

with the following non-zero measurement partial derivatives 
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11.5.3 GPS Double-Difference Carrier Phase Measurement Model and Partial 
Derivatives 

The GPS single and double-difference carrier phase measurements are dependent on the relative 
position of two antennas in the reference frame. Since the relative position of the two antennas is 
known in the body frame, these measurements can be used to determine the spacecraft attitude. 

The difference in the distance from GPS transmitter i to antennas p and q on satellite n is given by 
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where [ ]Bqpn
Ab ,,  is the antenna baseline vector connecting antennas p and q in the body frame (in 

meters). 

The fractional carrier phase received at each antenna is measured. The difference in the fractional 
carrier phase measurements from GPS transmitter i measured by antennas p and q on satellite n is 
given by 
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where 

 i

qp

Gb
,φ∆  = Difference in the integer ambiguities between antennas p and q  

 i

qp

G
RHCP ,

∆Φ  = Difference in the phase due to the polarization of the incoming signal for 
antennas p and q  

 n
qp,β  = Difference in the line biases between antennas p and q, which is due to the 

electrical line length from the antenna phase center to the point interior to the 
receiver where the measurement is actually made 

The dot products in Equations 11.5-12 and 11.5-13 are independent of the coordinate frame used 
to express the vectors. For the GEONS implementation, the computations are performed in the 
Body frame. The antenna baseline vector connecting antenna p and antenna q is computed as 
follows in terms of the known antenna offsets in the body frame: 
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where 
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where ( ) ( ) ( )[ ]
B

n
AB

n
AB

n
A mmm

zyx ∆∆∆  are the coordinates of the antenna in the body frame, which 
are commanded parameters.   

For convenience, the antenna baselines are defined with respect to antenna 1 such that 

 [ ] [ ] [ ]( ) satelliteantennasBABAB
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A Nprrb
p /

1,, ,..,2 ,
1

=−=   (11.5-16)* 

where, for convenience, antenna 1 is selected to be the closest to zenith pointing. The line-of-sight 
unit vector is computed using Equations 11.5-3 and 11.5-4. Following the approach presented in 
Reference 42, the polarization phase correction i

qp

G
RHCP ,

∆Φ  is computed as follows 
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where e  is the ellipticity of the E-field vector and ijT  are components of the GPS transmitter to 
receiving antenna rotation matrix TRAp

T ← , where 

 ( ) TRXYZ
T

ABBXYZTRA TTTT
Pp ←←←← =  (11.5-19)* 

The rotation matrix from the body frame to the inertial frame BXYZT ← , is computed as follows in 
terms of the attitude matrix. 
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The rotation from the receiving antenna frame to the body frame, 
PABT ← , is computed as follows  
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 (11.5-21)* 

For a distant transmitter such as GPS, the transmitter to receiver line-of-sight vector is the same 
for all receiving antennas and the transmitter to Mean of J2000.0 inertial rotation matrix can be 
written as 
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where 

 )()( TG
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The DDCP measurement is formed to remove the line bias contribution. The predicted DDCP 
measurement is computed as follows: 
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where the GPS SV j is the designated Master PRN (selected as the first GPS SV for which carrier 
phase measurements are input at a given time). The double-difference integer ambiguity is defined 
as follows  

 ( )j
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pji

GG
k

pn
G bbtI

1,1,,
)(1,,

φφ ∆−∆=  (11.5-25)* 

and computed as discussed in Section 11.5.4. The GPS SV to spacecraft line-of-sight vector in the 
body frame is computed as in equation 11.5-3. 

If the residual ( ) max
ˆ yYYy kkk ≥−= , the measurement is edited.  Otherwise, the associated 

measurement partial derivatives are computed by taking the partial derivative of the true 
measurement model, given by 
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to obtain 
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11.5.4 Double-Differenced Carrier Phase Integer Resolution and Residual Check 

If the initial estimate of the attitude is sufficiently accurate, the double-difference integers )(1,,
, k
pn

G tI
ji

 
in Equation 11.5-24 can be resolved simply by assignment by rounding the measurement residual 
to the nearest integer:  
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In order to assure that the attitude estimate is sufficiently accurate, an initial integer resolution 
procedure is performed at each measurement epoch. After all carrier phase measurements for that 
epoch are processed, the measurement residuals are recomputed for all antenna baselines and all 
GPS SVs using the most recent attitude state estimate. These residual differences are tested against 
a threshold and the residual standard deviation computed for all residuals that fall below the 
threshold. If enough of these residuals fall below the threshold and the residual standard deviation 
is below a specified tolerance, the a priori estimate is assumed to be accurate and the integers are 
assigned. The state and covariance updates are applied only if the test is passed.  

