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Preface

This document defines the mathematical specifications for the Goddard Enhanced Onboard
Navigation System (GEONS), which was previously known as the GPS Enhanced Onboard
Navigation System. This document is a revision of the document FDSS-23-0035, issued
November 28, 2012 (Reference 4). It has been updated to include all capabilities implemented in
GEONS Flight Software Release 3.0.

Proposed changes to this document should be submitted to the signatories along with supportive
material justifying the proposed change. Changes to this document shall be made by complete
revision.

Comments or questions concerning this document and proposed changes shall be addressed to:

David Gaylor

Code 595

Goddard Spaceflight Center
Greenbelt, Maryland
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Section 1. Introduction

The National Aeronautics and Space Administration (NASA) Goddard Space Flight Center
(GSFC) has developed the capability to provide high-accuracy attitude, orbit, and time
autonomously onboard NASA spacecraft. The GSFC Mission Engineering and Systems Analysis
Division has implemented NASA-developed navigation algorithms for high-accuracy real-time
onboard orbit determination in the Global Positioning System (GPS) Enhanced Orbit
Determination (GEODE) flight software. The Goddard Enhanced Onboard Navigation System
(GEONS) extends the capabilities of the GEODE flight software to include additional
measurement types and additional navigation algorithms.

1.1 Purpose and Scope

This document presents the mathematical algorithms implemented in the GEONS Software
Library (or GEONS). Reference 1 defines the GEONS flight software requirements. These
algorithms were initially developed based on prototype flight software developed to support the
Explorer Platform (EP)/Extreme Ultraviolet Explorer (EUVE) Tracking and Data Relay Satellite
System (TDRSS) Onboard Navigation System (TONS) experiment (Reference 2) and the TONS
flight software implemented for the Earth Observing System (EOS) Terra mission (Reference 3).

The GEONS Software Design Document (Reference 76) describes the software architecture and
design of the GEONS Computer Software Configuration Items (CSCIs). The GEONS Software
Library consists of four CSCIs: GEONS Flight, GEONS Ground Tools, GEONS Analysis Tools,
and GEONS Beta, shown in Figure 1-1. This document includes mathematical specifications for
all capabilities implemented in Release 3.0 of the GEONS Software Library. In addition, an
indication is provided for algorithms that are implemented in the Beta and Ground CSCIs or
planned for implementation in future versions of GEONS.

GEONS Software

Library

GEONS Ground Tools GEONS Analysis Tools
cscl CSCl

GEONS Flight CSCI GEONS Beta CSCI

Figure 7-1 GEONS Software Library

1.2 Document Organization

Section 1.3 provides an overview of the algorithms implemented in GEONS. Sections 2
through 12 define the explicit algorithms implemented and provide associated mathematical
background useful in understanding these algorithms. To distinguish the flight software
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algorithms from the background discussion, each equation number associated with an explicit
flight software algorithm is followed by an asterisk (*).

Section 2 provides a high-level description of the orbit estimation algorithms. The estimation state
is defined, and the extended Kalman filter (EKF) processing flow is described. Section 3 describes
the coordinate systems, transformations, and time systems used in GEONS. In addition, the
algorithm used in the calculation of the Greenwich hour angle is provided.

Section 4 describes the single-step Runge-Kutta numerical integration algorithm and force models
used in the propagation of the spacecraft equations of motion. Algorithms for propagation of
nonspacecraft state variables and ground-based receivers are given. State error covariance
propagation algorithms are also presented.

Section 5 defines the Global Navigation Satellite Systems (GNSS)/Wide Area Augmentation
System (WAAS) and cross-link measurement models and measurement partial derivatives.
Algorithms for computing the GNSS space vehicle (SV) position and velocity are provided. This
section also includes the point solution, ground-station-to—satellite range and Doppler, celestial
object, and TDRSS forward-link Doppler measurement models and measurement partial
derivatives.

Section 6 provides the algorithms used to propagate the user state vector to real time. Section 7
provides an algorithm for Doppler compensation prediction. Section 8 provides a backup
ephemeris computation algorithm. Section 9 describes the generic maneuver targeting algorithm
based on Lambert’s method. Section 10 provides a cold start initialization algorithm that uses
range and Doppler measurements. Section 11 provides attitude estimation algorithms that may be
implemented in a future version of GEONS. Section 12 provides algorithms that are used to
simulate GNSS measurements.

A list defining the abbreviations and acronyms used and a list of the references cited throughout
this document follows Section 12.

1.3 Overview of the GEONS Navigation Algorithms

Table 1-1 summarizes the GEONS navigation algorithms defined in this document. Algorithms
supported in Release 3.0 of the GEONS Flight CSCI (referred to as GEONS 3.0 throughout this
document) are indicated as well as algorithms currently included in the GEONS Beta or Ground
CSClI or future if not currently available in a GEONS CSCI. A ground receiver propagation model
is also provided to support prelaunch testing of spacecraft receivers and vehicles on the surface of
the Moon, planet, or asteroid. These algorithms are defined in detail in Sections 2 through 12 of
this document.

GEONS navigation processing consists of two primary activities:

e State vector estimation based on the processing of GNSS SV, WAAS GEO, cross-link
range and Doppler, cross-link line-of-sight, Ground-Station-to-satellite range and
Doppler, celestial object, TDRSS forward-link Doppler, and/or point solution position
measurements

e Real-time state vector propagation
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In addition, Doppler compensation prediction, backup ephemeris computation, maneuver
targeting, and cold start initialization are also implemented in Beta versions of GEONS. Figure 1-
2 provides an overview of the GEONS navigation processing scenario. In this figure, dt is the time
interval between state vector updates by the estimator, nominally equal to 30 to 60 seconds.

During the same time intervals, measurement, GEONS state estimation, and real-time propagation
processing are performed for different time periods. For example, the GPS/WAAS measurement
process and real-time propagation could occur once per second. GEONS state vector estimation
could be performed at regular intervals, e.g., every 30 or 60 seconds, with intermediate propagation
of the filter state vector if required to maintain prediction accuracy.
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Table 1-1 Summary of GEONS Flight Software Algorithms

Algorithm Type Algorithm (Section #) GEONS
3.0 CSCI
Primary coordinate e Mean equator and equinox of J2000.0 with analytic coordinate e Flight
system transformations (3.2)
» Options for Moon-centered and asteroid-centered trajectory propagation e Beta
(4.1.1)
¢ Option for to Geocentric Celestial Reference Frame (GCRF) and e Beta
International Terrestrial Reference Frame (ITRF) reference frames (3.2.15)
Primary time system | e Coordinated universal time (UTC) (3.3) e Flight
Numerical integrator | e Runge-Kutta 4th-and 8th order (4.2) e Flight
Filter spacecraft orbit | e Joint Gravity Model-2 (JGM-2) geopotential up to degree and order 30 e Flight
acceleration model (4.1.2.2)
e Earth Gravity Model 96 (EGM96) geopotential up to degree and order 360 e Beta
(4.1.2.2)
¢ LP100K non-spherical lunar potential model (4.1.2.2) e Beta
¢ GRGM900C non-spherical lunar potential model (4.1.2.2) e Beta
¢ Other planetary non-spherical potential models (4.1.2.2) ¢ Beta
e Earth, solar, and lunar point masses with low precision analytic ephemeris or | ¢ Flight
Earth, solar, lunar, and planetary point masses with high precision analytic
ephemeris or JPL Developmental Ephemeris (DExxx) (4.1.1)
¢ Analytic representation of Harris-Priester atmospheric density (4.1.3) e Flight
e Solar radiation pressure with spherical area model (4.1.4) o Flight
e Measured accelerations in RIC, VBN, Spacecraft body, or Mean of J2000.0 o Flight
frames (4.1.5)
e Impulsive delta-V maneuver model (4.1.5) o Flight
Estimation state ¢ Position and velocity vectors for local and remote satellites or ground-based | o Flight
receiver (2.1 and 4.6)
e Moon-based receiver (4.7) e Beta
e Atmospheric drag coefficient correction for local and remote satellites (4.3) o Flight
e Solar radiation pressure coefficient correction for local and remote satellites ¢ Flight
(4.3)
e GPS receiver time bias, time bias rate, and time bias acceleration for local ¢ Flight
and remote satellites modeled as random walk, FOGM drift, or FOGM bias
and SOGM drift processes. A relativistic clock bias correction can be
included in the random walk model. (4.3)
¢ Pseudorange and Doppler biases for each GPS SV (4.3) e Flight
¢ GPS lonospheric delay scale factor (4.3 and 5.3.5) ¢ Beta
¢ Ground-station-to-satellite range and Doppler biases for each Ground ¢ Beta
Station (4.3)
¢ Pseudorange and Doppler biases for each cross-link transmitter (4.3) ¢ Beta
e Unmodeled acceleration biases in the RIC, VBN, or spacecraft body frame e Beta
(4.3)
o Accelerometer measurement biases (4.3) e Future
e Integrated carrier phase biases for each GPS SV and GPS receiver (4.3) e Beta
¢ Singly-differenced carrier phase biases for each GPS SV and remote GPS ¢ Beta
receiver with respect to the local receiver (4.3)
¢ Celestial object sensor biases (4.3) ¢ Beta
e Cross-link line-of-sight sensor biases (4.3) ¢ Beta
e TDRSS forward-link Doppler bias for each TDRSS satellite (4.3) ¢ Beta
e Hierarchical relative navigation capability (2.4) e Future
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Algorithm Type Algorithm (Section #) GEONS
3.0 CSCI
Estimator ¢ Extended Kalman filter with physically realistic process noise models and ¢ Flight
factored covariance matrix (2.3)
e Scalar and hybrid batch measurement update options (2.3.2) e Flight
e Measurement underweighting option (2.3.2) e Flight
e Consider parameter option (2.3.2) o Flight
Measurement model | ¢ GPS pseudorange with GPS receiver time and time bias corrections (5.3) o Flight
e Camera range and bearing angles to spacecraft or landmarks on celestial e Flight
bodies (5.8.2.3 and 5.8.2.4)
e TDRSS Differenced One-Way Doppler (DOWD) (5.9.4) e Ground
e TDRSS forward-link Doppler (5.9.3) ¢ Beta
¢ Point solution position and time bias (5.7) e Ground
¢ Ground-station-to-satellite range and Doppler (5.6) e Beta
¢ Intersatellite one-way and two-way cross-link pseudorange and Doppler with | e Beta
option to propagate transmitting satellite states if not being estimated (5.5)
¢ GNSS pseudorange, Doppler, and integrated carrier phase with GNSS ¢ Beta
receiver time and time bias corrections, single-frequency and dual-frequency
ionospheric delay corrections (5.3)
e GPS TASS Differential Corrections, and ICE Differential Correction e Beta
parameters (5.2.4 and 5.2.5)
e GPS-to-relay-to-ground two-leg pseudorange (5.11) e Beta
¢ GPS signal-to-noise ratio and double-difference carrier phase for attitude e Future
estimation (11.5)
e Standard and singly differenced WAAS GEO pseudorange and Doppler with | e Beta
receiver time and time bias corrections (5.3)
¢ Line-of-sight vector to a celestial object (3-axis stabilized spacecraft) (5.8.2) | o Beta
o Intersatellite bearing to another satellite (3-axis stabilized spacecraft) e Beta
(5.8.2.2)
¢ Bearing to a landmark or celestial object (5.8.2.3) ¢ Beta
e Sun sensor elevation angle (spinning spacecraft) (5.8.3) e Beta
¢ Earth horizon crossing times (spinning spacecraft) (5.8.3) ¢ Beta
¢ Near-to-far-body and Near-to-near-body pseudoangle (5.8.4) e Beta
e X-ray Pulsar phase and frequency (5.10) e Beta
Spacecraft orbit state | e Semianalytic formulation including J2 and Earth and planetary point mass e Flight
transition matrix gravity, atmospheric drag, and solar radiation pressure acceleration partial
derivatives (4.4.1)
» Second-order Gauss-Markov orbital covariance artificial damping (4.4.1) e Beta
Attitude estimation e Attitude error, angular rate or gyro bias error, and antenna gain calibration e Future
state coefficient states for each satellite (11.1)
Filter spacecraft e Gravity gradient and measured torques (11.4) « Future
attitude acceleration
model
Real-time spacecraft | e Earth point mass and J2 (6) ¢ Beta
acceleration model
Backup Ephemeris e Averaged equinoctial element ephemeris (8) * Beta
Maneuver targeting e Lambert’s method for Earth and planetary orbits (9) e Beta
Cold Start e Search for initial mean longitude (10) e Beta
Initialization
Measurement ¢ GNSS measurement simulation (12) e Analysis
Simulation
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Section 2. State Estimation Algorithms

The state estimation algorithm for GEONS consists of an extended Kalman filter (EKF) that uses
physically connected process noise covariance models to account for force model and
measurement errors.

This section provides a high-level description of the state estimation algorithms. Section 2.1
defines the estimation state, Section 2.2 defines the state error covariance, and Section 2.3
describes the state estimation processing flow, with appropriate references made to the more
detailed algorithms provided in Sections 3 through 5.

2.1 Estimation State Vector

The GEONS estimation algorithm estimates a state vector, X , which consists of one or more

satellite state vectors, X', a vector of tracking-system-dependent measurement biases, B , and the
ionospheric delay scale factor, vy, . Each satellite state vector consists of the satellite’s position and

velocity vectors and optionally the receiver time bias, the receiver time bias drift, the receiver
time bias acceleration, the atmospheric drag coefficient correction, the solar radiation pressure
coefficient correction, and/or acceleration biases. The estimator models the drag coefficient
correction, solar radiation pressure coefficient correction, the receiver time bias corrections,
acceleration biases, accelerometer sensor biases, and tracking-sensor-dependent measurement
biases as random variables. Alternatively, the state vector can include the position and velocity
vectors of a surface receiver located on the Earth, Moon or planet. In the case of a surface receiver,
the drag coefficient correction and solar radiation pressure coefficient correction cannot be
estimated.

Optionally, any parameter in the estimation state vector except for the satellite position and
velocity can be processed as a consider parameter. However, GEONS 3.0 only supports the
inclusion of the atmospheric drag coefficient correction and sensor and global biases as consider
parameters. The value and covariance of a consider parameter is not updated by the filter
measurement update process but the effects of consider parameter uncertainties are included in the
calculation of corrections to and covariance of estimated parameters and in the error cross-
covariance of estimated and consider parameters. In addition, GEONS provides the capability to
configure the estimation state vector to estimate a subset of the total estimation state vector. This
capability can be used to reduce the state vector when different state vector components are
estimated for multiple vehicles.

NS
The total estimation state vector with dimension (Z ng + N, +1), where n_ is the size of each

n=1

receiver’s state vector, N, is the number of satellite/receiver state vectors being estimated, and

N, 1s the number of measurement biases being estimated, has the following form:
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(2.1-1a)*

r n

=|- =

(2.1-1b)*

where

R = satellite/receiver position vector in Earth-centered J2000.0 coordinates
(meters)

R = satellite/receiver velocity vector in Earth-centered J2000.0 coordinates (meters
per second)

AC,,AC, = atmospheric drag and solar radiation pressure coefficient corrections (unitless)
b, » = vector of receiver-dependent bias parameters, given by
b

bp =|dg (2.1-2a)*
dp

where

b, = receiver time bias from onboard reference time (defined in Section 4.3)

(meters)

d, = receiver time bias rate (defined in Section 4.3) (meters per second)

d R = optional receiver time bias acceleration (defined in Section 4.3) (meters per
second?)



and a, = unmodeled acceleration biases in radial-intrack-crosstrack (RIC), velocity-
binormal-normal (VBN), or spacecraft body frame (defined in Section 4.3) (meters
per second?)

Optionally, the state vector can include the relative state vector of each nonlocal satellite with
respect to the local satellite (n=1) can be estimated, rather than its absolute state vector:

7
X2
rel — )?Ns (21-1C)
B
L Vi
where
(R -R*] | Ry ]
R"-R' R
_ o _ n_ 1 AC"
X =x_x =|ACTAC | ( )1 Tzl (2.1-1d)*
AC: _ACL (AC )rel
b || ),
L EU _C_l(-l/ _ L (aZ )rel _

The N,—dimension vector of tracking-sensor-dependent biases can include 32 GPS + 36 Galileo
+ 8 WAAS GEO pseudorange biases, 32 GPS + 36 Galileo + 8 WAAS GEO Doppler biases, N,

cross-link pseudorange and Doppler biases, measurement biases for each celestial object sensor
on each of the N satellite/receivers being estimated, n., Ground Station (GS) range and Doppler

biases, n,,,, Tracking and Data Relay Satellite System (TDRSS) Doppler biases, 40 GPS/WAAS
+ 36 Galileo carrier phase biases for each of the N, satellite/receivers being estimated, 40

GPS/WAAS + 36 Galileo singly differenced carrier phase biases between the local
satellite/receiver and each of the N -1 remote satellite/receivers being estimated, and 3

accelerometer sensor measurement biases for each accelerometer:



where

GIW
bp

1. GIw
bd

Z;GS

1. TDRS
bd

7 GIW
bd)

(2.1-2b)

S|

I

| S
8

= vector of 32 GPS + 36 Galileo + 8 WAAS GEO pseudorange biases (defined in
Section 4.3) (meters)

= vector of 32 GPS + 36 Galileo + 8 WAAS GEO Doppler biases (defined in
Section 4.3) (Hertz)

= vector of N, cross-link pseudorange biases (defined in Section 4.3) (meters)
= vector of N, cross-link Doppler biases (defined in Section 4.3) (Hertz)

= vector of biases for 7, celestial object sensors on N satellites (defined in
Section 4.3)

= vector of n,, GS range biases (defined in Section 4.3) (meters)
= vector of n,, GS Doppler biases (defined in Section 4.3) (Hertz)

= vector of n,,,; TDRS Doppler biases (defined in Section 4.3) (Hertz)
= vector of carrier phase biases between each of 32 GPS + 36 Galileo + 8 WAAS

GEO transmitters and the receiver on each of the N, satellites being estimated
(defined in Section 4.3) (meters)
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b, Ai/ ¥ = vector of singly differenced carrier phase biases for each of 32 GPS + 36 Galileo

+ & WAAS GEO transmitters between the local satellite/receiver and each of the
N, -1 remote satellite/receivers being estimated (defined in Section 4.3) (meters)

bt = vector of accelerometer sensor measurement biases in the IMU frame (defined

in Section 4.3) (meters/second?).

The system equations are given by

_ )?l(t) _
X = )?Ns(t) (2.1-3)
B(t)
T
where
R [mO]
R W, (1)
-~ ; w. (t
X" = AC_D + e () (2.1-3a)
AC, Wc,,(t)
Lol | W
L a, | W)
b'pG/W _WG/W_
EG/W P
pet d
’ w,'
7 CL
i | |
bCO WCO
B=| b |+ W~ (2.1-4)
o | | e
EdTDRS v_idTGD/];:
EG/W Wy
¢ WG/W
EG/W Ad
A y
. 4 _WIMU |
b[MU




Vi=w (2.1-4a)

where
w,(¢) =noise process that models random disturbance on R
WR(t) =noise process that models random disturbances on R
We, (t) =white noise process that models random disturbances on AC,
We, (t) =white noise process that models random disturbances on AC,
w,(¢) =noise process that models random disturbance on b,
W (t) =noise process that models random disturbance on g,
w¢'"(¢) =noise process that models random disturbance on 5 "
w” (t) =noise process that models random disturbance on b,""
w<"(t) =noise process that models random disturbance on 5
W, (t) =noise process that models random disturbance on b, "
w(¢) =noise process that models random disturbance on b “°
w*(¢) =noise process that models random disturbance on 5
W (t) =noise process that models random disturbance on b,

w, (t) =noise process that models random disturbance on _d
(t) =noise process that models random disturbance on b,
wS" (¢) =noise process that models random disturbance on b,
(t) =noise process that models random disturbance on b,},,,
)

w,(t) =noise process that models random disturbance on v,

The quantity w,(¢) is a column vector given by

Wi
A= (2.1-5)

w3

where w1, w2, and w3 are white noise processes that model random disturbances on b,, d,, and

d R respectively.

The satellite acceleration equations, R (t) , are provided in Section 4.1. The derivatives of AC,,

T = TG/w RGW Tca 3 CL Tco TGS RBGS LTDRS  TG/iw LT GIW 4
ACy, by, @y, b, b, " b, by, b, b, b, b, BT b by s and y, are

defined in Section 4.3. The ground-based receiver propagation equations are given in Section 4.6.
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2.2 State Error Covariance Matrix

The state error covariance at time # is defined as the expectation value of the square of the

A

deviation of the estimated state (X k) at time # from the true (unknown) state ()? k) at time #, i.e.,

P =E ([)?k _ )?k][f(k _ )_(kﬁ 2.2-1)

In the equations below, a plus sign in parentheses (+) denotes the value of a quantity that has been
corrected to include the effects of a measurement; a minus sign in parentheses (—) denotes the value
of a quantity before this correction has been implemented.

If the effects of the k™ measurement have been included in the state error estimate, then

A

A T
P (+)=E ([)_((+)— )71{][)7(+)— )?k] j (2.2-2)
If they have not been included, then

) - ([0 - ][0 -] )

(2.2-3)

The state error covariance matrix represents the filter uncertainty in the estimated state vector. It
also accounts for error correlations between estimated state vector elements. For the filter to be
accurate and stable, the covariance matrix must represent the actual errors in the estimated state
vector. The state error covariance matrix is defined below:

_ 5 _
(oF] Cl,z G, 0, =+ = Cl,N 0,0y
2
Cz,l o, 0, (o)}
[P] - . . . . (2.2-4)
C J o' . . . . . . . 2
Rt B S (oY ]
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where
[P] =[N x N] state error covariance matrix, where N equals (n, x N, + N, +1)
o; = standard deviation in estimate of state vector element i

2 . . . .
O ; =variance 1n estimate of state vector element i

Cij =Cj; =correlation coefficient for elements i and j, absolute value < 1

The state error covariance is initialized or reinitialized using command parameters. If the initial

state error variances G? are provided in Mean of J2000.0 XYZ coordinates, they are used directly
in Equation 2.2-4 to form [P],,, with C;; = 1 and off-diagonal C;; = 0.

If the state error variances 0',.2 are provided in instantaneous radial, in-track, cross-track (RIC)
coordinates, they are used as follows to form the receiver position and velocity state vector
covariance submatrices [P]',;,C, for each of the N satellites/receivers. In this case C;; = 1 and all

off-diagonal C;; = 0 except for the radial velocity/in-track position correlations, C42and C 4, and
the radial position/in-track velocity correlations, C; 5 and Cs;, which are uplinked parameters,
nominally equal to —0.95.

oy 0 0 0 Ci 50,0, O
0 c; 0 C,,0,0; 0 0

P C 0 o O 0 0 (2.2-4b)
0 C,,0;0, 0 o 0 0
C5,6,0; 0 0 0 o 0
| 0 0 0 0 0 o |

Each of the resulting RIC covariance submatrices is then transformed to the Earth-centered Mean
0f J2000.0 frame as defined in Equation (3.2-53) in Section 3.2.5. The initial covariance matrix is
then constructed as follows:

[P]" 0 0 0
o0 0 0
Pl=
7] o o [P["™ o0 0 (2.2-4c)*
0 0 0 o(B)’ 0
L 0 0 0 oy,

where:
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o™y o 0 0 0 0 0 0 0 0 o
o @Y o 0 0 0 0 0 0 0 0
0 0 (@) 0 0 0 0 0 0 0 0 "
0 0 o [y 0 0 0 0 0 0 0 (2.2-4d)
0 0 0 0o (Y 0 0 0 0 0 0
(B’ = o0 0 0 0 0 (Eo) 0 0 0 0 0
0 0 0 0 0 0o (e7f 0 0 0 0
0 0 0 0 0 0 o (@™ o 0 0
0 0 0 0 0 0 0 o (Ey o 0
0 0 0 0 0 0 0 0 o gy o
0 0 0 0 0 0 0 0 0 o @)

The covariance for individual state vector elements can be reinitialized by resetting the associated
diagonal elements in the full covariance matrix to their initial values and the associated oft-
diagonal elements to zero. Whenever the state error covariance is initialized or reinitialized, it is
factored as discussed below.

Similarly, when the relative state vectors of satellite n with respect to satellite 1 are estimated, the
initial covariance matrix is given by

[P]" - 0 0 0
R 0 0 0
T 240
0 o(B)’ 0
i 0 0 oy, ]
where
[Prel ]'m = E([)L(n, (% )_)?n, (tk)I)L(:, (% )_)?n, (tk)]r) (2.2-41)

The relative covariance matrices are related to the absolute covariance matrices as follows:

(2.]" =[Bn]" +[B0] -[B0] -[Bn] (2.2-4g)

and similarly

T T AR T 00 S T (2.2-4h)
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2.2.1 Covariance Factorization

The state error covariance matrix [P] is factored into a unit upper triangular matrix [U] and a
diagonal matrix [D] (Reference 5). This factorization guarantees nonnegativity of the computed
covariance and is numerically stable and accurate. This factorization also avoids the use of square
roots. Subsequent sections define how the [U ]and [D] matrices are time propagated and

measurement updated directly, rather than the state error covariance matrix [P]. The [U] and [D]
matrices are defined as

[P]1=[U][D][U]" (2.2-5)
where

[P] =[N x N] state error covariance matrix
[U] = [N x N] unit upper triangular matrix
[D] =[N x N] diagonal matrix

and
1 U, UI,N ]
0 1
1 UN—I,N
0 0o 1 |
D, 0 0 ]
0 D272
[D] — . . ... . . (2_2_7)
DN—I,N—I 0
I 0 e 0 DN,N_

The covariance matrix is a symmetric positive definite matrix. A symmetric positive definite
matrix has the following properties (see page 34 of Reference 5): (a) all eigenvalues are positive,
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(b) all diagonal elements are positive, and (c) all correlation coefficient magnitudes are less than
1. Symmetry and positive definiteness are required for [UDU T] covariance factorization
(Reference 5). The factorization algorithm given below was taken from Reference 5.

First, for the N column,

Dyy =Pyy (2.2-8)*
Uy =1 = (2.2-9)*
we Pi,N/DN,N i=N-1,N-2,...,1 ’
Then, for the remaining columns, j = N-1, ..., 1, compute
al 2
D, =P, = X [Dk,k Uj,k] (2.2-10)*
k=j+1

0 i>j

i=j (2.2-11)*

i,j N /
J P, - ZDk,k UU; |l D,

k=j+1

i=j-1j-2,..,1

o]

The state noise covariance matrix [Q] is also factored into a unit upper triangular matrix [Gy] and
a diagonal matrix [Qu] as follows, using the same factorization algorithm as for the state error
covariance matrix (the state noise covariance matrix is sometimes referred to as the process noise
covariance matrix):

[0] = [Gd] [Qd] [Ga]" (2.2-12)*

where

[O]= [N x N] state error covariance matrix
[Ga]= [N x N] unit upper triangular matrix
[Q4]= [N x N] diagonal matrix
One result of the positive definiteness requirement for covariance factorization is that the time bias

drift estimation cannot be disabled simply by setting its initial variance to zero and setting its state
noise to zero.



2.2.2 Semimajor Axis Variance

The absolute semimajor axis standard deviation is used to assess the filter convergence. The
absolute semimajor axis standard deviation for satellite n, G}, , is computed from the user satellite

position and velocity state error covariance matrix using the following algorithm.

The semimajor axis is computed as follows:

a"=|=—-11 (2.2-13)*

where

n

a” =semimajor axis for satellite n (meters)
Le =gravitational constant of the Earth (meters®/second?)

R" = magnitude of the satellite position vector (meters)

‘E "I =magnitude of the satellite velocity vector (meters/second)

The absolute semimajor axis variance for satellite n is defined as follows

o) =£(a -ar Jlar —a' ] )=5w2e5" (2.2-14a)*
where
a, = estimated semimajor axis at time #, (meters)
a, = true (unknown) semimajor axis (meters)
S" = vector of partial derivatives of the semimajor axis with respect to the position

and velocity components of the estimation vector

[ST"]:{aﬁ” a‘.’"}z(az)z{)(n roznoxn Z—} (2.2-14)*

OR" BR" Rn3 R'73 R"3 Leg Mg Mg

W' = 6x6 user satellite position and velocity submatrix of the absolute state error

abs

covariance matrix [P] for satellite n defined in Equation (2.2-4¢)

The absolute semimajor axis one sigma standard deviation is then computed as follows

Gl =+S"Wrs" (2.2-15)*

abs

The relative semimajor axis is defined as
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a' =a"—a' (2.2-16)

rel —

The relative semimajor axis covariance for satellite n relative to satellite 1 at time #, 1is defined

as follows

(os,., F = £llaz -a7)-@ -a Moz -a7)-@ - ] )
~ila o Jar -] Je et -at Jo <o T) 22-17)
el -a o -a T )£t - Jar -a'])

The relative semimajor axis standard deviation for satellite n relative to satellite 1 is computed as
follows

1/2
=7

n T Qon Wal’l Wal’:, - S
GAaI‘el = [— Sl S ][W’il Wnb’n §nT

abs

(2.2-18)*

abs
where W/ is the 6x6 submatrix of the absolute state error covariance matrix [ P, ] associated

with the correlation of the position and velocity estimates for satellite i with the estimates for
satellite j, defined in Equation (2.2-4c).

If the relative state vector is estimated for nonlocal satellites, the relative semimajor axis standard
deviation for satellite n relative to satellite 1 is then computed as follows

. (DAl *
GAarel_ S —S) S ] Wn,l W E"T (2-2-18a)

rel rel

where W " is 6x6 submatrix of the relative state error covariance matrix [ P, ] associated with

7

the relative state of satellite n with respect to satellite 1.
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2.3 Extended Kalman Filter Algorithms

The EKF algorithm consists of the following two major processes:

1.

Time Update. This process consists of propagating the estimated state and state error
covariance factors from the time of the previous (k—1)" filter update [denoted by

X i (+), U, (+),and D, (+), respectively] to the time of the current (k)" filter update

[denoted by )A(k (—), U,(-),and D,(-)].

Measurement Update. This process consists of correcting X, (—), U,(-),and D, (-) to
include the effects of the current measurement. The corrected state and state error

covariance are denoted by X ' (+), U,(+) and D, (+).

These steps are described in the subsections below.

GEONS provides the following three estimation modes for performing the EKF processing where

e toTime is the time passed to EKF process
e measTimeX is one of the measurement times
e outTime is the time when the EKF process outputs the state and covariances

ESTIMATION TIME LEGACY=0

e GEONS selects the most recent time for the first sensor type (measTimel) and
propagates to that time (propTime=measTimel) or propTime= toTime if no
measurements

e All measurement processing is performed at propTime=measTimel

e State and covariance are updated at outTime= propTime= measTimel

ESTIMATION TIME TOTIME =1

e GEONS propagates its state to propTime=toTime
¢ All measurements are processed at propTime=toTime
e State and covariance are updated at outTime= propTime=toTime

ESTIMATION TIME EACHMEAS =2

e All measurements are sorted based on measTime.

e For each measurement
* GEONS propagates the state and covariance to propTime= measTimeX
* Processes the measurement at propTime= measTimeX
» Updates the state and covariance at propTime= measTimeX

e Output state and covariances are propagated to outTime= toTime



2.3.1 Time Update Process

The time update is performed at either a specified estimation time or a valid measurement time #
and at the intermediate time # if the time between measurements is greater than the maximum
integration step size

t, —t,_, > ot (2.3-1)*

max
where Ofmax 1s equal to the maximum state vector integration step size.

The estimated total state vector at the previous measurement time (¢,,), X, ,(+), and the state

error covariance matrix factors, U—i(+) and D._i(+) are propagated to the time of current
measurement update, # , using the following procedure.

When there are consider parameters, the state vector is partitioned into estimated states (x) and
consider states (p), where n=number of estimated parameters and n,= number of consider
parameters. If a consider parameter has a “known” mean value (e.g. based on a prior calibration),
the initial value of this consider parameter should be set to this mean value. If the consider
parameter has a mean value of zero (e.g. a correction to the SRP coefficient that is not being
estimated), the initial consider parameter value should be set to zero and will remain as zero. The
consider states are included in the state and covariance propagation.

1. Propagate the state vector to the time #. The quantity X ; (—) is obtained by integrating the
following N equations:

| X'(0)

<
Il

XY (1) (2.3-2)*
B(1)
7,

where

= x|

X" = (2.3-2a)
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|-
I

(2.3-2b)

7, =0 (2.3-2¢)

The equations of motion for the spacecraft state vector components (R, ];2) are defined in

Section 4.1. These equations are numerically integrated using the Runge-Kutta algorithm
defined in Section 4.2. This numerical integration starts from the most recent integration time,

ti1, using R(z,_,) and R(¢_,), the most recent propagated values based on an initial value

equal to the state from the last measurement update, X 1 (+). Note that acceleration-related

consider bias parameters (i.e. solar radiation pressure and drag coefficient corrections and
acceleration biases) are included in the acceleration used in the state propagation. If relative

state vectors are being estimated, the relative state vector components (Er"e[ ,E'Zl) are
propagated by forming the associated absolute position and velocity vectors,
R"(t, )=R'(t,,)+R.,(t ), R"(t_)=R'(t, )+ R, (t.,), propagating the absolute state,

and then computing the propagated relative state. Propagation of the corrections to the

nonspacecraft state vector components (AC,, ACy, by, @,, b7, ", EPCL , b, beo,

Ep os Z;dGS, I;dTDRS, E¢G/ v EA‘di/ ", and y,) is performed analytically, as discussed in Section
4.3. The ground-based receiver state propagation equations are given in Section 4.6. This
produces X, l.(—) =X (tl.) . Note that, if #; is the time at which receiver n acquires the signal
from the /™ GPS/Galileo SV/WAAS GEO, the associated carrier phase bias state vector

wj

G/ . . . . IW;
element, b¢n /', and singly differenced carrier phase bias state vector element, bAG(bIWf are

reinitialized.

2 Compute the state transition matrix from time 7.1 to time ¢ using the algorithm given in
Section 4.4.1. If the state vector consists entirely of absolute state vectors:
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— — T
a_X_(’i) 0 0 0
oX'(1.)
X6 | o L oY),
Pltf; )= X0 )= oX" () (2.3-3)*
0 ... 0 6_B (t‘) 0
oB (ti—l)
0 0 0 Oy, (ti)
i aY1 (tlel )_

If the state vector includes relative states for the nonlocal satellites, the associated state
transition matrix includes the correlation between the relative states and the local state

vl
0X'(t) 0 0 0 0
0X'(z,.,)
oX0) oX)  ox()
— - e 0 0 0
0X’(e,) 0X'(e,) 0X'(t)
0X () : : : : : .
D t,‘ ,t[,l _# = : : . : . : (23'4)
( )—aXrel (ti—l ) . _ .
ST NND A N 1) BRI
— -— o i
oxX™ (ti—l) oX (ti—l) oX"™s (tH) B
oB (Zi—l)
0 0 0 0 oy, (ti)
L oy, (t[—l)
where
®(t,_,, t,,)=1 (Identity matrix) (2.3-5)*
Equation Deleted (2.3-6)

Calculate the state process noise covariance matrix at time #, denoted by Q;-1. The process
noise algorithm for this step is described in Section 4.4.2. Factor into components G4 and Qu
using the algorithm provided in Section 2.2.

Propagate the state error covariance matrix factors to the time # to obtain U (-) and Dx (—).
This propagation is performed by directly propagating the U and D matrices as shown in
Section 4.4.3. If #; is the time at which receiver n acquires the signal from the j GPS/Galileo
SV/WAAS GEO, the associated carrier phase bias or singly differenced carrier phase bias
state vector diagonal element are reinitialized to their initial values and the associated off-
diagonal elements of the full covariance matrix are reinitialized to zero, and the covariance
matrix is refactorized, using the algorithm defined in Section 2.2.1.



If #; is not a valid measurement time, set U; (+) = U; (-), D: (+) = D:(-), and X; (+) = Xi (-) and
terminate the time update process.

2.3.2 Measurement Update Process

The inputs to the measurement update process are the results of the time update,

X,(-), U,(-), and D,(-), as well as the measurement noise covariance, Rr. The output from the

measurement update process are the updated total state vector, X, (+) , and the updated state error

covariance matrix factors, Ui (+) and Dy (+). Section 2.3.2.1 discusses the process used to select
valid measurements for processing. Section 2.3.2.2 defines the nominal scalar measurement update
algorithm. Section 2.3.2.3 defines an alternate sequential measurement update algorithm that can
be used when ground station range and Doppler measurements are processed at the same
measurement time. Section 2.3.2.4 defines an alternate batch measurement update algorithm that
can be used when multiple measurements are processed in the same filter update timespan.

2.3.21 Measurement Selection
The following criteria are used to select valid measurements for further processing:

e Time constraints, e.g. elapsed time from last successful measurement update is greater than
or equal to the minimum specified measurement sampling interval

e Transmitter/sensor is enabled and has valid state vector or ephemeris

e Measurements do not occur during a maneuver time span (optional).

e Measurement-type specific selection criteria are satisfied (see Table 5.1 for details)
e Visibility criteria are satisfied

The visibility tests consist of the Height of Ray Path (HORP) test to eliminate measurements with
long paths through the Earth’s atmosphere for GPS/Galileo/WAAS, crosslink, or TDRSS
measurements and a minimum elevation angle test for ground station measurements. These tests
are defined below.

HORP Test: Edit a GPS/Galileo/WAAS, crosslink, or TDRSS measurement if the signal has a
long path through the atmosphere (i.e., passes through the Earth's limb). The following updated
HORP editing test is implemented in GEONS 3.0. Note that this test is more general than the
original algorithm, which did not handle the case when the transmitter is at the minimum HORP
altitude. In the ECEF frame, the HORP is computed as the altitude of the point on the line
connecting the transmitter position and the receiver (predicted) position with minimum radius-
squared (i.e., minimum altitude neglecting the oblateness of the Earth).

Compute the minimum radial distance (d ):

Let ER (¢,) be the receiver position and ET (t,) the transmitter position, then the set of points
connecting them is given by
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{(1 —a)Ry(1,)+aR, (tk)}; where o €[0,1]

And their radial value is given by
f(@) = I(1 — @)Re(ty) + aRr(t)I*> = IR (tx) + a(Ry(tx) — Rr(t))II? (2.3-Ta)

df ()

do

By finding o = & such that =0, we find the minimum of (convex) f on the real line

at
» _ _ Rr(ti) (Rr(ti) —Rr (i)
IRT (k) —RR(tx)II?
If o <0, the minimum radial distance (d ) is the radial distance to the receiver. If &” >1, d is

(2.3-8)*

the radial distance to the transmitter; otherwise d is computed as ./ f (a*) .

a. The measurement is accepted if d > R, +h [case (a) in Figure 2-1], where R, is the mean

equatorial radius of the Earth and # is a specified minimum altitude. For GPS/ Galileo
receivers located below the GPS/Galileo constellations, the minimum altitude is typically
specified as the smaller of the height of the atmosphere or the height of the receiver. For
Lunar spacecraft, the minimum altitude is typically specified as 0. For Ground Station
tracking of Earth-orbiting spacecraft, the minimum altitude is typically specified as -50
km to account for Earth’s ellipsoid.

b. If d<R, +h [case (b) in Figure 2-1], perform the following central angle test.

Equation Deleted (2.3-9)*

Equation Deleted (2.3-10)*

Compute the central angle and accept the measurement if @ < dtnax, Where

a = cos” By Ry (2.3-11)*
RT RR

and

R, = magnitude of R.(,)

T
R, = magnitude of R,(z,)

Omax =maximum central angle (an input control parameter nominally equal to
70 degrees)

c. If the measurement is not accepted, terminate the update process.
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Transmitter

USER S/C

a. d>R,+h

RAY PATH IS ABOVE
THE ATMOSPHERE

USER S/C

b. d<R +h
RAY PATH PASSES THROUGH
THE ATMOSPHERE

Figure 2-1. HORP Geometry

2-20



Elevation Angle Test: Edit a Ground Station (GS) one-way Doppler measurement if the
elevation of the line-of-sight vector with respect to the local horizon is less than a minimum
angle. This atmospheric editing test is performed as follows:

Compute the instantaneous line-of-sight vector from the receiving satellite to the transmitting
GS as follows:

P =R(t,) - Rs(t,) (2.3-11b)*
where

R (t,) =position vector of the receiving satellite at time # , referenced to the inertial
Mean of J2000.0 reference frame

R (t,) =position of the transmitting GS at time # , referenced to the inertial Mean of
J2000.0 reference frame

The GS position vectors are available in Earth-centered Earth-fixed (ECEF) coordinates. The
GS position vector must be transformed from ECEF coordinates to J2000.0 inertial
coordinates to using the transformations defined in Sections 3.2.1 through 3.2.3.

The atmospheric editing test is based on whether the elevation angle, E, of the line-of-sight
vector with respect to the local horizon is greater than a minimum elevation angle, E . .
Figure 2-2 illustrates the accepted (A) and edited (B) cases. The measurement is accepted if
the following is true:

sinE >sink (2.3-11c)*

where E_. 1s a commandable minimum elevation angle within the +90 degrees range, E_.

n

and E are positive above the local horizon and negative below the horizon, and

(2.3-11d)*

If the measurement is edited, terminate the measurement update process.
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User S/C

User S/C

Case A: sin E>sin Ein Case B: sin E<sin Ein

Figure 2-2. Atmospheric Editing Cases for GS Measurements

2.3.2.2 Scalar Measurement Update Procedures

Section 2.3.2.2.1 defines the default scalar measurement update process used in GEONS, which
uses the Carlson Rank-One update algorithms based on Reference 5. Section 2.3.2.2.2 defines the
scalar measurement update process when consider parameters are included. Either scalar update
processes can be performed sequentially for each valid measurement at each measurement update

epoch, .
2.3.2.21 Default Scalar Measurement Update Procedure
1. Given the results of the time update, )L(k(—), U,(-), and D,(-), compute the predicted

A

measurement, Y, , the measurement residual, yx, and the measurement partial derivatives at
the filter update epoch #, Hx,

7 = G[f{k(—), tk] (2.3-12)*
=Y -1, (2.3-13)*
oG
H, = [—_} (2.3-14)*
X Ix-i0)

where Y is the observed measurement. The measurement model equation, G, and associated
partial derivatives, H, are given in Sections 5.3 through 5.9 of this document. If the
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measurement time is not equal to the filter update epoch, the state can optionally be propagated
from the filter update time to the measurement time.

Compute the predicted measurement residual variance, Vi, using Equations 2.3-15 through
2.3-18 in the Carlson Rank-One update algorithm defined in Section 2.3.2.4.1, where

Perform the n-sigma measurement residual edit test:

Calculate the sigma ratio

Vi

=

If |Dk | < N_, accept the measurement and continue the measurement update. If |Di| > N,, reject

D, = (2.3-20)*

the measurement and the covariance updates and exit the calculation. In these tests, N, is a
specifiable integer with a default value of 4.

Compute updated state error covariance factors and the Kalman gain vector, K, using

Equations 2.3-21 through 2.3-24 in the Carlson Rank-One update algorithm defined in Section
2.3.2.4.1, where

K, =b/V, (2.3-25)*

where K, is the [N X l] Kalman gain vector and the components of b5 are defined in
Equation (2.3.2.4.1-14).