The algorithm continues to check the residuals at each measurement epoch. In the event that the 
residuals increase above a specified threshold, an error flag is set. If this occurs at successive 
measurement epochs, the algorithm will assume that the incorrect integers were assigned, the 
measurement update will not be performed and the SNR measurement processing will be resumed 
until the resolution is successful again. 
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11.6 Attitude State Initialization 
The following procedure is used to obtain an initial attitude state. When the first SNR 
measurements are available, the measurement from antenna 1 (defined to be the closest to zenith 
pointing) and GPS SV with the highest SNR measurement is selected. The algorithm assumes that 
the current spacecraft attitude is such that this antenna’s boresight vector is aligned with the known 
line-of sight vector from the spacecraft to the transmitting GPS SV. Using this approach, this initial 
estimate should be within one hemisphere of truth and typically within a cone of 20 to 30 degrees 
of truth. 

The line-of-sight vector to the GPS SV with the highest SNR measurement is computed  
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Assuming that the antenna boresight vector pnB ,  is currently aligned with ( )k
n
G tu

j
ˆ , the quaternion 

associated with the rotation from the nominal boresight orientation along the zenith vector ζ̂  to 
the current orientation is computed in terms of the Euler angle of rotation θ  
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and the Euler axis of rotation 

 
ζ×

ζ×
= ˆ)(ˆ

ˆ)(ˆ

k
n
G

k
n
G

tu

tu
e

j

j  (11.6-4) 

The zenith vector points along R̂+  , which is known from the spacecraft ephemeris. Using 
Equation (11.1-1) to obtain initq , the initial attitude is  

 init
XYZAAB

init
XYZB pp

TTA ←←← =  (11.6-5)* 

where 

 ( )initinit
XYZA qAT

p
=←  (11.6-6)* 

and 
pABT ←  is computed as in Equation (11.5-21). Implicit in this initialization is an arbitrary 

rotation around the boresight vector, which needs to be corrected on the first few filter updates. 
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Section 12.   GPS/Galileo Measurement Simulation 

This section presents the specifications for the simulation of GPS and Galileo measurements. 
Figure 12-1 illustrates the top-level simulation algorithm. 

Figure 12-1 Measurement Simulation Algorithm 
Section 12.1 defines the measurement simulation models. Section 12.2 defines the receiver clock 
error model. Section 12.3 defines the transmitter ephemeris and clock error models. Section 12.4 
defines the measurement noise model. Section 12.5 defines the measurement validity tests. 

Truth State 

GPS Measurements  

1 Advance Truth State for all satellites to time Ttt ∆+= : 

1.1 Propagate truth rr , , output to truth file or read in from truth file 

1.2 Propagate truth clock states, including Clock errors, output to clock file or read from clock file 

2. If valid measurement time, simulate GPS Measurements at t   
  For each valid GPS SV (i.e. not to be ignored) 
  2.1 Perform radial distance test and continue if passes 

Do for each receiving antenna 
2.2 Compute SV transmission time and state including GPS ephem errors  
2.3 Perform LOS tests: 

- Perform HORP test and continue if passes 
- Check for Earth occultation and continue if not occulted  
- Rotate antenna boresight to CBI, perform antenna limit tests and continue if 
passes 

2.6 Perform signal acquisition tests: 
- Compute antenna gain (CN0), perform antenna gain tests and continue if 
passes 
- Compute acquisition probability test, continue if passes 

2.8 Compute PR, Doppler and CP measurements 
2.9 Add in transmitter clock errors and random measurement noise 

3 Output all measurements at current time t :  
3.1 Sort measurements based on specified sorting criteria   
3.2 Output max allowed number based on sorting criteria 

Do for :EndStart ttt ≤≤  

Read in data for current time 

Read in GEONS measurement simulation parameters 
Open data input and output files 

Do for each satellite: 
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12.1 GPS and Galileo Measurement Simulation Models 
This section defines the simulation models for GPS and Galileo pseudorange, Doppler and 
carrier phase measurements. 