Update X, (-)

X, () = X, () + K (2.3-26)*

23.2.2.2 Scalar Measurement Update Procedure with Consider Parameters

When there are consider parameters, the state vector X ; 1s partitioned into estimated states (x) and

consider states (p), where ns=number of estimated parameters and n,= number of consider
parameters. Optionally, any parameter in the estimation state vector except for the satellite position
and velocity can be processed as a consider parameter. However, GEONS 3.0 only supports the
inclusion of the atmospheric drag coefficient correction and sensor and global biases as consider
parameters. The value and covariance of a consider parameter is not updated by the filter
measurement update process but the effects of consider parameter uncertainties are included in the
calculation of corrections to and covariance of estimated parameters and in the error cross-
covariance of estimated and consider parameters.
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1. Given the results of the time update, )L(k(—), U,(-), and D,(-), compute the predicted

measurement, Y, , the measurement residual, yx, and the measurement partial derivatives at
the measurement update epoch #, Hx,

7 = G[f(k(—), zk] (2.3.2.2.2-1)*

y, =Y, -7 (2.3.2.2.2-2)*

H, = {5—9} (2.3.2.2.2-3)*
X Jx-50

where Y is the observed measurement. The measurement model equation, G, and associated
partial derivatives, H, are given in Sections 5.3 through 5.9 of this document. Note that
consider measurement bias parameters are included in the predicted measurement and
measurement partial derivative calculations.

2. Perform a complete rank-one measurement update using the Carlson rank-one update given
in Section 2.3.2.4.1 to compute the optimal Kalman gain, K covariance factors

opt 2

U, (+)and D, (+), and the predicted measurement residual variance, V .

3. Ifthere are any consider parameters:

For all parameters, set
K (i)=0.0 (2.3.2.2.2-4)*
For each consider parameter, p, set the optimal Kalman gain to 0.0

K (p)=K,.(p) (2.3.2.2.2-5)*

K, (p)=0.0 (2.3.2.2.2-6)*

Perform another rank-one measurement update using the Agee-Turner rank-one update
procedure given in Section 2.3.2.4.2 with c=V and x = K to solve

U, ()D,, (DU, () =U,, (D, (DU, () +V, (K K | (23222:7)*

con con Ca

4. Perform the n-sigma measurement residual edit test. Calculate the sigma ratio
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D=2k (2.3.2.2.2-8)*

If |Dk| < N, accept the measurement and continue the measurement update process.

If |Di| > N,, reject the measurement, and the terminate processing of the ith measurement. In
these tests, IV, is a specifiable integer with a default value of 4.

5. If the measurement has not been edited, update X, (-) and the U and D covariance factors.
Note that the following does not update the consider parameters or the covariance of the

consider parameters:
X, (H=X,(-+K,, 7, (2.3.2.2.2-9)*
uH+=U,,+) (2.3.2.2.2-10)*
D,(+)=D,, (+) (2.3.2.2.2-11)*
23.2.3 Simultaneous Measurement Update (implemented only for ground station

measurement processing in Release 2.10, replaced by Batch Measurement Update defined in
Section 2.3.2.4 in GEONS Release 3.0)

23.24 Batch Measurement Update Procedure with Consider Option

The performance of an EKF is dependent on the order in which the measurements are processed.
The following algorithm is discussed in detail in Section 3.2 of Navigation Filter Best Practices
(Reference 59). As noted in that reference, “This is of particular import in the case when there is
a powerful measurement coupled with a large a priori error. The state (and covariance) update will
be large, very likely out of the linear range. Subsequent measurements which are processed may
well be outside the residual edit thresholds, and hence will be rejected. In order to remedy this, we
employ a hybrid Linear/Extended Kalman Filter measurement update. Recall that in an Extended
Kalman Filter, the state is updated / relinearized / rectified after each measurement is processed.
Hence, the solution is highly dependent on the order in which the measurements are processed.
This is not a desirable situation in which to be.”

This difficulty can be reduced by not applying the state updates until all the measurements
associated with the same filter state epoch are processed. The state updates Ax are accumulated
using a linear Kalman filter algorithm, which is mathematically equivalent to a sequential batch
least-squares algorithm.

Optionally, any parameter in the estimation state vector except for the satellite position and

velocity can be processed as a consider parameter. However, GEONS 3.0 only supports the

inclusion of the atmospheric drag coefficient correction and sensor and global biases as consider

parameters. The value and covariance of a consider parameter is not updated by the filter
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measurement update process but the effects of consider parameter uncertainties are included in the
calculation of corrections to and covariance of estimated parameters and in the error cross-
covariance of estimated and consider parameters.

The inputs to the measurement update process are the results of the time update,

X,(<), U,(-), and D,(-), as well as the measurement noise variance, R¢. The output from the

measurement update process are the updated total state vector, X, (+) , and the updated state error
covariance matrix factors, Ui (+) and Dy (+) where # is the measurement update epoch time.

In general, the measurement time tags are not going to be equal to the current measurement update
epoch time, #. In this case, the filter has propagated its state and covariance to the filter update
time t = # from time ¢ = #x—;, and is subsequently given a measurement to be filtered (denoted by
subscript m) that corresponds to the time ¢ = #,.. If At = tm — tkis significant (e.g. > 0.001 second),
the time difference between the measurement and the filter state and covariance will need to be
accounted for to accurately process the measurement. This time difference can be taken into
account using either of the following options:

1. If the time difference is relatively small, e.g. < 1 second, the predicted measurements can
be linearized about the current measurement update time. In GEONS 3.0, this correction is
implemented for the GPS, Galileo, WAAS, TDRSS, and cross-link measurements.

2. The state can be computed at each measurement time by propagation and the measurement
residual mapped to the filter epoch time using the state transition matrix. In GEONS 3.0,
this approach is implemented for all celestial object and relative navigation camera
measurements.

The following procedure assumes that the second option is used to compute the predicted
measurement at the measurement time.

Given the results of the time update, X, (—), U, (—), and D, (—) at the current measurement update
epoch, #, and a set of N, measurements {Y n'1 }, with measurement times ¢, that fall within the
measurement update time interval [tk —At/2,t, + At/ 2], the measurement update process consists

of the following steps:

1. For each measurement Y, , wherei=1,...,N,,

a. If tm=tr, set X, (—) _X . (=) for the associated satellite(s).

b. Iftm# tk, the state is propagated or interpolated to the time of the measurement to obtain
X ; (—) for the associated satellite(s).

c. Compute the predicted measurement, Y , measurement residual, ! , and measurement

m

partial derivatives, H,, at the measurement time #,,

Y, =Gl X, (-). t,] (2.3.2.4-1)*

m m
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y =y! -y! (2.3.2.4-2)*

H' :V—(_;} (2.3.2.4-3)*
X=X

where Y is the observed measurement. The measurement model equation, G, and

associated partial derivatives, H, are given in Sections 5.3 through 5.9.

If tm # tk, for celestial object measurements, compute the required submatrices of the
state transition matrix from & — f, @(tm,tk), for the associated satellite(s) using

equations given in Section 4.4.1. (Note that for celestial object measurements only the
position submatrix is required.) Map the measurement partial derivatives to the current
filter epoch time, #.

Hi=H 0,,t,) (2.3.2.4-4)*

Compute the predicted measurement residual variance, V;, using the predicted

covariance and perform the n-sigma measurement residual edit test. Calculate the
sigma ratio

D=2 (2.3.2.4-5)*
Vi
where
i i i T i 2
Vi=HU,OD,U, ) (H) +(c') (2.3.2.4-6)*

If |Dk| < N, , accept the measurement and continue the measurement update process.

If |Di > N, reject the measurement, and the terminate processing of the ith
measurement. In these tests, N, is a specifiable integer with a default value of 4.
Measurement residuals can exceed the acceptance threshold due clock anomalies and
unplanned maneuvers in addition to measurement faults. The percentage of
measurements that are rejected is tracked in measurement residual edit test defined in
Section 2.3.3 and included in telemetry.

If the measurement is not edited, using the current values of U ,i_l (+) and D,i"l(-l-)

where U, (+): U, (—) and Dy (+) =D, (—) are from the time update, measurement
update the covariance factors and compute the predicted measurement residual
variance, ¥}, and the optimal Kalman gain using the following procedure:
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1. Perform a complete rank-one measurement update using the Carlson rank-one
update given in Section 2.3.2.4.1 to compute the optimal Kalman gain, K’

opt >

covariance factors U, épt (+) and D(ipt(+), and the predicted measurement residual

variance, V.

ii. If there are any consider parameters, the state vector is partitioned into
estimated states (x) and consider states (p), where ny=number of estimated
parameters and 7,= number of consider parameters

For all parameters, set
K'(i)=0.0 (2.3.2.4-7)*
For each consider parameter, p, set the optimal Kalman gave to 0.0

K'(p)= K[ipt(p) (2.3.2.4-8)*

Kl (p)=0.0 (2.3.2.4-9)*

Perform another rank-one measurement update using the Agee-Turner rank-one
update procedure given in Section 2.3.2.4.2 with c=V} and x = K* to solve

) =U (D, (UL + +Vi(K Nk (232410

opt

Uion (+)Dcl’on (+)U(lron

g. Map the residual at the current filter epoch time, tk

yi=y! —HAx," (2.3.2.4-11)*

Where A)?,i_l is the current accumulated state correction for the current batch

measurement interval, where AX, = 0 for the first measurement in each batch.

h. If measurement is not edited, update the accumulated the state update vector correction

Ax; =A%, + K.y} (2.3.2.4-12)*

opt

Where the Kalman gain is from step e.i if no consider parameters or step e.ii if there
are consider parameters.

and the covariance factors
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U épt (+), 1f no consider parameters

U, (+) :{ (2.3.2.4-13)*

U' (+),if there are consider parameters

con

,- D! (+),if no consider parameters
D,(+)=<1 . " ‘ (2.3.2.4-13a)*
D! (+),if there are consider parameters

con

2. After all N, measurements have been processed, update X +(=) and the U and D
covariance factors

X, (+9)=X, (-)+ AT (2.3.2.4-14)%

U, (+)= U U]Z)’; (+), if no consider parameters (2.3.24-15)*
‘ U™ (+),if there are consider parameters o

con

DNk +), if id t
D, (+) = { - (+), if no consider parameters

D"t (+), if there are consider parameters

con

(2.3.2.4-16)*

2.3.2.41 Carlson Rank-One Update Algorithm with Underweighting

The Carlson Rank-One Update algorithm is discussed in detail in Appendix B.5 of Navigation
Filter Best Practices (Reference 59). The Carlson Rank-One Update procedure with
underweighting is as follows:

a. Compute
7=uio) ) (2.3-15)*
DI f 2N (2.3-16)*

where
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C.

N = dimension of the total state vector
Ul () { U, (-);i =1, predicted value from time update
(= =

U, ' (+); i > 1, updated value after processing i - | measurements

D' (-) { D, (-); i =1, predicted value from time update
f — )=

D; ' (+); i > 1, updated value after processing i - | measurements
H ,i =[1 x N] measurement partial derivative matrix

Test for underweighting:

Forj=1,2, ..., N, compute HPH= H U} (+)D;” (+)U,fl(+)T(H,i )T as follows using

values computed in Step a

HPH; = HPH; 1 + f; v (2.3-16a)*
If HPHx<a!, set
a, =o' ) (2.3-17)*
where
al,, =Measurement underweighting threshold, a commanded parameter specified

for each measurement type or each sensor type

o' = l-sigma measurement error, a commanded parameter specified for each receiver

and measurement type. Note that for GPS and Galileo receivers with large
variations in the acquired signal strength (e.g. receivers in very high altitude and
lunar orbits), the PR measurement standard deviation can optionally be
computed based on based on standard GPS thermal noise theory as discussed in
Section 12.4.2.

If HPHx>al,, set
i)2 i yyipi il
ao=(0 ) + B H P (-)H, (2.3-17a)*
where
B. = Measurement underweighting value, a commanded parameter specified for

each measurement type or each sensor type
Compute updates to the state covariance based on the ith measurement:
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Forj=2,..,N,

a, = fi v, +a

[D/l( (+)]11 :[Dll( (_)]nao/ a,

U], =[Uie],, + 4,

b =b + [U;;(—)]M v,

orn=12,..., j-1
fe J

(2.3-17b)*

(2.3-17c)*

(2.3-17d)*

(2.3-17¢)*

(2.3-18)*

(2.3-21)*

(2.3-22)*

(2.3-23)*

(2.3-24)*

d. Compute an update to the measurement residual variance, ¥, and the optimal

Kalman gain

and the optimal Kalman gain

Vi =ax
. b
Kopt =7
Vk
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2.3.24.2 Agee-Turner Rank-One Update Algorithm

The Agee-Turner Rank-One update is discussed in detail in Appendix B.3 of Navigation Filter
Best Practices (Reference 59). This following recursive algorithm is taken from Section 7.3.2 of
Reference 59. This algorithm is used to solve a matrix of the form

UDU" =UDU" + exx” (2.3.2.4.2-1)

where x is of rank 1. The following recursive algorithm is used to compute U ; and 5,,

Set C" =¢

Forj=n, ..., 2, compute

D,=D,+C'x; (2.3.24.2-2)*
7, =1 (2.3.2.4.2-3)*
p,=C'/D, (2.3.2.4.2-4)*
v, =px, (2.3.2.4.2-5)*

Fori=1, ..., j-1, compute
x,=x;, —Uyx, (2.3.2.4.2-6)*
U,=U, +x,v, (2.3.2.4.2-7)*

End i loop
C’"'=pB.D, (2.3.2.4.2-8)*
End j loop

D, =D, +C'x} (2.3.2.4.2-9)*
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23.25 Measurement Underweighting

Measurement underweighting is an optional capability to underweight measurements when the
absolute state covariance exceeds a commanded threshold for absolute measurements (i.e. GPS,
Galileo, Ground Station, WAAS, Point Solutions, TDRSS, and all celestial object measurements
except intersatellite) or when the relative state covariance exceeds a commanded threshold for
relative measurements (i.e. crosslink and intersatellite line-of-sight/bearing). This capability is can
be used to avoid initial filter divergence or post-maneuver divergence due to editing of valid
measurements using an overly optimistic initial/post maneuver covariance relative to the actual
errors when process noise is modeled to give good steady-state performance and adequate tracking
is available. Underweighting is needed when accurate measurements are introduced at a time when
the a priori covariance of the position and velocity is large and the measurement error due to the
EKF linearization approximation is significant. Underweighting slows down the rate at which the
covariance decreases to prevent the covariance matrix associated with these states from closing
down too quickly. More detail is provided in the following reference: Renato Zanetti, Kyle J.
DeMars, and Robert H. Bishop, “Underweighting Nonlinear Measurements,” Journal of
Guidance, Control and Dynamics, Vol. 33, No. 5, September-October 2010. Measurement
underweighting is implemented as an option in the Carlson rank one algorithm defined in Section
2.3.2.4.1.

2.3.2.6 Efficiency Improvements in the UDU Algorithms

When the state vector is large containing many biases, which can either be estimated or consider
states, the number of computations associated with the filter update process can be significantly
reduced by separating the states into dynamic state and bias parameters. If the modified Gram-
Schmidt algorithm is used to perform the filter update without taking advantage of the fact that the
bias states are uncoupled with one another, there is a great deal of wasted computation, due to the
large number of zeros in the state transition matrix associated with the bias states. However, if the
dynamic states (position, velocity, attitude and clock states) are updated via the modified Gram-
Schmidt process and if a more efficient algorithm is used for updating the bias states, the result is
an efficient and a robust filter.

The GEONS filter algorithms incorporate several techniques to reduce computations. In GEONS,
the dynamic states, which consist of the spacecraft position and velocity, are numerically
integrated as discussed in Section 4.1 and 4.2. All other states are analytically integrated as
discussed in Section 4.3. The state transition matrix, which is computed analytically as discussed
in Section 4.4, has many zero elements. Sparse matrix multiplication techniques are used to reduce
computations in the propagation of the covariance matrix.

The computational efficiency of the time update process in GEONS could be further improved by
taking advantage of the block diagonal structure of the state transition matrix in the propagation
of the covariance matrix. This improvement consists of a two-step process in which the modified
Gram-Schmidt update is used for the first step and the Agee-Turner rank-one update is used for
the second step. This improvement is discussed in detail in Section 7.3 of Navigation Filter Best
Practices (Reference 59).
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2.3.3 Fault Detection Tests

GEONS includes several tests that can be used to detect processing anomalies. However, anomaly
investigation and resolution are performed external to the GEONS software library code. For
example, the resolution of anomalies that result in filter divergence typically requires external
intervention to halt processing and restart GEONS possibly with some adjustment of the filter
tuning parameters.

If fault detection is enabled, GEONS performs the following navigation fault detection tests on the
updated state and covariance for each receiver state being estimated:

a.

Filter Convergence Test: Set the filter converged indicator to true if the RSS position
sigma, RSS velocity sigma, and semimajor axis sigma are all below their respective
ground commandable convergence tolerances.

RSS Position Difference Test:

If an absolute comparison state is input, compute the RSS difference between the GEONS
User position vector and the comparison ephemeris position vector (derived from either
the GPS/Galileo Receiver’s point solution or a backup ephemeris).

If a relative comparison state is input, compute the RSS difference between the GEONS-
estimated relative target position vector and the relative comparison position. In this case
the GEONS-estimated relative target position vector state is computed by subtracting the
absolute position vector of the local satellite from the absolute position vector of the target
satellite

T STy = Ty (233-1*
Set the passed position difference test indicator to "false" (1) following initialization when
there are not sufficient GEONS states to interpolate, (2) if a comparison state is not
available for the current time, or (3) if the difference exceeds a ground commandable
position difference tolerance. Set the indicator to "true" otherwise.

Covariance Factorization Test: Set the passed Covariance Matrix Divide by Zero Error
Test Indicator to "false" if any of the following conditions have occurred, where the
"zero" tolerance is a ground commandable value,

e State error covariance matrix diagonalization divide by "zero"
e State noise covariance matrix diagonalization divide by "zero"
e State error covariance matrix propagation divide by "zero"

e State error covariance matrix update divide by "zero"

Otherwise, set the value to "true". When the covariance factorization test fails,
autonomously transition from GEONS Filter Submode to GEONS Propagate Submode
but without propagating covariance.
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RSS Position Sigma Test: Set the passed position sigma test indicator to "false" if the
state error covariance matrix RSS position sigma exceeds the ground commandable
position sigma maximum tolerance. Different maximum tolerances are used for the
preconvergence (i.e., when the filter convergence test has failed) and postconvergence
(i.e., when the filter convergence test has passed) cases. Otherwise, set the indicator to
"true".

RSS Velocity Sigma Test: Set the passed velocity sigma test indicator to "false" if the
state error covariance matrix velocity variance exceeds a ground commandable velocity
sigma maximum tolerance.  Different maximum tolerances are used for the
preconvergence and postconvergence cases. Otherwise, set the indicator to "true".

Measurement Residual Edit Test: Determine the percentage of measurements edited over
a ground commandable sample size. Set the passed measurement edit test indicator to
"false" if the percentage sigma-edited is larger than the ground commandable percentage
tolerance. Otherwise, set the indicator to "true".

Covariance Overflow Test: Set the passed Covariance Overflow Error Test Indicator to
"false" if any of the following conditions have occurred, where the overflow tolerance is
a ground commanded value,

e State error covariance [D] matrix element exceeds overflow tolerance
e State noise covariance [0, ] matrix element exceeds overflow tolerance

Otherwise, set the value to "true". When the covariance overflow test fails, autonomously
transition from the GEONS primary mode from Normal to Halted.

Absolute Mahalanobis Measure Test (not implemented in GEONS 3.0): The absolute
Mahalanobis measure threshold test is an optional test that can be performed if the
absolute (e.g. Point Solution) comparison state and covariance are available for the
satellite(s) being estimated. The test is performed as follows:

Compute the Mahalanobis measure from the absolute position differences and the
respective absolute covariances:

a7 )= o s s e - m)  @asay
where
7or%  —GEONS-computed absolute position vector of the satellite, referenced to the
central-body inertial frame
7: 2" = comparison absolute position vector of the satellite, referenced to the central-

body inertial frame
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S = PO 4 SO = Qum of the GEONS-computed covariance matrix and

abs abs
comparison covariance matrix (see note below) of the satellite position,
referenced to the central-body inertial frame.

If the comparison covariance (or position variances) are not available within 1 second of
the latest GEONS covariance, use the following approximations

= IfPDOP is available for the Point Solution state data, use
PO =10* PDOP

abs

= [f GDOP is available for the Point Solution state data but not PDOP, use

P2 =10* GDOP, and include the time bias in the state difference

* Ifno PDOP or GDOP, use S = N * PS**¥ \where N is TBD multiplier

abs

If d (— COMP —GEONS

abs > "abs

)S Commanded Threshold , set the Mahalanobis measure test
indicator to “true.” If not set the indicator to "false."

Relative Mahalanobis Measure Test (not implemented in GEONS 3.0): The relative
Mahalanobis measure threshold test is an optional test that can be performed if the relative
comparison state and covariance are input for the satellite(s) being estimated. The test is
performed as follows:

Compute the Mahalanobis measure from the relative position differences and the
respective relative covariances:

d(fcoMP FGEONS): \/(FCOMP _ FGEONS )T g (FCOMP _ FGEONS) (2.3.3-3)*

rel > "rel rel rel rel rel

where

_,S,EONS = GEONS-computed relative position vector of the target satellite with respect to

the local satellite, referenced to the central-body inertial frame
—COMP

r, = comparison relative position vector of the target satellite with respect to the local
satellite, referenced to the central-body inertial frame
S =PI 4 por = Sum of the GEONS-computed relative position covariance

matrix and externally-computed relative position covariance matrix of the
target spacecraft with respect to the chaser satellite, referenced to the central-
body inertial frame.

If d (}7 COMP  -GEONS

rel > Trel

)S Commanded Threshold , set the Mahalanobis measure test
indicator to “true.” If not set the indicator to "false."
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2.3.4 GEONS Operational Modes
The GEONS modes and mode transitions are defined in this section.
The GEONS Navigation Modes are:

a. Initialize
b. Halted
c. Normal

The GEONS Navigation Mode transitions are shown in Figure 2-3. Each mode is discussed in the
following subsections.

POWER- | INITIALIZE
OFF MODE

Propagate Filter
Submode [€—— Submode

Ground Command -——-—------ 'S
Autonomous e —

Figure 2-3. GEONS Mode State Transition Diagram

2.3.4.1 Initialize Mode

In Initialize Mode, the GEONS software processes are initialized from a power-off state and
constants and initial values are loaded based on ground commands and/or the current receiver state
solution.

2.3.4.2 Halted Mode

In Halted Mode, GEONS resets/reinitializes filter processing parameters (e.g., addition/deletion of
solve-for parameters, change in atmospheric density) or state values (e.g., user state vector,
covariance, process noise variances) based on ground commands and data values and/or the current
receiver state solution.
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2.3.4.3 Normal Mode

This section defines the execution sequence for major functions that can be executed in the Normal

Mode.

Real-Time Prediction Processing

GEONS propagates the local and remote satellite position and velocity vectors obtained from the
last available state estimate to the requested output time using a simplified real-time acceleration

model.

Interface Processing

In Normal Mode, GEONS executes the following interface functions:

a.

b.

C.

Process a GEONS command, when provided
Process receiver input data, when provided

Respond to telemetry data requests

State Estimation Processing

In Normal Mode, GEONS executes the following Propagate Submode or Filter Submode
operations, depending upon the ground commanded GEONS Submode.

GEONS Propagate Submode

In the Propagate Submode, GEONS executes functions in the following sequence.

a.

b.

Determine if it is time to include measurements from selected measurement sources.

If it is time to include measurements from seclected measurement sources, collect all
valid measurements from all transmitters/sensors.

If the commanded maneuver time span falls within the propagation time span, update
the spacecraft mass with the post-maneuver mass, and use the commanded maneuver
noise variance to update the state covariance.

Propagate user state vector to measurement/intermediate request time, including
externally-measured accelerations, if available.

Compute the state transition matrix.
Compute the process noise matrix.

Compute the diagonals of the process noise matrix corresponding to the measurement
biases from the individual measurement sources, if measurement biases are to be
included.

Propagate the covariance matrix.
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i. For each measurement, compute the time and state of the transmitter/sensor, compute
the predicted measurement, and perform the measurement editing tests.

j. Perform navigation fault detection checks

Filter Submode

In the Filter Submode, GEONS performs the same functions as for the Propagate function, except
for step (i), which is replaced by:

i. For each measurement, compute the time and state of the transmitter, compute the
predicted measurement, perform the measurement edit tests, and if the measurement
edit tests are successful, update the user state vector with the measurement residual.

Backup Ephemeris Computation

The Backup Ephemeris Computation process is executed to compute averaged orbital elements
and element rates using the real-time state vectors.

FCW Computation

The FCW Computation process is executed to compute the instantaneous Doppler shift and FCWs
for a specific Ground Station using the real-time state vectors.

Maneuver Targeting

The Maneuver Targeting process is executed to compute initial and final maneuvers to transfer the
satellite to a specified orbital position and velocity at a specified time and to perform these
maneuvers at the specified time.

Initial State Vector Computation

The Initial State Vector Computation process is executed to compute an initial state vector based
on nominal orbital elements using pseudorange and/or Doppler measurements.

2.4 Hierarchical Relative Navigation Capability (Future Release)

A number of distributed sparse aperture mission concepts (e.g. Stellar Imager, Solar Imaging
Radio Array, various Terrestrial Planet Finder concepts) require dozens of spacecraft to precisely
navigate in tightly controlled, close formations. Although GEONS can in principle simultaneously
estimate several dozen-satellite states, the computational burden in terms of both memory and
processing becomes excessive when the number of satellites becomes greater than about one
dozen. This problem arises due to the high degree of correlation among formation flying satellite
states when intersatellite crosslink measurements are processed. To properly model these
correlations, an optimal navigation filter must maintain various data structures, such as a
covariance matrix, that scale in size proportionally with the square of the number of satellites.
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To reduce the computational burden for large formations, the following hierarchical nearest-
neighbor algorithm provides the capability to estimate subclusters of satellites in a formation or
constellation. In this case, the total set of N_ satellite state vectors to be estimated is divided into

two or more independent segments with a maximum of N, satellites each as follows.

The total estimation state vector with dimension (n, x N, + N, +1), where n_ is the size of each
satellite/receiver’s state vector, N, is the number of satellite/receiver state vectors being estimated,

and N, is the number of measurement biases being estimated:
Xl
X7 (2.4-1)
B
Y1

ol
I

is divided into two or more independent segments of a maximum of N satellites each, with

dimension <(n,x N, + N, +1):

e
X = )?iv'"““ in=1.,N (2.4-2)
B
Y

where N =N, /N, rtounded up to an integer and the N segment can have smaller dimension
than the others. The state vector segments are formed using the nominally closest N, satellites.

Each estimated satellite state vector )?,i has the form defined in Equation (2.1-1b). The
measurement bias vector B is defined in Equation (2.1-2b) and v, is the ionospheric delay scale

factor. Note that B and vy, are independently estimated in each partition.

Similarly the state transition, process noise, and covariance matrices are subdivided
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Each covariance matrix partition is propagated and updated independent of the other partitions and
each state vector segment is independently updated following the algorithm given in Section

0
0

O.(v))

(2.4-3)*

(2.4-4)*

(2.4-5)*

When crosslink measurements are processed as discussed in Section 5.5, the following procedure
is used to calculate the position of the transmitting and receiving satellites:

1) If both the transmitting and receiving satellites are members of the same segment of

the estimation state, e.g. X ,’1 and X ,f , compute the crosslink range using the predicted

states X ’(-) and X J(-).

2)

If the transmitting and receiving satellites are not members of the same segment of the

estimation state, e.g. transmitting satellite state is X ! and receiving satellite state is

X/

no

compute the crosslink range using the predicted state X J(=) for the receiving

satellite state and compute the position of the transmitting satellite using a state vector
that is either a) extracted from a ephemeris file (ground processing only) or b)
propagated based on a periodically received state vector.
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Section 3. Coordinate Systems, Transformations, and
Time Systems

This section describes the coordinate systems, transformations, and time systems used in
GEONS. It also contains the algorithm for the Greenwich hour angle calculation, which is used
in the coordinate system transformations.

3.1 Coordinate Systems

Propagation of the satellite's state vector is performed using planet-centered rectangular
coordinates and an acceleration vector referenced to a central-body-inertial (CBI) frame. The
central body can be any planet, the Moon, or celestial object for which an ephemeris is available.
The spacecraft acceleration due to a nonspherical gravitational field of a planet is computed
using the satellite’s planet-body fixed (PBF) coordinates and then transformed to the CBI frame.
The propagated CBI state vector is transformed to the Earth-centered inertial (ECI) frame.
Computation of the satellite's state transition matrix is performed using partial derivatives of the
acceleration vector expressed in the ECI frame, which include the gravitational effects of other
bodies. The tracking measurements are computed using state vectors referenced to the ECI
frame. The GPS Space Vehicle (SV) positions and tracking station positions are expressed in
Earth-centered Earth-fixed (ECEF) coordinates and must be transformed to the ECI frame. The
radial (R), in-track (I), and cross-track (C) orbital frame coordinates are useful in expressing the
position covariance and acceleration biases. These coordinate systems are defined in the
following subsections. The required transformations are provided in Section 3.2.

3.1.1 Planet-Centered Inertial Systems

The CBI frames used in GEONS are obtained by translating the inertial frame used to develop
the planetary ephemeris to the center of mass of the planet or Moon. Section 4.1.1 discusses the
planetary ephemeris options that are available. For planetary ephemerides based on a series 400
Developmental Ephemeris, the CBI frames are obtained by translating from the International
Celestial Reference Frame (ICRF). The ICRF is a realization of the International Celestial
Reference System (ICRS), which was developed based on the recommendations of the
International Astronomical Union (IAU). These recommendations stipulated that the origin of
the ICRS is the solar system barycenter, the principal plane as close as possible to the Earth
mean equator of J2000.0 and the origin of its principal plane as close as possible to the
dynamical equinox of J2000.0. The ICRS is epoch-less with axis directions fixed with respect to
the extragalactic radio sources. The ICRS, which officially replaced the IAU 1976 FK5 system
definition on January 1, 1998, uses new precession-nutation models. Reference 49 provides a
more complete discussion of the ICRF.

The equinox of the Earth’s orbit is defined as the intersection of the plane of the Earth's equator
and the plane of the ecliptic. The mean equator is the true equator with all nutation effects
removed from the motion of the axis of rotation. The true Earth equator is defined as the plane
normal to the Earth's instantaneous axis of rotation. The ecliptic plane is the Earth-Sun orbital
plane.
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The rectangular Cartesian coordinates (see Figure 3-1) associated with the ECI coordinate
system are defined with respect to the following axes:

X » axis=  parallel to principal direction (dynamical equinox of J2000.0 in the IAU 1976
FKS5 system; close to the dynamical equinox of J2000.0 in the ICRS)

AE axis = normal to the X » and 7 » axes to form a right-hand system

Z ; axis = normal to the mean Earth’s equator of J2000.0 in the direction of the
Earth's mean spin axis in the IAU 1976 FKS5 system; close to the mean equator
0f J2000.0 in the ICRS

The quantities R, X, ¥, and Z designate the position vector and Cartesian coordinates referenced
to the inertial frame.

EARTH'S MEAN
ROTATION AXIS AT J2000.0

s
E
A

G

Re SPACECRAFT

EARTH MEAN
EQUATOR
AT J2000.0

A
XE
EARTH DYNAMICAL

VERNAL EQUINOX
AT J2000.0

Figure 3-1. IAU 1976 FK5 ECI Coordinate System
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3.1.2 Earth-Centered True Equator and Equinox of Date (TOD) Coordinate
Systems

The Earth-centered true equator and equinox of date (TOD) system is defined as follows:
Origin: Center of the Earth
Reference Time: Reference Date
Reference Body:  Earth

Principal Plane: True equator of the Earth, normal to the instantaneous Earth's rotation
axis at the date

Principal Direction: True vernal equinox of date

The TOD reference frame is defined with respect to the true equator and equinox at the time of
computation, which differs from the mean of date reference system by the inclusion of the
nutation of the true Earth spin axis about the mean pole. The true of date system is defined
similarly to the mean of date system: a right-handed system with the Z axis positive north and
the Xx—p plane defined as the true equatorial plane of date. The £-axis direction is toward the

true equinox of date. The quantities 7, x, y, and z designate the position vector and Cartesian
coordinates referenced to the TOD frame.

The Earth's equator moves with time in response to perturbations exerted by the Sun, Moon, and
planets. These motions explain the difference between the mean of date and true of date
reference frames.

The motion of the equator consists of three elements: a smooth, long-term motion that carries the
mean pole about the ecliptic pole at approximately 23.5 degrees; a short-period motion
superimposed on the long-term motion; and the motion of the Earth's axis of figure with respect
to the spin axis. The long-term motion is called the luni-solar precession and has a period of
26,000 years. The short-period motion is called nutation and is more irregular, with an amplitude
of about 9 arc-seconds and a period of 18.6 years. The motion of the axis of figure is called polar
motion and is considerably smaller and more irregular than the first two elements, but it should
also be included for very-high-accuracy applications.

The motion of the ecliptic plane is a slow rotation, known as planetary precession. It carries the
equinox, which is the intersection of the ecliptic plane and equator, eastward by approximately
12 arc-seconds per century. This also decreases the angle between the ecliptic and the equator,
known as the obliquity of the ecliptic, by approximately 47 arc-seconds per century.

The long-period motions of the equator and equinox are considered together and are termed
general precession. They are used to define the mean equator and equinox of a given date. The
true equator and equinox of that date are determined by correcting the mean equator and equinox
of date for the effects of nutation.
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3.1.3 Earth-Centered Earth-Fixed (ECEF) Coordinate System

The ECEF/Geocentric Terrestrial Reference Frame (GTRF) is consistent with the International
Terrestrial Reference Frame (ITRF) defined in Reference 49. The ECEF coordinate system is
defined as follows:

Origin: Center of mass of the Earth
Reference Time: Reference Date
Reference Body:  Earth

Principal Plane: Polar plane of the Earth, perpendicular to the adopted polar geographic
axis (referred to as the International Reference Pole)

Principal Direction: Intersection of the Greenwich meridian with the equator (referred to as
the International Prime Meridian)

The Earth's axis of figure (i.e., principal moment of inertia) is not coincident with the Earth's
instantaneous axis of rotation. It moves with respect to the latter, causing the polar motion effect.
Therefore, the motion of the rotation axis pole is given with respect to the pole at some
established epoch. The pole at the established epoch is referred to as the adopted geographic pole
and corresponds to the Earth-fixed z axis, Z,,.

The Greenwich meridian is the plane containing the adopted polar axis that passes through the
former Royal Observatory at Greenwich, England.

The rectangular Cartesian coordinates (see Figure 3-2) associated with the ECEF coordinate
system are defined with respect to the following axes:

X, axis = principal direction
y, axis = normal to the X, and Z, axes to form a right-hand system
z, axis = axis along the vector passing through the adopted geographic pole

The quantities, 7, x,, y, and z, designate the position vector and Cartesian coordinates
referenced to the ECEF frame.
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Figure 3-2. Earth-Centered Earth-Fixed Coordinate System

3.1.4 RIC Orbit Frame Coordinate System

The radial/in-track/cross-track (RIC) coordinate system is sometimes referred to as the orbit
frame coordinate system. The RIC coordinate system is shown in Figure 3-3. Its origin and axes
are defined as followed.

Origin: Center of mass of the central body (Earth, Moon or planet)
Reference Time:  Reference Date

Reference Body:  Central body

Principal Plane: Plane of the user spacecraft orbit

Principal Direction: Radius vector from the origin to the user spacecraft
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Figure 3-3. Radial/In-Track/Cross-Track (RIC) Orbit Frame Coordinate System

The rectangular coordinates for this system are the following;

IQC axis = (+) in direction from the center of the central body to the user spacecraft
éc axis = (+)in direction of the orbital angular momentum vector
I caxis = Completes the right-handed orthogonal coordinate system (f =Cx I%) ,

(+) direction has the same general sense as the velocity vector direction

Unit vectors defining the orientation of the RIC coordinate axes in the central-body J2000.0
coordinate system, a Cartesian XYZ coordinate system, are computed as follows:

R. ==X (3.1-1)*
R
=X (3.1-2)*
R- xR,
I.=C.xR, (3.1-3)*



where

R.= [X Yz ]T = spacecraft position vector in the central body frame (meters)

];QC = [X YZ ]T = spacecraft velocity vector in the central body frame (meters/second)
ﬁc = [Rx R R, ]T = radial unit vector in the central body coordinate frame (unitless)

I c= [] A ]T = in-track unit vector in the central body coordinate frame (unitless)
éC = [Cx C,C. ]T = cross-track unit vector in the central body coordinate frame (unitless)

3.1.5 Rotating Libration Point Coordinate System (Future Release)

The rotating libration point (RLP) coordinate system is used for satellite orbits about to the Sun-
Earth interior libration point, Li. The L; point lies between the Sun and the Earth-Moon
barycenter, approximately 1.5 x 10°kilometers (0.01 AU) from the Earth-Moon barycenter .

The RLP coordinate system is shown in Figure 3-4. Its origin and axes are defined as followed.
Origin: L libration point
Reference Time:  Reference Date
Reference Body: L libration point
Principal Plane: Plane of the Earth-Moon barycenter’s motion about the Sun

Principal Direction: Vector from the Sun to the Earth-Moon barycenter

Figure 3-4. Rotating Libration Point Coordinate System

The rectangular coordinates for this system are defined with respect to the following axes:

X, axis = principal direction
y, axis = normal to the X, and z, axes to form a right-hand system
z, axis = normal to plane containing the position and velocity vectors of the barycenter

with respect to the Sun.
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The quantities R, and R, designate the satellite’s position and velocity vectors in the RLP
frame.

Unit vectors defining the orientation of the RLP coordinate axes in the Earth-centered inertial
J2000.0 coordinate system are computed as follows:

. R,
£, =— (3.1-4)*
[Ry|
. R, xR
5, = s (3.1-5)*
Ry, xR,
$, =2, x%, (3.1-6)*

The inertial position and velocity of the Earth-Moon barycenter with respect to the Sun are given
by

" R, +R,
J— mM
R, = p (3.1-7)*
—£ 41
my,
ME R, +R,
R, = p (3.1-8)*
—£ 41
my,
where
R ; = 1nertial position vector of the Earth with respect to the Sun (meters)
R » = 1nertial velocity vector of the Earth with respect to the Sun (meters/second)
R w = Inertial position vector of the Moon with respect to the Sun (meters)
R w = Inertial velocity vector of the Moon with respect to the Sun (meters/second)
m, = mass of the Earth ( 5.9733328 x 10** kilograms)
m,, = mass of the Moon (kilograms)
The rate of change of the libration coordinate axes is given by
A E E L] E —
X, =‘_B -2 ‘33 R, (3.1-9)*

3-8



- EBXZB _|(§BX§B). ﬁBXZB)|§BX§B (3'1_10)*

ZL == - _ .3
R, xR, R, xR,
P, =2, x%, +5, X%, (3.1-11)*
where
— R

A, = —us_—Br (3.1-12)*

and  is the gravitational constant of the Sun, 0.1327124x10%' meters*/second?.

3.1.6 Libration Point RIC Coordinate System (Future Release)

The libration-point-centered radial/in-track/cross-track (LRIC) coordinate system is shown in
Figure 3-5. The origin and axes of the LRIC system are defined as followed.

Origin: L, libration point

Reference Time:  Reference Date

Reference Body: L libration point

Principal Plane: Plane of the user spacecraft orbit

Principal Direction: Radius vector from the origin to the user spacecraft

The rectangular coordinates for this system are the following

R ; axis = (+) in direction from the libration point to the user spacecraft
C , axis = (+)in direction of the orbital angular momentum vector
I ;axis = Completes the right-handed orthogonal coordinate system (f = C | X R . ) ,

(+) direction has the same general sense as the velocity vector direction
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in-track unit vector in RLP coordinates (unitless)

Yy
|

, = cross-track unit vector in RLP coordinates (unitless)

3.1.7 Lunar and Planet Body-Fixed Systems

The planet body-fixed frames are commonly defined using the IAU Cartographic Coordinates
defined in Reference 48, which provide the orientation of the axis of rotation and location of the
prime meridian with respect to the ICRF. The origin and axes of the IAU planet equator and
prime meridian of date frame are defined as followed.

Origin: Center of mass of the planet

Reference Time: Reference Date

Reference Body:  Planet

Principal Plane: Equator of the planet, perpendicular to the axis of rotation

Principal Direction: Intersection of the planetary prime meridian with the reference plane

The lunar principal axis coordinate frame is used to compute the spacecraft acceleration arising
from the Moon’s nonspherical gravitational potential. The associated coordinate axes are
coincident with the principle axes of inertia of the Moon. The origin and axes of the lunar
principle axis frame are defined as followed.

Origin: Center of mass of the Moon

Reference Time: Reference Date

Reference Body: =~ Moon

Principal Plane: Equator of the Moon, perpendicular to the true axis of rotation

Principal Direction: Vector in the principal plane pointing to the 0 degree meridian
The rectangular coordinates for the lunar principal axis frame are the following

X,p4axis = Unit vector along the principal direction

V,psaxis = Unit vector in the equatorial plane of the Moon and normal to X,,, and Z,,,

suchthat z,,, =X,,, X J,,,

A

z,», axis= Unit vector lying along the axis of rotation of the Moon

Note that the lunar principal axis frame is not the same as the IAU mean lunar pole frame that is
commonly used in lunar geodesy. The IAU mean lunar pole frame uses the mean pole of rotation
to define the principal plane and the mean axis of the Moon, which points to the center of the
Earth, to define the principal direction.

3.1.8 VBN Coordinate System

The velocity/binormal/normal (VBN) coordinate system is defined as followed.
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Origin: Center of mass of the central body
Reference Time: Reference Date

Reference Body:  Central Body

Principal Plane: Plane of the user spacecraft orbit
Principal Direction: Velocity vector of the user spacecraft

The rectangular coordinates for this system are the following;

V axis = (+) direction along the spacecraft velocity vector

B axis Completes the right-handed orthogonal coordinate system (ﬁ = N x I})
Naxis = (+) direction normal to the orbital plane (along the angular momentum vector)

Unit vectors defining the orientation of the VBN coordinate axes in the central body inertial
J2000.0 coordinate system are computed as follows:

. R
V,=-% (3.1-16)*
RC
~  R.xR
N, =—c*fc (3.1-17)*
R. xR,
B.=N_.xV, (3.1-18)*
where
I?C =|xvz]" = spacecraft position vector in the central body inertial frame (meters)
EC =|lxyz| = spacecraft velocity vector in the central body inertial frame
(meters/second)
V.= [Vx V., V. ]T = velocity unit vector in the central body inertial frame (unitless)
EC = [BX B, B, ]T = binormal unit vector in the central body inertial frame (unitless)
N c= [Nx N, N, ]T = normal unit vector in the central body inertial frame (unitless)
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3.2 Coordinate Transformations

GEONS supports two implementations of the ECI to ECEF coordinate transformation: the original
IAU-76/FK5-based approach and the newer International Astronomical Union (IAU)-2000
Celestial Intermediate Origin (CIO) based approach. The IAU-76/FKS transformation consists of
three separate transformations, which are defined in Sections 3.2.1 through 3.2.3. The first relates
the mean of J2000.0 frame to the mean of date (MOD) frame using the IAU 1976 Precession
Model. The second relates the MOD frame to the true of date (TOD) frame using the IAU 1980
Theory of Nutation. The third relates the TOD frame to the ECEF frame. Sections 3.2.4 and 3.2.5
provide transformations associated with vectors and covariances expressed in radial, intrack, and
crosstrack (RIC) coordinates. Sections 3.2.6 and 3.2.7 provide transformations associated with
vectors expressed in a rotating libration point frame. Section 3.2.8 provides transformations
associated with antenna offsets expressed in the spacecraft body frame. Section 3.2.9 discusses the
coordinate transformation from the ECI to the lunar principal axis frame. Section 3.2.10 provides
the transformation from the VBN to the central-body inertial frame. Sections 3.2.11 and 3.2.12
provide the transformations from the ECI to the CBI frame and the CBI to the PBF frames,
respectively. Section 3.2.13 provides the transformation from the Ecliptic to the Mean of J2000
frame. Section 3.2.14 discusses calculation of the J2 mean semimajor axis error. Section 3.2.15
discusses the IAU-2000 CIO-based transformation from the ECI/ GCRF to the ECEF/ITRF using
IAU-2000 precession/nutation models.

3.2.1 1AU-76/FK5 ECI Mean-of-J2000.0-to-Mean-of-Date Coordinate
Transformation

The coordinate rotation between the IAU-76/FKS5 mean equator and equinox of J2000.0 reference
frame and other mean equator and equinox of date reference frames is a special case of the
transformation between two mean equator and equinox of date coordinate systems. The Julian
epoch J2000.0 is specifically defined to be the Julian epoch date of January 1.5, 2000, Julian date
2451545.0 barycentric dynamical time (TDB) [also known as ephemeris time (ET)].

The transformation of a fixed vector from one coordinate system to an alternate coordinate system
can be accomplished by performing a series of frame rotations in succession. If a rotation matrix
about a Cartesian X axis is denoted as O(a), a rotation matrix about a Cartesian Y axis is denoted
as P(a), and a rotation matrix about a Cartesian Z axis is denoted as R(a), then as functions of the
rotation angle, a, the elements of the rotation matrices are

1 0 0
Q(a):O cosa sina (3.2-1)

0 -—sina cosa

[cosa 0 —sina
Play=| 0 1 0 (3.2-2)

sina 0 cosa
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cosa sina 0
R(a) =|-sina cosa 0 (3.2-3)
0 0 1

The transformation matrix for processing from the mean equator and equinox of date for the
reference epoch of J2000.0 to the mean equator and equinox of date for epoch £, is given by

/4 V4
A=R (_5 -~ ZA) 0(6,)R (5 -~ gAj (3.2-4)
where
r_ ¢, = anglemeasured on the equator of the reference epoch of J2000.0 from the X axis
2 to the intersection of the two equatorial planes
0, = angle of inclination of the equator at E, measured from the equator at J2000.0
r +Z, = angle measured on the equator of date, £>, from the X> axis to the intersection of

the two equatorial planes

The angles of the transformation are illustrated in Figure 3-6.

MEAN EQUATOR
. OFDATE E,

MEAN EQUATOR OF THE
J2000.0 REFERENCE EPOCH

Figure 3-6. Precession Angles
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This matrix is equivalent to
A=R(-Z,) P(6,)R(-c,) (3.2-5)*

Denoting the position vector expressed in mean equator and equinox of J2000.0 by R and the
position vector expressed in mean equator and equinox of epoch E, by R,, the relationship can
be expressed by

R,=AR (3.2-6)*

The time derivative of 4 can be assumed to be small enough to ignore its effects on the
transformation of the velocity, so that

R, = AR (3.2-7)*

where R, is the time derivative of R, and R is the derivative of R .

Due to the orthogonality of the transformation matrix, the precession transformation matrix from
E> t0 J2000.0 is the transpose of 4, so that

R = A'R, (3.2-8)*
and

R=ATR, (3.2-9)*
where A7 is the transpose of 4.

The equations for §',, 6, , and Z, in units of arcseconds are based on the IAU 1976 Precession
Model

¢,=2306.2181 T+030188 T* +0.017998 T° (3.2-10)
6, = 20043109 T— 0.42665 T*— 0041833 T * (3.2-11)
Z,=23062181T + 109468 T* + 0018203 T° (3.2-12)

where

T = time interval in Julian centuries of 36525 days between the Julian date of epoch
0f J2000.0 and the Julian date for the epoch E>, given by

E, — 24515450
T =22 (3.2-13)*
36525.0

The time interval T is defined in Julian centuries of TDB. The difference between TDB and
Terrestrial Time (TT) is ignored in this calculation. Equation (3.2-13) is evaluated using TT
computed using Equation (3.3-30).
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3.2.2 Earth Mean-of-Date-to-True-of-Date Coordinate Transformation

The true Earth equator and equinox of date coordinate system is the Earth mean equator and
equinox of date system corrected for nutation. Nutation is measured as cyclic changes in the
obliquity of the ecliptic and the longitude of the equinox.

The rotation matrix from the mean equator and equinox of date system to the true equator and
equinox of date system is given by

N =0(=¢,) R(-dy) O(¢,,) (3.2-14)*
where
g, = mean obliquity of the ecliptic, the angle from the mean equator to the true
ecliptic plane
dy = nutation in longitude
g, =¢, +0& = true obliquity of the ecliptic, the angle from the true equator to the true

ecliptic, where d ¢ is the nutation in obliquity

These angles are illustrated in Figure 3-7. The O and R matrices are defined in Section 3.2.1.

Instantaneous
Earth Rotation Axis
of Date
A

ZtoD

A
Ecliptic Pole Ze *

True Ecliptic
of Date

Mean Equator

of Date
A
Ytop
\/
A
Xrop g,
True Vernal
Equinox of Date True Equator
of Date
A
X2
Mean Vernal

Equinox of Date

Figure 3-7. Nutation Angles
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The transformation of position vectors from the mean of date system to the true of date system is
then

F=NR, (3.2-15)*
where
7 = position vector in the true of date frame
R, = position vector in the mean of date frame

The transformation for velocity vectors is also given by
F=NR, (3.2-16)*

because the derivative of N is assumed to be negligible.

The mean obliquity and nutation angles are computed using the IAU 1980 Theory of Nutation
(Reference 50). In the J2000.0 system, the mean obliquity in degrees is given by

g, =23.43929111-0.01300417T7 —0.1639(10°)T* +0.5036(10)T°  (3.2-17)*

The third-order term in the series for the mean obliquity is on the order of 10~ for epochs near
J2000.0 and therefore is currently not included in GEONS. In Equation 3.2-17), T = time interval
in Julian centuries of 36525 days TBD between the Julian date £> and Julian date of epoch J2000.0,
given by

E, — 24515450

T = (3.2-18)*
36525.0

Three options are available in GEONS for computing the values of the nutation in longitude, oy,
and obliquity, 0¢: (1) evaluating the full 106 term series based on the IAU 1980 Theory of
Nutation, (2) evaluating the IAU 1980 Theory of Nutation series truncated to 35 terms (all terms
for which both nutation in longitude and obliquity coefficients are less than 0.001 arcsec are
excluded), and (3) evaluating the Chebyshev polynomial fits to the full 106 term series based on
the IAU 1980 Theory of Nutation available from DE files.

The difference between TDB and Terrestrial Time (TT) is ignored in GEONS when the IAU 1980
Theory of Nutation is used and Equation (3.2-18) is evaluated using TT computed using Equation
(3.3-30). When the nutation angles are computed by evaluating Chebyshev polynomial in the DE
files, T can be evaluated using either TT or optionally TBD.

3.2.2.1 Nutation Computation Using IAU 1980 Theory of Nutation
The equations for the two series are
106

dy =Y [sin(a,l+a,l'+a,F +a,D+as;Q)b, +b,T)] (3.2-19)*

i=1

and
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106
de = Z[cos(ah[ +a, 0" +ay,F +a,D+a,Q)c, +c,T)| (3.2-20)*

i=1

where
ai = coefficients of the five fundamental arguments for the i term in the series
bi; = coefficient for the nonsecular component of the i term in the longitude series
by = coefficient for the secular component of the i™ term in the longitude series
cii = coefficient for the nonsecular component of the i term in the obliquity series
c2i = coefficient for the secular component of the i™ term in the obliquity series

The quantities 7, ¢, F, D, and Q are the fundamental arguments and are defined as

¢ = lunar mean anomaly (arcseconds)
¢' = mean anomaly of the Sun's (Earth's) orbit (arcseconds)
F = difference between the mean longitude of the Moon and
(mean longitude —€2) (arcseconds)
D = mean elongation of the Moon from the Sun (arcseconds)
(2 = longitude of the ascending node of the Moon's mean orbit on the ecliptic
(arcseconds)

and are given by

¢ = 485866.733+1717915922.633 T+31.310 T*+0.064T"° (3.2-21)*
¢ = 1287099.804 +129596581.224 T—0.577 T*-0.012T"° (3.2-22)*
F = 335778.877+1739527263.137 T—-13.257 T*+0.011T" (3.2-23)*
D = 1072261.307+1602961601.328 T —6.891 T>+0.0197" (3.2-24)*
Q = 450160.280-6962890.539 T +7.455 T*+0.008T" (3.2-25)*

The third-order terms, involving T°, in the above equations are very small and can be ignored for
epochs near J2000.0. The full series for each computation has 106 trigonometric terms. The
coefficients for the full series are given in Table 3-1a.

Table 3-1a. Coefficients for the Series for Nutation in Longitude JdY
and Obliquity 6c, With T Measured in Julian Centuries From Epoch J2000.0

ARGUMENT LONGITUDE OBLIQUITY
(0”.0001) (0”.0001)
¢ ' F D Q
i aq ag a; g asi b1 bai Cii Cai
1 0 0 0 0 1 -171996.0 -174.2 92025.0 8.9
2 0 0 0 0 2 2062.0 0.2 -895.0 0.5
3 2 0 2 0 1 46.0 0.0 -24.0 0.0
4 2 0 -2 0 0 11.0 0.0 0.0 0.0
5 2 0 2 0 2 -3.0 0.0 1.0 0.0
6 1 -1 0 -1 0 -3.0 0.0 0.0 0.0
7 0 -2 2 -2 1 2.0 0.0 1.0 0.0
8 2 0 -2 0 1 1.0 0.0 0.0 0.0
9 0 0 2 -2 2 13187.0 1.6 5736.0 3.1
10 0 1 0 0 0 1426.0 3.4 54.0 0.1
11 0 1 2 -2 2 517.0 1.2 224.0 0.6
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ARGUMENT LONGITUDE OBLIQUITY
(0°.0001) (0°.0001)
¢ F D Q

a1 azi asi Asi asi b1 bai Cii
0 -1 2 -2 2 217.0 -0.5 -95.0 0.3
0 0 2 -2 1 129.0 0.1 -70.0 0.0
2 0 0 -2 0 48.0 0.0 1.0 0.0
0 0 2 -2 0 -22.0 0.0 0.0 0.0
0 2 0 0 0 17.0 -0.1 0.0 0.0
0 1 0 0 1 -15.0 0.0 9.0 0.0
0 2 2 -2 2 -16.0 0.1 7.0 0.0
0 -1 0 0 1 -12.0 0.0 6.0 0.0
-2 0 0 2 1 -6.0 0.0 3.0 0.0
0 -1 2 -2 1 -5.0 0.0 3.0 0.0
2 0 0 -2 1 4.0 0.0 -2.0 0.0
0 1 2 -2 1 4.0 0.0 -2.0 0.0
1 0 0 -1 0 -4.0 0.0 0.0 0.0
2 1 0 -2 0 1.0 0.0 0.0 0.0
0 0 -2 2 1 1.0 0.0 0.0 0.0
0 1 -2 2 0 -1.0 0.0 0.0 0.0
0 1 0 0 2 1.0 0.0 0.0 0.0
-1 0 0 1 1 1.0 0.0 0.0 0.0
0 1 2 -2 0 -1.0 0.0 0.0 0.0
0 0 2 0 2 -2274.0 -0.2 977.0 -0.5
1 0 0 0 0 712.0 0.1 -7.0 0.0
0 0 2 0 1 -386.0 -0.4 200.0 0.0
1 0 2 0 2 -301.0 0.0 129.0 -0.1
1 0 0 -2 0 -158.0 0.0 -1.0 0.0
-1 0 2 0 2 123.0 0.0 -53.0 0.0
0 0 0 2 0 63.0 0.0 -2.0 0.0
1 0 0 0 1 63.0 0.1 -33.0 0.0
-1 0 0 0 1 -58.0 -0.1 32.0 0.0
-1 0 2 2 2 -59.0 0.0 26.0 0.0
1 0 2 0 1 -51.0 0.0 27.0 0.0
0 0 2 2 2 -38.0 0.0 16.0 0.0
2 0 0 0 0 29.0 0.0 -1.0 0.0
1 0 2 -2 2 29.0 0.0 -12.0 0.0
2 0 2 0 2 -31.0 0.0 13.0 0.0
0 0 2 0 0 26.0 0.0 -1.0 0.0
-1 0 2 0 1 21.0 0.0 -10.0 0.0
-1 0 0 2 1 16.0 0.0 -8.0 0.0
1 0 0 -2 1 -13.0 0.0 7.0 0.0
-1 0 2 2 1 -10.0 0.0 5.0 0.0
1 1 0 -2 0 -7.0 0.0 0.0 0.0
0 1 2 0 2 7.0 0.0 -3.0 0.0
0 -1 2 0 2 -7.0 0.0 3.0 0.0
1 0 2 2 2 -8.0 0.0 3.0 0.0
1 0 0 2 0 6.0 0.0 0.0 0.0
2 0 2 -2 2 6.0 0.0 -3.0 0.0
0 0 0 2 1 -6.0 0.0 3.0 0.0
0 0 2 2 1 -7.0 0.0 3.0 0.0
1 0 2 -2 1 6.0 0.0 -3.0 0.0
0 0 0 -2 1 -5.0 0.0 3.0 0.0
1 -1 0 0 0 5.0 0.0 0.0 0.0
2 0 2 0 1 -5.0 0.0 3.0 0.0
0 1 0 -2 0 -4.0 0.0 0.0 0.0
1 0 -2 0 0 4.0 0.0 0.0 0.0
0 0 0 1 0 -4.0 0.0 0.0 0.0
1 1 0 0 0 -3.0 0.0 0.0 0.0
1 0 2 0 0 3.0 0.0 0.0 0.0
1 -1 2 0 2 -3.0 0.0 1.0 0.0
-1 -1 2 2 2 -3.0 0.0 1.0 0.0
-2 0 0 0 1 -2.0 0.0 1.0 0.0
3 0 2 0 2 -3.0 0.0 1.0 0.0
0 -1 2 2 2 -3.0 0.0 1.0 0.0
1 1 2 0 2 2.0 0.0 -1.0 0.0
-1 0 2 -2 1 -2.0 0.0 1.0 0.0
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ARGUMENT LONGITUDE OBLIQUITY
(0°.0001) (0°.0001)
¢ ¢ F D Q
1 Q1i Aoi asi Asi asi b1 bai Cii Cai

75 2 0 0 0 1 2.0 0.0 -1.0 0.0
76 1 0 0 0 2 -2.0 0.0 1.0 0.0
77 3 0 0 0 0 2.0 0.0 0.0 0.0
78 0 0 2 1 2 2.0 0.0 -1.0 0.0
79 -1 0 0 0 2 1.0 0.0 -1.0 0.0
80 1 0 0 -4 0 -1.0 0.0 0.0 0.0
81 -2 0 2 2 2 1.0 0.0 -1.0 0.0
82 -1 0 2 4 2 -2.0 0.0 1.0 0.0
83 2 0 0 -4 0 -1.0 0.0 0.0 0.0
84 1 1 2 -2 2 1.0 0.0 -1.0 0.0
85 1 0 2 2 1 -1.0 0.0 1.0 0.0
86 -2 0 2 4 2 -1.0 0.0 1.0 0.0
87 -1 0 4 0 2 1.0 0.0 0.0 0.0
88 1 -1 0 -2 0 1.0 0.0 0.0 0.0
89 2 0 2 -2 1 1.0 0.1 -1.0 0.0
90 2 0 2 2 2 -1.0 0.0 0.0 0.0
91 1 0 0 2 1 -1.0 0.0 0.0 0.0
92 0 0 4 -2 2 1.0 0.0 0.0 0.0
93 3 0 2 -2 2 1.0 0.0 0.0 0.0
94 1 0 2 -2 0 -1.0 0.0 0.0 0.0
95 0 1 2 0 0 1.0 0.0 0.0 0.0
96 -1 -1 0 2 1 1.0 0.0 0.0 0.0
97 0 0 -2 0 1 -1.0 0.0 0.0 0.0
98 0 0 2 -1 1 -1.0 0.0 0.0 0.0
99 0 1 0 2 2 -1.0 0.0 0.0 0.0
101 1 0 -2 -2 0 -1.0 0.0 0.0 0.0
102 0 -1 2 0 1 -1.0 0.0 0.0 0.0
103 1 1 0 -2 1 -1.0 0.0 0.0 0.0
104 1 0 -2 2 0 -1.0 0.1 0.0 0.0
105 2 0 0 2 0 1.0 0.0 0.0 0.0
106 0 0 2 4 2 -1.0 0.0 0.0 0.0

To reduce computation, the GEONS software can optionally compute the nutation series excluding
those nonsecular or secular terms for which both nutation and obliquity coefficients are less than
0.001 arc-second. Table 3-1b lists only those coefficients included in the truncated series.
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Table 3-1b. Coefficients for the Truncated Series for Nutation in Longitude 5Y
and Obliquity 6c, With T Measured in Julian Centuries From Epoch J2000.0

LONGITUDE OBLIQUITY
ARGUMENT (0".0001) (0".0001)
PERIOD

) ! A E D Q (DAYS)

! aii azi asi Aai asi b4 by G4 Ca
1 0 0 0 0 1 6798.4 -171996 -174.2 92025 8.9
2 0 0 0 0 2 3399.2 2062 -895
3 -2 0 2 0 1 1305.5 46 -24
4 2 0 -2 0 0 1095.2 11 0
9 0 0 2 -2 2 182.6 -13187 5736

10 0 1 0 0 0 365.3 1426 54

11 0 1 2 -2 2 121.7 -517 224

12 0 -1 2 -2 2 365.2 217 -95

13 0 0 2 -2 1 177.8 129 -70

14 2 0 0 -2 0 205.9 48 1

15 0 0 2 -2 0 173.3 -22 0

16 0 2 0 0 0 182.6 17 0

17 0 1 0 0 1 386.0 -15 9

18 0 2 2 -2 2 91.3 -16 7

19 0 -1 0 0 1 346.6 -12 6

31 0 0 2 0 2 13.7 -2274 977

32 1 0 0 0 0 27.6 712 -7

33 0 0 2 0 1 13.6 -386 200

34 1 0 2 0 2 9.1 -301 129

35 1 0 0 -2 0 31.8 -158 -1

36 -1 0 2 0 2 271 123 -53

37 0 0 0 2 0 14.8 63 -2

38 1 0 0 0 1 27.7 63 -33

39 -1 0 0 0 1 27.4 -58 32

40 -1 0 2 2 2 9.6 -59 26

41 1 0 2 0 1 9.1 -51 27

42 0 0 2 2 2 71 -38 16

43 2 0 0 0 0 13.8 29 -1

44 1 0 2 -2 2 23.9 29 -12

45 2 0 2 0 2 6.9 -31 13

46 0 0 2 0 0 13.6 26 -1

47 -1 0 2 0 1 27.0 21 -10

48 -1 0 0 2 1 32.0 16 -8

49 1 0 0 -2 1 31.7 -13 7

50 -1 0 2 2 1 9.5 -10 5

Comparisons were made between the nutation matrices computed from the full series and the
truncated series and were tabulated from the Astronomical Almanac (Reference 8) at several dates.
Elements of the nutation matrix computed using the full series agreed with the Astronomical
Almanac values to the eight published digits for all cases. The largest difference between an
element of the full series matrix and the corresponding element of the truncated series matrix was
less than 2 x 1078, It may be possible to make further reductions for cases in which only times
within 10 years of J2000.0 are considered; however, this reduction would require further analysis.

3.2.2.2 Nutation Calculation Using Chebyshev Series Representation

The DE files provide Chebyshev coefficients for the nutation in longitude and obliquity referenced
to TT, which have been computed based on the full 1980 Theory of Nutation. These coefficients
can optionally be used in GEONS to compute the nutation terms using the following formulas:
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Each nutation angle (8y,d8¢) is computed as follows:
N
xX(tr)=¢,T,(0) (3.2-25a)*
n=0

where 7., is the request time in TT (computed using Equations 4.1-28b and 4.1-28c¢), ¢, are the
associated Chebyshev coefficients, 7, (t) are the Chebyshev polynomials, and N is the degree of
the expansion. The Chebyshev polynomials are computed using the following recursion formula:

T (v)y=2T,  (v)-T,,(tr), n=23,.. (3.2-25b)*
where 7 (t)=1and 7,(t)=r.

The applicable range of interpolation for the Chebyshev time parameter T is —1<t <1, which is
computed as follows:

ro 28l (3.2-25¢)*
AT,

where At =t,, —T, CS """ is the elapsed time from the start time of the polynomial fit interval, T5tet,
and AT, is the length associated Chebyshev polynomial fit interval. The fit interval is 32 days for

the nutation angles.

3.2.2.3 Earth-Mean-of-J2000.0 to True-of-Date Transformation Matrix

The transformation matrix from the mean equator of J2000.0 to the true equator of date is
computed by multiplying the two transformation matrices, 4 and N, so that

C=NA (3.2-26)*
where A is the precession matrix from the reference epoch, J2000.0, as defined in Section 3.2.1.

The transformation of position vectors from the mean equator of J2000.0 to the true equator of
date is then

F=CR (3.2-27)

where 7 is a position vector in the true of date frame and R is a position vector in the mean of
J2000.0 frame. The transformation of velocity vectors is also given by

F=CR (3.2-28)

because the derivative of C is assumed to be negligible.

Because both the 4 and N matrices are orthogonal, their product is orthogonal. The transformation
matrix from true of date to mean of J2000.0 is then given by C”

R =CTF (3.2-29)
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R =CTF (3.2-30)

3.2.3 Earth True-of-Date-to-ECEF Coordinate Transformation

The transformation that relates the TOD coordinates to the ECEF coordinates accounts for two
separate effects. The first relates the true vernal equinox to the prime meridian of the rotating Earth
by means of the angle a,, the true of date right ascension of Greenwich. The second effect, called
polar motion, accounts for the fact that the pole of the ECEF body-fixed axis does not coincide
with the Earth's spin axis. The first of these effects, which transforms the TOD coordinates to
pseudo-body-fixed coordinates, is defined in Section 3.2.3.1. Polar motion is not required for
Doppler measurement processing but should be included to process the pseudorange
measurements. The transformation from pseudo-body-fixed coordinates to ECEF coordinates is
defined in Section 3.2.3.2.

3.2.3.1 True-of-Date-to-Pseudo-Body-Fixed Coordinate Transformation

The transformation from true of date coordinates to ECEF coordinates uncorrected for polar
motion (also referred to as pseudo-body-fixed coordinates) is

Fo=R(a,)F=R,F (3.2-31)*
where
R = Z axis rotation matrix defined in Section 3.2.1
7 = true equator and equinox of date position vector
rp = pseudo-body-fixed position vector
ag; = TOD right ascension of the Greenwich prime meridian, which is equal in value to

the Greenwich hour angle

The transformation of a velocity vector is

- d _ -
=" |R (ag)] F+R(a,)7 (3.2-32)*
where
-, sin (ag) @, coSs (ag) 0
d .
E[R (ag)] =|-w,cos (ag) -, sin (ag) 0 (3.2-33)*
0 0 0
and
7 = true equator and equinox of date position vector
¥ = true equator and equinox of date velocity vector
¥» = pseudo-body-fixed velocity vector
w, = Earth rotation rate equal to 7.2921158553 x 10~ radians per second
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Correction for polar motion converts the pseudo-body-fixed coordinates to body-fixed
coordinates, 7, . If the polar motion effects are ignored, then 7, =7, and T, = 7).

Because the R matrix is orthogonal, the transformation from the pseudo-body-fixed coordinate
system to true equator and equinox of date coordinates is

F=R"(a,)7, (3.2-34)
F=R"(a,) (?P —%[R (a,)] 7) (3.2-35)

where R(ay) is the transpose of the R(az) matrix.

The true of date right ascension of the Greenwich prime meridian, ag, is measured easterly from
the true vernal equinox to the Greenwich meridian along the equator. A related quantity is the
Greenwich hour angle (GHA), also called the true Greenwich sidereal time, which measures the
angular distance of the true vernal equinox west along the equator from the Greenwich meridian.
The GHA and a, are equal in value, and both increase as the Earth rotates.

The GHA is computed from the Greenwich mean sidereal time (acu) and a correction due to
nutation in longitude and obliquity, known as the equation of equinoxes.

The Greenwich mean sidereal time, acuy, is defined as the right ascension of the fictitious mean
Sun minus 12 hours plus the time of day in UT1 (universal time, corrected to remove polar motion
effects). The Greenwich mean sidereal time at Oh Omin Os UT1 is expressed in units of radians,
following the expression presented in Reference 50

[24110.54841° + 8640184.812866 Tyr4

= - *
%M = 10.093104 T, — 6.2 X 10-6T3T1]_86zfoo (3.2-36)

where

Tur;= number of Julian centuries elapsed from epoch J2000.0 UT1 to the JD at
Oh Omin 0s UT1 = (JDur1 — 2451545.0)/36525, where JD is the integer part of the
Julian date for Oh Omin Os UT1 on the date of interest

The superscript s indicates seconds. The algorithm for converting from UTC to UT1 time is
provided in Section 3.3.

The elapsed UT1 time on the day of interest is added in as follows:

acm(t) = acu + @t — trey)

where
acm = mean Greenwich sidereal time computed using Equation (3.2-36) at Oh Omin Os
UT]1 of the day of interest
o, = rotation rate of the Earth
tref = 0Oh Omin Os UT1 of the day of interest
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The true Greenwich sidereal time is computed by applying the correction, dH , from the nutation
in longitude and obliquity to the acm(?) , as

GHA = ag = acu(t) + OH (3.2-37)*
where

SH = 8y cos(&p) + £(0.00264 sin + 0.000063 sin20) (3.2-38)*

The computation of the mean obliquity, &, , is defined in Equation 3.2-17. The computation of
the nutation in longitude, Sy, is discussed in Section 3.2.2.1, as part of the transformation to the

true of date coordinate frame. The function f(x) converts arcseconds to radians and (2 is the
longitude of the ascending node of the Moon’s mean orbit on the ecliptic as defined for nutation
in Section 3.2.2.1.

(Equation deleted) (3.2-39)

3.2.3.2 Earth Pseudo-Body-Fixed-to-ECEF Coordinate Transformation

The polar motion correction takes into account the fact that the Earth's principal moment of inertia
is not coincident with the Earth's rotation axis. The coordinates of the Celestial Ephemeris Pole
(which differs from the Earth's instantaneous rotation axis by quasi-diurnal terms with amplitudes
under 0.01 arcseconds) are measured relative to the International Reference Pole in terms of its x,
and y, components in the polar plane, which is perpendicular to the z body-fixed axis. The z body-
fixed axis is coincident with the rotation axis at an established epoch referred to as the adopted
reference pole, called the International Reference Pole. The coordinates x, and y, are periodically
measured by the International Earth Rotation Service (IERS) and supplied to users daily via the
IERS website (http://www.iers.org). The IERS polar motion coordinates describe the
instantaneous rotation axis of the ITRF with respect to the ICRF, when used with the conventional
1976 Precession Model and 1980 Nutation Theory.

The instantaneous coordinates of the pole in arc-seconds, x, and y,, are obtained by evaluating the
following trigonometric function for the date of interest:

Xp=a1+axcos A+ a3sin A+ ascos C+assin C (arc-seconds) (3.2-40)*

Yp=as+arcos A+ assin 4+ ag cos C+aiosin C (arc-seconds) (3.2-41)*

where the coefficients a; are determined in the USNO polar motion prediction published in the
IERS Bulletin-A. The angles 4 and C are computed as follows:

27

A= MJD — T | (radians 3.2-42)%*
365.25( ») (Gadians) (3.2-42)
C = %(MJD ~T,)  (radians) (3.2-43)*
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where MJD is the modified Julian date of the request time and 7, is the epoch time of the
prediction, also published in IERS Bulletin-A. The MJD is computed as follows:

MJD =JD —2400000.5 days (3.2-44)*

where JD is the Julian date of the request time computed using Equation (4.1-11). The estimated
accuracies of these predictions are 0.002 arc-second and 0.005 arc-second for the 10- and 40-day
predictions, respectively. The 10 a; coefficients and the epoch time of the prediction will be
uplinked to the spacecraft monthly.

When the GPS-ICE Earth Orientation Parameters (EOP) messages are available from the GPS
Broadcast Message, X, and y, are computed as follows:

X, =PM _X+PM_X(t—ty,)

. (3.2_44b)
v, =PM_Y+PM _Y(t—t,,)

The coefficients PM X, PM Y, PM X and PM _Y are provided as part of the GPS Broadcast

message type 32 (see Table 3-2). Section 30.3.3.5 in Reference 10 provides a detailed discussion
of the EOP.

Table 3-2. GPS Earth Orientation Parameters

Parameter Units Description
trop Second EOP Data Reference Time in seconds from the start
of the GPS week
PM X Arcseconds X-Axis Polar Motion Value at Reference Time
PM X Arcseconds/ X-Axis Polar Motion Drift at Reference Time
- day
PM Y Arcseconds Y-Axis Polar Motion Value at Reference Time
PM Y Arcseconds/ Y-Axis Polar Motion Drift at Reference Time
- day
AUT1 Seconds UT1-GPS Difference at Reference Time
AUT1 Seconds/day | Rate of UT1-GPS Difference at Reference Time

Alternatively, when TDRSS Augmentation Service for Satellites (TASS) messages are available,
the current Earth Orientation Parameters, x, and y,, can be obtained directly from the values in
these messages.
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The additional transformation from the pseudo-body-fixed coordinates defined in Equations
(3.2-31) and (3.2-32) to the body-fixed ECEF frame is as follows:

For = B x. ), (3.2-45)*
For = B (x}.5)) 7, (3.2-46)*
where
1 0 x,
B(xp,y,)=| 0 1 -y, (3.2-47)*

! !

X, ¥, 1

and x'p and y; are the pole coordinates expressed in radians, where 1 arc-second =
0.4848136811095 x 107> radians.

In summary, the coordinate transformation from the mean equator and equinox of J2000.0 to ECEF
is given by

Frcer = BR,C R 15000 (3.2-48a)*

- d _ .
Fecer = B[E [R(ag )DCRJZOOO + BRg CRjzooo (3.2-48b)*

The coordinate transformation from ECEF to the mean equator and equinox of J2000.0 is given
by

]_ejzooo =C’ RgT BTFECEF (3.2-49a)*
Y r(d [ ] T T — T pT pT= *
Ry =C a R(a,) Ppeer +C Ry B Fpepy (3.2-49b)

3.2.4 Central-Body Inertial-to-RIC Coordinate Transformation

The matrix that transforms a vector in the central-body inertial frame to the RIC frame is formed
using RIC unit vectors expressed in the central body inertial frame defined in Equations 3.1-1
through 3.1-3:

ﬁc')?c éc'f/c ﬁc'ZAc
[TR1C<—XYZ]C = ic 'XC jc '?c fc 'ZC (3.2-50)*
CC'XC Cc' c CC'ZC

A vector expressed in the central-body mean of J2000.0 frame is transformed to RIC coordinates
with respect to the central-body frame as follows
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C

. (3.2-51)*

=~
a
~

I. |= [TRICeXYZ ]c

@)
a
N

C

A vector in RIC coordinates is transformed to mean of J2000.0 coordinates with respect to the
central-body frame as follows

X R.
YC = [TRICeXYZ ]Z [c (3.2-52)*
Z. Ce

3.2.5 Central-Body Inertial to RIC Covariance Transformation

A [6 x 6] position and velocity covariance matrix [P] in RIC coordinates with respect to the
central-body frame is transformed into central-body mean of J2000.0 coordinates as shown below:

[TRIC<—XYZ ]C O3><3 i|T |:[TR1C<—XYZ ]C 03><3 :|
Plyyz, = P (3.2-53)*
Pl { 0n el Pl 0 L

RIC—XYZ

This transformation is used when transforming the initial RIC state error covariance matrix into
Mean of J2000.0 XYZ coordinates and when transforming the RIC state noise covariance matrix
into Mean of J2000.0 XYZ coordinates.

A [6 x 6] position and velocity covariance matrix [P] in XYZ coordinates is transformed into RIC
coordinates as shown below:

T

03><3

[Plec, {[TR’C“X”]C Oss ] }[P]XYZC[[TR“X”]C (3.2-54)*

03><3 [TRICEXYZ 03><3 [TRICeXYZ ]C

This transformation is used when transforming the state error covariance matrix into RIC
coordinates.

3.2.6 Inertial Cartesian to Rotating Libration Point Coordinate Transformation
(Future Release)

The transformation of the satellite position and velocity vectors expressed in the inertial mean of
J2000.0 frame, R and R , to the rotating libration point (RLP) frame defined in Section 3.1.5,

R, and R, , is computed as follows:

|:EL:| _ |:TRLP<—XYZ O3><3 :| |:§:| (3 2_55)*
RL TRLP(—XYZ TRLP%XYZ R

where
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[TRLP<—XYZ]= Yiv Vi, Vi (3.2-56)*

[TRLP<—XYZ:|= .);}Lx )A’Ly )A’Lz (3.2-57)*

The inertial coordinates of the RLP unit vectors x,, y,, and Z, are defined in Equations 3.1-4
through 3.1-6. The rates of change of the inertial coordinates of the RLP unit vectors X L f/ > and

z, are defined in Equations 3.1-9 through 3.1-11.

3.2.7 Rotating Libration Point to Libration-Point-RIC Coordinate Transformation
(Future Release)

The LRIC unit vectors defined in Section 3.1.6 can be formed into a matrix that transforms RLP
coordinates into LRIC coordinates:

I%Lx jéL v R\Lz
[TLRICERLP] =11, [Ly I, (3.2-58)*
Lx Ly Lz

A vector in RLP coordinates, such as a line-of-sight position vector from the libration point to the
user satellite, is transformed into LRIC coordinates as follows

R, XL
I, |= [TLRICeRLP] Vi (3.2-59)*
G, Zy

A vector in LRIC coordinates, such as a thrust acceleration vector, is transformed into RLP
coordinates as

Xp R,
Yo | = [TLR1C<—RLP ] ’ I, (3.2-60)*
Zy C,

3.2.8 Spacecraft Antenna Offset Transformations

This section provides transformations that are used to transform antenna offset vectors expressed
in a spacecraft body-fixed frame to an offset vector in the inertial frame.
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The position and velocity of antenna m on spacecraft n are computed as follows in terms of

constant antenna offsets expressed in the spacecraft body frame [( 7 )B , (Ayfim )B ,( . )B] :

(v,
R,"(t) =R () + Thpes |

(s,
(ax,

L) =R + Ty (

(o,

where R(t,) and R (t;) are the position and velocity of the spacecraft center of mass and Ty, »

=

:u: :;: ::;:

y

\—/Qj‘/\—/

bu

G

(3.2-61)*

2

[s)

>

::;3 i);: h;:

y

\—/bd;/ S—

Q:J

and T vz p are the transformation matrix from the local body frame to the J2000.0 inertial frame

and its time derivative, respectively.

Sections 3.2.8.1 and 3.2.8.2 define the transformation matrices Ty, , used for 3-axis stabilized
spacecraft and spin-stabilized spacecraft, respectively.

3.2.8.1 Three-Axis Stabilized Spacecraft

For a three-axis stabilized spacecraft, the transformation matrix Ty, , is equal to the transpose
of the attitude matrix A(¢), which maps vectors from the J2000.0 inertial frame to the satellite
body frame.

T;YZeE = AT(t)

n ~
TXYZ«B =0

(3.2-62)*

At time t, the attitude matrix is given by
cosycosdp—sinycosOsing  cosysind+sinycosOcosd sinysinO
A(t) =| —sinycosp—cosycosOsing —sinysind+cosycosOsing cosysin0 |(3.2-63)
sin Osin ¢ —sinOcos ¢ cosH
where

¢, 0,y = satellite body yaw, pitch, and roll angles at time t with respect to the inertial
frame, corresponding to a 3-1-3 sequence of Euler angle rotations

or equivalently

-9 -9 +q;  2(9,9, +9:9,) 29,95 — 9,9,)
At = 2q,9,-99,) —4;+9—q;5+q; 29,95 +4,9,) (3.2-64)*
2(¢,9; +9,9,) 2(9:95 - 99:)  —4i — ¢ + 45 +4q;
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where

q:-95-95- 9, = quaternion elements or Euler symmetric parameters defining the
orientation of the satellite body at time t with respect to the inertial frame
The capability is available in GEONS to input an attitude history file that contains the values of
the quaternion elements at specific times. Operationally, this attitude information could be

provided by an onboard attitude estimator operating in parallel with the GEONS orbit estimator or
by an advanced star tracking system that provides the attitude quaternion directly.

Definitions of the spacecraft body frames are spacecraft specific; however, the target attitude frame
is often defined with the z, —axis along the radial or anti-radial direction, the x, —axis along the
in-track or anti-in-track direction, and y, — axis along the cross-track or anti-cross-track direction.
For the case of a nadir-pointing spacecraft rotating at 1 revolution per orbit with negligible attitude
control errors, the transformation matrix Ty,,, , in Equation (3.2-61) is equivalent to the matrix

[Toceryz] > defined in Section 3.2-50, which maps a vector in the RIC frame to the inertial frame.

If the antenna offsets are expressed in terms of RIC components in the central body frame,
Equation (3.2-61) reduces to

AR}
EAmn (t%) =R" (k) +[T1;11CeXYZ]CT Al (3.2-65)*
AC)

3.2.8.2 Spin-Stabilized Spacecraft

For spin-stabilized spacecraft, Ty, 5 is the transformation matrix from the rotating local body

frame to the J2000.0 inertial frame. Figure 3-8 illustrates this rotating body frame. The satellite
spins at a rate @, about the spacecraft spin axis, nominally parallel to the geometric axis of the

satellite. The rotating body frame is centered at the spacecraft center of mass with the z, axis
along the spin axis direction and the x, and y, axes in the plane perpendicular to the spin axis.
The location of the x, and y, axes is satellite specific; one axis is usually chosen to be aligned
with a specific hardware element such as a solar panel or a sensor. The phase angle ¢, defines
the instantaneous location of the x, axis relative to a body-centered non-rotating frame.

The orientation of the spin-axis with respect to the geocentric inertial J2000 frame is expressed as
follows:

COS 0L, COS O,

A=|sin O, COS O, (3.2-66)
sind,
where
A = unit vector along the spacecraft spin axis
o, = theright ascension of the spin axis
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8, = declination of the spin axis

Earth’s Mean
Spin Axis at J2000.0
z,
Spacecraft
Spin Axis (4)

Vernal Equinox
at J2000.0

Figure 3-8. Definition of Rotating Body Frame

The transformation matrix 7Tyy,, , from a vector expressed in this rotating body-fixed frame to a
vector expressed in the inertial frame can be written in terms of three rotations:

Thyes = [& (4R, <§ ~8,)R, (ag)}

cosd,sind,coso, —sind,sino, —sind,sind,cosa, —cosd,sinao, cosd,cosa, (3.2-67)*
=|cosd,sind,sino, +sin,coso, —sind,sind,sina, +sind,coso, cosd,sina,
—cosd, Ccosd, sing, cosd, sind,
Xp Xy Vg X ZptX
S\ Xp Y YV Zpt )y

XptZp VprZ; ZptZ

—sing, sind, cosa, —coSP,sina, —cosd,sind,cosa, +sind,sino, 0

.n _ . . . . .
Ty p =0y —siNd,sind,sinol, +cosd,cosa, —cosd,sind,sina, +cosd,cosa, 0
sind, cosd, cosd, cosd, 0

(3.2-68)*

The capability is available in GEONS to input an attitude history file that contains the values of
the right ascension and declination of the spin axis with respect to the inertial reference frame, the
rotation rate, and the phase at specific times. The value of the phase at any time is computed as
follows based on the most recent input values for ¢, and o, :

0, (1) = mod[o, (t1.,) + 0, (&) 17, 27] (3.2-69)*
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3.2.9 ECI to Lunar Principal Axis Frame Coordinate Transformation

The Lunar Principal Axis (LPA) (also referred to as selenographic) coordinate frame is used to
define positions on the Lunar surface and to compute the spacecraft acceleration arising from the
Moon’s nonspherical gravitational potential. The coordinate axes are the principal axes of inertia
of the Moon, defined in Section 3.1.7. The orientation of the lunar principal axes with respect to
the mean of J2000 frame is given by three Euler angles: (1) the rotation by angle ¢ about the Z-

axis from the vernal equinox (X-axis of J2000.0 frame) to the intersection of the ascending node
of the lunar equator, (2) the tilt up about the X-axis by 0 to match the lunar equator, and (3) the
rotation by y along the lunar equator to the lunar prime meridian.

The transformation of position and velocity vectors from the Earth-centered Mean of J2000.0
frame (ECI) to the Lunar-centered Mean of J2000 reference frame (LCI) is given by

R ;2000 e

R ;2000 .

=R 5000 . R foon o

(3.2-70)*

~

J2000 pop RMoon rcr

where R, and I;QMW .., are the position and velocity of the Moon in the Mean of J2000.0

Moon g,

geocentric frame.

The transformation of a position and velocity vector from the LCI frame, R, ., » to the LPA

frame, 7,,, ,1s given by

Trea = Tipac 2000 e R ;2000 el

(3.2-71)*

Frea = Tppac sa000 o R ;2000 o T T pacr2000 L R ;2000 e

where the rotation matrix, 7p,, 50, » transforms the vector from the Mean of J2000.0 lunar-

centered frame to the lunar principal axis frame.

In terms of the Euler angles of the lunar principal axes relative to the J2000 reference frame, the
rotation matrix 7}, ;x ,,, 1S given by

Tipacroom,, = R(y)O(O)R(9) (3.2-72)

where the elementary rotation matrices are defined in Section 3.2.

3.2.9.1 Transformation Using Chebyshev Series Representation

The most accurate source for the lunar Euler angles is a modern high precision planetary ephemeris
(accurate to less than 1 meter). Note that the Euler angles provided in DE403 were used to develop
the LP100K nonspherical lunar gravity model and are therefore the best choice for use with that
gravity model. The DE series 400 files provide Chebyshev coefficients for the Euler angles
referenced to TT. These coefficients can optionally be used in GEONS to compute the
transformation given in Equation (3.2-72). In this case the Euler angles are evaluated using the
following formulas:
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Each Euler angle (¢,0,y) and the associated rates are computed as follows:

x(t) = Y e, 7.(%)
"0 (3.2-72a)*

x(tr) = ichn (v)

where 7., is the request time in TT (computed using Equations 4.1-28b and 4.1-28c¢), ¢, are the

associated Chebyshev coefficients, 7, (t) and Tn (1) are the Chebyshev polynomials for the angles

and angular rates respectively, and N is the degree of the expansion. The Chebyshev polynomials
are computed using the following recursion formula:

T (v)y=2T, ,(v)-T,,(t), n=23,.. (3.2-72b)*
where 7 (t)=1and 7,(t) =r.