12.1.1 GNSS Pseudorange Simulation 
The GPS/WAAS and Galileo PR measurements are computed at the true UTC receive time, 

UTC
Rt , following the specifications provided in Sections 5.3.2 and 5.3.7, respectively, with the 

addition of random measurement noise and transmitter ephemeris and transmission time errors as 
follows: 
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In the above equations, the subscript j indicates the jth GPS SV/WAAS GEO.  The timetag of the 
kth measurement, n

kt , is equal to the value of the measured receive time, 

ctbtt UTC
R

n
R

UTC
R

RC
R

n /)()( += , and UTC
Tt  is the true signal transmit time computed by solving the 

light time equation starting with UTC
Rt .  GPS SV ephemeris errors, which are computed as 

discussed in Section 12.3, are included in the computation of the transmitter position 
)(/

UTC
TWG tR

j
 and velocity )(/

UTC
TWG tR

j

  vectors.  The receiver time bias b tR
n ( )  is computed 

using the simulated time bias parameters )( UTC
R

n
R tb , )( UTC

R
n

R td , and )( UTC
R

n
R td , as defined in 

Section 12.2.  The GPS-system pseudorange bias, jWGb / ρ , is defined in Section 4.3. For single 

frequency measurements, the ionospheric delay correction, SF
Ionoδρ , can be modeled using the 

algorithm defined in Section 5.3.5, where )(tIγ  is the ionospheric delay scale factor. The terms 






 δ+δ− SF

SS jj
ttc  represent the total SV time correction, which is computed using Equation 3.3-10 

or 3.3-11 (for single and dual frequency GPS users) and Equation 3.3-12 (only for single 
frequency GPS users) in Section 3.3.2 evaluated at the signal transmit time )( UTC

Tt . The 
transmitting GPS time error )(tt iS∆ is computed using ICE data parameters as defined in 
Equation 3.3-10c in Section 3.3. The term )(/

k
WG tρσ  is the random measurement noise, which is 

computed as discussed in Section 12.4. The position and velocity of the receiving antenna are 
computed using Equation 3.2-61 in Section 3.2.8. 

Simulation of Galileo pseudorange measurements follows the same procedure that is discussed 
above for the GPS/WAAS pseudorange, with the exception that the total SV time corrections are 
computed as defined in Section 3.3.9 and ICE time errors are not included. 
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12.1.2 GNSS Instantaneous Doppler Simulation 
The GPS instantaneous Doppler measurements are computed following the specifications 
provided in Section 5.3.3 with the addition of random measurement noise and transmitter 
ephemeris and transmission time errors as follows: 
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In this equation, the subscript j indicates the GPS SV/WAAS GEO number; and the transmit 
frequency, FT , is assumed to be known (nominally 1575.42 Mhertz for the L1 carrier, 1227.6 
Mhertz for the L2 carrier, and 1176.45 Mhertz for the L5 carrier). GPS ephemeris errors, which 
are computed as discussed in Section 12.3, are included in the computation of the transmitter 
position )(/

UTC
TWG tR

j
 and velocity )(/

UTC
TWG tR

j

  vectors. The term )(/ UTC
R

WG
d tσ  is the random 

measurement noise, which is computed as discussed in Section 12.4. 

Simulation of Galileo Doppler measurements follows the same procedure that is discussed above 
for the GPS/WAAS Doppler, with the exception that the associated Galileo transmission 
frequency is used, 

jGALtδ  is computed using the Galileo SV clock correction parameters 

discussed in Section 3.3.9, and ( )rel corFδ  is not included. 

12.1.3 GNSS Carrier Phase Simulation 

The carrier beat phase measurement is formed in a GPS receiver as the difference between the 
phase of the local receiver oscillator and the phase of the received carrier signal. The 
measurement is ambiguous with respect to the number of integer cycles ( )(/

acq
jWG

n
tNφ ) at the 

time ( acqt ) when the signal is first acquired from each GPS SV. At any epoch other than the 
initial acquisition epoch, the receiver measures the fractional phase difference and the number of 
integer cycles accumulated since that epoch.  

The GPS integrated carrier beat phase measurements (in meters), n
WG j/Φ , are computed following 

the specifications provided in Section 5.3.4 with the addition of random measurement noise and 
GPS ephemeris and transmission time errors as follows: 
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In the above equations, the superscript n indicates the nth receiver, the superscript i indicates the 
ith antenna, and subscript j indicates the jth GPS SV/WAAS GEO.  The time tag n

kt  is the 

measured receive time of the kth measurement, and UTC
Tt  is the true signal transmission time.  

The geometrical range ( in
jWG

,
/ρ ) and range rate ( in

jWG
,
/ρ ) are computed as described in Sections 

5.3.2 and 5.3.3, respectively. The receiver time bias, b tR
n ( ) , is in meters.  The correction due to 

the ionospheric refraction, )( UTC
R

SF
Iono tδρ , can be modeled using the algorithm defined in Section 

5.3.5. The terms Sjtδ  and SF
S j

tδ  are the SV time offset from GPS system time and group delay 
correction for single-frequency users, defined in Equations (3.3-10) and (3.3-12), respectively. 
The transmitting GPS time error )(tt iS∆ is computed using ICE data parameters as defined in 
Equation 3.3-10c in Section 3.3. The term )(/ UTC

R
WG tφσ  is the random measurement noise, which 

is computed as discussed in Section 12.4. 

The raw integrated carrier beat phase observation (in cycles), )()( /
n

jobs

UTC
R

n
WG tφ , is computed by 

dividing by the wavelength of the carrier ( TC Fc /=λ , where TF = 1575.42 Mhertz for L1, 
1227.6 Mhertz for L2 carrier frequency, and 1176.45 Mhertz for L5) to convert the carrier phase 
observation from meters to cycles and optionally adding the carrier phase integer ambiguity: 

 )()/()()()( /
C// acq

WGUTC
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n
WG

UTC
R

n
WG tNtt j

n

n
jobs

n
jobs φ−λΦ=φ  (12.1.3-2) 

where the term )(/
acq

WG tN j

nφ
 is the carrier phase integer ambiguity between GPS SV/WAAS 

GEO j and receiver n at the carrier phase acquisition time ( acqt ), in cycles, which is computed as 
follows: 

 ( )ε−+=φ
jjjj

n

WG
lower

WG
upper

WG
loweracq

WG NNNtN //// )(  (12.1.3-3) 

where jWG
lowerN /  and jWG

upperN /  are the lower and upper bounds set by the user and ε  is a uniform 

random number between [0,1]. The integer ambiguity )(/ UTC
R

WG tN j

nφ
 is different for each 

acquisition of a GPS or Galileo SV/WAAS GEO by a receiver and is therefore reinitialized at the 
start of each new acquisition and held constant for that acquisition. 

Simulation of Galileo Carrier Phase measurements follows the same procedure that is discussed 
above for the GPS/WAAS Carrier Phase, with the exception that the total SV time corrections 
are computed as defined in Section 3.3.9 and ICE time errors are not included. 

12.2  Receiver Clock Error Model Simulation 
The receiver clock error model can include the effects of clock noise in addition to acceleration 
effects due to the presence of a constant acceleration, frequency aging, and temperature changes 
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that are associated with eclipses. The effect of aging on the receiver’s frequency reference is 
modeled by including a time bias acceleration term that is equal to derivative of the normalized 
frequency aging function 
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The coefficients b1 and b2 are determined by fitting the normalized frequency aging function to 
empirical data to characterize the magnitude and effective rate of decay. 

The effect of frequency variations that occur before/during/after eclipses can be modeled by 
including a time bias acceleration term for specific time intervals, which is equal to the a 
sinusoidal variation, with amplitude equal to b3 and period equal to the duration of the variation 
(in seconds) 
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where b3, event
startt , and event

endt  are input parameters for each event to be modeled. 

Frequency variations that occur due to the effect of the Earth’s magnetic field on a spinning 
spacecraft can be modeled by including a clock bias acceleration term when the spacecraft is 
near the Earth, which is equal to a sinusoidal variation with amplitude equal to b4 (in 
seconds/seconds2), period equal to the spin period, PSpin, (in seconds), maximum radius magRmax  (in 

meters), and startt  equal to the start time of the simulation. 

 
( )








≤









 −π
=

otherwise;0

 if ;2cos)( max4
magn

Spin

starti
i

mag
R

RR
P

ttcbtd  (12.2-4) 

In addition, the drift of the satellite clock versus a clock at rest on the surface of the Earth due to 
relativity (meters/second) )(

Rel
td n

R∆  is given by 
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The full clock propagation is performed sequentially as follows: 
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where 
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and ∆T is the clock prediction step size in seconds. The values ε1, ε2, and ε3 are normally 
distributed deviates with zero mean and unit variance, which are initialized with different 
random number seeds. The parameters q1, q2, and q3 are process noise variances rates associated 
with frequency white noise, frequency random walk, and frequency random run, respectively.  
For the correlated clock error model, the components of the matrix Q are defined such that QQT 
is equal to the full clock covariance matrix: 
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where Q is the upper right triangular matrix given by 
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where 
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1
2qcQ

Rb =  = Receiver time bias process noise variance rate (meters2/second) 

2
2qcQ

Rd =  = Receiver time bias rate process noise variance rate (meters2/second3) 

3
2qcQ

Rd =
  = Receiver time bias acceleration process noise variance rate (meters2/second5) 

The bias and rate terms are initialized at the start of the simulation by: 
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where the (0) superscript denotes the initial clock bias, drift, and acceleration values provided by 
the user. 
 