The applicable range of interpolation for the Chebyshev time parameter T is —1<1t<1, which is
computed as follows:

= Al (3.2-72¢)*
AT,

where At =t, —T>" is the elapsed time from the start time of the polynomial fit interval, 7;>"
, and AT, is the length associated Chebyshev polynomial fit interval. The fit interval is 32 days
for the Euler angles.

The transformation is computed as follows:

cosycosp—sinysinhpcos®  cosysind+sinycospcosd  sinysinO

Tpsc oom,, =| —Sinycosd—cosysinpcos® —sinysing+cosycosdcosd cosysind | (3.2-72d)*
sinpsin6 —cos¢sin 0 cos0
The time derivative of the rotation matrix, 7,,,. 000 L, » 18 obtained by differentiating its elements:

3-34



—ysinycosd —\sinysin ¢
. . ¥
(1.)008\4181.1’1(1) d.)cosq/cosq) / cos y sin 0
—\cosysindcoso +ycosycoshcosO .
. . ) + OsinycosH
—¢sinycosdpcosO —¢simysindcosH
+0sinysin ¢sin O —Osiny cos ¢sin O
—\J/ COS \y cOs { —\ycosysing
. +d‘)si.n\|fsi.n¢ —d‘)si.n\ycos¢ —sinysin
T, pac so000,.. =| | +WsinysindcosO —\siny cosdpcos O .
e : : ) +06cosycos O
—pcosy cos ¢ cos O —¢cosysindpcosO
+0cosysin ¢sin 0 —0cos\ycos dsin O
hcos hsin O hsin ¢psin O .
. . —0sin6
+ OsinpcosO —0BcosdcosO
(3.2-72e)*

and T J2000,, < LPA — [T LPA<J2000 | ¢y ]I .

3.2.9.2 Transformation Using Analytical Series

GEONS also provides the following analytical approach to compute this transformation, which is
based on a conversion of the IAU 1994 series for lunar physical librations of the mean lunar pole
frame to the DE403 lunar principle axis frame. This approach is less accurate (accurate to about
100 meters on the lunar surface) than using the Euler angles provided in the high precision
planetary ephemeris but is more appropriate for implementation in flight software. In terms of the
IAU 1994 series, the transformation matrix 7}, ;5 ,., 1S computed as follows:

T,

LPA<J2000 0, — Tipscmr Tupesaon Lo

(3.2-73)

where T,,, ,, 18 the transformation from the IAU mean lunar pole frame to the DE403 lunar

principle axis frame and 7, .y, 18 the transformation from the IAU mean lunar pole frame to

the mean of J2000.0 frame.

References 44 and 45 provide modifications to the IAU lunar physical libration series given in
Reference 43 to account for the differences between the IAU mean lunar pole and principle axis
frames based on a body-fixed lunar orientation of DE403. The resultant transformation is given by

Tpac o000, = RIA)OO0" =8,)R(a, +907)
—cosAsino, —sinAsind,cosa, cosAcosa,—sinAsind,sino, sinAcosd, (3.2-74)*
=| sinAsina, —cosAsind,cosa, —sinAcosa,—cosAsind,sina, cosAcosd,
cosd, cosa,, cosd, sina, sing,
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where o, = @—90° is the right ascension of the lunar north pole with respect to the mean of 72000

frame

o, =269.9949+0.00317, -3.8787sin E, —0.1204sin E, + 0.070sin £,
—-0.0172sin E, +0.0072sin E, —0.0052 sin E,, +0.0043 sin £, (3.2-75)*
+0.0553cos 4, +0.0034cos(4, + E,) (degrees)

8, =90° -0 is the declination of the lunar north pole with respect to the mean of J2000 frame

3, =66.5392+0.01307, +1.5419cos E, +0.0239cos £, —0.0278cos E
+0.0068cos E, —0.0029cos E, +0.0009cos E, +0.0008cos E, (3.2-76)*
—0.0009cos E}; +0.0220sin 4, +0.0007sin(4, + E,) (degrees)

and A =y is the lunar prime meridian with respect to the mean of J2000 frame

A=A, +3.5610sin E, +0.1208sin £,
—0.0642sin E;, +0.0158sin £, +0.0252sin E; —0.0066sin £, —0.0047 sin E, (3.2-77)*
—0.0046sin £, +0.0028sin £, + 0.0052sin £, + 0.0040sin £,
+0.0019sin £, - 0.0044sin £,; +0.01775-0.0507 cos A , —0.0034 cos(A , + E)) (degrees)

where

E, =125.045-0.0529921d, (degrees) (3.2-78)*
E, =250.089-0.1059842 d, (degrees) (3.2-79)*
E, =260.008+13.0120009 d,  (degrees) (3.2-80)*
E, =176.625+13.3407154 d,  (degrees) (3.2-81)*
E; =357.529+0.9856003 d, (degrees) (3.2-82)*
E, =311.589+26.4057084 d, (degrees) (3.2-83)*
E, =134.963+13.0649930d,  (degrees) (3.2-84)*
E, =276.617+0.3287146 d, (degrees) (3.2-85)*

E, =34.226+1.7484877 d, (degrees) (3.2-86)*

E, =15.134-0.1589763 d, (degrees) (3.2-87)*
E, =119.743+0.0036096 d,  (degrees) (3.2-88)*
E,, =239.961+0.1643573d, (degrees) (3.2-89)*
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E, =25.053+12.9590088 d, (degrees) (3.2-90)*
A, =383213+13.17635815d, ~1.4x107"2d,>  (degrees) (3.2-91)*

where d, is the time interval in days from January 1.5, 2000 TCB (Julian date: 2451545.0) and

T, is the time interval in Julian centuries of 36525 ephemeris days, 1.e. T, = .

¢ 36525

The time derivative of the rotation matrix, 7}, 5, » s Obtained by differentiating its elements,

assuming that &, and 6, are zero:

sinAsino, —cosAsind,cosa, —sinAcoso,—cosAsind,sina, cosAcosd,

(3.2-91a)*

Tipscaom0,, =N cosAsina, +sinAsind,cosa, —cosAcosa,+sinAsind,sina, —sinAcosd,
0 0 0

and T J2000,, < LPA — [T LPA<J2000 | ¢y ]I .

13.17635815 W

where A =13.17635815 degrees per day =A =
86400 180

radians per second, the first

order rotation rate of the Moon.

3.2.10 VBN to CBI Coordinate Transformation

The transformation of a vector expressed in the VBN frame defined in Section 3.1.8 to the
central-body inertial mean of J2000.0 frame is computed as follows:

X, Ve
YC = [TXYZeVBN ]c Bc (3.2-92)*
Z. N,
where
I}C')A(c Z§c'j(c Nc'j(c
[TXYZeVBN ]c =\ Ve-Ye Be'Yo Ng-Ye (3.2-93)*
cZe Be-Zo No-Zg

3.2.11 ECI to Non-Earth CBI Coordinate Transformation

The transformation of position and velocity vectors from the Mean of J2000.0 Earth-centered
frame (ECI) to the Mean of J2000 reference frame of a non-Earth central body (CBI) is given by

R ;2000 per

=R 12000 . R pianer o

(3.2-94)*

R 5000 el

J2000 poy RPlanet £

~
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where R,,,., .., and R, are the position and velocity of the non-Earth central body in the

Mean of J2000.0 Earth-centered frame.

Planet g,

3.2.12 Non-Earth CBI to PBF Coordinate Transformation

The transformation from the non-Earth CBI to PBF frame is performed using the cartographic
coordinates of the body provided in Reference 48. The cartographic coordinates of the body consist
of the orientation of the axis of rotation (north pole) and the prime meridian of the object with
respect to the inertial ICRF. In the absence of other information, the axis of rotation is assumed to
be normal to the mean orbital plane.

The transformation is given by

Tosre 20000 = R(A)O(90" - 8,)R(a, +907)

—cosAsina, —sinAsind, cosa, cosAcosa, —sinAsing,sina, sinAcosd, | (3.2-95)*
=| sinAsina, —cosAsind,coso, —sinAcoso,—cosAsind,sina, cosAcosd,
cosd, cosa, cosd, sina, sing,

where o, = 9—90° is the right ascension of date of the axis of rotation (north pole) with respect to

the ICRF frame, 6, =90" -0 is the declination of date of the axis of rotation with respect to the
ICRF, and A = is the prime meridian with respect to the ICRF.

The time derivative of the rotation matriX, Tpp.. ;5000 - 18 Obtained by differentiating its

elements, assuming that &, and 6, are zero:

sinAsina, —cosAsind,coso, —sinAcoso,—cosAsind,sina, cosAcosd,

(3.2-96)*

Togre y20om,, =A|cosAsina, +sinAsind,cosa, —cosAcoso,+sinAsind;sina, —sinAcosd,
0 0 0

and T

J 20000y < PBF — [T PBF «J 2000 PC[]T :
Table 1 in Reference 48 provides the following approximate expressions (accurate to 0.1 degree)

for computing these angles, which are summarized in Table 3-3.

Table 3-3. Values for the Direction of the North Pole of Rotation and Prime
Meridian of the Sun and Planets

Body Right Ascension ( Declination (0, ) Prime Meridian (A) | Rotation Rate (A)
Q) (degrees) (degrees) (degrees) (degrees/day)
Sun 286.13 63.87 84.10 +14.1844000d 14.1844000
Mercury 281.01 - 0.033T 61.45—-0.005T 329.548 + 6.1385025d 6.1385025
Venus 272.76 67.16 160.20 — 1.4813688d —1.4813688
Mars 317.68143 — 52.88650 - 0.0609T 176.630 + 350.89198226
0.1061T 350.89198226d
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Body Right Ascension ( Declination (0, ) Prime Meridian (A ) | Rotation Rate (A )
Q) (degrees) (degrees) (degrees) (degrees/day)
Jupiter 268.05 - 0.009T 64.49 + 0.003T 284.95 + 870.5366420
870.5366420d
Saturn 40.589 — 0.036T 83.537 — 0.004T 38.90 + 810.7939024d 810.7939024

where d is the time interval in days from January 1.5, 2000 TCB (Julian date: 2451545.0) and 7'
is the time interval in Julian centuries of 36525 ephemeris days from January 1.5,2000 TCB (Julian

date: 2451545.0 TCB), 1.e. T = L
36525

3.2.13 Ecliptic to CBI Coordinate Transformation
The ecliptic coordinate frame is defined as follows:

e x-axis is pointing from the center of the Earth towards the vernal equinox of epoch
J2000.0

e z-axis is perpendicular to the ecliptic (Earth-Sun) plane
e y-axis completes the right-handed system

The transformation matrix from the ecliptic frame to the inertial frame is given by:

1 0 0

T72000¢ect = Re(=€,,) =| 0 cos(e,,) —sin(e,) (3.2.13-1)
0 sin(g,,) cos(g,,)

where the mean obliquity of the Ecliptic, ¢,,, is computed using Equations (3.2-17) and (3.2-18).

3.2.14 J2 Mean Semimajor Axis Error

The J2 mean semimajor axis error is computed as the difference of the truth J2 mean semimajor
axis and the estimated J2 mean semimajor axis.

Aa=alye —atmee (3.2.14-1)*

The J2 mean semimajor axis is defined to be

P :% lPPM+J2E _‘T (3.2.14-2)*
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where pz is the gravitational constant of the Earth and . ,, is the sum of the gravitational

potential due to the Earth’s point mass and J2

2
y7i R, .
Yemssz, = ?E[l + Cg( R ) P (sin ¢)] (3.2.14-3)
where
R = magnitude of the vector from the Earth’s center of mass to the satellite
u, = gravitational constant of the Earth (398600.4415 x 10° meters’/second® for

consistency with the JGM-2 gravitational model)

R. = equatorial radius of the Earth

C) =-J,= second order zonal harmonic coefficient for the Earth

¢ = geocentric latitude
P! (sing)= [3s1n ¢- 1]

Ignoring polar motion effects, the geocentric latitude is computed as follows:

é =sin”! (5) (3.2.14-4)*

r

where (F, X, Y, z) are the TOD components of the spacecraft position vector. The spacecraft state
in the TOD frame is computed from the vector in the Mean of J2000.0 frame as follows

7 =CR (3.2.14-5)*
where the C matrix is defined in Equation 3.2-26).
Using Equation 3.2.14-4, Equation 3.2.14-3 reduces to the following:

2 2
_Hp|  G(RY(32
Yemsiz, = R {1"' 2 LRJ (3 2 lj:l (3.2.14-6)*

Note that Equation (3.2.14-3) is an extension of the definition of the semimajor axis to include the
J2 potential. The standard definition of the semimajor axis given by

-1

a = 2.0 (3.2.14-7)
Ry

which can be rewritten as follows
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M
a ZTE l//PM—T (3214-8)

where y,,, = % is the gravitational potential due to the Earth’s point mass gravitational term.

3.2.15 1AU-2000 ECI/GCRF to ECEF/ITRF Coordinate Transformation (Planned for
GEONS 3.1)

The IAU-2000 GCRF to ITRF transformation is discussed in detail in Reference 49. GEONS
implements the following CIO-based computation approach, which is consistent with the
recommendations provided in Reference 62, to relate the International Terrestrial Reference Frame
(ITRF) to the Geocentric Celestial Reference Frame (GCRF) at the date t:

Ry (1) = O(t) RO W (£)Fy (1) (3.2.15-1)*

where Q(?) is the transformation matrix arising from the combined effects of nutation, precession
and frame bias (Celestial Intermediate Reference Frame (CIRF) to GCRF rotation), R(?) is the
transformation matrix arising from the rotation of the Earth around the axis associated with the
pole (Terrestrial Intermediate Reference Frame (TIRF) to CIRF rotation), and W(t) is the
transformation matrix for polar motion and from the ITRF origin (ITRF to the TIRF rotation).
The parameter t, used in Eq. (3.2.15-1) is defined by

t =(TT —2000 January 1d 12h TT) in days / 36525 (3.2.15-2)*
where TT=TAI + 32.184s is Terrestrial Time.

The corresponding transformation for the velocity vector is obtained by taking the time derivative
of Eq. (3.2.15-1). The time derivatives of the Q(¢) and W(¢) rotation matrices are negligible;
however, for the R(?) rotation, the derivative of the rotation matrix around the equator must be
included:

I;eGCRF =0() (%[R(t)]j W ()7 e + O(1) R(2) W(t)?ITRF (3.2.15-3)*

where

—sin(ERA) cos(ERA) O
(%[R(f)]}we —cos(ERA) —sin(ERA) 0 (3.2.15-4)*
0 0 0
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and

w = Earth rotation rate equal to 7.2921158553 x 107 radians per second

e

ERA = Earth Rotation Angle between the Celestial Intermediate Origin (CIO) and
the Terrestrial Intermediate Origin (TIO) at date t on the equator of the Celestial Intermediate
Pole (CIP)

The definition of the GCRS and ITRS and the procedures for the ITRS to GCRS transformation
that are provided in Reference 49 comply with the IAU 2000/2006 resolutions. More detailed
explanations about the relevant concepts, software and IERS products corresponding to the IAU
2000 resolutions can be found in IERS Technical Note 29 (Capitaine et al., 2002).

Software routines to implement the IAU 2006/2000A transformations are provided by the IAU
Standards Of Fundamental Astronomy (SOFA) service. Implementations in Fortran77 and C are
available. The SOFA software supports both the CIO-based and classical Equinox-based
approaches for implementing the IAU resolutions in the transformation from ITRS to GCRS
provided by Eq. (3.2.15-1). For both transformations, the procedure is to form the various
components of Eq. (3.2.15-1), choosing for the Q(?) and R(?) pair either the CIO based or classical
forms, and then to combine these components into the complete terrestrial-to-celestial matrix.
Formulations for Q(?) using either the full IAU-2000A or truncated IAU-2000B nutation models
are provided. The GEONS implementation makes use of the CIO-based routines available in the
open-source Essential Routines for Fundamental Astronomy (ERFA) library, which are based on
the SOFA library routines.
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3.3 Time Systems

GPS time is the basic time system for the GPS SV ephemerides and the GPS Tensor™ receiver
computations. Coordinated universal time (UTC) is the basic time system for GEONS’ internal
computations. Universal time corrected for polar motion (UT1) is used in computing the GHA,
which is used in transformations between the inertial and ECEF coordinate frames. The
transformations between these time systems are provided in this section.

3.3.1  Conversion From GPS System Time to UTC

GPS time is measured in terms of the number of weeks elapsed from the GPS standard epoch and
the number of seconds from the beginning of the GPS week (00:00 Sunday). The GPS time system
(GPST) has a constant offset of 19 seconds with respect to the International Atomic Time (TAI)
and was coincident with UTC at the GPS standard epoch. Table 3-4 lists the standard GPS and
J2000.0 epoch dates. Reference 9 provides a detailed discussion of the GPS time system.

Table 3-4. Standard Epochs

Epoch Calendar Date Time System Julian Date
GPS 1980 January 6% uTC 2444244.5
J2000.0 2000 January 195 T 2451545.0

The GPS Week count (WN) starts at the GPS standard epoch and is modulo 1024. Therefore, the
week count will roll over at Julian Date 2442444 .5+7*%1024 = 2451412.5, which is midnight 21-
22 August 1999 UTC.

The following basic relations hold between these time systems for calendar years 1972 and later:

TAI= GPST + 195000 (constant offset) (3.3-1)

TAI= UTC + 15000 n (3.3-2)

where n is the accumulated integer leap second offset

Using these relations, UTC can be obtained from GPST as follows:
UTC = GPST +(195000 - 15000 n) (3.3-3)*

At the GPS standard epoch, UTC = GPST. In late 1991, the value of n was 26, leading to a 7-second
difference between GPST and UTC. Note that GPST always goes ahead of UTC. For example, the
beginning of the GPS week will precede the beginning of the corresponding UTC calendar week
by an integer (= n — 19) seconds.

For conversion of GPS time to UTC using Equation (3.3-3), the GPS week count roll over must
be taken into account. The current GPS week number can be derived from the Week Number
contained in word 3 of subframe 1 of the navigation message (WN) , taking into account the roll
over every 1024 weeks, as follows:
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WN'= WN +1024N (3.3-3a)*

where N is initialized to zero for initialization times prior to midnight 21-22 August 1999 and to 1
for initialization times after to midnight 21-22 August 1999. The value of N is incremented by 1
when the roll over occurs (first message for which previous WN =1023, current WN = 0). The
relation given by Equation (3.3-3) is correct to within 1 microsecond.

The broadcast SV ephemeris message contains GPS-UTC clock correction terms that can be used
to compute the offset of the broadcast GPS time from UTC to within 90 nanoseconds. However,
these corrections are not currently implemented in GEONS. Page 18 of subframe 4 of the
navigation message includes the UTC conversion parameters that are shown in Table 3-5.

Table 3-5. GPS-to-UTC Time Conversion Parameters
Included in Page 18 of Subframe 4

Parameter Units Description

A, Second Constant term of the polynomial

A, Seconds/ Coefficient of the first-order term of the polynomial
second

At Second Delta time due to leap seconds (definitive)

t, Second Reference time for UTC data

WN, Week Reference week number for UTC data

WN s Week Week number for the scheduled leap second

DN Day Day number for the scheduled leap second

AV Second Scheduled delta time due to leap seconds

There is one additional time parameter needed for the UTC conversion, the user estimated time
(z.). The user estimated time (,) (user’s current time) should be in seconds from start of the current
week. The last three parameters in Table 3-3 describe the scheduled future (with respect to the
reference time for the UTC data) leap second update. The day associated with the week number
(WNLsr) and the day number (DN) At . becomes effective is referred to as the effectivity date.

Note that ‘day one’ is the first day relative to the start of week.

Reference 10 gives three different UTC computation algorithms. The relationship of the effectivity
date to the user’s current GPS time will determine that algorithm should be used, as shown below:

(a) Whenever the effectivity date is not in the past relative to the user’s current time and the
user’s current time does not fall in the timespan that starts at DN+3/4 and ends at DN+5/4,
the UTC time (in seconds from start of the current week) is obtained from the GPS time
using the following equations:

tyre = (1, — Atyye) [mod 86400]
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where the UTC conversion term, Af, -, is computed using the following expression:
Aty =AMt g+ Ay + A[t, —t,, +604800(WN —WN,)] (3.3-5)

(b) Whenever the user’s current time falls within the timespan of DN+3/4 to DN+5/4, the
following UTC time conversion equations will accommodate the leap second event with
a possible week number transition:

ture = W [mod (86400 + At ¢ — At )] (3.3-6)

where

W=(t, — Aty —43200) [mod 86400]+ 43200 (3.3-7)
The term At,,; in the above equation is computed using Equation (3.3-5) as in the case
of (a).

(c) Whenever the effectivity date is in the ‘past’ relative to the user’s current time, the
relationship given for UTC in the case of (a) above is valid except that the value of Af, g

is substituted for Az, in computing At -, 1.€.,

The UTC conversion parameters used in Equation (3.3-5) [all the parameters on the right-hand
side of this equation] are contained in the GPS navigation message (page 18 of subframe 4 in
Reference 10). The corrections associated with the 4, and 4, terms are on the order of

nanoseconds.
3.3.2 Conversion From GPS SV Clock Time (tsv) to GPS System Time
GPS SV clock time is converted to the GPS system time using the following equation:
t=1%9 -8t (3.3-9)*
]

The SV time offset, of s7» from the GPS system time is computed using the time offset correction

parameter 7, and the SV clock polynomial parameters (ao, a1, and az), all of which are available

from the broadcast navigation message for GPS SV j. This offset is given by the following
expression taken from Section 20.3.3.3.3.1 of Reference 10 with the addition of the clock

correction parameters AStg.C(t) when available from the TDRSS Augmentation Service for
Satellites (TASS) broadcast messages:

Sty = ay+a,(t—tye) +ay(t—tyc) + Fed"?sin E, + A8ty (t) (3.3-10)*
and the rate of change of the SV time offset is given by

Sts; = a; + 2a,(t — toc) + EFeAY? cos Ey, (3.3-10b)*
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where

F = —4.442807633 x 107'° seconds/(meter)”

e = eccentricity

A2 = square-root of semimajor axis

E, = eccentric anomaly

E = rate of change of the eccentric anomaly, 1—eZTEk where n = \/H(Al/ 2)_3 + A4An

The Keplerian orbit parameters e and 42 and the mean motion correction An are available from
the ephemeris parameters included in the broadcast navigation message, and the eccentric anomaly
E, can be computed using Kepler's equation (see Section 5.2.2).

The term FeA'"?sin E , represents the relativistic correction that depends on the eccentricity of

the GPS orbit, which can also be computed using an equivalent expression, —2R .} / ¢> . The clock
polynomial coefficients (a,, a,, a, ) and the clock data reference time (#,.) are given in subframe

1 of the navigation message. The SV clock offset is used in the pseudorange measurement model
given by Equation 5.3-20 in Section 5.3.2.

The TASS messages will provide precise GPS differential corrections and other ancillary data to
enable decimeter level orbit determination accuracy and nanosecond time-transfer accuracy,
onboard in real-time. TASS will broadcast its message on the S-band multiple access channel of
NASA’s TDRSS. Broadcasts will be available from three or more TDRSS satellites, providing
global coverage.

When the GPS ICE differential correction (DC) messages are available, Equation (3.3-10) is
computed as follows:

Oty =(ay+0a,,)+(a, +0a, )t —ty)+a,(t ~ty0)’ + Fed"’ sinE, (3.3-10c)*
Equation (3.3-10b) is also corrected as follows:
iy =a, +8a,, +2a,(t—t,.)+ EFed"” cosE, (3.3-10d)*

The clock DC coefficients will be transmitted as part of the GPS Broadcast messages. Table 5-2
provides a description of these parameters. Section 30.3.3.7 of Reference 10 provides a detailed
discussion of these corrections.

When the GPS SV ephemeris is obtained from a precise ephemeris, which contains position,
velocity, and clock polynomial coefficients (a,,a,) at equally spaced points in time, rather than

a broadcast navigation message, the following equation is used to compute the SV time offset and
offset rate of change at time t:

Otg =a,+a,(t—t,)-2

R(@)-V(¢) (3.3-11)*
C2 '
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L 2(, 1
Sty = a —c—z[v _TEJ (3.3-11b)*

where ¢, is the time point immediately preceding the time ¢ and R(¢) and V (¢) are obtained by
interpolation of the precise ephemeris data.

In addition, there are group delay correction terms for L1, L2, and L5 users and ionospheric
correction parameters for single frequency L1 P, L1 C/A, L2 P, and L2 C users and dual frequency
L1/L2 users. These include the L1-L2 group delay differential correction parameter, 7 and inter-

signal group delay corrections (ISC) associated with the mean SV group delay differential between
the L1 P and the L1 C/A codes (ISC,,., ,), the L1 P and the L2 C codes (ISC,,.), the L1 P and

the L5 IS codes (ISC,;;;), and the L1 P and the L5-Q5 codes (ISC,,s), (Reference 10 (Section

30.3.3.3.1.1) and Reference 46 (Section 20.3.3.3.1). The group delay correction parameters, 7p,

and the ISC values are provided to the user as message type 30 data (Table 30-IV in Reference 10
and Table 20-IV in Reference 46).

Including these corrections, the additional single frequency SV clock correction is given by

(037), ., =T, +1SC]" (3.3-12)*
br7) | =T, +15CJ (3.3-12a)*
00" ),,, =~Tan, +15C1*" (3.3-12b)*
0127), ..o =Ten, +15C}*% (3.3-12¢)*

The user who uses both frequencies does not require this correction since the clock parameters
account for the induced effects. See Section 5.3.1.2 for description of group delay and ionospheric
corrections for dual-frequency pseudorange measurements.

3.3.3 Conversion From Julian Date to Calendar Date

The conversion from Julian date (JD) to calendar date is performed using the following algorithm:

Li=JD + 68569 (3.3-13)*
N =4L, /146097 (3.3-14)*
Ly = L, — (146097 N +3) / 4 (3.3-15)*
L =4000(L, +1) /1461001 (3.3-16)*
Ly =L, — 14611, /4+31 (3.3-17)*
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Ji =80L, /2447 (3.3-18)*

K =L, —2447J, /80 (3.3.19)*
Li=J, /11 (3.3-20)*
J =J,+2-121, (3.3-21)*
I =100(N—-49)+1, +L, (3.3-22)*

where JD is the Julian Date + 0.5 truncated to an integer, / is the year, J is the month, and K is the
day of the month. In this computation, all variables are integers and a division by integers implies
truncation of the quotients to integers.

3.3.4 Conversion From Calendar Date to Julian Date

The conversion from calendar date to Julian date (JD) can be performed using the following
algorithm:

D —32075+1461(Y +4799)/ 4 + 336

~3[(Y +4899)/100]/ 4

where Y is the year, D is the day of the year, and S is seconds of the day.

(equation deleted) (3 3_24)*

In these computations, division by integers implies truncation of the quotients to integers.

The calculation of the Greenwich sidereal time [Equation (3.2-36)] requires time values in the UT1
system. Therefore, a conversion algorithm between the UTC and UT1 time systems is required.
The conversion from UTC to UT1 is, in theory, a continuous function. The USNO distributes
predictions for the UT1-UTC corrections in IERS Bulletin-A. The UT1-UTC corrections are
computed for the date of interest using the following polynomial fit to these predictions:

AUT1=UT1-UTC = u, +u,(MJD - T,,,)) + u;,(MJD - T,,.,)* (seconds) (3.3-25)*

where MJD is the modified Julian date of the request date, defined by Equation (3.2-44), and
T,,;, 1s the modified Julian date of the epoch of the prediction and u,, u,, u, are commanded

values.
If the GPS Earth Orientation Parameters are made available, AUTI is computed as follows:
AUT1 = AUT14pg + AUT 14ps[t — tgop] (3.3-25b)*

The coefficients AUT 15p5 and AUT 14ps are provided as part of the GPS CNAV message type 32
on the L2C signal. Note that this option is not implemented in GEONS 3.0 but is planned for
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GEONS 3.1. Section 30.3.3.5 in Reference 10 provides a detailed discussion of the user algorithm
for application of the GPS EOP parameters. Table 3-2 provides a description of these parameters.

(Equation deleted) (3.3-26)

The coefficients u; are precomputed by performing a quadratic fit to the USNO UT1-UTC
predictions published in the IERS Bulletin-A.

(Equation deleted) (3.3-27)

The estimated accuracies of these predictions are 0.0017 second and 0.0048 second for 10- and
40-day predictions, respectively. The 3 u; coefficients and the epoch time of the prediction will
be uplinked to the spacecraft monthly.

The current UT1 time is then computed from the current UTC time as follows:

UT1=UTC + AUT1 (3.3-28)*

3.3.5 Conversion From UTC to TAIl and Terrestrial Time

International Atomic Time (TAI) is related to UTC as follows:

TAI =UTC +1.°000n seconds (3.3-29a)*

where n equals the total number of elapsed leap seconds (i.e.,10 plus the number since 1972).

Terrestrial Time (TT) is the time scale of the apparent geocentric ephemerides of the bodies in the
solar system. It is used in the evaluation of the precise analytic solar/lunar ephemeris series
described in Section 4.1.1.2. TT replaces the now obsolete Terrestrial Dynamical Time (TDT) and
ephemeris time (ET). TT is related to TAI as follows:

TT =TAI +32.184 seconds (3.3-29)
Using Equation (3.3-2), TT is computed from UTC as follows:
TT=UTC+ 15000 n +32.184 seconds (3.3-30)*

The conversion from TT to TDB is performed for evaluation of the DE planetary ephemeris using
ERFA library Time and Calendar routines.

3.3.6 Relativistic Clock Corrections

This section discusses the effect of special and general relativity on spacecraft clocks. The primary
relativistic effects on a satellite clock are the second order Doppler shift and the gravitational
frequency shift. Clocks moving in space run faster than clocks at rest on the surface of the Earth
due to the lower gravitational potential in satellite orbit but run slower due to their higher velocity.
For more detail see Reference 57 for the effect on GPS orbits and Reference 70 for the effect on
lunar orbits.

Reference 70 provides the following formula for computing the total time difference of clock A
with respect to clock B accumulated from coordinate time # to coordinate time #:
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2 2 2 2
4 c 2c c 2c

Ao tzld)A(t)vA(t) _(DB(t)+VB(l) }dr (3.3-31)

where @, and ®, are the associated gravitational potentials and v, and v, are the associated
clock speeds with respect to the inertial frame.

UTC and TAI are based on time measured by clocks at rest on the surface of the Earth. A time
interval recorded by a clock at rest on the surface of the Earth is given by:

)
dr, = (1+—2°jdt (3.3-32)
c
or equivalently
)
At = (1 +—2°jAt (3.3-32b))
c

where @, /c® =-6.96929x107" is the effective geopotential at the equator in the rotating ECEF

frame. In Equation (3.3-32b), At denotes a finite time interval, not necessarily an infinitesimally
small interval, and ¢ denotes the coordinate time measured at infinity (the independent variable in
the spacecraft equations of motion). In the following sections, the gravitational potentials for a
clock on a satellite orbiting the Earth or Moon are approximated using only the point mass
gravitational contributions.

3.3.6.1 Relativistic Clock Corrections for Earth Orbiting Satellites

The effect of the Earth’s point mass gravitational potential on a time interval recorded by a clock
on a satellite orbiting the Earth relative to a clock at rest on the surface of the Earth is approximated
by

(%) o
dry=|1-—-4e_ Y31 _Zo lgp (3.3-33)

where the subscript S stands for satellite and RS and R! are the magnitudes of the position and

velocity vectors in the Earth-centered inertial frame, respectively. Using the following relationship
for the total energy

RZ
= (3.3-34)

2 R 2a,

for R? in Equation 3.3-33 yields
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3y ®,) 24 (1 1
drg=||1-—He Do\ 2l © = \lag, (3.3-35)
2a,c” ¢ ¢ \ag Ry

The integrated form of this equation (assuming that the satellite is in an elliptical orbit) is given
by:

2eg[p1,ay sinE
ATSELI—?)LEZ_EZOJATE— SVAETRZ L e (3.3-36)
2a,¢7 ¢ c

The integration constant C can be assumed to be zero using appropriate initial conditions or can
be omitted assuming that it will be absorbed in the estimated clock bias term.

The relative time bias due to the relativistic effects of the clock onboard the spacecraft with respect
to the Earth bound clock is given by:

3u ) 2eg4/ppag SINE
Ntg=Ar,—Ar, = (—ﬁ—c—;jArE - ;S (3.3-37)
N

The eccentricity dependent term is always included in GEONS when computing GPS transmit
times (see Section 3.3.2). The terms inside the parenthesis are the ones used by GPS project to
calibrate the oscillators onboard GPS SVs. In the case of GPS satellites, un-calibrated clock
onboard GPS satellite will run faster than an Earth fixed clock, by approximately 38.6 micro-
seconds per day. A typical GPS clock behavior is shown in Figure 3-9. With some GPS SVs, the
eccentricity could be as large as 0.02.
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Figure 3-9. Relativistic Effects on a GPS SV Clock

Figure 3-10 shows the relativistic effect on a satellite clock in a high-altitude Earth orbit (HEO)
with a semimajor axis of 42095.7 km and eccentricity of 0.82.
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Figure 3-10. Relativistic Effects on a HEO Satellite Clock

If the relativistic effects in Equation (3.3-37) are not modeled explicitly, the linear effect will be
absorbed in the time bias drift estimate and the periodic effect will be absorbed in both the time
bias and time bias drift estimates, requiring a somewhat larger process noise value for the time
bias and/or drift than would be needed if the effect were modeled. To improve estimation of the
time bias and drift, the relativistic effects can be optionally included in the propagation of the
receiver time.

3.3.6.2 Relativistic Clock Corrections for Lunar Orbiting Satellites (Not
implemented in GEONS 3.0)
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3.3.7 Conversion From Galileo System Time (GST) to UTC

Galileo System Time (GST) is measured in terms of the Week Number (number of weeks
elapsed from the GST start epoch) and the Time of Week (number of seconds from the beginning
of the previous week (00:00 Sunday). Table 3-6 lists the GPS, J2000.0 and Galileo epoch dates.
Reference 63 provides a more detailed discussion of the GST.

Table 3-6. Standard Epochs

Epoch Calendar Date Time System Julian Date

GPS 1980 January 6% uTcC 24442445
J2000.0 2000 January 195 TT 2451545.0
Galileo 1999 August 21 23:59:47 uTC 2451412.5

The GST Week Number (WN) starts at the GST start epoch and is modulo 4096 (about 78

years). Note that the GST start epoch is 1999 August 22 % GPST, which coincides with the roll-
over of the GPS Week Number that occurred in August 1999 when the number of leap seconds
was 13. The Time of Week (TOW) is defined as the number of seconds that have occurred since
the transition from the previous week. The TOW covers an entire week from 0 to 604799
seconds and is reset to zero at the end of each week.

Note that the following procedure for conversion from GST to UTC is identical to that defined in
Section 3.3.1 for conversion of GPST to UTC; however, the values of the GST conversion
parameters will be different than those for GPST conversion. The format of the Galileo C/NAV
navigation message is the same as the format of the GPS navigation message. The format of the
Galileo F/NAV and I/NAV messages is defined in Section 4 of Reference 63.

Following the procedure defined in Section 5.1.7 of Reference 63, UTC can be obtained from
GST using the GST-UTC conversion parameters listed in Table 3.7 for 3 different cases
depending on the epoch of the possible leap second adjustment (scheduled future or recent past)
given by DN, the day at the end of which the leap second becomes effective, and week number
WN ¢ to which DN is referenced. “Day one” of DN is the first day relative to the end/start of

week and the WN . value consists of eight bits which are a modulo 256 binary representation
of the Galileo week number to which the DN is referenced.
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In all computations the user must account for the truncated nature (roll-over) of the parameters

Table 3-7. GST-to-UTC Time Conversion Parameters
(from Table 65 in Reference 63)

Parameter Unit Description

A, Second Constant term of the polynomial

A, Seconds/ Coefficient of the first-order term of the polynomial

second

At Second Leap second count before leap second adjustment

t, Second Reference Time of Week for UTC data

WN,, Week Reference Week Number for UTC data

WN g Week Week number for the scheduled leap second
adjustment

DN Day Day number at the end of which a leap second
adjustment becomes effective

At g Second Leap second count after leap second adjustment

(DN, WN, WN,,, and WN . ), considering the following properties:

At the time of broadcast of the GST -UTC parameters,

In addition to the parameters listed in Table 3-6, the following parameters are used in the GST —

The absolute value of the difference between untruncated WN and WN,, values does not

exceed 127

When At and At differ, the absolute value of the difference between the

untruncated WN and WN . values received within the same subframe does not exceed

127.

UTC conversion algorithm:
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e ¢pis the GST as estimated by the user through its GST determination algorithm in
seconds from start of the current week

e WN is the week number to which #¢ is referenced.

Casea
Whenever the leap second adjustment time indicated by WN,y. and DN is not in the past

(relative to the user’s present time) and the user’s present time does not fall in the time span
which starts six hours prior to the effective time and ends six hours after the effective
time, tyrc is computed according to the following equations:

tyre =ty — Aty ) [Modulo 86400] (3.3.7-1)*
where

Atyye = Aty + Ay + A (1, — 1, + 604800 (WN —WN,, ) (3.3.7-2)*

Case b

Whenever the user’s current time falls within the time span of six hours prior to the leap second
adjustment time to six hours after the adjustment time, turc is computed according to the
following equations (dturc as defined in case a):

fuze = W[Modulo (86400 + At g, —At, )] (3.3.7-3)*

where

W =(t, — Aty —43200) [Modulo 86400]+ 43200 (3.3.7-4)*

Casec
Whenever the leap second adjustment time, as indicated by the WN . and DN values, is in the

“past” (relative to the user’s current time) and the user’s present time does not fall in the time
span which starts six hours prior to the leap second adjustment time and ends six hours after the
adjustment time, fyrc is computed according to the following equation:

tyre = (tE — At ) [Modulo 86400] (3.3.7-5)*

where

Alyre = Aty g + Ay + 4, (1, — 1, + 604800 (WN —WN,, ) (3.3.7-6)*

3.3.8 Conversion From Galileo System Time (GST) to GPS Time (GPST)

The procedure for converting between Galileo System Time (GST) and GPS Time (GPST) is
defined in Section 5.1.8 of Reference 63. The difference between the Galileo and the GPS time
scales, expressed in seconds, is given by the equation below:

3-55



Algioms = Loaieo —tors = Ao T Aig (TOW —lyg +604800(WN —WN,; )) (3.3.8-1)*
where
teuneo = GST time in seconds
t.ps = GPS time in seconds

A,; = constant term of the offset At

Systems

A = rate of change of the offset Af

Systems

t,. = reference GST TOW for the GGTO data

TOW = GST Time of Week in seconds
WN= GST Week Number
WN,;= Week Number of the GPS/Galileo Time Offset reference

The user must account in the above formula for the truncated nature (roll-over) of the weekly
parameters (WN, WNoG), considering that at the time of broadcast of the GGTO parameters, the

absolute value of the difference between untruncated WN and WNoG values does not exceed 31.

The GGTO parameters are formatted according to the values in Table 3.8. When the GGTO is
not available, the GGTO parameters disseminated are: 4oc (all ones -16 bits), 4:¢ (all ones - 12

bits), #c (all ones - 8 bits), WNoc (all ones - 6 bits). When a user receives all four parameters set to
all ones the GGTO is considered as not valid.

Table 3-8. GGTO Parameters for the GPS Time to GST Offset Computation
(from Table 66 in Reference 63)

Parameter Definition Bits LS Unit
factor
Ao Constant term of the polynomial describing the offset |6* 2-35 s
Atsystems
A6 Rate of change of the offset At e [ 2% 2-51 s/s
e Reference time for GGTO data 8 3600 s
WNyg Week number of GGTO reference 6 | week
Total GST-GPS Conversion Size 42

3.3.9 Conversion From Galileo Satellite Clock Time to Galileo System Time
(GST)

The procedure for computing the offset of the physical Galileo Satellite signal time of
transmission relative to the satellite signal time of transmission in Galileo System Time (GST) is
defined in Sections 5.1.3 through 5.1.5 of Reference 63. Each Galileo satellite transmits the
satellite clock correction data defined in Table 3-9.
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Table 3-9. Galileo Clock Correction Parameters
(from Table 60 in Reference 63)

Parameter Definition Bits fsa:;l:r Unit
Loc clock correction data reference Time of Week 14 60 s
anm SV clock bias correction coefficient 31% | 934 s
as SV clock drift correction coefficient 21% | 2-46 s/s
ap SV clock drift rate correction coefficient 6* 2-59 s/s2
Total Clock Correction Size 72

The total Galileo satellite time correction consists of a satellite time correction o7,,, (X) for

both single and dual frequency GPS users and an additional Broadcast Group Delay correction
St (X) for only single frequency GPS users.

AtGST/ X)= é‘tGAL/ (X)+ 5téiLj (X) (3.3.9-1)

The satellite time correction (in seconds), o'¢;,, (X), is computed using the GST signal time of

transmission in seconds (7, ), time correction GST reference Time of Week, (tOC (X )), and the

SV clock polynomial parameters (am, an, and ap). These data are available from the broadcast
navigation message for Galileo SVj for the associated dual frequency combination
(X)=(ELE5a)and (X)=(E1,ESh) as defined in Table 61 in Reference 63.

5tGALj (X)= Ao (X)+ ap (X) [tGST —loe (X)] ta,, (X) [ZGST —loe (X)]2 + Fyy e A SinE (3.3.9-2)*

The rate of change of the satellite time correction is given by

Sl (X)=a,(X)+2a,(X)|tgsr —toc(X)]+ EFy,ed" cos E (3.3.9-3)*
where
Foa = —4.442807309 x 107'° seconds/(meter)”
e = eccentricity
A2 = square-root of semimajor axis
E = eccentric anomaly
E = rateof change of the eccentric anomaly, approximated by £ = n = \/E (A” : )73 + An

The term FeA'” sin E, represents the relativistic correction that depends on the eccentricity of
the Galileo orbit. The Keplerian orbit parameters e and 4> and the mean motion correction An
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are available from the Galileo satellite ephemeris parameters included in the broadcast
navigation message, and the eccentric anomaly E can be computed using Kepler's equation (see
Section 5.2.2).

In addition, each Galileo satellite broadcast has its own Broadcast Group Delay (BGD)
correction terms for single frequency users. The additional single frequency satellite clock
correction is given by

5t(S;iLj (fl) - _BGDf (fl’ fz) (3.3.9-4)*

Ston, (13) ?(%) BGD (£, 1,) (3.3.9-5)*

2

3-58



Section 4. State Propagation

The GEONS propagator will propagate the user state vectors between measurement updates. In
addition, the TDRSS transmitter states and optionally the crosslink transmitter states are
propagated if they are not being estimated. The forces modeled in the equations of motion include
atmospheric drag, solar radiation pressure, non-spherical gravitational field for central body, and
point-mass gravitational effects of the Earth, Sun, Moon, Venus, Mars, Jupiter, and Saturn. The
gravitational effect of the Earth and the J. zonal coefficient are included in the computation of the
position and velocity state transition matrix components.

The spacecraft equations of motion are given in Section 4.1. The numerical integration algorithm
is defined in Section 4.2. The equations of motion for the nonspacecraft state vector components
are given in Section 4.3. The state covariance propagation algorithms are defined in Section 4.4.
Procedures for handling maneuvers are addressed in Section 4.5. The ground-based receiver state
propagation algorithms are described in Section 4.6.