The values used to model the performance of the receiver clock are based on the associated 
Hadamard variances. The GEONS Ground MATLAB Simulation (GGMS) tool suite has been 
configured to model an Oven Controlled Crystal Oscillator (OCXO), an MMS-like Ultra-Stable 
Oscillator (USO), a Spectratime Rubidium Atomic Frequency Standard (RAFS) (REF 66), and a 
Deep Space Atomic Clock (DSAC) (REF 67). The clock simulation model given above is the 
same model used for the GPS clocks in the GPS Master Control Segment as described in REF 
65.  In that reference the authors show that the Hadamard deviation produced by this model is 
given by 

 
where the q-parameters are the variances of the driving white noises processes. The q-parameters 
for simulating the clock are obtained by fitting this model to typical performance data for the 
associated oscillator as shown in Figure 12-2. Table 12-1 lists the Hadamard deviations used to 
simulate the performance of different quality clocks. 

Table 12-1. Hadamard Deviations Used in Clock Models 

 q0 q1 q2 q3 

OCXO 0 1.87e-23 1.50e-23 0.0 

USO 0 1.11e-24 1.11e-25 1.11e-35 

RAFS 0 3.70e-24 1.87e-33 7.56e-59 

DSAC 0 4.23e-26 6.19e-38  2.24e-61 
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Figure 12-2. Parameter Fits to Typical Oscillator Performance Data 

12.3 Transmitter Ephemeris and Clock Error Model 
Ephemeris and clock errors can be added to the transmitter ephemeris and clock offsets that are 
computed based on the broadcast ephemeris files as discussed in Section 5.2. These errors, which 
can be specified in either the ECEF or RIC frames, are computed using the following model  

( ) ( )
1

2 2( ) (0) 2 1 cos 2 sin
N

i i i

e t A A i t A i t
T T
π π

=

    
= + − +    

     
∑  

where t is the elapsed time from the start of the simulation, N is the number of periods, iT  is the 
length of each period, and the ( )A i  error vector components are model parameters for each of 
the position and clock bias error components.  The user can set the model parameters as desired.  
The recommended approach is to define model parameters to capture observed characteristic 
periods of 24, 12 and 8 hours and correlations based on differences between historical broadcast 
and precise ephemerides. Correlations can be modeled using a "Components of Variance" model 
(e.g., Louis Scharf, "Statistical Signal Processing: Detection, Estimation, and Time Series 
Analysis", Addison Wesley, 1991). In this approach, the (RIC or ECEF broadcast minus precise) 
errors are assumed to follow the linear model above with random ‘A’ parameters that have a 
zero-mean Gaussian distribution with covariance S. Under these assumptions, the linear least 
squares estimate of ‘A’ is also zero-mean Gaussian with covariance S. Therefore, S can be 
estimated from a sequence of such least squares estimates over non-overlapping segments of 
(e.g., 1-day) of historical broadcast minus precise data and used for sampling ‘A’ for simulation. 
This approach was used to compute coefficients to model the typical GPS RIC ephemeris and 
clock errors. These coefficients are implemented in the GGMS to simulate GPS RIC ephemeris 
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and clock errors. Figure 12-3 shows an example of GPS ephemeris and clock errors generated by 
the model, which are randomized from run to run. 

 

Figure 12-3. Typical Simulated GPS Ephemeris and Clock Errors 

12.4 Measurement Noise Model 
The measurement noise sigma for each GPS or Galileo transmitter is modeled based on the 
acquired signal strength of the observation using a simple step-function noise model or using a 
more realistic noise model based on thermal noise theory.  

12.4.1 Step-Function Measurement Noise Model 
For antenna gains above the J+1 cut-off value and below the J cut-off value, the )(JMσ  noise 
sigma is used. 
The measurement noise sigma is determined as follows: 

For J=1, JTotal values, where JTotal is the total number of noise segments specified as input, 
determine the measurement noise sigma ( )(M Jσ ) associated with the CN0k, which is 
computed as described in Section 12.5.6: 

For J=1, if k
noise CNC 0)2(N0Max < ,  
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The measurement noise contribution is then computed as  

)0(),0(),0( /
3

/
2

/
1 k

WG
k

WG
dk

WG CNCNCN φρ σεσεσε , 

where the values ε1, ε2, and ε3 are normally distributed deviates with zero mean and unit 
variance, which are initialized with different random number seeds and are independent for each 
satellite. 

12.4.2 Pseudorange Measurement Noise Model Based on Thermal Noise Theory 
(currently implemented in the GEONS Ground MATLAB Simulation (GGMS tools) 

This simulated noise model incorporates a multi-step additive random error model based on 
standard GPS thermal noise theory, e.g.  Equation 14.72 in REF 68. For Lunar simulations where 
there can be a large variation in the acquired signal strength, a 20-step model was implemented 
with 2 dB per step with 2x margin. In this model, the following equation is used to compute the 
PR standard deviation in meters for the segment of the model associated with the measured value 
of C/N0: 

/ /
0( 0 ) * ( 0 )G W G W

CN kCN SF CNρ ρσ σ=  

where 0CNSF  is a scale factor multiplier with suggested typical value ranges provided below  

( )
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* 2( 0 ) 1
2* 0 2 * 0

G W dll dll
k C

k dll k

B dCN cT
CN d T CNρσ
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= +   −   

 



12-11 
 

0kCN = minimum value in segment k closest to CN0 

TC   = code chip period in seconds; equal to 1/1.023e6 seconds for C/A code 

dllB  = Delay-locked loop (DLL) bandwidth in Hz; typically ≤1.0 Hz when carrier aiding 
is used, otherwise 5-10 Hz 

  dlld  = early-late DLL spacing in units of code chips; typically ≤ 1 

intT  = Predetection integration time in seconds; value depends on code tracked but 
            typically ranges from 1 ms for strong signals to 20 ms for weak signals 

12.5 Measurement Validity Editing 
This section defines the measurement validity tests that are associated with GPS measurement 
simulation. 

12.5.1 Radial Distance Editing 
The measurement is included only if the spacecraft radial distance is within the specified 
minimum and maximum limits. 

 ( ) Maxmin RtRR n ≤≤  (12.5-1) 

12.5.2 HORP and Earth Occultation Editing 
The measurement is included only if it does not fail the HORP editing test, which is defined in 
Section 2.3.2.1. The Earth occultation test is identical to the HORP test performed with a HORP 
value =0. The HORP test will not be passed if the transmitter is occulted by the Earth so an 
additional test is not required. 

12.5.3`Antenna Limit Tests  
The antenna boresight angle is computed based on the orientation of the antenna’s boresight 
vector. The orientation of the receiving antenna’s boresight vector can be specified in the 
following body frames: (1) orbit plane (RIC), (2) VBN, (3) ecliptic, and (4) attitude-based. The 
orientation of the transmitting antenna’s boresight vector is assumed to be in the radial direction 
in the orbit plane (RIC) reference frame. 
The measurement is included only if the receiving antenna boresight angle is within the specified 
minimum and maximum limits  

 Max,,min, )( boreRkboreRboreR t θ≤θ≤θ  (12.5.3-1) 

where the receiver’s boresight angle is defined as the angle between the receiver-to-transmitter 
line-of-sight vector, losû , and the receiver’s boresight vector, XYZ

boreRu ,ˆ .  
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The receiver’s boresight vector in the inertial frame is computed by rotating the receiver’s 
boresight vector from its reference body frame to the inertial frame: 

 B
boreRBJ

XYZ
boreR uTu ,2000, ˆˆ ←=  (12.5.3-3) 

The measurement is included only if the transmitting antenna boresight angle is within the 
specified minimum and maximum limits 

 Max,,min, )( boretkboretboret t θ≤θ≤θ  (12.5.3-4) 

where the transmitter’s boresight angle is defined as the angle between the receiver-to-
transmitter line-of-sight vector and the transmitter’s boresight vector rotated to the inertial frame: 

 ( )XYZ
boretlosboret uu ,

1
, ˆˆcos ⋅=θ −  (12.5.3-5) 

12.5.4 Receiving Antenna Signal-to-Noise Ratio Calculation 
The receiving antenna signal-to-noise ratio (C/N0) in dB-Hertz, is given by: 

 ( ) ( ) ( )0
1/ 20log 10log 228.6

4 ( )t r r e s s
r T

cC N EIRP A G A A A T
t Fπ ρ

 
= + + + + + + − +  

 
 (12.5.4-1) 

where EIRP is the effective isotropic radiated power of the transmitting antenna (specified as 
input), At is the signal attenuation due to the transmitting antenna pattern (computed based on the 
transmitting antenna model file), Gr is the receiver’s antenna gain in the maximum gain direction 
(specified as input), Ar is the signal attenuation due to the receiving antenna pattern (computed 
based on the receiving antenna pattern file), FT is the transmission frequency in Hertz (specified 
as input), )(trρ  is the transmitter to receiver range, Ae is the signal attenuation from the 
troposphere (not included), As is system losses (specified as input), and Ts is the receiving 
antenna system noise temperature in degree Kelvin (specified as input). REF 64 discusses 
calibration of the GPS link parameters used in Equation 12.5.4-1 with respect to GPS signal 
strengths acquired on-orbit by the Navigator receiver in the MMS Phase 2B orbit.   
For lunar simulation analysis, the GGMS can include the effect of the nominal solar maximum 
Sun (excluding solar radio burst events) on the receiver system noise temperature. Since the 
beamwidth of the antenna is much larger than the total angle subtended by the Sun 
(approximately 0.5 degrees), we compute the effective antenna area, eA , assuming a constant 
gain toward the Sun, where sunG  is computed as the receive gain toward the direction of the 
center of the Sun,    
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 2
1 / (4 )e sun LA G λ π=  (12.5.4-1) 