4.1 Spacecraft Equations of Motion

The spacecraft equations of motion, expressed in Cartesian coordinates, are

d’R  _
" =a (4.1-1)
where
R = satellite position vector in the mean of J2000.0 coordinate frame
a = total acceleration vector in the mean of J2000.0 coordinate frame

This set of three second-order differential equations is transformed to an equivalent set of six first-
order differential equations

drR _ % (4.1-2)*
dt

R _= (4.1-3)*
dt

where R is the satellite velocity expressed in the mean of J2000.0 coordinate frame.
The total acceleration of the satellite, @ , includes the following components:

e QGravitational acceleration (point-mass contributions) of the satellite due to the Earth’s
mass (ay ) and the solar, lunar and other planet masses (ay,a,, and a,, respectively)

e Gravitational acceleration of the satellite due to the nonsphericity of the Earth’s
gravitational potential (7 ys, ) and the Moon’s gravitational potential (7 s, )
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o Satellite acceleration due to atmospheric drag forces (@)

e  Satellite acceleration due to solar radiation pressure ( ag,, )
e Satellite acceleration measured externally (a,,, )

e Satellite acceleration due to unmodeled accelerations (a,, ) expressed in the Mean of
J2000.0 frame

The total acceleration, @, is expressed in terms of these components as
a=0ag+ag+dy, +dp+ay +ays, +dp+adgp+d,, +d;, (4.1-4)*

All or any subset of these effects can be included in the acceleration vector, which is used in
constructing the equations of motion. These accelerations are discussed in the following
subsections. In addition, when a maneuver is modeled as an impulsive velocity change (delta-V),
the satellite equations of motion are integrated to the maneuver time, the velocity change is added
to the velocity vector at the maneuver time, and integration of the equations of motion continues
using the post-maneuver state vector.

4.1.1 Earth, Solar, Lunar, and Planetary Point-Mass Accelerations

To first order, the gravitational attraction of a body of mass m can be approximated as that arising
from a dimensionless particle of mass m located at the center of mass of the body. Point-mass
accelerations arising from the following bodies can be included in the acceleration model: Earth,
Moon, Sun, Mars, Venus, Jupiter, and Saturn.

The motion of the satellite is referenced to the central body’s position, i.e., the central-body mean
0f J2000.0 coordinate system is used in the integration of the spacecraft equations of motion. Any
of these bodies can be the central body. The total point mass acceleration is given by

‘R R! & R’ -R! R?
d 2C =-te g +Zup _;f _nC 3 —,S 3 (4.1-5)*
dt (Re) 3 "URZ=REFIRZ|

(Equation removed) (4.1-6)
(Equation removed) (4.1-7)
(Equation removed) (4.1-8)

where

R = position vector of the satellite n referenced to the central-body mean of J72000.0
frame

I?Cp = position vector of perturbing planetary body p referenced to the central-body
mean of J2000.0 frame
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U gravitational constant of the central body

u, gravitational constant of the perturbing body

The following are the recommended values for these constants

1, = gravitational constant of the Earth (398600.4415 x 10° meters®/sec? consistent
with JGM-2)

U = gravitational constant of the Sun (1.327124 x 10*° meters®/sec?)
1, = gravitational constant of the Moon (4.902799 x 10'? meters®/sec?)

Wy = gravitational constant of Mars (4.2828286588769 x 10'* meters®/sec?)
W, = gravitational constant of Venus (3.2485876561687 x 10'* meters®/sec?)
Wyie = gravitational constant of Jupiter (1.2671259708179 x 10'7 meters’/sec?)

W = gravitational constant of Saturn (3.793951970883 x 10'® meters®/sec?)

Three models are available for computing the positions of the Sun and Moon: a low precision
method based on an article by by Van Flandern and Pulkkinen (Reference 11), a more precise
method developed by Steven Moshier (Reference 26), and a high-precision method using
Chebyshev coefficients extracted from a JPL Definitive Ephemeris (DE) file and saved in memory.
These methods are described in Section 4.1.1.1,4.1.1.2, and 4.1.1.3. The precise method developed
by Moshier and DE method are also used to compute the positions of the other planets. Note that
both models provide the Sun, Moon, or planetary positions referenced to the Earth-centered mean
of J2000.0 frame and therefore must be transformed to the central-body frame if the central body
is not the Earth, using the transformation defined in Section 3.2.11. In addition, the Moon, Sun,
planetary and asteroid positions can be read in on a file.

4.1.1.1 Low Precision Planetary Ephemeris

The mean of date positions of the Sun and the Moon are determined by evaluating the low-
precision (i.e., approximately 1 minute of arc) series expansions for the mean of date coordinates
provided in an article by Van Flandern and Pulkkinen (Reference 11). The associated velocities
are computed using finite differencing of the position vectors. Formulas for the positions of the
planets are also provided in Reference 11; however, only the components relevant to the positions
of the Sun and Moon are implemented in GEONS. This low-precision method is computationally
more efficient than the more precise method and sufficiently accurate for use in GEONS navigation
processing of near-Earth satellites. Reference 12 presents an approach for augmenting the
algorithm presented above to provide a solar position accuracy of better than 10 arc-seconds.

In the following equations, the time #77 is expressed as the number of days measured from the
standard epoch, 2000 January 1.5 Terrestrial Time (TT) (Julian date of 2,451,545.0). Therefore,

trr=JDrr— 2451545.0 (4.1-9)*
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where JDrr s the given Julian date TT including fractional days.

The time parameter 7, used as a polynomial variable, is the time in Julian centuries from the epoch
B1900.0, given by

T=_tr_ 4 (4.1-10)*
36525

The equation to convert a Gregorian calendar date to a Julian day number at Greenwich noon (JD)
is as follows:

JD,, = (D=32075+1461(Y +4799)/4 +336

(4.1-11)*
—3[(Y +4899)/100]/4)— 0.5+ 5 /86400.0

where Y is the year, D is the day of the year, and S is seconds of the day, TT. In this statement, Y,
M, D, and § are input as integers, and a division by integers implies truncation of the quotients to
integers (decimals are not carried).

For evaluation of the low precision ephemeris series, the difference between TT and UTC has
neglible impact and is ignored.

In terms of the time #77, the following fundamental arguments are needed in the calculation of the
solar and lunar positions:

e [ represents the mean longitude
e  F denotes the argument of latitude
e (G denotes the mean anomaly

The expressions for each fundamental argument, A4;, given below, are in units of revolutions (one

revolution equals 360 degrees). For practical calculations, the integral number of revolutions
should be discarded.

Moon
A1 =Ly =0.606434 + 0.03660110129 77 (4.1-12)*
Az = Gun=0.374897 + 0.03629164709 trr (4.1-13)*
Az =Fu=0.259091 + 0.03674819520 t77 (4.1-14)*
As=D=Ly—Ls=-0.172638 + 0.03386319198 77 (4.1-15)*
As=Q,, = Ly—Fyv=0.347343 —0.00014709391 trr (4.1-16)*
Sun
A7=_Ls=0.779072 + 0.00273790931 t7r (4.1-17)*
Ag = Gs=0.993126 + 0.00273777850 trr (4.1-18)*
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Venus

A2 =L>=0.505498 + 0.00445046867 trr (4.1-19)*

A1z = G2=0.140023 + 0.00445036173 trr (4.1-20)*
Mars

A6 = G4+ =0.053856 + 0.00145561327 trr (4.1-21)*
Jupiter

Ao =Gs5=0.056531+ 0.00023080893 t71 (4.1-22)*

Only the fundamental arguments needed to calculate the positions of the Sun and Moon (Reference
11) are given above (thus the absence of some argument numbers). The quantity D is the mean
elongation of the Moon from the Sun, and Q,, is the longitude of the lunar ascending nodes. Only

those planets that have significant perturbation effects on the orbits of the Sun and Moon are
included in the series expansions.

The geocentric equatorial coordinates are the right ascension, a, declination, ¢, and geocentric
distance, p. These coordinates are expressed in terms of a compact series denoted by U, V, and

W, as follows:

a=1L+ sin{%} (4.1-23)*
u-v

5= sin‘{%j (4.1-24)*

=AU (4.1-25)*

In Equation (4.1-23), L is understood to be Ly, for the Moon and Ls for the Sun. The scaling factor

in Equation (4.1-25), A, is equal to 1.00021 astronomical units for the Sun and equal to 60.40974
in units of equatorial Earth radii for the Moon. The corresponding position vector in the mean of
date coordinate frame is given by

X coso cosa
Y |=p|cosd sina (4.1-26)*
Z sin o
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The mean of J2000.0 vectors are computed using transformation matrix 4 given in Section 3.2.1.

The series for U, V, and W in Equations (4.1-23) through (4.1-25) is presented in the form

sin
DT or| Y b4, (4.1-27)*

CoS\

The coefficients c;, ni, and b; are presented in Tables 4-1 and 4-2, which have been extracted from
Reference 11. The parameters 4; are fundamental arguments [Equations (4.1-12) through (4.1-22)]
calculated for the required time. As an example, the U series for the Sun from Table 4-1 would be
the following:

U =1-0.03349 cos G4 —0.00014 cos 2Gg

(4.1-28)*
— 0.000087 cos G —0.00003 sin (Gg — G)

The value of T can be evaluated using Equation (4.1-10), and the fundamental arguments Gs and
Gs corresponding to 7 can be calculated using the expressions given in Equations (4.1-17) and
(4.1-22), respectively.
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Table 4-1. Trigonometric Series for the Sun

SERIES | COEFFICIENT | POWER TRIGONOMETRIC FUNCTIONS AND COEFFICIENTS (b))
OF T FOR FUNDAMENTAL ARGUMENTS (A))
(ci) (nj) SIN/COS | j=1 | j=5 | j=7 | j=8 |j=13|j=16 | j=19

Y, 0.39785 0 SIN 0 0 1 0 0 0 0
-0.01000 0 SIN 0 0 1 -1 0 0 0

0.00333 0 SIN 0 0 1 1 0 0 0

-0.00021 1 SIN 0 0 1 0 0 0 0

0.00004 0 SIN 0 0 1 2 0 0 0

-0.00004 0 Ccos 0 0 1 0 0 0 0

-0.00004 0 SIN 0 1 -1 0 0 0 0

0.00003 1 SIN 0 0 1 -1 0 0 0

U 1.00000 0 cos 0 0 0 0 0 0 0
-0.03349 0 cos 0 0 0 1 0 0 0

-0.00014 0 cos 0 0 0 2 0 0 0

0.00008 1 cos 0 0 0 1 0 0 0

-0.00003 0 SIN 0 0 0 1 0 0 -1

w -0.04129 0 SIN 0 0 2 0 0 0 0
0.03211 0 SIN 0 0 0 1 0 0 0

0.00104 0 SIN 0 0 2 -1 0 0 0

—-0.00035 0 SIN 0 0 2 1 0 0 0

—-0.00010 0 cos 0 0 0 0 0 0 0

—0.00008 1 SIN 0 0 0 1 0 0 0

—0.00008 0 SIN 0 1 0 0 0 0 0

0.00007 0 SIN 0 0 0 2 0 0 0

0.00005 1 SIN 0 0 2 0 0 0 0

0.00003 0 SIN 1 0 -1 0 0 0 0

—0.00002 0 cos 0 0 0 1 0 0 -1

0.00002 0 SIN 0 0 0 4 0 -8 3

—0.00002 0 SIN 0 0 0 1 -1 0 0

—0.00002 0 cos 0 0 0 2 -2 0 0
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Table 4-2. Trigonometric Series for the Moon (1 of 4)

SERIES | COEFFICIENT | POWER TRIGONOMETRIC FUNCTIONS AND COEFFICIENTS (b))
OF T FOR FUNDAMENTAL ARGUMENTS (4))
(ci) (nj) SINICOS | j=2 | j=3 | j=4 | j=5 | j=7 | j=8 j=12

v 0.39558 0 SIN 0 1 0 1 0 0 0
0.08200 0 SIN 0 1 0 0 0 0 0
0.03257 0 SIN 1 -1 0 -1 0 0 0
0.01092 0 SIN 1 1 0 1 0 0 0
0.00666 0 SIN 1 -1 0 0 0 0 0
-0.00644 0 SIN 1 1 -2 1 0 0 0
-0.00331 0 SIN 0 1 -2 1 0 0 0
-0.00304 0 SIN 0 1 -2 0 0 0 0
-0.00240 0 SIN 1 -1 -2 -1 0 0 0
0.00226 0 SIN 1 1 0 0 0 0 0
-0.00108 0 SIN 1 1 -2 0 0 0 0
-0.00079 0 SIN 0 1 0 -1 0 0 0
0.00078 0 SIN 0 1 2 1 0 0 0
0.00066 0 SIN 0 1 0 1 0 -1 0
-0.00062 0 SIN 0 1 0 1 0 1 0
—0.00050 0 SIN 1 -1 -2 0 0 0 0
0.00045 0 SIN 2 1 0 1 0 0 0
-0.00031 0 SIN 2 1 -2 1 0 0 0
-0.00027 0 SIN 1 1 -2 1 0 1 0
-0.00024 0 SIN 0 1 -2 1 0 1 0
-0.00021 1 SIN 0 1 0 1 0 0 0
0.00018 0 SIN 0 1 -1 1 0 0 0
0.00016 0 SIN 0 1 2 0 0 0 0
0.00016 0 SIN 1 -1 0 -1 0 -1 0
-0.00016 0 SIN 2 -1 0 -1 0 0 0
-0.00015 0 SIN 0 1 -2 0 0 1 0
-0.00012 0 SIN 1 -1 -2 -1 0 1 0
—0.00011 0 SIN 1 -1 0 -1 0 1 0
0.00009 0 SIN 1 1 0 1 0 -1 0
0.00009 0 SIN 2 1 0 0 0 0 0
0.00008 0 SIN 2 -1 0 0 0 0 0
0.00008 0 SIN 1 1 2 1 0 0 0
-0.00008 0 SIN 0 3 -2 1 0 0 0
0.00007 0 SIN 1 -1 2 0 0 0 0
-0.00007 0 SIN 2 -1 -2 -1 0 0 0
-0.00007 0 SIN 1 1 0 1 0 1 0
~0.00006 0 SIN 0 1 1 1 0 0 0
0.00006 0 SIN 0 1 -2 0 0 -1 0
0.00006 0 SIN 1 -1 0 1 0 0 0
0.00006 0 SIN 0 1 2 1 0 -1 0
—0.00005 0 SIN 1 1 -2 0 0 1 0
—0.00004 0 SIN 2 1 -2 0 0 0 0
0.00004 0 SIN 1 -3 0 -1 0 0 0
0.00004 0 SIN 1 -1 0 0 0 -1 0
-0.00003 0 SIN 1 -1 0 0 0 1 0
0.00003 0 SIN 0 1 -1 0 0 0 0
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Table 4-2. Trigonometric Series for the Moon (2 of 4)

TRIGONOMETRIC FUNCTIONS AND COEFFICIENTS (bj)

SERIES | COEFFICIENT Pg\éVER FOR FUNDAMENTAL ARGUMENTS (4))

) () sincos | j=2 | j=3 | j=4 | j=5 | j=7 | j=8 | j=12
Vv 0.00003 0 SIN 0 1 2 1 0 -1 0
(Cont'd) ~0.00003 0 SIN 0 1 -2 -1 0 0 0

0.00003 0 SIN 1 1 -2 1 0 -1 0
0.00003 0 SIN 0 1 0 0 0 -1 0
~0.00003 0 SIN 0 1 -1 1 0 -1 0
~0.00002 0 SIN 1 -1 -2 0 0 1 0
~0.00002 0 SIN 0 1 0 0 0 1 0
0.00002 0 SIN 1 1 -1 1 0 0 0
~0.00002 0 SIN 1 1 0 -1 0 0 0
0.00002 0 SIN 3 1 0 1 0 0 0
~0.00002 0 SIN 2 -1 -4 -1 0 0 0
0.00002 0 SIN 1 -1 2 -1 0 -1 0
~0.00002 1 SIN 1 -1 0 -1 0 0 0
~0.00002 0 SIN 1 -1 -4 -1 0 0 0
~0.00002 0 SIN 1 1 -4 0 0 0 0
~0.00002 0 SIN 2 -1 2 0 0 0 0
0.00002 0 SIN 1 1 2 0 0 0 0
0.00002 0 SIN 1 1 0 0 0 -1 0
U 1.00000 0 cos 0 0 0 0 0 0 0
-0.10828 0 cos 1 0 0 0 0 0 0
-0.01880 0 cos 1 0 2 0 0 0 0
-0.01479 0 cos 0 0 2 0 0 0 0
0.00181 0 cos 2 0 -2 0 0 0 0
~0.00147 0 cos 2 0 0 0 0 0 0
~0.00105 0 cos 0 0 2 0 0 -1 0
~0.00075 0 cos 1 0 -2 0 0 1 0
~0.00067 0 cos 1 0 0 0 0 -1 0
0.00057 0 cos 0 0 1 0 0 0 0
0.00055 0 cos 1 0 0 0 0 1 0
~0.00046 0 cos 1 0 2 0 0 0 0
0.00041 0 cos 1 -2 0 0 0 0 0
0.00024 0 cos 0 0 0 0 0 1 0
0.00017 0 cos 0 0 2 0 0 1 0
0.00013 0 cos 1 0 -2 0 0 -1 0
~0.00010 0 cos 1 0 -4 0 0 0 0
~0.00009 0 cos 0 0 1 0 0 1 0
0.00007 0 cos 2 0 2 0 0 1 0
0.00006 0 cos 3 0 -2 0 0 0 0
0.00006 0 cos 0 2 -2 0 0 0 0
~0.00005 0 cos 0 0 2 0 0 2 0
~0.00005 0 cos 2 0 4 0 0 0 0
0.00005 0 cos 1 2 -2 0 0 0 0
~0.00005 0 cos 1 0 -1 0 0 0 0
~0.00004 0 cos 1 0 2 0 0 -1 0
~0.00004 0 cos 3 0 0 0 0 0 0
~0.00003 0 cos 1 0 -4 0 0 1 0
~0.00003 0 cos 2 -2 0 0 0 0 0
~0.00003 0 cos 0 2 0 0 0 0 0
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Table 4-2. Trigonometric Series for the Moon (3 of 4)

TRIGONOMETRIC FUNCTIONS AND COEFFICIENTS (b))

SERIES | COEFFICIENT Pg\,/:VER FOR FUNDAMENTAL ARGUMENTS (A))
(ci) (nj) SIN/COS | j=2 j=3 j=4 j=5 j=7 j=8 | j=12

W 0.10478 0 SIN 1 0 0 0 0 0 0
-0.04105 0 SIN 0 2 0 2 0 0 0
-0.02130 0 SIN 1 0 -2 0 0 0 0
-0.01779 0 SIN 0 2 0 1 0 0 0
0.01774 0 SIN 0 0 0 1 0 0 0
0.00987 0 SIN 0 0 2 0 0 0 0
-0.00338 0 SIN 1 -2 0 -2 0 0 0
-0.00309 0 SIN 0 0 0 0 0 1 0
-0.00190 0 SIN 0 2 0 0 0 0 0
-0.00144 0 SIN 1 0 0 1 0 0 0
-0.00144 0 SIN 1 -2 0 -1 0 0 0
-0.00113 0 SIN 1 2 0 2 0 0 0
-0.00094 0 SIN 1 0 -2 0 0 1 0
-0.00092 0 SIN 2 0 -2 0 0 0 0
0.00071 0 SIN 0 0 2 0 0 -1 0
0.00070 0 SIN 2 0 0 0 0 0 0
0.00067 0 SIN 1 2 -2 2 0 0 0
0.00066 0 SIN 0 2 -2 1 0 0 0
-0.00066 0 SIN 0 0 2 1 0 0 0
0.00061 0 SIN 1 0 0 0 0 -1 0
-0.00058 0 SIN 0 0 1 0 0 0 0
-0.00049 0 SIN 1 2 0 1 0 0 0
-0.00049 0 SIN 1 0 0 -1 0 0 0
-0.00042 0 SIN 1 0 0 0 0 1 0
0.00034 0 SIN 0 2 -2 2 0 0 0
-0.00026 0 SIN 0 2 -2 0 0 0 0
0.00025 0 SIN 1 -2 -2 -2 0 0 0
0.00024 0 SIN 1 -2 0 0 0 0 0
0.00023 0 SIN 1 2 -2 1 0 0 0
0.00023 0 SIN 1 0 -2 -1 0 0 0
0.00019 0 SIN 1 0 2 0 0 0 0
0.00012 0 SIN 1 0 -2 0 0 -1 0
0.00011 0 SIN 1 0 -2 1 0 0 0
0.00011 0 SIN 1 -2 -2 -1 0 0 0
-0.00010 0 SIN 0 0 2 0 0 1 0
0.00009 0 SIN 1 0 -1 0 0 0 0
0.00008 0 SIN 0 0 1 0 0 1 0
-0.00008 0 SIN 0 2 2 2 0 0 0
-0.00008 0 SIN 0 0 0 2 0 0 0
-0.00007 0 SIN 0 2 0 2 0 -1 0
0.00006 0 SIN 0 2 0 2 0 1 0
-0.00005 0 SIN 1 2 0 0 0 0 0
0.00005 0 SIN 3 0 0 0 0 0 0
-0.00005 0 SIN 1 0 0 0 16 0 -18
-0.00005 0 SIN 2 2 0 2 0 0 0
0.00004 1 SIN 0 2 0 2 0 0 0
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Table 4-2. Trigonometric Series for the Moon (4 of 4)

SERIES | COEFFICIENT | POWER TRIGONOMETRIC FUNCTIONS AND COEFFICIENTS (b))
OF T FOR FUNDAMENTAL ARGUMENTS (4))

(c)) (nj) SIN/COS | j=2 j=3 j=4 j=5 j=7 j=8 | j=12
w 0.00004 0 cos 1 0 0 0 16 0 -18
(Cont'd) -0.00004 0 SIN 1 -2 2 0 0 0 0
-0.00004 0 SIN 1 0 -4 0 0 0 0
-0.00004 0 SIN 3 0 -2 0 0 0 0
-0.00004 0 SIN 0 2 2 1 0 0 0
-0.00004 0 SIN 0 0 2 -1 0 0 0
-0.00003 0 SIN 0 0 0 0 0 2 0
-0.00003 0 SIN 1 0 -2 0 0 2 0
0.00003 0 SIN 0 2 -2 1 0 1 0
-0.00003 0 SIN 0 0 2 1 0 -1 0
0.00003 0 SIN 2 2 -2 2 0 0 0
0.00003 0 SIN 0 0 2 0 0 -2 0
-0.00003 0 SIN 2 0 -2 0 0 1 0
0.00003 0 SIN 1 2 -2 2 0 1 0
-0.00003 0 SIN 2 0 -4 0 0 0 0
0.00002 0 SIN 0 2 -2 2 0 1 0
—0.00002 0 SIN 2 2 0 1 0 0 0
-0.00002 0 SIN 2 0 0 -1 0 0 0
0.00002 1 cos 1 0 0 0 16 0 -18
0.00002 0 SIN 0 0 4 0 0 0 0
-0.00002 0 SIN 0 2 -1 2 0 0 0
-0.00002 0 SIN 1 2 -2 0 0 0 0
-0.00002 0 SIN 2 0 0 1 0 0 0
—0.00002 0 SIN 2 -2 0 -1 0 0 0
0.00002 0 SIN 1 0 2 0 0 -1 0
0.00002 0 SIN 2 0 0 0 0 -1 0
-0.00002 0 SIN 1 0 -4 0 0 1 0
0.00002 1 SIN 1 0 0 0 16 0 -18
-0.00002 0 SIN 1 -2 0 -2 0 -1 0
0.00002 0 SIN 2 -2 0 -2 0 0 0
-0.00002 0 SIN 1 0 2 1 0 0 0
-0.00002 0 SIN 1 -2 2 -1 0 0 0

4.1.1.2 Intermediate Precision Planetary Ephemeris

A more precise analytical planetary ephemeris is available for propagation of high-Earth orbits,
e.g. geosynchronous and higher. This method consists of the evaluation of series developed by
Steven Moshier (Reference 26). It uses tables of coefficients derived by a least-squares fit to the
Jet Propulsion Laboratory’s DE404 ephemeris and is therefore referenced to the ICRF. The
periodic frequencies used were determined by spectral analysis of the ephemeris and comparison
with other analytical planetary theories. The least-squares fit covers the interval from —1350 to
+3000 for the inner planets.

The method uses numerical tables to compute the geocentric polar coordinates (i.e. longitude,
latitude, and distance) of the Moon referenced to the mean equinox and ecliptic of date and the
heliocentric polar coordinates of the Earth-Moon barycenter and the planets referenced to the mean
ecliptic of J2000. The series are evaluated in the following order:
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1. The geocentric Cartesian coordinates of the Moon, E‘foon, are computed from the

geocentric polar coordinates and rotated from the Mean of Date to the Mean of J2000
frame.

2. The heliocentric ecliptic Cartesian coordinates of the Earth-Moon barycenter, R;,,, are

computed from the heliocentric polar coordinates and then rotated to the mean equator of
J2000 frame. The geocentric Sun vector is then computed as follows:

ESE;M = _FEMB + {M}Eﬁoun (4 1-283)*
mMoon + mEarth

3. The heliocentric ecliptic Cartesian coordinates of the planets are computed from the

heliocentric polar coordinates and then rotated to the mean equator of J2000 frame and

translated to the geocentric frame using the geocentric position vector of the Sun, Esfm .

4. The associated velocities are computed using finite differencing of the position vectors.

The method used requires the Julian date in TT. The TT calendar date corresponding to the current
UTC time is computed using Equation (3.3-30) given in Section 3.3.5.

IT =UTC +1.°0 n+32.184 seconds (4.1-28b)*

where n equals 10 plus the total number of elapsed leap seconds since 1972. The equation to
convert a Gregorian calendar date to a Julian day number at Greenwich noon (JD) is as follows:

JD,. = (D-32075+1461(Y +4799)/4+336

(4.1-28¢)*
—3[(Y +4899)/100]/4)— 0.5+ 5/86400.0

where Y is the year, D is the day of the year, and S is seconds of the day, TT. In this statement, Y,
M, D, and S are input as integers, and a division by integers implies truncation of the quotients to
integers (decimals are not carried).

Over the 2000 to 2500 time period, the root-mean-square error for the Moon’ position is
approximately 0.06 arc seconds in longitude, 0.04 arc seconds in latitude, and 60 meters in
distance. For time periods near J2000, comparisons with the high precision lunar ephemeris
available from the JPL DE405 Ephemeris indicate a total position difference on the order of 100
to 200 meters.

4.1.1.3 High Precision Planetary Ephemeris

The capability is also available to use a high precision planetary ephemeris consisting of
Chebyshev polynomial coefficients for each position component extracted from a JPL series 4xx
DE for a specific time span for any of the following bodies: Mercury, Venus, Earth-Moon
barycenter, Mars, Jupiter, Saturn, Uranus, Neptune, Pluto, Sun, and Moon (geocentric). The
coefficients for the planets represent the solar system barycentric (SSB) positions of the centers of
the planetary systems with respect to the International Celestial Reference Frame (ICRF)
referenced to Barycentric Dynamical Time (TDB). Reference 51 provides a detailed description
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of the contents of these files and sample subroutines for retrieving their contents. Chebyshev
polynomial coefficients from DE421 are available in the GEONS flight software and the capability
is available to update to a later DE version, when available.

Each position and corresponding velocity component is computed as follows:

x(trp) = ichn (1)
0 (4.1-28d)*

$(i) =Y e, T()

where 7., is the request time in TT (computed using Equations 4.1-28b and 4.1-28c¢), ¢, are the
associated Chebyshev coefficients, 7 (1) are the Chebyshev polynomials of the first kind, and N

is the degree of the expansion. The Chebyshev polynomials are computed using the following
recursion formula:

T (v)y=21T, ,(v)-T,,(t), n=23,.. (4.1-28e)*

where 7;(t)=1 and T;(t)=t.

The applicable range of interpolation for the Chebyshev time parameter t is —1<t <1, which is
computed as follows:

2A
1= =By (4.1-280)*
AT,
where At =t, — T2 is the elapsed time from the start time of the polynomial fit interval, 7"
, and AT is the length associated Chebyshev polynomial fit interval. The fit intervals are as

follows: 4 days for the Moon, 8 days for Mercury, 16 days for the Sun, Venus, and the Earth-Moon
barycenter, and 32 days for the remaining planets.

The derivatives of the Chebyshev polynomials are computed by differentiating Equation (4.1-28e)
by time:

T () = [2iTy_1(¥) + 2tTy 1 (7) — T2 (¥)] n=23,... (4.1-28g)*
where T, (1) = 1, T,(t) = 4it, and

t=—= (4.1-28h)*

For use in GEONS, the planetary positions and velocities and velocities are transformed to the
mean of J2000.0 ECI frame as follows:

R

Il
]

-R

Planet g, Planet g Earth g

(4.1-28i)*

=

Planet ¢, Planet g - REarth SSB
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where

R =R — | —™MMoon | p
REarthSSB - REMBSSB [mMoon+mEarth] RMOOTIECI
5 B _ MMoon 5
REarthSSB - REMBSSB [mMoon+mEarth] RMOOTlECI
Or equivalently
= D RMOOTIECI
REarthSSB - REMBSSB - [ 1+Rg/m
R - R — M (4.1-28)*
Earthssg — "‘EMBgssp 1+Rg/ym . ]
where R, and R, are the position and velocity of the Planet in the Mean of J2000.0

Planet ¢ Planet g

SSB frame, R,,, ., and Ros ., are the position and velocity of the Earth-Moon barycenter in

the Mean of J2000.0 SSB frame, and R, ., and R

Moon ¢,

are the position and velocity of the

Moon in the Mean of J2000.0 geocentric frame, which are computed by evaluating Equation (4.1-
28d). R, ., and R, are the position and velocity of the Earth in the Mean of J2000.0 SSB

Earth g5
frame computed using Equation (4.1-28j). Rg/y is the Earth/Moon mass ratio equal to
0.813005600000000044¢+02.

4.1.2 Nonspherical Gravitational Acceleration

GEONS includes the capability to model nonspherical gravitational effects from the Earth or non-
Earth central body (e.g. Moon, other planets or asteroid). The inertial acceleration vector resulting
from nonspherical gravitational effects is given by the gradient of the nonspherical terms in the
gravitational potential function, s , as follows:

s =V Wy (4.1-29)*

The default geopotential model is the 30x30 Joint Gravity Model-2 (JGM-2). The 360x360 Earth
Gravitational Model 96 (EGM96) geopotential model is also available in GEONS 3.0. The default
lunar potential model is the 100x100 Lunar Prospector (LP) 100K model. To avoid numerical
precision problems, the JGM-2 gravitational potential is computed using scaled coefficients with
unnormalized associated Legendre functions (Section 4.1.2.1); all other Earth, lunar, and planetary
gravitational potentials are computed using normalized coefficients with normalized associated
Legendre functions (Section 4.1.2.2).

4.1.2.1 Nonspherical Gravitational Acceleration of the Earth Using Unnormalized
Coefficients (replaced with normalized algorithm in GEONS 3.0)

This algorithm is used with the default Joint Gravity Model-2 (JGM-2) 30x30 geopotential model.
The nonspherical geopotential, s , is given by
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Ys, (7, 0,A) = HTZ C, [%) P (sin ¢)

n=2

(4.1-30)
+“7ﬁ: Z[i } P" (sin§)[S” sin(ma) + C cos(mn.)]
n=2 m=1
where
r = magnitude of the vector from the Earth’s center of mass to the satellite
¢ = geocentric latitude
A = geocentric longitude (measured east from the prime meridian)
LW = gravitational constant of the Earth (398600.4415 x 10° meters*/second’ for
consistency with the JGM-2 gravitational model)
R. = equatorial radius of the Earth
N = maximum degree included in the expansion
P"(sing) = associated Legendre function

(87, (C)"); = harmonic coefficients for the Earth (zonal harmonics for m = 0, sectoral
harmonics for m = n, and tesseral harmonics for n > m # 0)
(Note: J, = —C,? , where J are the zonal coefficients)
The first and second terms are the nonspherical potential due to the sum of zonal and tesseral
harmonics, respectively. The term n = 1 is not present, since the origin of the coordinate system is
placed at the center of mass of the Earth. For GEONS, the value of &, the maximum degree

included in the expansion, will be an input parameter and will not exceed 30 for the Earth. The
default geopotential model is the Joint Gravity Model-2 (JGM-2).

The Earth’s gravitational coefficients and associated Legendre polynomials are scaled as follows:

Cy =F(C)), (4.1-31)
Sm=F(S™), (4.1-32)

~ 1
pm=_—_pnm 4.1-33
n F n ( )

The scaled coefficients and unnormalized associated Legendre functions are used in the
calculations. The following nominal scale factor is used for JGM-2:

F =107 (4.1-34)

Expressing the gradient in ECEF coordinates, FbT =(x,,¥,,2,) (see Section 3.1.3), the form for
the inertial acceleration vector is obtained as follows:

4-15



)'C'NS,, a\lf 6 T a\lf 5(1) T a\ll 87\, T

_ . NS » r NS NS

_ _ s, | or | Pus, | O T, | O 4.1.35

Dsup = | sy | =75, (ar,J 26 (af,,j o (8@} (4.1-35)
ZNS/)

where X .V, .and Z, are the components of the inertial acceleration expressed in ECEF

coordinates and not the acceleration with respect to the ECEF coordinate system. Thus, it is
necessary to transform these components into the mean of J2000.0 coordinate system in which the
spacecraft equations of motion are expressed.

This transformation is given by
dys, =C'R;B'ay (4.1-36)

where Rg B” transforms from ECEF to TOD coordinates and C” transforms from TOD to mean of

J2000.0 coordinates. Assuming that the geographic pole axis, fb , 1s aligned with the instantaneous
spin axis, z, of the TOD coordinate system, the RgBT rotation reduces to R’(a,), which is
equivalent to replacing (17b, Xy, Yy, Zb) in Equation (4.1-35) by (F, X, y, Z) , the TOD components,
and calculating the longitude and latitude as follows:

A=a—ag (4.1-37)*
¢ = sin‘l(fj (4.1-38)*

where

a = right ascension of the spacecraft [a = tan (y / x)]

ag = TOD right ascension of Greenwich
The CT rotation matrix is defined in Sections 3.2.1 and 3.2.1.

The inertial acceleration vector can then be written as

X'NSETOD oy p T oy o T oy - T
. =CT| 3 _ | s | O TNs | OO0, PNs, | OM 1-39)*
By T DS [ or \or) a0 \or)  on \oF (4.1-39)

z
NSETOD

where the partial derivatives are evaluated using the TOD coordinates (}7, X, ), z) .

The partial derivatives of the nonspherical portion of the Earth’s potential with respect to r, ¢, and
A are given by
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Wys, __lup, i(&jn (n+ l)i [5;" cos(m\) + gn’” sin(m?»)]ﬁnm (sing)  (4.1-40)*
r

or rr =

m=0
0 N "o _
M, e 50 (&) S |6 cosqma) + 8 singmn)|
o6 r S\ )~ (4.1-41)*

B sin ) - mtan B (sin )]

a N nop - N ~
“(;;[f e ke z ( i j Z m[Sn’" cos(mi)—C" sin(m?»)]Pn’" (sin ¢) (4.1-42)*
r n=2 r

m=0

The Legendre functions and the terms cos(mA), sin(mA), and m tan @ are computed via recursion
formulas, as follows:

P (sing) =~ [2n=1)sin¢ B!, (sing) - (n—1) B, (sin 9)] (4.1-43)*
n
Pl (sing) = P, (sing) + (2n — 1) cos¢ P"}' (sin¢) (4.1-44)*
(m#0; m<n) .
P! (sin$) =0 (4.1-45)*
(m > n)
P (sing) = (2n—1)cos¢ B/ (sin¢) (4.1-46)*
(m#0; m=n) '
with initial values
B (sing) =P (sind) = (4.1-47)*
PO (sing ) = - P (sin ) = SO (4.1-48)*
‘ F' F
P (sing ) = - P! (sin ) = ¢ (4.1-49)*
1 F' F
and
sin(m\) = 2 cos Asin[(m — L] -sin[(m - 2)A} m>2 (4.1-50)*
cos(mh) = ZCoskcos[(m - l)%]— cos[(m - 2)%]; m>?2 (4.1-51)*
mtang = (m—1)tang+ tan ¢ (4.1-52)*
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The partial derivatives of », @, and A, with respect to x, y, and z, are computed from the

expressions
or 7’
ol 4.1-53
or r ( )
op 1 _ZFT+82 (4.1-54)
817 ,xz +y2 1”2 877 o
oM 1 oy Ox
= =2 _ =2 4.1-55
or  x*+y’ [x or y@?} ( )

where the position partial derivatives are equal to the following:

1,000 2-010 Z-(0.0.1)

or or or

Substituting Equations (4.1-53) through (4.1-55) into Equation (4.1-39) yields the TOD
components of the acceleration vector

0 0 0
-X;NST()D = ( 1 \I]NSE Z WNSE }x - ( 1 \IINSE ]y (4- 1-56)*

r al" rz,\/xz + yz ad) x2 + y2 67\.
0 0 0
Pro = 10Yys, z Wis , v+ — 1 . Was , N (4.1-57)*
rop r or rz\/xz +y> 0 X +y OM

(4.1-58)*

} _[IG\VNSE ] X+ OV,
ZNSTOD = zZ+ 3
r

r or od
which are then transformed to the mean of J2000.0 reference frame using Equation (4.1-39).

4.1.2.2 Nonspherical Gravitational Acceleration Using Normalized Coefficients

Note that in GEONS 3.0, all nonspherical gravitational acceleration are computed using this
algorithm. The original baseline JGM-2 unnormalized coefficients are re-scaled by the 1e25 factor
and normalized according to the normalized Legendre polynomial scaling. Note that the recursion
formula for computing the acceleration due to non-spherical gravity given below is singular at the
poles (x =y = 0 in planet fixed coordinates). A different recursion should be used for any mission
with an inclination close to 90 deg.

The normalized associated Legendre functions are defined in terms of the unnormalized functions
as follows
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P (sin) = N(n,m)P" (sin ) (4.1.2-1)

where the normalization factor N (n,m) is given by

N(n’m)z{(n—m)!(2n+l)(2—8m,o)} (4122

(n+m)

N |~

Expressing the nonspherical lunar potential, v, , in terms of P (sin¢) gives

Vo, (o) =13 E[R] P (sin )

(4.1.2-3)

s i[& }F (sin @[5 sin(md) + T cos(m)]
A gy

where

r = magnitude of the vector from the central body’s center of mass to the satellite
@ = latitude of the satellite in the planet body fixed (PBF) frame (e.g. geographic
or selenographic latitude)

A = longitude of the satellite in the PBF frame (e.g. geographic or selenographic
longitude)

p = gravitational constant of the central body (e.g. 4902.800238 x 10°
meters®/second” for the LP100K gravitational model)

R. = equatorial radius of the central body (e.g. 1738 kilometers for the LP100K
gravitational model)

N = maximum degree included in the expansion (e.g. 100 for the LP100K model)

P"(sing) = normalized associated Legendre function

S C" = normalized harmonic coefficients for the central body:
N (n, m)
B (4.1.2-4)
on _ (S0
" N(n,m)

Expressing the gradient of the nonspherical potential in PBF coordinates (e.g. the International
Terrestrial Reference Frame (ITRF) in the case of the Earth or the lunar principal axis frame in the
case of the Moon), the associated acceleration vector in the planet-centered inertial (PCI) mean of
J2000 frame is obtained as follows:
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xNSPBF

— [T ]T .
Ans = L PBFed2000 5y 1 | s

(4.1.2-5)*

NSpBF

. T . .
where the rotation, [T PBFJ2000 ] , which transforms the acceleration vector from the PBF to the

PCI coordinate frame, is discussed in Sections 3.2.1 through 3.2.3 for the Earth and Sections 3.2.9
and 3.2.12 for the Moon and other planets, respectively. The acceleration components
X s, 2PN,y » A0 Zyg -, which are the components of the inertial acceleration expressed in PBF

coordinates (not the acceleration with respect to the PBF system) are given by

-‘X:.NS[’BF T T T
o or | O, od | OF,py N | Oy o
z

NSpgr

The spacecraft position vector in the PBF frame 7,;,. is computed as follows

= _ ) ) Tk
Tesr = Tpgpe 2000 (RJZOOO vor ~ Rptanet e, ) (4.1.2-7)

where FJZOOOEC_[ is the spacecraft position vector in the Mean of J2000 geocentric frame and
R,

Planet g¢;

is the position of the central body in the Mean of J2000 geocentric frame.

The partial derivatives of the nonspherical portion of the central body potential with respect to 7,
¢, and A are given by

Nys __ %EN:(RE j (n+1)Y[C cos(m) + 57 sin(mm) [P (sing)  (4.1.2-8)*

or —“S\r

~N

a\'V]\/S E u RE ! - _m _m b
6 n; ( p j mz=o[C" cos(mi)+ S/ s1n(mk)] (4.1.2-9)*
x[¢(n,m)P"" (sin¢) — mtan $P" (sin )]
where
A=tan" (yﬂ] (4.1.2-10)*
Xppr
¢:sin—1[zﬂJ (4.1.2-11)*
E(n,m) = \/ (n—m)(n+m+1) _2 m.0 (4.1.2-12)*
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—a\gf - ( j zm[smcos(mx)—c_f,;" sin(m) [P (sin ¢)

)12

(4.1.2-13)*

The normalized Legendre functions and the terms cos(mA), sin(mA), and m tan@ are computed

via recursion formulas, as follows:

For n=m:
. 1.0; m=0
P"(sin¢) =
J22m+1x(m)cos” ¢p; m>0
where

K(m) = (2(’;1)1) e e ) (M)

Forn =m+1 and m >0:
P (sin§) =~/2m + 3 sin §P" (sin ¢)
Forn > m+2and m >0:

P (sin @) = a(n,m)sin pP." (sin ¢) — B(n,m)P,", (sin §)

where

o) = \/(2;1 +1)(2n-1)

(n—m)(n+m)

B(n.m) :\/(2n+1)(n+m—1)(n—m—1)
(2n-=3)(n+m)(n—m)

and form > 2:

sin(mA) = 2cos Asin|(m —1)A]-sin[(m - 2)1]
cos(mA)=2cos A cos[(m - 1)/1]— cos[(m - 2)/1]
mtang = (m—1)tan g+ tan ¢

(Equations 4.1.2-23 through 4.1.2-28 removed)

(4.1.2-14)*

(4.1.2-15)*

(4.1.2-16)*

(4.1.2-17)*

(4.1.2-18)*

(4.1.2-19)*

(4.1.2-20)*

(4.1.1-21)*

(4.1.2-22)*

The partial derivatives of , @, and A4, with respect to Xpg, Vpgr» and Zpgp, are computed from

the expressions
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— T
Or  _ Tpyr

— (4.1.2-29)*
OFppr Tpgr
- T
?‘b _ 21 2 [_ Z pgF erBF n az_PBF } (4.1.2-30)*
OF ppr N Xpr TV ppr T'ppr Oy
oL 1 0 ppr OX pg
- x - (4.1.2-31)*
OFoge  Xpge' + Vg { P O Yee OFppp
where the position partial derivatives are equal to the following:
0 0 0
esr =(1,0,0) ZEeer=(0,1,0) Z££=(0,0,1) (4.1.2-32)
ppr VpaF Trpr

Substituting Equations (4.1.2-29) through (4.1.2-31) into Equation (4.1.2-6) yields the
selenographic components of the acceleration vector

. 1 oy z oy 1 oy

xNSPBF = 7 ar = 2 PBZ 2 ags xPBF _( 2 + 2 a;ts yPBF (4 1 2'33)
56 OTpE Vppr Al Xppr” + Vppr Xpgr T Vpgr

. 1 oy z oy 1 oy

yNSPBF - 7 a:s 2 PB]; 2 ags PBF +( 2 + 2 a;\:S X paF (412'34)
PBE Vogr N Xpgr T Vpgr Xpgr T Vpar

(4.1.2-35)

[ 2 2
X +
ZNSPBF ZE ! aWNS ]ZPBF + o T Ve aWNS

2
VPBF al" rpBF 8(1)

which are transformed to the mean of J2000.0 geocentric reference frame using Equation (4.1.2-5).