The effective area is multiplied by the solar flux, sunS , approximated using the typical average 
value during solar maximum of 150 Solar Flux Units (SFU) near GPS frequencies (e.g., solar 
cycle flux plot at standard monitored frequency of 1415MHz can be seen in [REF 71]) 
or sunS =150x10-22 W/m2/Hz. We also account for a factor of ½ due to the fact that the solar 
emissions are unpolarized and the GPS antenna is (right hand) circularly polarized.  Thus, we get 
an increment due to the Sun to the system noise temperature of   

 0.5 /sun e sunT A S k=  (12.5.4-2) 

with k the Boltzmann constant. This term is then used to increment the system noise temperature 
from its nominal value as the simulation progresses. The C/N0 loss due to the Sun is given by 

 ( )1010 log /sun sys sun sysL T T T ≤ +   (12.5.4-3) 

For example, for a ~0.5m parabolic dish receive antenna operating near Earth, with peak gain 
toward the Sun, the effect is limited to less than about 2 dB. With a higher gain antenna or lower 
base noise system noise, this effect would be larger. During transient Solar Radio Burst events, 
the solar flux, and resulting impact, can be much, much larger, but we do not model such events. 
 The antenna gain pattern files provide the signal attenuation for a specific type of transmitting or 
receiving antenna.  The GPS measurement simulation process currently supports both one- and 
two-dimensional antenna pattern models. The one-dimensional (1D) antenna gain pattern, which 
is a function of only the elevation with respect to the antenna boresight direction, does not have 
any azimuthal dependence. The 1D attenuation pattern is given in tabular form. The attenuation 
at a particular boresight angle is computed using a cubic spline interpolator. The default GPS 1D 
transmitting antenna patterns are normalized such that the attenuation is zero at the edge-of-Earth 
boresight angle. The two-dimensional (2D) antenna gain pattern is a csv file containing a Naz x 
Nel array of gain values where Naz = number of azimuth values and Nel = number of elevation 
values. The gain at a particular azimuth and elevation with respect to the antenna boresight 
direction is computed by linear interpolation.  

Section 12.5.8 describes the high-fidelity GPS sidelobe link antenna model currently available in 
the GGMS. Section 12.5.9 discusses receiving antenna models. 

12.5.5 Antenna Gain Limit Tests 
The measurement is included only if the antenna gain (CN0) is within the specified minimum 
and maximum limits. 

 acq
MaxMin N00N0 CCNC k

acq ≤≤  (12.5.5-1) 

Where )1(N0N0 acq
Max

acq
Max CC =  defined in Section 12.5.6. 
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The measurement is included only if the relative antenna gain with respect to the strongest 
acquired signal is within the specified range ( acqC MaxN0∆ ): 

 )N0max(0N0)N0max( i
acq
Maxi CCNCC k ≤≤∆−  (12.5.5-2) 

12.5.6 GPS Signal Acquisition Probability Calculation and Tracking Test 
The acquisition probability is computed based on the probability associated with the signal-to-
noise ratio (CN0) level and the delay time between attempted acquisitions. The acquisition 
probability random seed value and the probability of GPS acquisition segments/values and wait 
times before trying reacquisition are specified as input:  

The algorithm is as follows:  
1. If the GPS SV is already being tracked, continue tracking.  
2. If the GPS SV is not currently being tracked, perform the new acquisition probability 

test 

a. Determine the wait time ( waitt∆ ) and probability of acquisition ( )0(CNPa ) 
associated with the CN0 computed as described in Section 12.5.4, starting 
with the J=1, JTotal values, where JTotal is the total number of acquisition 
segments specified as input: 

If )(N00)1(N0 MaxMax JCCNJC acq
k

acq ≤<+  

 
)(

)()0(
Jtt

JPCNP

await

aka

∆=∆
=

 (12.5.6-1) 

Else if )(N00N0 MaxMin Total
acq

k
acq JCCNC ≤≤  

 
)(

)()0(

Totalawait

Totalaka

Jtt
JPCNP

∆=∆
=

 (12.5.6-2) 

b. If elapsed time since last acquisition attempt is < waitt∆ , exit process 

c. Else if elapsed time since last acquisition attempt is ≥ waitt∆ ,  

i. Set time of last acquisition attempt =current time 
ii. Call random number generator (rand) to return a uniform random 

number between 0 and 1 (rand) starting with the input seed value 
iacqseed 

iii. Determine acquisition: signal is acquired if rand ≤ )0(CNPa  

Where 
acqC MinN0 = Minimum CN0 value that can be acquired 
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)(N0Max JC acq  = Maximum CN0 value at which acquisition probability for segment J 
applies 

)(JPa  = Probability value when CN0 value is associated with segment J 

)(Jta∆  = Delay before trying reacquisition (in seconds) when CN0 value is associated 
with segment J 

12.5.7 Time Interval Editing (currently not implemented in GEONS) 
The measurement is included only if the measurement time within the specified time intervals. 

12.5.8 Transmitter Antenna Models  
The GPS signal simulation model available in the GGMS includes a high-fidelity GPS sidelobe 
link model based on in-orbit measured transmit patterns from the GPS-ACE project [REF 69]. 
The mainlobe portion of each transmit pattern is drawn from the best available data for each 
block and merged with the sidelobes measured by GPS ACE. The Block IIA and IIF mainlobes 
are modeled using a best-estimate of the average gain and shape of the Block IIF mainlobe. 
Block IIR and IIRM transmit patterns are modeled on a per-SV basis using data released by 
Lockheed Martin [REF 75]. Block III mainlobes are modeled by averaging the public IIRM 
mainlobe data, as it is assumed the Block III mainlobe structure and gain is closely related to that 
of the IIRM antennas. 

This GGMS simulation model also incorporates the International GNSS System (IGS) GPS yaw 
model. Based on the calibration analysis, the per-block GPS transmit power and a few receiver 
parameters were adjusted to provide a good match between simulated and MMS-2B GPS 
measurements in terms of signal-to-noise ratio (C/N0), number of signals tracked, tracking arcs 
and filter residuals. Figure 12-4 compares the EIRP based on GPS per block ACE Patterns and a 
Conservative Gal E1 Antenna Gain Model for Galileo transmissions. 

 

Figure 12-4. Comparison of EIRP based on GPS ACE Patterns and Conservative 
Gal E1 Antenna Gain Model. Left plot shows per-SV patterns averaged over 

azimuth. Right plot shows all azimuth cuts  
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12.5.9 Receiving Antenna Models  
In general, the receiving antenna gain pattern must be tailored to the specific user antenna 
configuration. The GGMS includes receiving gain pattern files for the following types of 
antennas: 

• Parabolic lunar high-gain antenna  

• Patch antenna 

• Omni-directional antenna 
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Abbreviations and Acronyms 

C/A Coarse Acquisition 

CDRS Command and Data Reception System 

CM center of mass 

CPU central processing unit 

DSN Deep Space Network 

ECEF Earth-centered Earth-fixed 

EKF Extended Kalman Filter 

EOS Earth Observing System  

EP Explorer Platform 

ET ephemeris time 

ERFA Essential Routines for Fundamental Astronomy  

EUVE Extreme Ultraviolet Explorer 

FDD Flight Dynamics Division 

GCRF Geocentric Celestial Reference Frame 

GEONS GPS Enhanced Orbit Determination Experiment 

GHA Greenwich hour angle 

GNSS Global Navigation Satellite Systems 

GPS Global Positioning System 

GPST GPS time system 

GSFC Goddard Space Flight Center 

HORP height of ray path 

HSI Hyperspectral Imager 

IAT International Atomic Time 

ICRF International Celestial Reference Frame 

IERS International Earth Rotation Service 

ITRF International Terrestrial Reference Frame 

JD Julian date 

JGM Joint Gravity Model 
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MIPS million instructions per second 

MJD modified Julian date 

NASA National Aeronautics and Space Administration 

Nav. navigation 

RAM random-access memory 

RIC radial, in-track, cross-track 

ROM read-only memory 

RPU receiver/processor unit 

SA Selective Availability 

S/C spacecraft 

sec second 

SOFA Standards Of Fundamental Astronomy  

SPS Standard Positioning Service 

SV space vehicle 

TDB barycentric dynamical time 

TDRSS Tracking and Data Relay Satellite System 

TOD true equator and equinox of date 

TONS TDRSS Onboard Navigation System 

TT Terrestrial Time 

UCB Ultraviolet Cosmic Background 

USNO United States Naval Observatory 

UTC coordinated universal time 

UT1 universal time corrected for polar motion 

WGS World Geodetic System 
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