4.1.2.3 Reduction in Nonspherical Gravitational Acceleration Calculations

State propagation using a Runge-Kutta integrator requires multiple evaluations of the acceleration
model for each integration step. The GEONS flight code includes a fourth-order integrator, which
requires four acceleration evaluations, and an eighth-order integrator, which requires ten
acceleration evaluations. These integration methods are discussed in detail in Section 4.2. The
fourth-order integrator was selected for use in flight applications where computational efficiency
is critical. To further reduce computation, an option is available to compute the Sun and Moon
positions and rotation matrices used in the evaluation of the acceleration models only at the initial
time.

If the size of the nonspherical gravitational model that is being evaluated is moderately large,
calculation of the nonspherical gravitational acceleration will be the major contributor to the
computational time for each acceleration evaluation. This cost can be reduced by using a first-
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order Taylor series approximation to the nonspherical gravitational acceleration centered at the
location of the spacecraft at the beginning of the integration step.

The following description of this capability, which has been implemented for propagation of the
Orion spacecraft, is based on the state propagation discussion in Section 6.6.5 of Reference 59.
The nonspherical gravity acceleration is computed using the following Taylor series about the
spacecraft position at the beginning of each integration step, R"(z,). Truncating after the first

order in [R"(1,) - R"(t,)] gives

— n — n 867 n n
Gys (R"(1) = s (R" (1) + 25 [R"(1,) ~ R"(1)] (4.1.2-36)*
OR"(t) »
where 6Ra”Ngt) is the gravity gradient matrix. This approximation requires calculation of the

nonspherical gravitational acceleration and the associated gravity gradient matrix at only the initial
integration step time. A less accurate but more computationally efficient approach would be to
only reevaluate the point-mass and possibly J> gravity contributions at each intermediate time
following the initial integration step time.

4.1.3 Atmospheric Drag Acceleration

Atmospheric drag acceleration is modeled for the user spacecraft as a drag force in the direction
of the relative wind vector acting on a satellite of constant surface area. This model applies only
to the Earth. The velocity of the satellite relative to the atmosphere is computed in the inertial
coordinate system by subtracting the motion of the atmosphere, assumed to rotate with the Earth,
from that of the satellite, as follows:

V,=R-@xR (4.1-59)*

The Earth’s rotation vector, @, is directed along the Earth’s instantaneous spin axis with a
magnitude equal to the rotation rate of the Earth and components (@ 1,®2,®3). The Earth’s
rotation vector is computed in the inertial mean of J2000.0 frame as follows:

o' =0.[C(31):C(3,2):C(3,3)] (4.1-60)*

where @. is the rotation rate of the Earth in radians per second (7.2921158553 x 107
radians/second and the C matrix, which provides the transformation from the ECI to the TOD
frame is used to rotate the spin axis to the inertial frame, is defined in Equation (3.2-26).

For the case of a spherical satellite, the atmospheric drag acceleration is computed as

1{C,(t,)A S —
a_D :_E(M)pa I/rel|l/re[| (41_61)*
m
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where
Co(t) = aerodynamic force coefficient, computed using Equation (4.3-13)
A = surface area of the satellite (meters?)

m = mass of the satellite (kilograms)

P, = density function computed from the atmospheric drag model (kilograms/
meters®)

Nominally, for a spherical satellite, the aerodynamic force coefficient, Cp, is equal to 2.0. In order
to absorb an error in any of the above terms, an adjustment to Cp, A Cp(t), can be estimated. The
computation of A Cp(#) 1is discussed further in Section 4.3.

The atmospheric density function, o, is modeled using an analytic approximation to the Harris-

Priester atmospheric model. Harris and Priester determined the physical properties of the upper
atmosphere theoretically by solving the heat conduction equation under quasi-hydrostatic
conditions (see References 13 through 15). Approximations for fluxes from the extreme ultraviolet
and corpuscular heat sources were included, but the model averages the semiannual and seasonal-
latitudinal variations and does not attempt to account for the extreme ultraviolet 27-day effect.

The atmospheric model presented here is a modification of the Harris-Priester concept. The
modification attempts to account for the diurnal bulge by including a cosine variation between a
maximum density profile at the apex of the diurnal bulge (which is located approximately
30 degrees east of the subsolar point) and a minimum density profile at the antapex of the diurnal
bulge.

The variation of the atmospheric density depends on the solar flux value and the altitude. In the
Harris-Priester model, tables corresponding to the anticipated solar flux value are used. The
approximation in GEONS is based on an analytic formula [see Equation (4.1-61) below] that
applies to all solar flux values of interest and requires limited tables (which can be uplinked once
during the initialization stage). The result is a gain in operational simplicity without significant
loss of accuracy (between 5 and 10 percent).

The density values at a fixed height 4 above the reference ellipsoid for either the minimum
atmospheric density ( p,,;, ) or the maximum atmospheric density ( p,,,, ) can be represented by the
following simple analytic formula (Reference 16):

P 1) = A (f = 65)" + B, [2 - 0] (4.1-62)*
where
£, = maximum (p,, )or minimum ( P, )density
A4,,B,,a,, B, = height-dependent, best-fit parameters to fit the tabulated Harris-Priester

density values

f = 10.7-centimeter solar flux level in units of 1022 watts/meter?/hertz, an
uplinkable parameter, commonly referred to as Fio.7
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The solar flux value is also available in the TDRSS Augmentation Service for Satellites (TASS)
broadcast messages.

The best-fit parameters for p,,, and p,.. are provided in Tables 4-3 and 4-4, respectively. The

tables are associated with altitudes between 110 and 2000 kilometers. Values for the altitude region
associated with the nominal spacecraft mission orbit should be available in the flight software.

For any given height 4, p, . and p . can be obtained by interpolating between the two adjacent
heights, 4, and £,, for which parametric equations are available, as follows:

Pm(f hz) '

AL h)=p L b)) —F— 4.1-63)*
ol )=, )Lm(ﬁ hl)} @163

where
h <h<h (4.1-64)

and

_h—h .
k= " (4.1-65)

If 4< the minimum altitude in the tables (i.e. 110 kilometers), the value 4 = the minimum altitude
in the tables is used in the evaluation of Equation (4.1-62).

If 7> the maximum altitude in the tables (i.e. 2000 kilometers), the density is zero.

A good approximation (neglecting polar motion) for the satellite height, 4, is given by
h=r—-R; (4.1-66)*

where R is the mean radius of the Earth, given as

R, = Rl= ) (4.1-67)*

’ \/1—(2]‘,5 —sz)00828

ng‘CEF'l'yg‘CEF (4.1-68)*

T

cosd =

and
r = magnitude of the satellite position vector
R. = equatorial radius of the Earth

fr = Earth’s flattening coefficient

o = declination of the satellite (it is assumed that & equals the geocentric latitude
of the subsatellite point)
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Xgcer, YEcer = components of the satellite position vector, rgcprp

The density, p,,, is then computed by including the diurnal variation effect

P = Poin o D)+ [P (s )= 0, (: 1] cos"@ (4.1-69)*

where » is the angle between the satellite position vector and the apex of the diurnal bulge.

The cosine function in Equation (4.1-68) can be determined directly as
y 1+cosy)"? |1 R-U

()= (12522)" 1 £
2 2 2 2R

satellite position vector (in mean of J2000.0 coordinates)

n/2

(4.1-70)*

where

~
I

Up = unit vector directed toward the apex of the diurnal bulge (in mean of J2000.0
coordinates)

For GEONS, 7 is an input parameter, which is typically equal to 2 for low-inclination orbits and 6
for polar orbits.

The vector U has the following components:

Up =cosdg cos(aS +Z) (4.1-71)*
U, = €OS & sin(aS +Z) (4.1-72)*
Ujp. = sin g (4.1-73)*
where
Os = declination of the Sun, defined in Equation (4.1-24)
as = right ascension of the Sun, defined in Equation (4.1-23)

A = lag angle between the Sun line and the apex of the diurnal bulge
(approximately 30 degrees)
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Table 4-3. Best-Fit Parameters for the Harris-Priester Minimum
Atmospheric Density, p,...

Altitude, h Best-Fit Parameters
(kilometers)
A (kilograms/ o (unitless) B (kilograms/ B (unitless)
kilometers?) kilometers?)
110 7.8000D+01 0.0 0.0 0.0
120 2.4900D+01 0.0 0.0 0.0
130 -1.1939D-02 0.8751 8.9780D+00 0.0
140 -3.3128D-03 0.8803 4.0690D+00 0.0
150 3.0904D-03 0.5179 2.0860D+00 0.0
160 3.8306D-03 0.7550 1.1460D+00 0.0
170 3.8433D-03 0.7929 6.6160D-01 0.0
180 2.6344D-03 0.8610 4.0160D-01 0.0
190 1.9229D-03 0.8996 2.5300D-01 0.0
200 1.4409D-03 0.9285 1.6280D-01 0.0
210 9.3739D-04 0.9807 1.0760D-01 0.0
220 5.8783D-04 1.0373 7.2870D-02 0.0
230 3.8447D-04 1.0837 5.0380D-02 0.0
240 2.5352D-04 1.1285 3.5490D-02 0.0
250 1.6852D-04 1.1720 2.5410D-02 0.0
260 1.1296D-04 1.2142 1.8460D-02 0.0
270 7.7290D-05 1.2528 1.3580D-02 0.0
280 5.3951D-05 1.2880 1.0100D-02 0.0
290 3.8363D-05 1.3198 7.5880D-03 0.0
300 2.7122D-05 1.3533 5.7190D-03 0.0
320 5.7779D-06 1.5646 3.3050D-03 6.6739D.03
340 2.4895D-06 1.6656 1.9530D-03 8.8782D-03
360 1.1952D-06 1.7486 1.1750D-03 1.0875D-02
380 6.0302D-07 1.8240 7.1670D-04 1.3006D-02
400 3.1547D-07 1.8940 4.4280D-04 1.5129D-02
420 1.7111D-07 1.9579 2.7790D-04 1.7603D-02
440 9.1715D-08 2.0256 1.7600D-04 1.9867D-02
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Altitude, h Best-Fit Parameters
(kilometers)
A (kilograms/ o (unitless) B (kilograms/ B (unitless)
kilometers?) kilometers?)

460 4.9008D-08 2.0947 1.1280D-04 2.2358D-02

480 2.5849D-08 2.1671 7.3460D-05 2.4837D-02

500 1.3512D-08 2.2420 4.8660D-05 2.7228D-02

520 6.9794D-09 2.3197 3.2910D-05 2.9303D-02

540 3.5672D-09 2.4001 2.2790D-05 3.0905D-02
560 1.7865D-09 2.4851 1.6220D-05 3.1924D-02
580 8.9173D-10 2.5712 1.1880D-05 3.2157D-02
600 4.3949D-10 2.6602 8.9780D-06 3.1651D-02
620 2.1604D-10 2.7503 6.9870D-06 3.0602D-02
640 1.0590D-10 2.8414 5.5930D-06 2.9273D-02
660 5.2157D-11 2.9322 4.5890D-06 2.7841D-02
680 2.6007D-11 3.0211 3.8460D-06 2.6423D-02
700 1.3122D-11 3.1084 3.2810D-06 2.5185D-02
720 6.7645D-12 3.1921 2.8380D-06 2.4270D-02
740 3.6011D-12 3.2702 2.4820D-06 2.3581D-02
760 1.9792D-12 3.3428 2.1900D-06 2.3164D-02
780 1.1312D-12 3.4087 1.9440D-06 2.3068D-02
800 6.8348D-13 3.4647 1.7360D-06 2.3083D-02
850 2.6558D-12 3.0991 1.1800D-06 2.6181D-02
900 1.4314D-12 3.1164 8.7000D-07 3.0263D-02
950 9.7814D-13 3.0982 6.6000D-07 3.8122D-02
1000 1.5905D-12 2.9272 4.8000D-07 4.7237D-02
1100 1.3351D-11 2.3794 3.0000D-07 3.5909D-02
1200 6.4934D-11 1.9547 1.8500D-07 2.9814D-02
1300 3.6950D-10 1.5317 1.1300D-07 1.7111D-02
1400 1.1825D-09 1.2630 7.3000D-08 1.0000D-03
1500 7.2326D-10 1.3027 5.2000D-08 2.5822D-04
1600 3.9700D-10 1.3579 3.7000D-08 1.0000D-03
1700 3.1532D-10 1.3817 2.5500D-08 1.0000D-03
1800 1.8189D-10 1.4228 1.8200D-08 1.0000D-03
1900 1.3933D-10 1.4313 1.3000D-08 1.0000D-03
2000 9.5796D-11 1.4598 1.0000D-08 1.0000D-03

NOTE: This table was derived from Reference 16.
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Table 4-4. Best-Fit Parameters for the Harris-Priester Maximum
Atmospheric Density, p_ ..

| Altitude, h

Best-Fit Parameters

| (kilometers) A (kilograms/ a (unitless) B (kilograms/ B (unitless)
kilometers?) kilometers?)

110 7.8000D+01 0.0 0.0 0.0
120 2.4900D+01 0.0 0.0 0.0
130 -1.0288D-02 0.9124 9.3310D+00 0.0
140 -1.5957D-03 1.0205 4.2120D+00 0.0
150 6.0816D-03 0.4198 2.1680D+00 0.0
160 4.3565D-03 0.7089 1.2360D+00 0.0
170 3.7004D-03 0.7724 7.5580D-01 0.0
180 2.9642D-03 0.8090 4.8850D-01 0.0
190 2.4927D-03 0.8261 3.2740D-01 0.0
200 1.8838D-03 0.8559 2.2840D-01 0.0
210 1.5208D-03 0.8719 1.6340D-01 0.0
220 1.2219D-03 0.8895 1.1920D-01 0.0
230 9.5705D-04 0.9114 8.8510D-02 0.0
240 7.4926D-04 0.9332 6.6660D-02 0.0
250 5.8527D-04 0.9554 5.0830D-02 0.0
260 4.5493D-04 0.9787 3.9190D-02 0.0
270 3.5273D-04 1.0027 3.0500D-02 0.0
280 2.7128D-04 1.0288 2.3940D-02 0.0
290 2.0847D-04 1.0555 1.8940D-02 0.0
300 1.6154D-04 1.0809 1.5100D-02 0.0
320 1.0021D-04 1.1258 9.8860D-03 0.0
340 6.3023D-05 1.1692 6.6080D-03 0.0
360 4.0140D-05 1.2115 4.4940D-03 0.0
380 2.5853D-05 1.2529 3.1000D-03 0.0
400 1.6829D-05 1.2934 2.1630D-03 0.0
420 2.1107D-05 1.3320 1.5260D-03 0.0
440 7.3292D-06 1.3719 1.0850D-03 0.0
460 4.8575D-06 1.4120 7.7670D-04 0.0
480 3.2318D-06 1.4521 5.5990D-04 0.0
500 2.1442D-06 1.4936 4.0610D-04 0.0
520 1.1880D-06 1.5650 2.9630D-04 2.8426D-03
540 7.4848D-07 1.6173 2.1740D-04 3.8473D-03
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Altitude, h Best-Fit Parameters
(kilometers) A (kilograms/ a (unitless) B (kilograms/ B (unitless)
kilometers?) kilometers?)
560 4.7709D-07 1.6685 1.6050D-04 4.7660D-03
580 3.0399D-07 1.7205 1.1920D-04 5.7479D-03
600 1.9500D-07 1.7720 8.9100D-05 6.6919D-03
620 1.2570D-07 1.8231 8.7080D-05 7.5966D-03
640 8.1577D-08 1.8734 5.0900D-05 8.4180D-03
660 5.2632D-08 1.9253 3.8960D-05 9.3167D-03
680 3.4199D-08 1.9763 3.0110D-05 1.0066D-02
700 2.2130D-08 2.0285 2.3510D-05 1.0866D-02
720 1.4432D-08 2.0795 1.8570D-05 1.1472D-02
740 9.3506D-09 2.1321 1.4840D-05 1.2121D-02
760 6.0874D-09 2.1841 1.2020D-05 1.2575D-02
780 3.9601D-09 2.2365 9.8670D-06 1.3009D-02
800 2.5823D-09 2.2888 8.1930D-06 1.3276D-02
850 2.1946D-09 2.2422 6.2000D-06 2.5529D-03
900 2.0811D-09 21776 4.4000D-06 -1.9168D-03
950 4.5331D-10 2.3997 3.3000D-06 5.0229D-03
1000 1.2710D-10 2.5811 2.7000D-06 1.2919D-02
1100 1.2207D-11 2.9070 1.7500D-06 2.7866D-02
1200 2.6581D-12 3.0632 1.2000D-06 3.2416D-02
1300 7.4153D-13 3.1939 8.5000D-07 3.9225D-02
1400 5.4632D-14 3.5853 6.2000D-07 4.1313D-02
1500 7.7086D-15 3.8596 4.7500D-07 3.4612D-02
1600 1.7322D-15 4.0683 3.6500D-07 3.5450D-02
1700 6.3293D-15 3.7397 3.0000D-07 3.4738D-02
1800 2.1463D-13 2.9859 2.2000D-07 4.1007D-02
1900 9.0409D-13 2.6444 1.8000D-07 3.5595D-02
2000 5.9649D-12 2.2291 1.4600D-07 3.1280D-02

NOTE: This table was derived from Reference 16.
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4.1.4 Solar Radiation Pressure Acceleration Model

This section provides solar radiation pressure acceleration models based on a simple spherical
satellite model with constant spacecraft area and a higher fidelity model that takes into account the
changing spacecraft surface area due to changing attitude with respect to the Sun.

4.1.4.1 Solar Radiation Pressure Acceleration with Spherical Area Model

The model for the acceleration, @,y , due to direct solar radiation pressure acting on a spherical
satellite is given by

_ C,(t)Ar
aSRP = UI)SR;M Lﬁ’:)% (41-733)*

where the eclipse factor U is defined as follows

U =0 if the spacecraft is shadowed by the central body

U =1 if the spacecraft is sunlit
where the vector from the sun to the spacecraft, 7, is computed as follows:
F.=R!-R (4.1-74)*
and P, = mean solar flux at one astronomical unit, divided by the speed of light
(4.57 x10°° Newtons/meter?)

R/ =position vector of satellite n referenced to the central-body mean of 2000 frame

RS = position vector of the Sun referenced to the central-body mean of J2000 frame,
computed as described in Section 4.1.1

Ry, = one astronomical unit (1.49597893 x10*!! meters)
C,(t,) =solar radiation pressure coefficient, computed using Equation (4.3-13a)

A = surface area of the spacecraft (meter?)

m = mass of the spacecraft (kilograms)

r, = magnitude of the vector 7, (meters)

Vs

Note that partial shadowing, i.e., penumbra and umbra, is not modeled. The following cylindrical
shadow model is used to detect eclipse events at each time that the acceleration is computed. The

spacecraft is assumed to be in sunlight (U = 1) if

R
Rie=5>0 (4.1-75)*
RC‘
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The spacecraft is fully in shadow (U = 0) if

R e =5:<0 (4.1-76)*

and if the vector to the spacecraft along the normal to the sun vector has a magnitude less than the
central body radius, Rc,

R! (Eg .%J% <R, (4.1-77)*

4.1.4.2 Solar Radiation Pressure Acceleration with Multiplate Area Model (not currently
implemented)

The solar radiation pressure acceleration at a specific time is computed for each illuminated flat
plate in the multiplate spacecraft model based on the following high-fidelity model defined
Reference 54.

2 lat
Unpae

- P R un
Agep = —Cr(1;) Smgz Z 4,
i1

A S‘ H% +p, (7, - S)jn +(1-p, )S} (4.1-77a)

where

C,(t,) = solar radiation pressure coefficient computed using Equation (4.3-13a)

P, = mean solar flux at one astronomical unit, divided by the speed of light (4.57 x107®
Newtons/meter?)

R, = one astronomical unit (1.49597893 x10"!! meters)

Sun

L = eclipse factor, equal to the fraction of the solar radiation pressure flux at the
spacecraft taking into account shadowing by the Moon and the Earth as defined in
Section 4.1.4.1

m = spacecraft mass (kilograms) (satellite-specific commanded parameter)

A

1

surface area of the ith plate (meter?) (satellite-specific commanded parameter)

n, = surface normal unit vector for the ith plate in the central-body inertial frame

1

S= ‘Eg ~R! ‘ magnitude of the satellite-to-sun vector (meters)

R R

RS -R!

S:

, satellite-to-sun unit vector in the central-body inertial frame

O, = diffusive reflectivity for the ith plate (satellite-specific commanded parameter)
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p, = specular reflectivity for the ith plate (satellite-specific commanded parameter)
The summation is performed for each illuminated plate 7, i.e. when

S-h >0 (4.1-77b)

1

Spin-Stabilized Macromodel and Associated Partial Derivatives (Future Release)

For the MMS spacecraft, an approximate area model consists of a regular octagonal cylinder
composed of 8 solar array side panels and top and bottom plates and an inner column. The total
acceleration is equal to the contributions from each of these components:

— __ —oct —top/bot | —col %
Aspp = Aggp T Asgp T Agpp (4.1-77¢)

The spacecraft rotation period (20-24 seconds) is comparable to the integration stepsize (nominally
30 seconds). Therefore, the acceleration computed using Equation 4.1-77a should be averaged
over the rotation period.

Reference 55 provides a similar solar radiation pressure model for the spin-stabilized SELENE
relay spacecraft. In Reference 55, the solar radiation pressure acceleration is derived in the
spacecraft-centered body frame defined as follows:

Z, is parallel to the spin axis 121
%, = Sx%,,normal to 2, and the Sun direction S (4.1-77d)*

Vg = Zy XX, in the plane defined by Aand $
The angle © between the spin axis and the Sun direction is given by

cosf=A-S (4.1-77e)*

where A is the spin axis direction expressed in the inertial frame

COS 0L, COS O,
A=|sino, cosd, (4.1-776)*

sind,

o, 1s the right ascension of the spin axis with respect to the inertial frame, and &, is the
declination of the spin axis with respect to the inertial frame (defined in Section 3.2.8.2).

The model in Reference 55 is based on the following assumptions: (1) the spacecraft rotation
period is much smaller than the orbital period so that the solar radiation force acting on the
spacecraft can be modeled as constant over one rotation period, (2) the orientation of the spin axis
does not change over the rotation period, and (3) the effects of shadowing and reflection by the
different parts of the spacecraft can be neglected. The accelerations in the spacecraft-centered body
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frame defined in Equation (4.1.4-77d) are then rotated to the inertial frame for inclusion in the
equations of motion

— n —oc —top / bo col
Aspp = Tyyze s [(aSthD )B + (a.éR[;J [)B + (aSRP )B] (4.1-77g)*
where
Xp-X, VpX, Zp-X;
Tyvzes =|%3 V1 Vg V1 23V (4.1-77h)*
)23'2/ )73'21 23'21
This model assumes that the top and bottom of the cylinder are identical and that only one will be

illuminated at any time. The acceleration due to solar radiation pressure acting on the top/bottom
plate is obtained using Equation (4.1.4-77a) directly:

0
2

(5;%’;,”’”’ )B =-C, % 4,, (1-p,)sinBcos O ,0< /2

4, cos 9{(1 +p, )cos 0+ 25’ }

(4.1-771)*
PiR; 0

(Eg};’;/””’)B = —CR%“Z"U —Amp(l—pt)sinecose ,0>7/2

-4, cos 6{(1 +p, )cos 0+ 238’ }

where
4, = area of the top/bottom of the cylinder, assumed to be identical (an input parameter)

d, = diffusive reflectivity for the top/bottom (an input parameter)

p, = specular reflectivity for the top/bottom (an input parameter)

The mean acceleration over one spacecraft rotation due to solar radiation pressure acting on the 8
sides of the octagonal cylinder is computed by summing up the forces acting on each sunlit solar
array plate and averaging over the rotational period. In the satellite-centered frame, this yields:

0
et P.R. v| 84, . [3+p, . 8 :
(aSRP )B =-Cy in;u;U 3m S 9[ Tcps sin 6 + 7?:| (4.1-77))*

%(1 —p, )sinBcos O
T

where
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A,,, = Area of each solar array panel (an input parameter)
8, = diffusive reflectivity for the solar array (an input parameter)

p, = specular reflectivity for the solar array (an input parameter)

Using a similar approach, the mean acceleration over one spacecraft rotation due to solar
radiation pressure acting on the column is given by

0
o PR} v|2mrh . [3+p. . 5
(@5ip), =~ =) = sme{ b sm9+ﬂ (4.1-77k)*

2rh(1—p, )sinBcos O

where
r = radius of the column (an input parameter)
h = height of exposed portion of the column (an input parameter)

8, = diffusive reflectivity for the column (an input parameter, equal to 0.20 for
Germanium Black Kapton)

p. = specular reflectivity for the column (an input parameter, equal to 0.30 for
Germanium Black Kapton)

The associated partial derivative matrix [D] referenced in Section 4.4.1.3 is given by

a@a%: _ T;?YZFB{%%R)B N (67%’22: b, (‘?%R)B} (4.1-771)*

where

0
—oct 2
8(aSR,, )B __ IDSRSuan 84, sin 9[“_‘% sin 0+ 6_5} (4.1-77m)*
oC, msS 3 T 2

%(l —p, )sinBcosO
T
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0

—top / bot 2
a(aSRP )B = _ Ps R0 4,, (1 -p, )sin&cosé’ ,O0<7m/2

oc, msS’ 28
4, cos 6’{(1 +p, )cos@ + 3 L }
(4.1-77n)*
0
a —top/ bot 2
(aSRP )B —_ PSRSMZHU _Ato (1—pt)sin¢90080 ,9>7T/2
oc, ms ' 25
~4,, COSH[(I +p, )cos 6 + 3’ }
0
a —col 2
(aSRP )B - _ PSRSuan 2mrh sin e|:3+—pc sin 6 + i:| (4 1-770)*
oC, mS T 2

2rh(1—p,)sinBcos O

4.1.5 Externally Measured Accelerations

This acceleration model is suitable for modeling thrust accelerations associated with a spacecraft
maneuver. This model assumes that the externally measured accelerations have been averaged
over the propagation interval. These accelerations can be input in any of the following frames:
Mean of J2000.0 with respect to the central body, RIC or VBN defined with respect to the central-
body frame or three-axis stabilized or spin-stabilized spacecraft body frames. The externally
measured acceleration associated with the current propagation interval is converted to the inertial
Mean of J2000 coordinate frame using the appropriate transformation (i.e. Equation 3.2-52, 3.2-
92,3.2-62, or 3.2-67). Note that averaging of the externally measured accelerations is not currently
implemented in GEONS. In addition, a maneuver can be modeled as an impulsive velocity change
(delta-V) that is added to the velocity vector at the maneuver time. When accelerometer sensor
measurements are used to model the non-conservative forces, the averaged acceleration is included
in the total acceleration in the central-body inertial frame:

a=ap + a5 +ap +ays, + Ays, + dogr ¢ (4.1-77p)*
External accelerations are typically obtained from an accelerometer onboard the spacecraft. An
accelerometer measures the non-conservative forces acting on a spacecraft at any time, if they
exceed the accelerometer thresholds. The non-conservative forces, which are typically dominated
by any propulsive forces, also include atmospheric drag and solar radiation pressure forces.
Accelerometer sensor measurements are typically used to model the propulsive force only when
the spacecraft is thrusting. Estimated accelerometer sensor biases are used to correct the
accelerometer measurements prior to including them in the total acceleration vector.
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Correction of the accelerometer sensor measurements is not currently implemented in GEONS.
The corrected accelerometer acceleration is given by

(angjumd - bIAMUx)/(]- + SIAMUX)
ageyreeted = [Ty ple [Tocmu] | (allsese = by, ) / (1 + sfau, ) (4.1-77q)

(aﬁvfﬁjmd - bIAMUZ )/(1 + SiAMUZ)
where

[TXYZE 5 ]C = rotation matrix from the spacecraft body frame to the central body inertial
frame defined in Section 3.2.8

[T e IMU] = rotation matrix from the IMU sensor frame to the body frame

A4 A A4 _ . . .
[s v > Siau > S, ] = scale factors, representing the error in the conversion from raw

sensor outputs to engineering units

— Measured

ap = Measured accelerometer accelerations in the IMU sensor frame

[b,LUX g, » g, ] = component of the accelerometer measurement bias in the IMU

sensor frame

b,i, = vector of all accelerometer measurement biases

b,
b,
A bIIjMU N

by =1 4 (4.1-77r)
S,

4
Smu,

4
Smu,

4.1.6 Unmodeled Accelerations

Unmodeled accelerations can be represented by acceleration biases defined with respect to any of
the following coordinate frames:

o (c_z )RIC’ acceleration biases expressed in the Radial/In-track/Crosstrack (RIC)
coordinates with respect to the central body frame defined in Section 3.1.4

o (c_z )VBN, acceleration biases expressed in the Velocity/Binormal/Normal (VBN)
coordinates with respect to the central body frame defined in Section 3.1.8

o (EU )3 , acceleration biases expressed in the spacecraft body frame
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These acceleration biases are modeled as either random constants or Gauss-Markov processes
using the models defined in Section 4.3. The estimated “unmodeled” acceleration bias values are
included in the total acceleration that is used to propagate the position and velocity components of
the estimated state vector. The acceleration biases must be transformed to the inertial Mean of
J2000.0 frame for inclusion in the total acceleration vector defined in Equation 4.1-4. The
transformations are as follows, depending on the frame used to define the bias:

[y ]CT (@,) > for acceleration biases expressed in the RIC frame
(@, ) 2000 = [Ty van ]C (@, )VBN , for acceleration biases expressed in the VBN frame (4.1-78)*

[Tvrs @) ,, for acceleration biases expressed in the body frame

The associated transformation matrices are defined in Sections 3.2.4, 3.2.8, and 3.2.10.
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4.2 Runge-Kutta Integration Algorithm

The Runge-Kutta method is a self-starting, single-step numerical integration technique by which
the value of the dependent variable, x, at some future time, #1 + 7 (where 7 is the integration step
size), can be calculated from a weighted summation formula and the value of the dependent
variable at 1. GEONS includes both fourth-order and eighth-order integration algorithms.

The fourth-order integration algorithm, which is described below, was selected for computational
efficiency. The following formulas apply to a single component of the vector of quantities being
integrated, x ().

Given a first-order differential equation of the form

— =F(x, ) (4.2-1)

and an initial value
x, =x(t,) (4.2-2)

the dependent variable, x, at time #; + 7is computed as follows:

x(ty + 1) = x, +F, +2F, +2F, + F,) (4.2-3)*
where

F, = F(x,,t,) (4.2-4)*

— T T
F =F|X,+=F,, t,+~ (4.2-5)*

2 2

— T T
F,=F\x,+—=F,t, +—= (4.2-6)*

2 2
F, = Fx + TF,, t, + 1) (4.2-7)*

The function F' is given by the user spacecraft equations of motion defined in Section 4.1. To
reduce computation, an option is available to compute the Sun and Moon positions and rotation
matrices used in the evaluation of the acceleration models only at the initial time ¢,. A fixed

maximum value will be assigned to the stepsize t for the user spacecraft. The actual stepsize will
be an adjustable variable smaller than or equal to the fixed maximum value.

The Shanks eighth order Runge-Kutta algorithm was selected to provide higher accuracy using
larger stepsizes (Reference 56). The following Shanks Runge-Kutta algorithm requires 10 function
evaluations.
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The dependent variable, x, at time 7 + 71is computed as follows:

9
X (zo +r)=x0 +TZ ¢ F (4.2-8)*
i=0
where
F, = F(x,,t,) (4.2-9)*
F =Fk+k,t,+at) i=1,..,9 (4.2-10)*
i—1
— = *
ki=at) b F, i=1..,9 (4.2-11)
J=0
Table 4-5 contains the values for the coefficients used in these formulas.
Table 4-5. Coefficients for the Eighth Order Runge-Kutta Method
I c, a, ab, ;
J=0 J=1 J=2 J=3 J=4 J=5 J=6 J=7 J=8
0 | 41/840
1 0 4127 427
2 0 2/9 118 3/18
3 | 27840 | 113 112 0 3/12
4 | 272/840 | 112 18 0 0 3/8
5 | 27/840 | 273 13/54 0 -27/54 42/54 8/54
6 | 216/840 | 1/6 | 389/4320 | O | -54/4320 | 966/4320 | -824/4320 | 243/4320
7 0/840 1 -231/20 0 81/20 | -1164/20 | 656/20 | -122/20 | 800/20
8 | 216/840 | 5/6 | -127/288 | 0 18/288 | -678/288 | 456/288 | -9/288 | 576/288 | 4/288
9 | 41840 1 | 1481/820 | 0 | -81/820 | 7104/820 | -3376/820 | 72/820 | -5040/820 | -60/820 | 720/820
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4.3 Nonspacecraft State Vector Propagation

This section provides the state propagation and state transition matrix equations for the
atmospheric drag coefficient correction (AC, ), solar radiation pressure coefficient correction (

AC,), receiver time bias (br), receiver time bias rate and acceleration (d, and d r ), acceleration
biases (a,),GPS/WAAS pseudorange biases (5 pG/ "), GPS/WAAS Doppler biases (l;dG/ "y,

GPS/WAAS carrier phase biases (ZZI)G/ "), GPS/WAAS singly differenced carrier phase biases (

Al;f/ "), cross-link pseudorange biases (l;pa ), cross-link Doppler biases (b, "), celestial object

sensor biases (b_ €9, GS range biases (EPGS ), GS Doppler biases (l;dGS ), TDRSS Doppler biases (
b "), accelerometer sensor measurement biases in the IMU frame ( b,.,,, ), and ionospheric scale
factor (y, ). Each of these biases can be modeled as either a random walk or first-order Gauss-

Markov (FOGM) process using the equations provided in Sections 4.3.1 and 4.3.2, respectively.
In addition, the time bias drift can be modeled as a second-order Gauss-Markov (SOGM) process
using the equations provided in Section 4.3.3.

The atmospheric drag coefficient for satellite n at time ¢ is computed as follows

cae)=(cp)., +ACH() (4.3-1)*
where
(C N )m , = constant reference value for C;, (commandable parameter)
AC}(t) = correction to Cj at time ¢
The solar radiation pressure coefficient for satellite n at time # is computed as follows
ci()=(cp)., +acy() (4.3-1a)*
where
(C " )re , = constant reference value for C » (commandable parameter)
AC}(t) = correction to C at time ¢

Some GPS receivers estimate the receiver clock's offset from GPS time and increase/decrease the
receiver's clock time by 1 millisecond whenever the magnitude of the estimated offset exceeds 0.5
milliseconds. (If the estimated offset is less than -0.5 milliseconds, the clock time is increased by
I millisecond. If the offset is greater than +0.5 milliseconds, the clock time is decreased by 1

millisecond.) To accommodate such receivers, the residual receiver time bias for satellite n, I;R” (1)
, can optionally be modeled as

by () = by (1) —q{bz () + signlby )]XO'SQ} (4.3-2a)*

q
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where
by (1)
[x]int
sign[x]
q

accumulated time bias (meters) at time ¢ for receiver n

designates the greatest integer contained in the value of x
designates the sign of the value of x

distance that a signal travels in 1 millisecond (299792.458 meters)

The accumulated receiver time bias b,(¢) is related to the time bias rate, optional time bias

acceleration, and optional correction to model relativistic drift effects on the spacecraft clock

relative to a UTC reference clock at rest in the ECI frame on the Earth’s geoid, Ad;m , as follows

BR(t) = bR(t — Ab) + [dj(t — AL) + Adj, (t — AD] - At + d(e — 4t) -2 (4.3-2)

The accumulated receiver time bias rate dp(¢) is related to the optional time bias acceleration as

follows

where
by (1)
bi(0)
d;(0)
d;(0)
dx (1)

dp(0)

Ad ;Rel (?)

R(t) = dR(t — At) + dR(t — At) - At + Adg.,, (t—A4t) (4.3-3)

accumulated GPS receiver time bias (meters) at time ¢

initial receiver time bias (meters) (commandable parameter)

value of the receiver time bias rate at time ¢ (meters/second)

initial receiver time bias rate (meters/second) (commandable parameter)

value of the optional receiver time bias acceleration at time ¢ (meters/second?)

initial receiver time bias acceleration value (meters/second?) (commandable
parameter)

drift of the satellite clock versus a clock at rest on the surface of the Earth due

to relativity (meters/second)

The value of l;R" (¢) is related to the receiver's residual time offset term &8¢, as follows:

ba(t) = cdt) (4.3-4)

The value of d;(¢) is related to the receiver frequency offset (in hertz), 6F ., as follows:

an(t) = ¢ OLker (4.3-5)

T

Where F’; is the nominal carrier frequency (e.g. 1575.42 megahertz for L1).
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Note that the model for the residual receiver clock bias given in Equation (4.3-2a) is receiver
specific. If the receiver does not increase (decrease) the clock time to accommodate offsets of 1
millisecond, the accumulated bias model given in Equation (4.3-2) should be used.

The primary relativistic effects on a satellite clock are the second order Doppler shift and the
gravitational frequency shift. Clocks moving in space run faster than clocks at rest on the surface
of the Earth due to the lower gravitational potential in satellite orbit but run slower due to their
higher velocity. The fractional frequency shift of the receiver’s clock relative to a reference clock
fixed on the Earth’s geoid can be approximated as follows (see Equations 27 and 53 in Reference
57 for more detail) for an Earth-orbiting satellite

Ao _ (RE) e @, (4.3-6)
F, 2¢ Ri? ¢
where
- z—g = Earth’s Gravitational point mass potential at the satellite’s position
Rg¢ = Magnitude of the satellite’s ECI position vector
R;“ = Magnitude of the satellite’s ECI velocity vector
@y

= =—6.96929x1 0~'° =Effective geopotential at the equator in the ECEF frame (included because

reference clocks are fixed on the Earth’s surface)

Based on Equations 4.3-5 and 4.3-6, the relativistic contribution to the drift of the receiver’s clock
relative to a reference clock fixed on the Earth’s geoid can be approximated as follows for an
Earth-orbiting satellite

Ady (1) = c[—%(% + @] + 6.96929x101°J (m/s) (4.3-7)*
el c f

Components of an acceleration bias vector @, can be estimated to account for unmodeled

accelerations. The acceleration bias vector can be modeled in trajectory-fixed coordinates (RIC or
VBN) or a spacecraft body-fixed frame dependent on the spacecraft attitude using the equations
given in Section 4.1.6. Each component of the acceleration bias vector can be modeled as either a
random walk or Gauss-Markov process.

(Equation Deleted) (4.3-8)
(Equation Deleted) (4.3-9)
(Equation Deleted) (4.3-10)
(Equation Deleted) (4.3-11)
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(Equation Deleted) (4.3-12)

(same as Equation 4.3-1) (4.3-13)
(same as Equation 4.3-1a) (4.3-13a)
(same as Equation 4.3-2a) (4.3-14a)

4.3.1 Random Walk Processes

The predicted values for the random walk biases that can be estimated in GEONS are as follows:

bR (ti) = bR (tr—1) + [dR(ty—1) + AdR,  (te-1)][tx — ty—1] + AR (G- [t — te-11?/2 (4.3-14)%

ACH(t, )= ACh(t, ) (4.3-15)*
ACH(t, )= ACL(t,.,) (4.3-15a)*
(@ 6 e =@ 6 e (4.3-16)%
(@6 = (@ (4.3-17)*
(@), = ..), (4.3-18)*
di(t)=di(e,)+die, )t -1 (4.3-19)*
dp(t)=dat,) (4.3-19a)*
bt )=b7"(t,.,) (4.3-19a)*
bt )=bS"(t,,) (4.3-19b)*
bt )=b"(t,) (4.3-19¢c)*
bt )=b (2,,) (4.3-19d)*
h(t,)=bt,,) (4.3-19¢)*
b ()= {bbgf; /W ”ff((zk1 )1, # .time of §igna1 acql'li.si.tion |
S (t,., ) £, =time of signal acquisition for G/W, by receivern (4.3-

where i =1,...40,n =1,..., Ng and bfn/W" (tm) is defined in Equation (5.3-51)
19)*
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GIW, . . .
pEW, (t )= buy,, (¢, ) t, # time of signal acquisition
Apy, k)T bG/W,

A(I)Irr

where i=1,..40,n=2,..,Ng and b, " (tacq) is defined in Equation (5.4-19)

(tacq ), t, = time of signal acquisition for G/W, by receiverlor receivern  (4.3-

19g)*
. )=7,() (4.3-19h)*
b (1) =b" (1) (4.3-19i)*
b (6)=b" (1) (4.3-19))*
b (t)=b,"" (1) (4.3-19K)*
b (1) = b (4,1 (4.3-19k)*

The following are the nonzero partial derivatives for the random-walk variables that are used in
computing the state transition matrix:

OACH() _ (4.3-20)*
OACH (¢, )
6A+};(n) 1 (4.3-20a)*
OACH(1, )
abj;(tk) 1 (4.3-21)*
oby (£, )
oby t,)

., 4.3-21a)*
ad;(lk_l) A | !
n 2

QiR(rk) -t (4.3-21b)*
odp(t;_1) 2
od; () _, (4.3-22)*
adR(l‘k—l)
ody(t)
d — (4.3-22a)*
ody (e ) 1
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oby " (z,)
oby " (t,1)

abS"i(t,)

Ad1y

Ob g (1)

Ad1p

L..n

***2> "“sensor

n=1L.,Ng; j=

I, n=1..,N;i=1,..40

=1; n=2,.,Ng;i=1,..40
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(4.3-22aa)*

(4.3-22b)*

(4.3-220)*

(4.3-22d)*

(4.3-23)*

(4.3-24)*

(4.3-25)*

(4.3-26)*

(4.3-27)*

(4.3-27a)*

(4.3-27b)*

(4.3-27¢)*



‘%pGSj (tk)

——==1;, j=1.n (4.3-27d)*
oby (¢, ?
by (1,) .
Pa ) _q. o, 4.3-27e)*
) " e N
ob,” (¢, ) .
adeT/(tk—l) =1 =L sy (4.3-276)*
4;
by (1) _ L oi=1.3 (4.3-27g)*

abllj\‘/[U (tk—l )

where ng 1s the number of transmitting ground stations, n is the number of celestial object

sensor

sensors, and 7n,,,, 1s the number of TDRSS satellite transmitters.

4.3.2 First-Order Gauss-Markov Processes

The predicted values for the Gauss-Markov biases that can be estimated in GEONS are as follows:

_AT
ACH(t)=e “» AC(t,.,) (4.3-28)*
AT
AC4(t,)=e “*ACH(t, ) (4.3-29)*
AT
bp(t,)=bp(t,_)+ r{l —e ™ )d}i () (4.3-29a)*
AT
(a(’; (tk ))RIC =e (a(’; (tk—l ))R]C (4.3-29b)*
AT
(67{; (tk ))VBN =e (‘7{; (tk—l ))VBN (4.3-29¢)*
AT
@), =e ™ @), (4.3-29d)*
AT
dpt,)=e “dp(t.,) (4.3-29¢)*
B AT
EPG/W(tk)ze G ng/W(tk—l) (4.3-290)*



B )= ¥ B (1) (43-29)*
_AT
b (e)=e ™ b (e,) (4.3-29h)*
_AT
biHt)=e ¥ B (b ) (4.3-29i)*
B AT
bt )=e *“ b(t,,) (4.3-29j)*
AT
bf/ W, (tk) _le ™" bqu W (t,H ), t, # time of signal acquisition
bfn i (tac q), t, =time of signal acquisition for G/'W, by receivern (4.3-29k)*
where i =1,..40,n =1,...,N; and bfﬂ/W" (tacq) is defined in Equation (5.3-51)
AT
bf¢/ Wi (tk ) = e bfd)j W (tk_1 ), t, # time of signal acquisition .
ba"\¢t, ) t, =time of signal acquisition for G/W, by receiver 1 or receiver n (4.3-290)
Ad, \acq k i
where i =1,..40,n =2,..., Ng and bgﬂ’m (tacq) is defined in Equation (5.4-19)
_AT
Yr (tk ) =e My, (tk—l ) (4.3-29m)*
_AT
prS (t)=e ™ prS(tk_l) (4.3-30a)*
_AT
b () =e b (1) (4.3-30)*
_AT
b7¥ ) =e * b/ (1,.) (4.3-31)*
_AT
bIAI;lU (t,)=e ’ b];\qu (Z-1) (4.3-31a)*
where
AT = t, -t
T = correlation time associated with the bias, a commanded parameter (seconds)
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The following are the nonzero partial derivatives for Gauss Markov biases,

computing the state transition matrix:

AT

OACH(L) _ e,

OAC; (1)

AT

OACH(t) _ e,
aAC; (tk—l )

=1
ob; (1)
abi(e) _ [, %
ad;(t,.,)
odyle) _
od;(t,,)
6(&{2 (t, ))ch _ ef% i=1.3
a a[’} (tk—l) RIC , ’
a(al’}i (tk )) BN _ 8_% i=1..3
0 aff.‘ (tkfl) VBN , ,
6(61,1 (tk ))B _ e_% i=1.3
0 aZ’/,. (tk—l) B ’ N
AT
ob; " () _ ew =140
8pr/Wi(tk71) ’ ;
AT
) i
—e ¥ . i=1..40
oS (1)) ¢ .
AT
o) _ e
N R
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which are used in

(4.3-31b)*

(4.3-31¢c)*

(4.3-31d)*

(4.3-31¢)*

(4.3-31H)*

(4.3-31g)*

(4.3-31h)*

(4.3-317)*

(4.3-31j)*

(4.3-31k)*

(4.3-311)*



AT
PR " :
abfof (gk/il)) =e' ; n= Lo Ng j =1 n,,
AT
oby'"(e,) v

n=1,.,Ngi=1,.40

o AT
Oby, (tk) e ™ ;0 n=2,.,Ngi=1..40
ob " (1))
AT
aY[(tk) _87;
ay}(tk—l)
AT
aprS/(tk) _ Tg's ] _1 n
ob," (t,,) ’ o

_ = 5 ] = 1,...,”
TDRS, TDRS
ob,”" (&, )
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(4.3-31m)*

(4.3-31n)*

(4.3-310)*

(4.3-31p)*

(4.3-31q)*

(4.3-32a)*

(4.3-32)*

(4.3-33)*

(4.3-33a)*



where ng 1s the number of transmitting ground stations, n is the number of celestial object

sensor

sensors, and 7n,,,, is the number of TDRSS satellite transmitters.

4.3.3 Second-Order Gauss-Markov Processes

When the time bias is modeled as a FOGM process and the time bias drift is modeled as a SOGM
process, the maximum value of the time bias covariance can be limited. In this case, the predicted
values are as follows:

oba(t,) ob(t,)

bi(t,) = — 2L pr BRI 4.3-34)*

R(tk) 8b;(tk_l) R(tk—1)+ad;(tk_l) R(tk—l) ( )
ad(t,) ad(t,)

dit,)=—2Lp! Bt AN 4.3-35)*

)= 25 YR+ 5 il (4.3-35)

where the following partial derivatives are used in computing the state transition matrix:

é’b; (tk) eaAT

= b bAT)+(a+2 in(bAT 4.3-36)*
ﬁb; (tk,l) b ( COS( ) (a gda)n)sm( )) ( )
n aAT
b () _e sin(bAT) (4.3-37)*
ody(t,,) b
n aAT
0d () _ e o2 sin(bAT) (4.3-38)*
abR (tk—l) b
adyt,) e ( :
. = bcos(bAT) + (a + P)sin(bAT)) (4.3-39)*
adR(l(k—l) b
where
a= —%(B +2¢,0,) (4.3-40)*
b _ 2 2 1 2 _ 2 1 2 *
- O‘)n(l_gd )+BGdO‘)n _ZB - O‘)d +Bgd(’0n _ZB (43-41)
W, = w/coih—cji (4.3-42)*
where
AT = t, -1,
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B=1/t, = where 1, is the FOGM correlation time associated with the receiver time bias,
a commanded parameter (seconds) with recommended values 43200 s<t,
<43200000 s

®, = SOGM natural frequency, a commanded parameter (radians per second) with

recommended values 6x10°<®, <3x10™

€, = SOGM damping ratio, a commanded parameter (unitless) with recommended
values 0<C, <1

If the values for t,, ®,, and {, are selected such that % is much larger than AT, the

FOGM/SOGM process resembles a random walk process over intervals shorter than %.

Reference 53 provides a more detailed discussion of the performance of this model.
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4.4 State Error Covariance Propagation

Sections 4.4.1 through 4.4.3 present the algorithms for computing the state transition matrix,
computing the state process noise covariance matrix, and propagating the covariance matrix
factors, respectively. Note that the timestep used for state error covariance propagation is the same
as the time interval used in the filter time update processing discussed in Section 2.3.1.

4.41 State Transition Matrix Computation

The state transition matrix is used to propagate the state error covariance matrix. Note that the state
transition matrix is computed in ECI frame, regardless of the central body that is being used to
integrate the satellite state vector.

The state transition matrix at time #; is defined as

B V1
02(1—(1") 0 0 0
oX (ti—l )
B : . )?/\.]S | : :
(6,4, )= 53/(2) 0 é’_N—(tz) 0 0 .
T oX () = oxX"(t,) (4.4-1)
0 . 0 IB(1,) 0
oB(t,,)
L 7, (ti—l )_
where
| R() R(t,) R(1,) R(z,) R(t,) R(t) |
o~y = 03><2 3y
R (ti—l ) R (t,»,] ) ANC, (ti—l ) ANCy (ti—l ) ay, (IH ) OAbI;IU (t[—l )
R(1) R(1,) R(1,) R(1,) R(1) R(1,)
— . 03><2 3
R (ti—l ) R (t,,, ) ANC), (ti—l ) ANCy (ti—l ) ay, (ti—l ) éblilu (ti—l )
B 0. 0, G0, 0, 0. 0,
ox" (ti) _ OAC, (ti—l)
ﬁyn (tF] ) 01><3 01><3 0 M Ol><2 01><3 01><3
OAC,(t,.,)
0., 0, 0,, 0,, &b, 0,
) - O‘bR (ti—l ) ) -
0, 0. 0., 0, 0,, Al
a, ()
03><3 0?><3 03><1 O}xl 03><2 03><3 M
L » djl}:{b’ (tifl ) |

(4.4-1a)*

If the state vector includes relative states for the nonlocal satellites, the associated state
transition matrix includes the correlation between the relative states and the local state
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_ - _
a_Xl—("‘) 0 0 0 0
oxX'(t,,)
X)X axX()
2 M) o4 et 0 0 0
oX*(t,) oxX'(,) ox’(1,)
aXrel(tl) _ R : . : R :
oz, ¢, )=—a)?rd ) : : . : : : (4.4-1b)
ox"s(z) ox'(r) X" (z,)
SN - —l 0 e T 0 O
oxX™ (ti—l) oX (ti—l) oxX S(ti—l)
0 0o . 0 oB(t)
aB(ti—l)
L aYI(tH)_

Note that, if the atmospheric drag coefficient correction, the solar radiation pressure coefficient
correction and/or the acceleration biases are not being estimated, the associated columns are not
present in the state transition matrix given in Equation (4.4.1a).

The position and velocity components are computed by the following semianalytic approximation

| oR(1)  oR() |
OR(t,)  OR(t.) I+4,,

AT? AT?

I(AT—B

AT? AT?

AT (4.4-2)*
(Ai—l + Ai)? - BAi—l T I+ Ai

OR(1)  OR()
OR(t,,) 0OR(t,,)

+I(—BAT+B2 Aszj

where AT = t; — t;-1 (seconds) and = 2g-®, , where ¢ is the SOGM orbital covariance artificial

damping ratio (a commandable parameter) and o, is the orbital rate given by (Reference 52)

2
o =2T_ [Hc

4.4-3)*
= T (4.4-3)
where the semimajor axis is given by
et
2 ‘R
a=|—=—-—"—"— (4.4-3a)*
‘R‘ He

The [3 x 3] [4:] matrix consists of the partial derivatives of the acceleration vector, R (t,) , with

respect to the position vector at time . Computation of the [4;] matrix is discussed in Section
4.4.1.1. The [3 x 3] [ ] ] matrix is the identity matrix. This semianalytic second-order formulation
of the position and velocity state transition submatrix, which is based on Method H in Reference
17 and Reference 59, is obtained using the following second-order Runge-Kutta integration
formula:
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. i 2
M) 8D A7 1 A (e, )AC) T (4.4-4)

Dt ti) =1+
Based on analysis presented in Reference 17, this approximation will propagate the state error
covariance matrix around one orbit (for a low Earth orbit) with an accuracy of approximately 1
percent if a maximum time step of 16 seconds is used.

If the atmospheric drag coefficient correction is estimated, the atmospheric drag correction
components are computed by the approximation

OR(1) :
aA(jD (ti—l) Bifl 2 (4 4 5)*
OR(2) B AT
L aACD(ti—l) |

The [Bi.1] matrix represents the partial derivatives of the acceleration vector with respect to the
drag scale factor at time #.1. The [B] matrix is computed in Section 4.4.1.2.

If the solar radiation pressure coefficient correction is estimated, the solar radiation pressure
coefficient correction components are computed by the approximation

OR(1)

— AT?
OAC, (1) D=
N = (4.4-52)*
OR(1,) D, AT
| OAC () |

The [D;.1] matrix represents the partial derivatives of the acceleration vector with respect to the
solar radiation pressure coefficient at time #.1. The [D] matrix is computed in Section 4.4.1.3.

If the acceleration biases are estimated, the acceleration bias components are computed by the
approximation

[ OR(t) | )
S — AT
oa,(t,_,) E ) (4.4-5b)*
oR(1) E._ AT
L aau (ti—l) B

The [Ei-1] matrix represents the partial derivatives of the mean of J2000.0 acceleration vector with
respect to the acceleration biases at time #;.1. The [E] matrix is computed in Section 4.4.1.4.
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If the accelerometer sensor biases are estimated, the accelerometer bias components are computed
by the approximation

OR(t.
— ( z) AT2
6bIMU (ti—l) E—l 2 (4 4 5 )*
) = 4-5¢
OR(%,) F_ AT
L ablAA;/U(ti—l) |

The [Fi-1] matrix represents the partial derivatives of the mean of J2000.0 acceleration vector with
respect to the accelerometer sensor biases at time #.1. The [F] matrix is computed as defined in
Section 4.4.1.5.

The remaining partial derivatives in Equation 4.4-1a are defined in Section 4.3.1 (Equations 4.3-
20 through 4.3-22d) and Section 4.3.2 (Equations 4.3-31b through 4.3-311) for random walk or
first-order Gauss Markov bias processes, respectively and in Section 4.3.3 when the time bias drift
is modeled as a second-order Gauss-Markov process (Equations 4.3-37 through 4.3-40).

%, " (1) 0 0 0 0 0 0 0 0 0
7, GIW
ok, (1,.1)
AL GIW
%, (x) 0 0 0 0 0 0 0 0
b/ ")
abf"(l‘,.)
0 0 L 0 0 0 0 0 0 0
ok, (61)
7, CL
0 0 0 Zj;b& ((’ )) 0 0 0 0 0 0
0B\t
_ 0 0 0 0 (ibc ") 0 0 0 0 0
0Bt _ )
B . bGS
08(.) 0 0 0 0 0 b 6 0 0 0
b, (t;.1)
(1)
0 0 0 0 0 0 a,bgs 0 0 0
b () )
e 4.4-5e)*
0 0 0 0 0 0 0 — i 0 0 A-3¢
ab;"(t,.,) ( )
EG,W v
0 0 0 0 0 0 0 ‘?g - ) 0
ok (t,.1)
7. GIW
0 0 0 0 0 0 0 0 0 Aa,bg?w )
Obm (t 1)

The partial derivatives of the measurement biases in Equation (4.4-5¢) and the partial derivative
of the ionospheric scale factor are defined in Section 4.3.1 (Equations 4.3-23 through 4.3-27f) and
Section 4.3.2 (Equations 4.3-31j through 4.3-33) for random walk or Gauss Markov bias processes,
respectively.

4.41.1 Acceleration Partial Derivatives

If the covariance damping ratio ¢ equals zero, the [3 x 3] acceleration partial derivatives matrix

[4:] includes all point mass accelerations for all perturbing bodies included in the acceleration
model and the Earth J> zonal harmonic acceleration, a, , if the degree of the nonspherical Earth
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gravitational model is greater than or equal to 2. If the covariance damping ratio ¢ is greater than

zero, the [3 x 3] acceleration partial derivatives matrix [4;] includes only the central body point
mass acceleration. Note that this matrix is computed in the ECI frame regardless of which body
is used as the central body for state integration. This matrix can be approximated as follows in the

ECI frame, if the effects of precession and nutation are ignored:

Oa da Oa

gx gx gx

oX oY 0Z

da, Oda, Oa,
[4]=
oxX oY o0Z

Oa da oa,,

gz &z

oxX oY 0Z

where

__ EI’ Earth
aE—i-Z},L ; c=0, N <2
”\R” AR
— RP_E RP art
a, = aE+aJ2+Zup ‘R” R‘ ‘R”‘ ; 6=0,Ny" =2
ac; ¢>0
R
E R3
Z2
(SF—I)X
_ 3u,RC) | _Z?
5 =—§TSZ (5—-DY
2
5—-3)Z

R=AX>+Y?>+27?

and a, is the non-Earth central body acceleration expressed in the ECI frame

[ rR-R _®
o T
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(4.4-6)*

(4.4-7)

(4.4-8)

(4.4-9)

(4.4-10)*

(4.4-10a)



where 1, is the gravitational constant of the non-Earth central body and R” is the position vector
of the non-Earth central body expressed in the ECI frame

In Equation 4.4-7, the summation over p includes all bodies other than the Earth that are included
in the gravitational point mass acceleration and R =R}, andR” =R/, .

When the covariance damping ratio ¢ equals zero, the gravitational acceleration can be written in

the form:
Uy XP-x XP
—p Xt Loky (mv-ms - |RP|3)
= Hx YP-y YP
G, = —Ly 4 S, (—Rp_ms - IW) (4.4-11)*
Hx HECZ RE zZP-7 zP
(- I +37 )2 Loty (lRP—R|3 - |RP|3)
where
R 2
" [H; R (sg_lﬂ (44-12)¢

When the covariance damping ratio ¢ equals zero, the following acceleration partial derivatives
(taken from Reference 17) are valid for the J2000.0 coordinate system:

dagy tx | X2 RZ -1 XP-x
o - mtm [7"’6 —4ug + 3 G E] T2y (IRP—RI3 +3 IRP—RIS) (44-13)*
dagy XY R3 (XP-X)(YP-Y)
% = & [7.Ux — 4ug + 3ug C; ﬁ] + 2p Uy (3 W) (4.4-14)*
dagy XZ RZ (XP-Xx)(ZP-7)
Do = 22| 7p, — 4pg — 1205 COTe| + Tp ity (3 W) (4.4-15)*
Oa, _Oay, (4.4-16)*
oX oY
da hy | Y2 2 1 (YP-v)?
S 2 = 20 By i DY) @iy
da YZ R3 (YP-y)(zZP-7)
o= o (T~ s~ 2w C T 4 By (3TT) sy
Oa, _0a, (4.4-19)%
oX o0z
0a, _0d, (4.4-20)*
oY oz

4-58



oa, da, Oa,

- (4.4-21)*
0Z oX 0Y
When the covariance damping ratio ¢ is greater than zero,
dagx _ -1 (xP-x)?
ax Hp (|RP—R|3 +3 |RP—R|5) (44-2121)*
dagx _ (XP-x)(YP-Y)
oy Hp (3 |RP—R|5 ) (4.4-21b)*
9agx _ (XP-X)(2P-2)
oz M (3 IRP—R|5 ) (4.4-21c)*
Oa Oa
T Ay (4.4-21d)*
oxX oY
dagy _ -1 (YP-Y)2
ay  Hp (IRP—R|3 +3 |Rp_}§|5) (4.4-21e)*
dagy _ (YP-y)(zP-2)
oz M (3 |RP—R|5 ) (4.4-211)*
da, _ da, 44219
oX 07
da da
S (4.4-21h)*
oYy 0Z

oa, da, Oa, .
L= = (4.4-211)*
o0z oX 0Y

4.4.1.2 Drag Scale Factor Partial Derivatives

The [3 x 1] drag scale factor partial derivative matrix [B] is given below:

erel I/rel

p, A
B]l=--~
B] 2m

(4.4-22)*

where all the parameters on the right hand side of Equation (4.4-22) are defined in Section 4.1.3.

Equation deleted (4.4-23)
Equation deleted (4.4-24)
Equation deleted (4.4-25)
Equation deleted (4.4-26)
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4.4.1.3 Solar Radiation Pressure Coefficient Partial Derivatives

The [3 x 1] solar radiation pressure coefficient partial derivative matrix [D] is given below for the
spherical area model:

P
[D]= PR, =1 (4.4-262)*

3
Vs

The parameters on the right hand side of Equation (4.4-26a) are defined in Section 4.1.4.1 and are
computed in the ECI frame. The corresponding partial derivative matrix for the MMS spin-
stabilized macromodel is defined in Section 4.1.4.2.

4.41.4 Acceleration Bias Partial Derivatives
The [3 x 3] acceleration bias partial derivative matrix [E£] is given below:
[T V7 RIC ] c» for acceleration biases expressed in the RIC frame, (a;, ) z/¢

[E]= [T Yz VBN ] «» for acceleration biases expressed in the VBN frame, (a;, ),y (4.4-26b)*
T,,. 5, for acceleration biases expressed in the body frame, (a,, ) ,

The transformation matrices in Equation (4.4-26b) are defined in Sections 3.2.4, 3.2.8 and 3.2.10.

4.41.5 Accelerometer Sensor Bias Partial Derivatives

The components of the [3 x 6] partial derivative matrix [F] of the accelerometer acceleration with
respect to the accelerometer measurement bias components in the IMU sensor frame and the
accelerometer scale factor bias components defined in Section 4.1.5 have the following values
during thrusting and are 0 otherwise:

aMeasured 0 0
1 0 0 IMU,y
[F1 = ~[Txyzeple Tpemwl{0 1 0 0 apgg™ 0 (4.4-26¢)*
0 0 1 0 0 aMeasured
IMU

z

The transformation matrices are defined in Sections 3.2.8 and 3.2.10.

4.4.2 Process Noise Covariance Matrix

The process noise covariance matrix, Ok, is used in the Kalman filter algorithms to correct the state
error covariance for errors in the force model. The GEONS extended Kalman filter uses a
physically connected algorithm (see References 18 and 19) for calculating the gravitational
contribution to the spacecraft state error covariance and uses random-walk algorithms for
calculating the contribution from other sources. This section presents these algorithms.
Section 4.4.2.1 describes the block structure of the process noise covariance matrix and the
nonspacecraft state process noise block. Section 4.4.2.2 discusses the computation of the
gravitational process noise contribution.
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4.4.2.1 Block Structure of the Process Noise Covariance Matrix

The total process noise covariance matrix has the form:

Qi—l ()?1 ) o 0 0 0
0. = 0.(X,,) 0 0 (4.4-27)*
0 0..(B) 0
L 0 0 0.y, )_

The GEONS state vector components for each user satellite can be partitioned into two parts: (1)
spacecraft position and velocity elements and (2) other satellite state parameters, which include
receiver time bias and time bias drift corrections and optionally the atmospheric drag coefficient
correction and solar radiation pressure coefficient correction. This can be represented as follows:

aH
X" = (4.4-27a)*
g

where S is composed of the position and velocity vectors, R and R , of the nth user spacecraft (
S is a six-component vector).

The quantity g is given by

AC,
AC
g=| =-* (4.4-28)*
bR
C_ZU
where
AC, = the atmospheric drag coefficient correction
AC, = the solar radiation pressure coefficient correction
b, = GPS receiver time-bias vector, which includes br, d,, and optionally d R
u, = Unmodeled acceleration biases expressed in either the RIC, VBN or body

frame

The gravitational process noise contribution to the covariance matrix for the orbital elements

vector, S, is computed using the physically connected algorithm described in Section 4.4.2.2. The
quantities contained in the vector g are random variables, and the contribution of the process noise

to the covariance matrix for these parameters is described at the end of this section.
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The process noise covariance matrix components for each user satellite [needed to evaluate
Equations (4.4-62) and (4.4-63) in Section 4.4.3] have a block structure that can be represented as
follows:

_ (8" 0
0., (X "){Q’I(S ) . } (4.4-29)*
0 0,.,(g")
where
Q(S") = process noise covariance matrix for the position and velocity vectors of
satellite n [defined in Equation (4.4-30)]
Q(g") = process noise covariance matrix for the other state variables of satellite n

[defined in Equation (4.4-35)]

The position and velocity submatrix is computed in RIC components in the central body frame and
then transformed into XYZ mean of J2000 coordinates as shown below; where the transformation
matrix, [T RICXYZ ]C, is computed using the position and velocity in the central body frame at time

(ti1):

s TR]C(—XYZ C 03><3 ! n TRIC(—XYZ C 03><3
QH(S"):[[ ] | } 0. ] [[ ] | } (4.4-30)

03><3 [TR1C<—XYZ 03><3 [TR[C<—XYZ
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where

AT? AT* AT? AT? 1
—_— 0 0 + 0
0, 3 0, 1 3 0, 5 0, 5 2
AT AT
0 @) 3 0 0 5
AT? AT?
. _ 0 0 L 0 0 2] @43
[QR]C] ATZ AT3
) + 0 AT +Q AT? 0 0
¥ 2 o 2 r )i
2
0 0, AQT 0 O, AT 0
2
0 0 0. AZT 0 0 Q. AT
where

O, = radial velocity noise variance rate (meters®/second?) in the central body frame

O; = in-track velocity noise variance rate (meters’/second’) in the central body
frame

O. = cross-track velocity noise variance rate (meters®/second®) in the central body
frame
AT = t;—ti1 = time step (seconds)

Qu = radial Earth gravity state noise variance rate for geosynchronous orbits
computed using Equation (4.4-61b) (meters®/second*)

Note that this formulation for the state process noise assumes that the velocity errors are
uncorrelated in time. The radial, in-track, and cross-track variance rates (Q’s) each have two
components as shown below:

0.=0,%0., (4.4-32)*
Qz’ = Qi,eg + i,0 (44'33)*
Qc = Qc,eg + c,0 (44'34)*

where

Orec = Earth gravity radial state noise variance rate for low-Earth-orbiting (LEO)
satellites (meters?/second?), computed using Equation (4.4-59), which is only
value if the Earth is the central body.

Oro = other radial velocity noise variance rate (meters*/second’), commandable
parameter
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Qiec = Earth gravity in-track velocity noise variance rate for LEO satellites
(meters?/second?), computed using Equation (4.4-60), which is only value if
the Earth is the central body.

Oi» = other in-track velocity noise variance rate (meters?/second’), commandable
parameter

Qe = Earth gravity cross-track state noise variance rate for LEO satellites
(meters®/second?), computed using Equation (4.4-61), which is only value if
the Earth is the central body.

Qo = other cross-track state noise variance rate (meters®/second’), commandable
parameter

Variances are added because the component error sources are independent. This model assumes
timewise uncorrelated random acceleration errors, sometimes referred to as a random-walk model.

For orbits where the dynamic modeling errors are fairly constant in the radial, in-track, and cross-
track directions (e.g. near-circular and libration point orbits), constant values for the other velocity
noise variance rates are usually adequate. However, for highly elliptic orbits where the dynamic
modeling errors vary by more than an order of magnitude with distance from the central body (e.g.
highly elliptic lunar orbits), a model that increases the velocity noise variance rates based on the
square of the inverse of the distance from the central body can provide a more realistic covariance.
Note that this type of scaled model is not currently implemented in the GEONS 3.0 source code.

Other state noise refers to small unmodeled accelerations from polar motion, tidal effects, random
venting, etc. Other state noise includes small errors in the acceleration models for solar gravity,
lunar gravity, and solar pressure. If the unmodeled acceleration effects are estimated, the state
noise is covered by its own state vector element process noise. Note that atmospheric drag or solar
radiation pressure coefficient correction state noise is covered by its own state vector element. The
derivation of the Earth gravity state noise model is given Section 4.4.2.2.

The process noise contributions for the remaining state vector elements for satellite n and the
measurement biases are modeled as either random-walk or Gauss-Markov processes. When the
time bias, drift and optional acceleration are modeled as random walk processes, the associated
process noise matrix elements are given by

6,87+0,, 110, AT g, A g, AT g, AT
0" = Q4 ATT2+Q . ATT“ 04, AT+0, ATT3 0, ATTZ (4.4-34a)*
3 2
QdR % QdR % QdR AT
where
QbR = GPS receiver time bias process noise variance rate (meters*/second)
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0., GPS receiver time bias rate process noise variance rate (meters>/second?)
Q; = GPS receiver time bias acceleration process noise variance rate
R

(meters®/second”)

For all other elements modeled as random walk processes, the process noise variance is given by
O = QRWAT (4.4-34b)*
where

Oy = the associated process noise variance rate (one per second)

When the time bias drift is modeled as a first-order Gauss-Markov process, the maximum value
of the time drift process noise variance is bounded and the time bias process noise variance grows
linearly with AT . The associated process noise matrix elements are given by

-

S, T -28L AT e S, 1 o

Ll 1—e ™ |42=———41-¢ ™ Ll ]—e

2 Tx 2

QLo = , (4.4-34c)*

R 2 AT 2AT

S4,Tr Tt S4,Tr T

£ l—e ™ £ l—e ™

where
1, = GPS receiver time bias drift correlation time, a commanded parameter
(seconds)

S, Power spectral density of the receiver time bias drift noise, a commanded

R

parameter (meters®/second’)

For all elements modeled as first-order Gauss-Markov processes except for the time bias and drift,
the process noise variance is bounded and given by

28T
Oroey = (GFOGM )2 {1 —e T :| (4.4-34d)*

where

Grocy = theassociated maximum root variance, a commanded parameter

Tt = the associated correlation time, a commanded parameter (seconds)

When the receiver time bias is modeled as a first-order Gauss-Markov process and the time bias
drift is modeled as a second-order Gauss-Markov process, the maximum propagated process noise
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variances for the time bias and time bias drift are bounded. The associated process noise matrix
elements are given by

where

where

QESROGM — |:Q11 Q12:|

0, Oy
O, = SbRAT
0,=0,=0
0y = SdR AT

(4.4-34¢)*

(4.4-34f)*
(4.4-34g)*

(4.4-34h)*

S,, = Power spectral density of the receiver time bias noise, a commanded parameter
(meters®/second)
S, = Power spectral density of the receiver time bias drift noise, a commanded

parameter (meters®/second’)

AT = t;—ti1 = time step (seconds)

When the FOGM/SOGM time bias/drift model is used, the behavior of the associated covariance
is controlled by the selection of the power spectral densities and the values for t,, ®,, and {,

defined in Section 4.3.3. Reference 53 provides a more detailed discussion of the performance of

this model.

The process noise covariance submatrix for the remaining state vector elements for satellite n are

given by

QCD 0 0

—n QCR 0
0,.,(g")= 0 0 QER
0 0 0
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where

O,

o,

9,

R

O,

the atmospheric drag coefficient correction process noise variance; note that

the associated row and column is not included if the atmospheric drag
coefficient correction is not estimated

the solar radiation pressure coefficient correction process noise variance; note

that the associated row and column is not included if the solar radiation
pressure coefficient correction is not estimated

GPS receiver time bias process noise matrix given by either Equation 4.4-34a
or 4.4-34c

Acceleration bias process noise variance (meters®/second?)

The components of the diagonal measurement bias process noise submatrix are computed as

follows:

where

~G/W

~G/W

Q.

N C
0,"

QCL
d

QCO

[0 0 0o 0 0 0 0 0 0 0
0o Q9" o 0 0 0 0 0 0
0 0o 0% 0 0 0 0 0 0 0 .
0 0 0 0% 0o 0 0 0 0 0 (4.4-35a)

_ 0 0 0 0 0 0 0 0 0 0
Qi—l (B ) = ~GS

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 907 o 0 0
0 0 0 0 0 0 0 9/ o 0
0 0 0 0 0 0 0 o o 0

|0 0 0 0 0 0 0 0 0 04"

= diagonal matrix containing pseudorange bias process noise variances for 32

GPS SVs and 8 WAAS GEOs, where the rate is a commanded parameter
(meters®/second)

= diagonal matrix containing Doppler bias process noise variances for 32 GPS

SVs and 8 WAAS GEOs, where the rate is a commanded parameter
(hertz*/second)

= diagonal matrix containing cross-link pseudorange bias process noise

variances for all transmitters, where the rate is a commanded parameter
(meters?/second)

= diagonal matrix containing cross-link Doppler bias process noise variances for

all transmitters, where the rate is a commanded parameter (hertz*/second)

= diagonal matrix containing celestial object sensor bias process noise variances

for N, satellites, where the rate is a commanded parameter
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- . . .. . . . GS;
% = diagonal matrix containing range bias process noise variances 7 for all
P P

transmitting ground stations (meter?)

<GS . . .o . . . GS
, = diagonal matrix containing Doppler bias process noise variances O, for all

transmitting ground stations (hertz?)

“~ TDRS . . .. . . . TDRS ;
., = diagonal matrix containing Doppler bias process noise variances Q, ' for all

TDRSS transmitters (hertz?)

Qf/w = diagonal matrix containing process noise variances for carrier phase biases
between N receivers and 32 GPS SVs and 8 WAAS GEOs, where the rate is
a commanded parameter (meters?/second)

QAC;/W = diagonal matrix containing process noise variances for the singly differenced

carrier phase biases between the local receiver (1) and N —1 remote receivers

and 32 GPS SVs and 8 WAAS GEOs, where the rate is a commanded
parameter (meters?/second)

(Equation replaced by Equations 4.4-34a and b) (4.4-35b)*

(Equation replaced by Equations 4.4-34a and b) (4.4-35¢c)*

Finally, the process noise matrix element for the ionospheric scale factor, O, ,(y,), i1s computed
using Equation 4.4-34b or d.

4.4.2.2 Earth Gravity State Noise Model for LEO Satellites

GEONS uses a semianalytic Earth gravity state noise model derived from algorithms presented in
References 18 through 20. The algorithm in Reference 19 computes a state noise covariance matrix
for a state vector defined in terms of equinoctial orbital elements. The algorithm in Reference 3
uses the state noise covariance matrix formulation in equinoctial orbital elements but transforms
it to XYZ (Cartesian) coordinates. The algorithm in this document avoids the use of equinoctial
orbital elements by computing the state noise covariance matrix in RIC coordinates and then
transforming it to XYZ (Cartesian) coordinates.

The following algorithm models the state noise contribution for LEO satellites due to errors of
omission and errors of commission in the gravity model coefficients.

The following derivation is adapted from Reference 3. The Earth gravity state noise in RIC
coordinates is derived from the following integral:

tk+1
[ i G =J‘t #(t,, . 0) B(t) C(t,0) T BT (1) ¢7 (¢, , .0 dt (4.4-36)
k
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where

[Olrces = [6 x 6] RIC Earth gravity state noise matrix

[#] = [6 x 6] RIC state transition matrix

[B] = [6 x 3] RIC matrix of partial derivatives of the RIC coordinates with respect to
the velocity vector

[C] = [3 x 3] RIC gravity error covariance matrix

[T] = [3 x 3] RIC correlation time matrix

The quantities in the integral are computed as follows:
7
T= jﬁ p(y) dy (4.4-37)

where  is a gravity autocorrelation cutoff time that satisfies the condition

2.7 4 (4.4-38)
9 P 9
where P is the orbital period.
The matrix p(y) has the following form:
G o |
Cr(2,0)
C @)
p(y)=| 0 - (4.4-39)
C,(t,0)
0 CC (t’ Y)
| Cc(2,0) |
where
Re 2n+4
Ca(t, V) = I || 02 (0) P (cos (D) (4.4-40)

Nmax n(n+1) [ Re 27+ PZ(cos [W(r)])
Cl(t' Y) = anz 2(7’1—1)2 R(t)] O-z(n) [PTIO(COS [lp(y)]) _W] (4.4-41)

Nuax n+1) [ Re |27 P2, (cos [p()])
Ce(t, V) = Enty sz lryl O° (W [Pr?(cos [YyD +1n(n—+1)] (4.4-42)

Where B? is the Legendre polynomial of degree n and P? is the associated Legendre function of
degree n and order 2. These sums are computed so that convergence is achieved, where
N, £100.

The symbols o*(n) occurring in the equations for C,(t,y), C,(t,y),and C.(ty) are called the

generalized degree variances. The degree variances for errors of commission, terms 2 through
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degree N

ommission >

are obtained from the formal errors associated with the gravity model

coefficients. The degree variances for the errors of omission, terms Npyssion through N,

ax

are

obtained from the magnitudes of the omitted coefficients and extrapolation of the magnitudes of
the coefficients for the JGM2 gravity model.

The matrix C(z, 0) is defined as follows:

C (t0) 0 0
Ct0)=| 0 C,(0) 0 (4.4-43)
0 0  C.(10)

The components of the matrix C(z, 0) are obtained from the equations for C,(z,y), C,(¢,y), and
C.(t,y)by setting y = 0. In this case, #0) = 0 and cos #0) = I; therefore, Pno(l) =1 and
P (1) = 0 for m #0. The equations for C,(¢,y), C,(t,y), and C,(¢,y) then take the following form:

Calt, 0) = Zhegrmsson (B0 LR ™ g2y o gliee (M) R o2y (4444

n=2 n—-1 R(t) n=Nomission \n—1 R(t)

Re 2n+

4
2 Nmax n(n+1) [ Re
ol MY

n=Nomission 2(n—1)2 LR(t)

2n+4
Ci(t, 0) = Shegmmission 2L | [ o2y @445y

n=2 2(n—-1)2

Co(t,0) = C,(t,0) (4.4-46)*

These sums are computed so that convergence is achieved using a value of N < 100. The following
abbreviations will be used for the [C] matrix elements:

Cr = Cx(2,0) (4.4-47)
G =G (1,0 (4.4-48)
C. = Cu(t,0) (4.4-49)

In the above equations, R. is the Earth’s equatorial radius, R(¢) is the magnitude of the spacecraft
position vector, and yA7) is the displacement in the central angle measured in the orbit plane, such
that

U(r)=U(t) + w(t - 1) (4.4-50)

where U(7) is the argument of latitude, i.e., the angle in the orbit plane between the ascending node
and the radius vector to the instantaneous position of the spacecraft at time .
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According to References 18 through 20, p(») is insensitive to small variations in R(¢). Therefore,
the expressions for Cr(z, »), Ci(t, ), and Cc(¢, y) can be evaluated for a constant value of R(?),
typically chosen to be perigee

R(t)~ R (at perigee) (4.4-51)

Thus, the constant components of the [7] matrix are precomputed using an offline utility for a
given orbit, gravity model, and degree of truncation. The [7] matrix is therefore composed of
uplinkable parameters as defined below:

T, 0 0
[T]=| 0 T 0 (4.4-52)
0 0 T.

where
Tr = radial correlation time (seconds)

T;
Tc

in-track correlation time (seconds)

cross-track correlation time (seconds)
(Equation deleted) (4.4-53)

In the derivation of the Earth gravity state noise matrix, the following RIC transition matrix, ¢, is
used for the RIC position and velocity vector components:

1 0 0 AT 0 0]
0 1 0 0 AT 0
» t):é’@t,m): 0 0 1 0 0 AT (4454)
CPITGRICH,) [0 0 0 1 0 0
o 0 0 0 1 0
0 0 0 0 0 1|

Matrix B is a [6 x 3] matrix that consists of the partial derivatives of the RIC coordinates with
respect to the velocity vector expressed in orbit plane coordinates (i.e., radial, in-track, and cross-
track), with the following components:

R,, = (Fro 7y ) (4.4-55)
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S O = O O O
S =, O O O O
- o O O O O

The [4] [B], [C], and [T] matrices are multiplied out as shown below:

o TR AT? 0 0 Cp TR AT 0
0 C, T, AT 0 2 0 C,T,AT
[chfG]: C ; AT g CCTSAT COT 8
R R R R
0 C, T, AT 0 0 C,T,
0 0 C,.T. AT 0 0

The derivation is completed by evaluating the integral as shown below:

I AT? AT?
Cr T 3 0 0 Cr Ty 5 0
3 2
0 C T, AT 0 0 C T, AT
3 , 2
0 0 Ce TC% 0 0
[QRIC,EG] = AT2
Cr T 2 0 0 Cp Tx AT 0
2
0 C; T,% 0 0 C, I, AT
AT?
0 0 Ce TC% 0 0

(4.4-56)

5, (44-57)

(4.4-58)*

The equivalent Earth gravity state noise variance rates are then computed as shown below:

Qr,eg = C’R TR
Qi,eg = CI T[
Qc,eg = CC TC
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The Earth gravity state noise variance rates given in Equations 4.4-59 through 4.4-61 were derived
assuming that the satellite orbit is nearly circular. To accommodate eccentric LEO orbits, the
option is provided to scale the Earth gravity state noise spectral densities as shown below:

where

N/‘
R
0. =CT, (ﬁ] (4.4-592)*
’ Rref
R
0. =C 7}( (”j (4.4-60a)*
Rref
R N,
0., =C TC(—”] (4.4-61a)*
’ Rref

Rrer = Reference radius at which the autocorrelation times were computed, a
commandable parameter

N, = Exponent to be used to scale the radial gravity noise variance rate, a
commandable parameter

N; = Exponent to be used to scale the in-track gravity noise variance rate, a
commandable parameter

N. = Exponent to be used to scale the cross-track gravity noise variance rate, a
commandable parameter

4.4.2.3 Earth Gravity State Noise Model for Geostationary Satellites

GEONS also includes an Earth gravity state noise model for geostationary satellites. This model
takes into account the fact that the satellite remains in essentially a constant position with respect
to the Earth’s surface. For geostationary satellites, the error contribution from errors of omission
and commission are negligible. The dominant contribution is in the radial direction arising from
the error in the Earth’s gravitational constant.

For geostationary satellites, the Earth gravity state noise in RIC coordinates is derived from the
following integral:

where

[0 e, =| [ #trt) B K | [ B0 9" (0t

[Olric: = [6 x 6] RIC Earth gravity state noise matrix for geostationary satellites

S
I

[6 x 6] RIC state transition matrix given in Equation (4.4-54)
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[B] = [6 x 3] RIC matrix of partial derivatives of the RIC coordinates with respect to
the velocity vector, given in Equation (4.4-56)
[K] = [3 x 3] RIC Earth gravitational acceleration error matrix given below
-, .
Oy
R(0)*
K=| 0 0 0
0 0 0

where

ox = error in the Earth’s gravitational constant sz, with a default value of 2 x 10’
meters>/second? (note that IERS Technical Note 36, Reference 49, provides the
error as 8 x 10’ meters®/second?)

In this case the contribution to the process noise covariance matrix is the following

[ AT? AT?
0,%,~ 00 0,5~ 00
0 00 0 00
0 00 0 00
[Oucs]=| ar ) 0
0,5~ 0 0 0,AT* 0 0
00 00 0 00
. 0 00 0 00
where
2
Out (4.4-61b)
"R '

4.4.3 Time Propagation

When using UDU factorization of the state error covariance matrix, [U] and [D] are propagated
directly. The state error covariance matrix [P] is not propagated directly but can be reformed from
the propagated [U] and [D]. Propagation of [U] and [D] still requires the state transition matrix
[®] and the state noise matrix [Q], computed as shown in Section 4.4.2. The time propagation of
[U] and [D] is shown below. This algorithm was taken from Reference 5. Note the difference
between the vector or matrix subscript 4, and the time subscript ¢; .

Define a [N x 2N] matrix [Y], where N is the dimension of the total estimation state vector,
partitioned as follows:

[Y]=[®U@) | G,] (4.4-62)*
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where:

d

Ga = upper triangular matrix factor of (i1, computed using the covariance
factorization algorithm defined in Section 2.2.1

[N x N] state transition matrix (see Section 4.4.1)

Define a [2N x 2N] state diagonal matrix [ D ] as follows:

[f)] = [D((;") QO } (4.4-63)*
d
where
[U(t)] = [U] at time (¢)
[D(t)] = [D] at time (¢;)
Qs = diagonal matrix factor of Q.1 computed using the covariance factorization

algorithm defined in Section 2.2.1

In the following algorithm sequence, a;,a;,c,, and d, each represent N vectors with

2N elements, not [2N x N] matrices; and cx; and ax; represent element (j) in vector (k), not matrix
element (k, j).

N vectors, each of dimension 2N, are initialized as follows:
[@,a,...... a,]=[r]" (4.4-64)*

and iterated on the following relations for k=N, N-1, ..., 1:
¢, =[D]a, (4.4-65)*

Because [ D] is diagonal, ¢; is computed as shown below:

¢, =D;; a; j=L2,...,2N (4.4-66)*
Dy, (t.,) = akT Cy (4.4-67)*
7 - S (4.4-68)*
= .
Dk,k (ti+1 )

—T 7

Uj,k (ti+1) =da; dk
j=12,.., k-1 (4.4-69)*

aj <~ ‘7_1' - Uj,k (ti+1) c_lk

where < arrow denotes replacement or writing over.

On the last iteration, for k = 1, only the equations for ¢, ; and Dy, « are computed.
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4.5 Spacecraft Maneuver Covariance and Clock Variance Increments

This section discusses the algorithms that are provided for incrementing the process noise
covariance during maneuvers and for incrementing the time bias and drift variances during specific
time intervals. The uncertainty due to maneuver errors can be modeled by additional process noise
active during maneuvers. This process noise can be modeled in multiple ways as described in this
section. In all cases the process noise is integrated over the propagation interval, and its effect at
the update time can be modeled as an additive increment to the covariance as part of the full
covariance propagation. The process noise models in Sections 4.5.1.2 and 4.5.2.2 are variations of
a technique commonly referred to as State Noise Compensation (see Section 2.2.3.1.2 of Reference
59).

Section 4.5.1 discusses process noise models that use RIC position and velocity variances or
variance rates to model the maneuver uncertainty. Section 4.5.2 provides maneuver process noise
models that can be used when planned or measured maneuver accelerations are available in
GEONS. Section 4.5.3 discusses the augmentation of the spacecraft state covariance to include the
maneuver process noise covariance. Section 4.5.4 discusses the capability for increasing the time
bias and drift variances. Note that each of the maneuver process noise models in Sections 4.5.1
and 4.5.2 assume that each propagation interval within a maneuver is small compared to the orbit
period, but there is no assumption on the length of the maneuver.

4.5.1 Maneuver Process Noise Models Based on Maneuver Variances and
Variance Rates

GEONS V3.0 provides two options for computing additional process noise to accommodate
maneuver-associated velocity errors that are assumed to be an uncorrelated random walk with
intensity in the orbit-fixed RIC frame. The “legacy RICSNC” maneuver process noise model is
defined in terms of RIC position and velocity variances. The new “RICSNC” maneuver process
noise model is defined in terms of RIC position and velocity variance rates.

4.5.1.1 Legacy RIC Maneuver Process Noise Model
The “legacy RICSNC” maneuver process noise model uses the following approach:

1. Prior to the execution of a scheduled spacecraft maneuver, uplink the planned maneuver
start and stop times and the radial, cross-track, and in-track components of the process
noise variances associated with the magnitude of the expected velocity change, referenced
to the central body frame.

2. Optionally ignore all measurements received during the planned maneuver.

3. At every GEONS propagation step during the maneuver, transform the commanded RIC
position and velocity variances to the mean of J2000.0 coordinate frame. Prior to
propagating the state error covariance, add the maneuver position and velocity covariance
increments to the [3 x 3] position and velocity portions of the state error covariance matrix
using the procedure provided in Section 4.5.3.

The radial, cross-track and in-track components of the position and velocity maneuver variances
are computed externally and uplinked to the spacecraft:
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o2, =(AV, AT)’ (4.5-1)

o aw; = (AV; ATY (4.5-2)
o2p . =(AV, AT) (4.5-3)
a2y, =(AV) (4.5-4)
oy =(AV) (4.5-5)
(A (4.5-6)
where
aiR’r,aﬁR,i,o-Zch = RIC components of maneuver position variance with respect to the central
body, commanded parameters (meters?)
Oay,»OryisOay. = RIC components of maneuver velocity variance with respect to the central
body, commanded parameters (meters?/second?)
AV AV, ,AV, = RIC components of the planned maneuver velocity change with respect to the

central body (meters/second?)

AT

GEONS state propagation time step (seconds), nominally equal to the
frequency at which the estimation process is performed

The commanded maneuver position and velocity variances are transformed from RIC coordinates
referenced to the central body into Mean of J2000.0 coordinates as shown below:

ULIZR, r 0 0
Pr(4R) = [TRIC<—XYZ]CT 0 GLIZR, i 0 [Tricexvzlc (4.5-7)*
0 0 g c
Gi,,’,l 0 0
P (AV) = [TRIC<—XYZ ]CT 0 GiV,i 0 [TRIC<—XYZ ]c (4.5-8)*
0 0 GiK .

where P, (AR) and P (AV) are the [3 x 3] maneuver position and velocity covariances,

respectively, in J2000.0 coordinates and the transformation matrix [T R,CFXYZ] is defined in

Section 3.2.4.

C
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4.5.1.2 RIC Maneuver SNC Process Noise Model

GEONS V3.0 also supports a maneuver process noise model that is based on the state noise
compensation model (SNC) defined in Section 2.2.3.1 of Reference 59, which is very similar to
the velocity process noise model defined in Section 4.4.2. Reference 59 only includes velocity
variance rates, but the model defined below additionally includes position variance rates. The
position and velocity submatrix is computed in RIC components with respect to the central body
and then transformed into mean of J2000 coordinates as shown below; where the transformation
matrix, [T RIC<XYZ ]C, is computed using the position and velocity in the central body frame at time

(ti-1):

T T A AT T A AT?
M QricMAT + M QricM_ M QricM_
_ 3 2 *
Tmag - T/ ATZ T/ (4.5-8&)
M QricMT M QricMAT
where
9 0 0
Qric=10 q 0 (4.5-8b)*
0 0 gl
qg- 0 O
Qric=|0 ¢q 0 (4.5-8¢)*
0 0 gl

M= [TRIC<—XYZ] c

g- = radial maneuver position noise variance rate (meters*/second) in the central
body frame

g: = in-track maneuver position noise variance rate (meters>/second) in the central
body frame

gc = cross-track maneuver position noise variance rate (meters*/second) in the
central body frame

g, = radial maneuver velocity noise variance rate (meters?’/second’) in the central
body frame

g; = in-track maneuver velocity noise variance rate (meters*/second®) in the central
body frame

g. = cross-track maneuver velocity noise variance rate (meters’/second®) in the
central body frame

AT = t;—ti1 = time step (seconds)
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4.5.2 Maneuver Process Noise Models Using Maneuver Acceleration

GEONS V3.0 provides two options for computing additional process noise to accommodate
maneuver errors when the maneuver acceleration is modeled using externally measured or planned
accelerations as defined in Sections 4.1.5. The “legacy MANSNC” maneuver process noise model
is defined in terms of a fractional error in the maneuver acceleration. The new “MANSNC”
maneuver process noise model is defined in terms of a fractional error in the maneuver acceleration
magnitude and a fractional error in the maneuver direction.

The following procedure is suitable for maneuvers of any length. The GEONS state error
covariance is augmented with the computed maneuver velocity covariance every GEONS
propagation step during the maneuver time span as described in Section 4.5.3. Optionally, when
this model is used, measurements received during the maneuver timespan are not processed in the
GEONS filter.

4.5.2.1 Legacy Maneuver Magnitude Process Noise Model

The “legacy MANSNC” process noise model uses the following approach. The mean of J2000.0
inertial components of the velocity maneuver covariance are computed as follows using the
externally measured accelerations:

Orrx = (gram,xAT)z (4.5-9)*
2 _ ( )2 .
Oury =\Erley AT (4.5-10)
v = f 4.5-11)*
Ouyz =\Eplyy ;AT (4.5-11)

where

2 2 2 — . . .
Oxvx>OxrysTay, = Components of maneuver velocity variance in the mean of J2000 frame
(meters?/second?)

&;= fractional error in modeling the maneuver acceleration, a commanded
parameter

a a,,y,a,,, = Components of the maneuver accelerations transformed from the input

ext,X °

frame to the mean of J2000 frame (meters/second?), as described in Section
4.1.5

AT= GEONS state propagation time step (seconds)

The velocity maneuver covariance in the mean of J2000.0 frame is as shown below:

owyx O 0
PAr)=l 0 oy, O (4.5-12)*
0 0 Ji,/ P



The maneuver velocity variances is then added to the [3 x 3] velocity portion of the state error
covariance matrix at the start of the propagation time step for which the maneuver acceleration
was computed using the procedure discussed in Section 4.5.3, except that the position process
noise is not included.

4.5.2.2 Maneuver Magnitude and Direction SNC Process Noise Model

GEONS V3.0 also supports a maneuver process noise model that is based on the state noise
compensation model for maneuvers defined in Section 2.2.3.2 of Reference 59 that is computed
using the fractional error in the magnitude of the maneuver acceleration and the intensity of the
maneuver direction noise. The contribution from the error in the maneuver magnitude error is
given by

: ar3 AT?
Qmag 3 Qmag iy
Proe, = (4.5-12a)*
mag . AT? .
Qmag T QmagAT
where
UAZV,X 0 0
Qmag(@V)=| 0 diyy O (4.5-12b)*
0 0 oivz
2
iy, x = (erdVyomyx) (4.5-12¢)*
2
iy v = (€r4Viomy) (4.5-12d)*
2
iy, 2 = (erAViom,z) (4.5-12¢)*
AVyom = GoytAT (4.5-120)*

&y = fractional error in modeling the maneuver acceleration, a commanded parameter

The contribution from the maneuver direction error is given by

. AT3 - AT?
p - Qair 5 Qair— 4520
Tair — | . AT? ( -7 g)

Qdir BN QdirAT
where AV, is the 3x3 skew-symmetric cross product matrix
Qdir(AV) = —(p [AI7I\>I<0m]2 (45'12h)*

and AVy,,, is the 3x3 skew-symmetric cross product matrix of AVyom

qe = Iintensity of the maneuver direction noise, a commanded parameter
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4.5.3 Addition of the Maneuver Covariance to the State Covariance

The state error covariance matrix exists in UDUT factored form. To modify the state error
covariance matrix, it must first be reformed from its [U] and [D] components. After the state
covariance matrix is modified, symmetry is forced by averaging off-diagonal elements. The new
state error covariance matrix is then factored into new [U] and [D] components. It is simpler to
reform and modify the state error covariance matrix, rather than modify the [U] and [D] factors
directly. In the navigation flight software, the state error covariance matrix will already be
reformed for telemetry purposes. The covariance matrix modifications are summarized below
when the legacy models in Section 4.5.1.1 and 4.5.2.1 are used (Note the GEONS 3.0 also uses
the following procedure for the new RICSNC and MANSNC models):

1. At the start of the propagation time step, reform the state error covariance matrix from its
[U] and [D] factors.

2. Add the maneuver variances P, (AX ) and/or P, (A V) to the corresponding [3 x 3] position
and/or velocity portion of the state error covariance matrix.

3. Force symmetry by averaging off-diagonal elements.
4. Compute new [U] and [D] factors for the state error covariance matrix.
5. Propagate the new [U] and [D] factors.

The covariance matrix modifications are summarized below when the models in Section 4.5.1.2
and 4.5.2.2 are used:

1. Propagate the [U] and [D] factors.

2. At the end of the propagation time step, reform the state error covariance matrix from its
[U] and [D] factors.

3. Add the maneuver variances PTmag and/or Pr,, to the corresponding [3 x 3] position
and/or velocity portion of the state error covariance matrix.

4. Force symmetry by averaging off-diagonal elements.

5. Compute new [U] and [D] factors for the state error covariance matrix.

4.5.4 Addition of the Clock Covariance to the State Covariance

The following approach is available for increasing the time bias and time drift variances during
specified time intervals. This capability is provided to support a change in clock behavior such as
might occur for a HEO during a time period when clock steering using point solutions is not
possible because fewer than four GPS satellite are visible.

1. Prior to the expected change in the clock behavior, uplink the variance increment start and
stop times and the time bias and time bias drift process noise variances associated with the
magnitude of the expected change in the clock behavior.
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2. At every GEONS propagation step during the specified time period, prior to propagating
the state error covariance,

a. Reform the state error covariance matrix from its [U] and [D] factors.

b. Add the time bias and time drift variance increments to the associated diagonal
elements of the state error covariance matrix

c. Compute new [U] and [D] factors for the state error covariance matrix.

d. Propagate the new [U] and [D] factors.

4-82



4.6 Ground Receiver State Propagation

This section provides equations used for propagating the position, velocity, and covariance of a
ground-based GPS receiver. This capability is provided to support ground testing of a GPS
receiver.

4.6.1 Ground Receiver State Vector Prediction

The ground receiver is assumed to be located at a fixed position on the surface of the Earth. In
which case, the position and velocity are constant in the ECEF frame. To compute the ground
receiver state at a future time, ¢, , in the mean equator and equinox of J2000.0 frame, given the

ground receiver state at the current time, ¢,_;, in the mean equator and equinox of J2000.0 frame,

the following method is used.

The receiver state at the current time is transformed from the mean equator and equinox of
J2000.0 to the ECEF frame

7(%—1 )ECEF = B(tk—l )Rg (tk—l)c(tk—l )E(tk—l)J2000 (4.6-1)*

?(tk—l )ECEF = B(lk—l )£% [R(ag )]j C(tkfl )E(tk—l )JZOOO + B(tk—l )Rg (tk—l )C(tk—l )];e(tk—l )JZOOO (46-2)*

1=t

where the transformation matrices B(¢, ), (% [R(a . )D , C(#;_,), and R, (¢, ,) are defined in

1=ty

Equations (3.2-47),(3.2-33), (3.2-26), (3.2-31), respectively.

The ECEF state vector is then transformed back to the mean equator and equinox of J2000.0
frame at time ¢,

E(tk)JZOOO = CT(tk )R; (tk )BT(tk )F(tk)ECEF (4.6-3)*

];e(tk)J2000 = CT(tk )(% [R(ag )D BT(lk () pepr + CT(tk )Rg (4 )BT(tk )?(tk)ECEF (4.6-4)*

1y
where

F(tk)ECEF = F(tk—l )ECEF

F(tk)ECEF = F(tk—l)ECEF

(4.6-5)*

Note that these equations replace those defined for a satellite-based receiver in Sections 4.1 and
4.2.
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4.6.2 State Transition Matrix

Computation of state transition matrix for space-based receivers is discussed in Section 4.4.1.
For the ground-based user, the position and velocity submatrix of the state transition matrix is
identity in the ECEF coordinate frame. Because the solar radiation pressure coefficient and
atmospheric drag coefficient corrections are not applicable to this ground-based user, they will
be “estimated” using initial coefficient values of zero, near-zero initial variances, and zero
process noise variances.

The position and velocity components of state transition matrix for a ground-based receiver in
the mean of J2000.0 frame are approximated as follows:

a_ﬁ(tz )JZOOO
aR (tifl )JZOOO
aR (tz )JZOOO

=C"(t)R, (t)B" (t)B(t, )R, (t,,)C(t,.)

— =0

OR (1) 12000

OR(t) 00 _ o7 o 4 "o 6
m—c (ti)(dt [R(ch)]j[:liB (ti)B(tifl)Rg(ti—l)c(tifl) (4-6 6)

+C(t)R, (t)B" (t)B(t,., )(% [R(Otg)]j C(t.)

=ty

aﬁ(tz )JZOOO

= = CT(ti)RgT (ti)BT(ti)B(ti—l)Rg (t..)C(E)
OR(1,_1) 12000

Note that these partial derivatives are used in Equation (4.4-1) in place those defined for a
satellite-based receiver in Equation (4.4-2).

The atmospheric drag correction components are computed as follows

IACy (1) | m (4.6-7)*
_okuy | L0 |
| OAC,L (1) |
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These partial derivatives are used in Equation (4.4-1) in place those defined for a satellite-based
receiver in Equation (4.4-5).

The solar radiation pressure coefficient correction components are computed as follows

ONC, (1) ~ m (4.6-8)*
ke | L |
| OAC,(t,) |

These partial derivatives are used in Equation (4.4-1) in place of those defined for a satellite-
based receiver in Equation (4.4-5a).

The remaining partial derivatives are as follows:

ONC, (1) _, (4.6-9)*
OAC, ()
OAC, (1) _, (4.6-10)*
OAC, ()

a_ER(ti) _ 1 L=ty (4 6-11)*

Obp(t) |0 1 .

4.6.3 Process Noise Matrix

Computation of the process noise matrix for space-based users is discussed in Section 4.4.2. For
the ground-based receiver, the position and velocity submatrix of the process matrix will be
computed using nonzero values for other RIC variance rates and zero values for the Earth gravity
variance rates in Equations 4.4-32 through 4.4-34. Because the solar radiation pressure
coefficient and atmospheric drag coefficient corrections are not applicable to this ground-based
user, they will be “estimated” using zero process noise variance rates. All of these variance rates
are set via command parameters.
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4.7 Moon-Based Receiver State Propagation

This section provides equations used for propagating the position, velocity, and covariance of a
Moon-based receiver.

4.7.1 Moon-Based Receiver State Vector Prediction

The moon-based receiver is assumed to be located at a fixed position on the surface of the Moon.
In which case, the position and velocity are constant in the Moon-fixed frame. To compute the
Moon-based receiver state at a future time, ¢, , in the mean equator and equinox of J2000.0 frame,

given the receiver state at the current time, ¢,_,, in the mean equator and equinox of J2000.0 frame,

the following method is used.

The receiver state at the propagation start time is transformed from the mean equator and equinox
01 J2000.0 to Lunar Principal Axis (LPA) frame using the transformation defined in Section 3.2.9
and the fact that the receiver is fixed in the LPA frame

rj'(tk—l)LPA = T(tk—1)LPA<—]2000LC,R(tk—1)]2000Lc,
T(tk-1)pa =0 (4.7-1)*

where R (1 )J2000 e R (fa )J2000 B R (%) poon Ecr (4.7-2)*
and the transformation matrix Tjp . J2000, ¢, is defined in Equation (3.2-74).

The LPA state vector is then transformed back to the mean equator and equinox of J2000.0 frame
at the propagation end time ¢,

R(#,) 12000 e R () 2000 o T R vioon el

N N N (4.7-3)*
R(:) 2000 o =R (%) 72000 ., TR (%) poon ol
where
R (tk) j2000,c; = T (k) 2000, cperpal (tk—1) LPa
R (tk) j2000,0 = T(tk)ZOOOLCp—LPAF(tk—1)LPA (4.7-4)*
since

T(ti)rpa = T(tk-1)1pa
T(ti)rpa = T(tk—1)1pa = T(ti)2000,cLpa0  (4.7-5)*
. . T .
and the transformation matrices T(tk)ZOOOLcﬂ—LPA = I:TLPA(_JZOOOLCI] and T(tk)ZOOOLcﬂ—LPA =

) T
[TLP A ]ZOOOLCI] are defined in Equations (3.2-74) and (3.2-91a), respectively.

Note that these equations replace those defined for a satellite-based receiver in Sections 4.1 and
4.2.
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4.7.2 State Transition Matrix

Computation of state transition matrix for space-based receivers is discussed in Section 4.4.1. For
the Moon-based user, the position and velocity submatrix of the state transition matrix is identity
in the LPA coordinate frame. Because the solar radiation pressure coefficient and atmospheric
drag coefficient corrections are not applicable to this Moon-based user, they will be “estimated”
using initial coefficient values of zero, near-zero initial variances, and zero process noise
variances.

The position and velocity components of state transition matrix for a Moon-based receiver in the
mean of J2000.0 frame are approximated as follows:

OR(t) 2000
AR (ti—1)]2000
aR(ti)]ZOOO

aR(ti—l)]ZOOO

aR(ti)]ZOOO () T(tey)
~5— v = I'(t)2000,c;<LPal (Tk-1)LPAj2000
OR(ti-1) ;2000 ket 72000t

= T(tk)ZOOOLCI<—LPAT(tk—l)LPA<—]2000LCI

=0

af?(ti)]zooo
OR(ti—1)j2000

=0 (4.7-6)*

Note that these partial derivatives are used in Equation (4.4-1) in place those defined for a satellite-
based receiver in Equation (4.4-2).

The atmospheric drag correction components are computed as follows

INCy (1) | H (4.7-7)*
_oRwy | L0 |
| AC (1) |

These partial derivatives are used in Equation (4.4-1) in place those defined for a satellite-based
receiver in Equation (4.4-5).

The solar radiation pressure coefficient correction components are computed as follows

OAC (1, ) ~ m (4.7-8)*
ke | L0 |
| FAC, (1) |

These partial derivatives are used in Equation (4.4-1) in place of those defined for a satellite-based
receiver in Equation (4.4-5a).

The remaining partial derivatives are as follows:
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AC, (1) _,

_ (4.7-9)*
aAC’D(ti—l)
OAC, (1) _, (4.7-10)*
aAC’R(ti—l)

a_ER(ti) _ 1 ti_ti—l (4 7_11)*

Gt [0 1 |

4.7.3 Process Noise Matrix

Computation of the process noise matrix for space-based users is discussed in Section 4.4.2. For
the Moon-based receiver, the position and velocity submatrix of the process matrix will be
computed using nonzero values for other RIC variance rates and zero values for the Earth gravity
variance rates in Equations 4.4-32 through 4.4-34. Because the solar radiation pressure coefficient
and atmospheric drag coefficient corrections are not applicable to this Moon-based user, they
cannot be estimated. All of these variance rates are set via command parameters.
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Section 5. Measurement Models

This section contains the mathematical specifications for the measurement models used in
GEONS. See Section 2.3 for a description of the estimation processing mode options available in
GEONS V3.0. Section 5.1 provides an overview of the measurement selection and processing
algorithm. Section 5.2 discusses the computation of the GPS SV ephemeris. Sections 5.3 through
5.9 describe the standard GNSS/WAAS measurement, singly differenced GNSS/WAAS
measurement, cross-link measurement, Ground Station (GS) measurement, point solution,
celestial object measurement, and TDRSS measurement models and associated measurement
partial derivatives; respectively.

5.1 Measurement Selection and Processing Overview

Prior to the disabling of Selective Availability (SA) in 2000, the major source of error in the GPS
SPS measurements arose from the Selective Availability (SA) corruption applied to the signals so
as to limit geometric solutions to approximately 100 meters (two-dimensional, 95 percent of the
time). The corruption could be applied via dithering of the GPS SV clocks or corruption of the
GPS SV ephemeris data. References 23, 24, and 25 indicate that the impact of SA on pseudorange
measurement is approximately 25 to 35 meters (1) with an autocorrelation time of approximately
5 minutes. The impact on the Doppler measurement is approximately 0.15 to 0.35 meter per second
or approximately 1 hertz. If measurements from a specific SV are sampled at a 5-minute rate, the
corruption appears to be white noise.

GEONS’ measurement selection algorithm is outlined in Figure 5-1. Measurements are selected
and processed based on a minimum measurement sampling interval, which is a commandable
parameter for each measurement type. In addition, measurements are not processed during
uplinked maneuver time spans. The only GNSS SVs and WAAS GEOs considered valid in this
selection process are those for which (1) processing is enabled, (2) up-to-date SV Navigation data
is available, (3) SV health is nominal, and (4) SV accuracy is nominal.

Two GNSS SV measurement selection options are available in GEONS. The “cyclic” option
cycles through all GPS SVs that are being tracked at (or near) each processing epoch to select
measurements from only one valid GNSS SV, based on the minimum SV sampling frequency,
which is a commandable parameter nominally equal to 300 seconds. Note that if measurements
for a specific SV were selected and subsequently edited in the filter processing, they are still
considered to have been selected. The “all-available” option selects all measurements available
from valid GPS SVs at each measurement epoch. The “all-available” option is always used to
select WAAS GEO, cross-link, GS, point solution, celestial object, and TDRSS measurements.

When multiple satellite states are being estimated, the option is available to process common GPS
SV and WAAS GEO measurements either as independent measurements or as singly-differenced
measurements. When singly-differenced GNSS and/or WAAS measurement processing is used,
the option for “Select Common Transmitters” can be used to select and process only measurements
from GNSS SVs and WAAS GEOs that have measurements to both the local and remote receivers.
Note that this selection algorithm assumes that when multiple receiver states are estimated
simultaneously they will be in sufficiently close formation to see essentially the same set of GNSS
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SVs/WAAS GEOs. In conjunction with this option, the “Force Standard on Local” option can be
used to also process all local receiver measurements as standard measurements in addition to the
singly-differenced processing. Only cross-link measurements from the remote receivers to the
local receiver are processed.
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If the current measurement update time does not occur during a maneuver time span, select and process
GNSS, WAAS GEO, cross-link, GS, point solution, and celestial object measurement(s) for each of the NS
receiver states being estimated:

1 If GNSS measurements are enabled and the elapsed time from the last successful GNSS
measurement update is greater than or equal to the minimum GNSS measurement sampling interval,

perform the following tests to select and process GNSS measurements for each of the N receivers:

1.1 If “All Available” selection is enabled, select and process measurements as follows:

1.1.1 If standard measurement processing is selected, process standard measurements to the local
and/or remote receivers from all GNSS SVs that pass the validation tests (i.e. is enabled for
processing, has recent navigation data', has valid SV health indicator? (= 0), and has SV
accuracy indicator® in acceptable range (<15) and TASS message integrity flag set to valid for
this SV if available)

1.1.2 If singly-differenced measurement processing of pseudorange and/or Doppler is selected and
“Select Common Transmitters” option is enabled and

1.1.21 If “Force Standard on Local” option is enabled and

1.1.2.1.1 If common measurements from 4 or more GNSS SVs to the local and at least one
remote receiver are available, select all GNSS SVs that pass the validation tests.
Form and process singly-differenced measurements for the selected GNSS SVs that
have common measurements to the local receiver and at least one remote receiver
and in addition process standard measurements from all selected GNSS SVs to the
local satellite.

1.1.21.2 If common measurements from 4 or more GNSS SVs to the local and at least one
remote receiver are not available, select all GNSS SVs that pass the validation tests.
Form and process singly-differenced measurements for the selected GNSS SVs that
have common measurements to the local receiver and at least one remote receiver,
process standard measurements for the remaining selected GNSS SVs to the remote
satellites, and in addition process standard measurements from all selected GNSS
SVs to the local satellite.

1.1.2.2 If “Force Standard on Local” option is disabled and

1.1.2.21 If common measurements from 4 or more GNSS SVs to the local and at least one
remote receiver are available, form and process only singly-differenced
measurements for only the GNSS SVs that pass the validation tests and have
measurements to the local receiver and at least one remote receiver.

1.1.2.2.2 If common measurements from 4 or more GNSS SVs to the local and at least one
remote receiver are not available, select all GNSS SVs that pass the validation tests.
Form and process singly-differenced measurements for the selected GNSS SVs that
have measurements to the local receiver and at least one remote receiver and
process measurements for the remaining selected GNSS SVs as standard
measurements.

Notes:
' Determined based on the associated time of epoch (tee) available in the Broadcast Orbit-3 data record of a
RINEX Navigation Data File and in subframes 2/3 of the GNSS Navigation Message. The navigation data is

recent if |t — loe| < 2 hours, where t is the measurement time.
2Available in the Broadcast Orbit-6 data record of a RINEX Navigation Data File and in word 3 of subframe 1 and
page 25 of subframes 4 and 5 of the GNSS Navigation Message

SAvailable in the Broadcast Orbit-6 data record of a RINEX Navigation Data File and in word 3 of subframe 1 of
the GNSS Navigation Message

Figure 5-1. Measurement Selection/Processing Algorithm (1 of 3)
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1.1.3 If singly-differenced measurement processing of pseudorange and/or Doppler is selected and
“Select Common Transmitters is disabled:

1.1.3.1 If “Force Standard on Local” option is enabled, select all GNSS SVs that pass the validation
tests. Form and process singly-differenced measurements for the selected GNSS SVs that
have common measurements to the local receiver and at least one remote receiver,
process standard measurements for the remaining selected GNSS SVs to the remote
satellites, and in addition process standard measurements from all selected GNSS SVs to
the local satellite.

1.1.3.2  If “Force Standard on Local” option is disabled, select all GNSS SVs that pass the validation
tests. Form and process singly-differenced measurements for the selected GNSS SVs that
have measurements to the local receiver and at least one remote receiver and process
measurements for the remaining selected GNSS SVs as standard measurements.

1.1.4 If singly-differenced measurement processing of carrier phase is selected, form and process
singly-differenced carrier phase measurements for only the GNSS SVs that pass the validation
tests and have measurements to the local receiver and at least one remote receiver.

1.2 If “Cyclic” selection is enabled, select and process measurements from one GNSS SV (note that
cyclic option was removed in GEONS Release 3.0)

1.21 If standard measurement processing is selected, select the next GNSS SV that passes the
validation tests and cyclic test (i.e. the elapsed time during which this GNSS SV has not been
selected for processing is greater than or equal to the minimum sampling frequency for the
same GNSS SV). Process standard measurements from the selected GNSS SV to the local
and/or remote receivers

1.2.2 If singly-differenced measurement processing is selected and

1.2.21 If “Force Standard on Local” option is enabled, select the next GNSS SV that passes the
validation test and the cyclic test. If the selected GNSS SV has common measurements to
the local receiver and at least one remote receiver, form and process as singly-differenced
measurements. In addition process standard measurements from the selected GNSS SV to
the local satellite. If the selected GNSS SV does not have common measurements, process
standard measurements to the local or remote satellites from the selected GNSS SV.

1.2.2.2 If “Force Standard on Local” option is disabled, select the next GNSS SV that passes the
validation tests and the cyclic test. If the selected GNSS SV that has common
measurements to the local receiver and at least one remote receiver, form and process
singly-differenced measurements from the selected GNSS SV. If the selected GNSS SV
does not have common measurements, process standard measurements to the local or
remote satellites.

2 If WAAS GEO measurements are enabled and the elapsed time from the last successful WAAS GEO
measurement update is greater than or equal to the minimum WAAS GEO measurement sampling
interval, perform the following tests to select and process WAAS GEO measurements for each of the
Ny receivers:

21 If standard measurement processing is selected, select each WAAS GEO that passes the
validation tests (i.e. is enabled for processing, has recent navigation data, has valid health
indicator, and has acceptable accuracy indicator and process standard measurements from the
selected GNSS SVs to the local and/or remote receivers.

2.2 If singly-differenced measurement processing of pseudorange and/or Doppler is selected and
“Select Common Transmitters” option is enabled,

221 If “Force Standard on Local” option is enabled, select all GNSS SVs that pass the validation
tests. Form and process singly-differenced measurements for all GNSS SVs that have
common measurements to the local receiver and at least one remote receiver and in addition
process standard measurements from all selected GNSS SVs to the local satellite.

222 If “Force Standard on Local” option is disabled, select all GNSS SVs that pass the validation
tests and have common measurements to the local receiver and at least one remote receiver.
Form and process singly-differenced measurements for the selected GNSS SVs.
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24

Figure 5-1. Measurement Selection/Processing Algorithm (2 of 3)

If singly-differenced measurement processing of pseudorange and/or Doppler is selected and
“Select Common Transmitters” option is disabled,

231 If “Force Standard on Local” option is enabled, select all GNSS SVs that pass the validation

tests. Form and process singly-differenced measurements for all GNSS SVs that have
common measurements to the local receiver and at least one remote receiver, process
standard measurements from all other selected GNSS SVs to the remote satellites, and in
addition process standard measurements from all selected GNSS SVs to the local satellite.

2.3.2 If “Force Standard on Local” option is disabled, select all GNSS SVs that pass the validation

tests. Form and process singly-differenced measurements for all GNSS SVs that have
common measurements to the local receiver and at least one remote receiver and process
standard measurements for all other selected GNSS SVs

If singly-differenced measurement processing of carrier phase is selected, form and process
singly-differenced carrier phase measurements for only the GNSS SVs that pass the validation
tests and have measurements to the local receiver and at least one remote receiver.

3.1

3.2

If cross-link measurements are enabled and the elapsed time from the last successful cross-link
measurement update is greater than or equal to the minimum cross-link measurement sampling
interval, perform the following tests to select and process cross-link measurements to the each
receiver:

Select each transmitting satellite that passes the validation tests (i.e. is enabled for processing,
has recent state vector)

Process measurements from all valid transmitting satellites to the local satellite

If ground station measurements are enabled and the elapsed time from the last successful ground
station measurement update is greater than or equal to the minimum ground station measurement
sampling interval, process most recent ground station measurements within the selection window for
each of the N receivers

If point solution measurements are enabled and the elapsed time from the last successful point solution
measurement update is greater than or equal to the minimum point solution measurement sampling
interval, process most recent point solution measurements within the selection window for each of the
Ny receivers

If celestial object measurements are enabled and the elapsed time from the last successful celestial
object measurement update is greater than or equal to the minimum celestial object measurement
sampling interval, process most recent measurements within the selection window from each enabled

celestial object sensor on each of the N receivers

If TDRSS measurements are enabled and the elapsed time from the last successful TDRSS
measurement update is greater than or equal to the minimum TDRSS measurement sampling interval,
process most recent measurement within the selection window from each enabled TDRSS satellite for
each of the N receivers

Figure 5-1. Measurement Selection/Processing Algorithm (3 of 3)

5.2 GPS/Galileo Space Vehicle/WAAS GEO Ephemeris Computation

The transmitting satellite position and velocity are needed to model the GPS/WAAS and Galileo
pseudorange and Doppler measurements. The section presents the algorithms for computing the
GPS/Galileo SV position and velocity from the broadcast ephemeris message data, which is the
primary method used in flight operation. In addition, the transmitting satellite position and velocity
vectors can be computed by interpolation on position and velocity vectors equally spaced in time.
Note that, if the TDRSS Augmentation Service for Satellites (TASS) supports GPS-like ranging
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from the TDRSS GEO transmitters, these transmitters would be handled as WAAS GEOs in
GEONS. Section 5.2.4 discusses application of the GPS differential corrections that are broadcast
by the TASS. Section 5.2.5 discusses the application of the GPS Improved Clock and Ephemeris
(ICE) differential correction parameters, which are provided as part of the GPS Broadcast message
in message types 34 or 13 and 14.

5.2.1 GPS/Galileo Broadcast Ephemeris Parameters

Table 5-2 lists the GPS ephemeris parameters that are contained in the broadcast navigation legacy
messages (LNAV message parameters listed in Table 20-1III in Reference 10). References 10 and
63 provide a detailed description of the GPS and Galileo broadcast ephemeris message parameters,
respectively. The definition of the Galileo LNAYV ephemeris parameters is the same as for the GPS
ephemeris parameters. Note that GEONS 3.0 does not support the modernized CNAV broadcast
messages defined in Table 30-I in Reference 10.

Table 5-2. Ephemeris Parameters Contained in the LNAV Broadcast Navigation

Message
Parameter Description Units
toe Ephemeris reference time Seconds from the
beginning of GPS week
M, Mean anomaly at reference time (t,e) Radians
An Mean motion correction Radians per second
e Eccentricity Unitless
\/Z Square-root of the semimajor axis Jmeters
20 Longitude of ascending node at weekly epoch (at =0, not | Radians
at t=tpe)
0 Uncorrected orbit inclination at f5¢ Radians
1) Argument of perigee Radians
Q (Q-dot) Inertial rate of change of right ascension of ascending Radians per second
node
1 (1-dot) Rate of orbit inclination Radians per second
Cuc, Cus Argument of latitude corrections due to second harmonic | Radians
perturbations
Cic, Cis Inclination corrections due to second harmonic Radians
perturbations
Cre, Crs Radius corrections due to second harmonic perturbations | Meters
IODE Age of ephemeris data -

It should be noted that some parameters in Table 5-1 are given in units different from those used
in the original navigation message. Navigation messages telemetered down from the GPS SVs

describe M,,Q,1,, and ® in semicircles (i.e., © radians) and An, (), and i in semicircles/per
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second. The value of & to be used to convert from semicircles to radians is 3.1415926535898. The
following user algorithm for GPS ephemeris computations use the parameters with units given in
Table 5-1, not the ones coming from the navigation message.

5.2.2 User Algorithm for GPS/Galileo SV Antenna Phase Center Position
Computation

The GPS SV broadcast ephemeris parameters provide the GPS SV antenna phase center position
in the WGS 84 ECEF frame that is consistent with the definition of the ITRF. Section 30.3.3.5.1.1
in Reference 10 states that “The full coordinate transformation for translating to the corresponding
ECI SV antenna phase center position may be accomplished in accordance with the computations
detailed in Chapter 5 of IERS Technical Note 36: IERS Conventions (2010) and equations for
UT1, x;p and yp as documented in Table 30-VIII. Ongoing WGS 84 re-adjustment at NGA and
incorporating the 2010 IERS Conventions, are expected to bring Earth based coordinate agreement
to within 2 cm. In the context of the Conventions, the user may as a matter of convenience choose
to implement the transformation computations via either the "Celestial Intermediate Origin (CIO)
based approach” or the “Equinox based approach”.”

The following algorithm for computing the ECEF coordinates of the GPS SV antenna phase center
is based on Table 20-1V in Reference 10. The algorithm for computing the ECEF/GTRF Galileo
antenna phase center position is identical except that the algorithm must be evaluated using GST
times vs the GPS time used for computation of the GPS SV position. The transformation from the
ECEF/ITRF to the ECI/GCREF is discussed in Section 3.2.

The semimajor axis and the uncorrected mean motion are given by:

A%J@z (5.2-1)*

ny =/ A (5.2-2)*

The signal transmit time is expressed relative to the ephemeris reference time, ¢, as follows: !

oe

At, =t, —t, (5.2-3)*
Then, the corrected mean motion and the mean anomaly are given by
n=n,+An (5.2-4)*

! The time ¢y appearing on the right-hand side of Equation (5.2-3) is GPS system time at the time of signal
transmission, i.e., GPS signal receive time corrected for signal transit time. Furthermore, Af;, shall be the actual total
time difference between the time 7 and the epoch time #,,, and must account for beginning or end of week crossovers.
This can be achieved as follows: If At is less than —302400 seconds, then add 604800 seconds to At; if A, is greater
than 302400 seconds, then subtract 604800 seconds from A¢;. This procedure will guarantee that the magnitude of
Aty is less than 302400 seconds.

5-7



M, =M, +nAt, (5.2-5)*
If the eccentric anomaly (E)) is required, it can be obtained using the following Kepler’s equation:
M, =E, —esinE, (5.2-6)*

This equation is solved by the following iteration scheme:

/(B )=E} —esinE} - M, (5.2-7)*
D" =1-ecos [Eg —0.5/(E; )] (5.2-8)*
o JE)
E/" =E] R~ (5.2-9)*
where
E} =M, +esinM, (5.2-10)*

The following relations between the true anomaly (v,) and the eccentric anomaly will be used to
compute the true anomaly from the eccentric anomaly or vice versa:

Vi-é’sinE, /(1-ecosE
v, = tan” e sink, /(1-ecoskE,) (5.2-11)*
(cosE, —e)/(1—ecosE),)
E, = cos™ {w} (5.2-12)*
1+ ecosv,
The argument of latitude is defined as follows:
D, =v,+to (5.2-13)*

The corrections to the argument of latitude, inclination, and radius due to the second-order
harmonic perturbations are computed using the following equations:

ou, =C, sm2®, +C,  cos2d, (5.2-14)*
o, =C, sin2®, +C, cos2d, (5.2-15)*
OR, =C_sin2®, +C, cos2®d, (5.2-16)*

Then, the corrected argument of latitude, inclination, and radius are given by

u, =d, +du, (5.2-17)*
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1, =1,+01, +1At, (5.2-19)*

Using the orbital parameters computed above, the Cartesian components of the position vector in
the orbital plane and ECEF systems can be obtained as follows. The SV position components in
the orbital plane coordinates are given by

X, =R, cosuk} (5.2-20)*

, .
Y/ =R, sinu,

The corrected longitude of the ascending node is needed to convert these orbital plane components
into the ECEF components. The required longitude of ascending node is obtained as follows:

Q,=Q,+Q-0,)A, -o,t, (5.2-21)*

Then, the ECEF Cartesian components of the GPS spacecraft position vector are given by

X, = X; cosQ, —Y/sinQ, cosi, (5.2-22)*
Ve = X[ sinQ, + Y/ cosC), cosi, (5.2-23)*
z, =Y/siny, (5.2-24)*

Note that the following World Geodetic System-84 (WGS-84) values are to be used in the
equations given above:
_{ 3.986005x10" m’ / s*;  GPS

w3 WGS-84 Earth’s gravitational constant
3.986004418%x10" m” /s~; Galileo

w, = 7.2921151467 x 10-5 radians/second: WGS-84 value of the Earth’s rotation rate

The ECEF components defined above are transformed into the Cartesian components in the mean
equator and equinox of J2000.0 coordinate system using the following rotation matrices defined
in Section 3.2:

Ry =C'R,B'F,, (5.2-25)*
where
C = transformation matrix from J2000.0 to true of date coordinate frame
R, = transformation matrix from true of date to pseudo-Earth-fixed coordinate frame
B = transformation matrix from pseudo-Earth-fixed to ECEF coordinate frame

5-9



5.2.3 GPS/Galileo Antenna Phase Center Velocity Computation

The following algorithm for velocity computation is based on the algorithm given in Table 20-IV
sheet 3 and sheet 4 in Reference 10. For notational simplicity, the subscript k£ will be dropped from
all the expressions given in this section. Equations (5.2-22) through (5.2-24), which compute the
position components along the ECEF axes, can be rewritten as follows:

XER
Fep = |Ver | = MR (5.2-26)

Zgp

where a 3x2 matrix M and a two-dimensional position vector R; are, respectively, defined as
follows:

cosQ) —costsinQ

M =|sinQ costcosQ (5.2-27)
0 sint
R = (X] (5.2-28)
2=y 4"

Rewriting Equation (5.2-25), the mean of J2000.0 (inertial) position vector can be obtained as
follows:

R =C"R; B" M R} (5.2-29)

It will be assumed that the C and B matrices are time-independent. Then, in Equation (5.2-29), Rg,

M and R, are the only ones that depend on time. Differentiating Equation (5.2-29) with respect
to time, the following expression for the J2000.0 velocity vector is obtained:

R=CTRIB"M Ry + C'RIB" M Ry + C'R! B"M R} (5.2-30)*
or equivalently
R=C"R!B"F,. + C'RIB"F,, (5.2-30b)*
where
F..=MR)+M R, (5.2-30c)*

The velocity vector 1;22’ represents the spacecraft velocity in the orbit plane coordinate system and
is determined by the rate of change in time of the X" and Y’ (given by Equation 5.2-20):

X' = Rcosu— Rusinu (5.2-31)*
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Y’ = Rsinu+ Riuicosu (5.2-32)*

where
R = AesinEE + 6R (5.2-33)*
6R = 2V [C,, cos2(v + @) — C,, sin2(v + o)] (5.2-34)*
and
=V +di (5.2-35)*
it = 2V [C,, cos2(v + @) — C,. sin 2(v + o)] (5.2-36)*

In Equations (5.2-33) through (5.2-36), SR and &i denote the time derivatives of SR and du,
respectively. The time derivatives of orbital parameters given above can be obtained from the time

derivatives of E (eccentric anomaly) and v (true anomaly). E and v may be computed as follows:

n

- (I-ecoskE) (5:2-37)

(I + ecosv)

ll—e (1 —ecoskE)

V=

(5.2-38)

Using these relations, the terms containing the rates of change of R and u can be computed as
follows:

. A
R:% AesinE+#(l+ecosv) [C,s cos2(v + @) — C,, sin 2(v + )]

(1-¢%)
(5.2-39)*

and

Ri=R i/[l +2(C, cos2(v+w)—C,.sin2(v+ a)))]

___Rn_ (I+ecosv) [1 + 2(Cus cos2(v+w)—C, sin2(v+ 60))]

\/(1_62) (1—ecoskE)

(5.2-40)*

In Equation (5.2-39), the quantity n denotes the mean motion. This completes the computation of
X'and Y’ given by Equations (5.2-31) and (5.2-32).

The time derivative of the matrix Rg is given by Equation (3.2-33) in Section 3.2.3.1. From the
definition of M given by Equation (5.2-27), the time derivative of M is given by:
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sinQ2  cost cosQ 0 sintsinQ
ME—(Q—(De) —cosQ) costsinQ |+1,, |0 —sintcosQ (5.2-41)
0 0 0 cos1

In the above equation, 1,, denotes the time derivative of the inclination and can be computed
using the following equation:

) . d(o) x
ltOt = Z+T (52-42)
where
% =2v(C, cos2® — C,, sin2®)

2n (1+ecosv) (5.2-43)*

- /(1_62) (1—ecoskE)

5.2.4 TASS GPS Differential Corrections

The TDRSS Augmentation Service for Satellites (TASS) will provide precise GPS differential
corrections and other ancillary data to enable decimeter level orbit determination accuracy and
nanosecond time-transfer accuracy, onboard in real-time. TASS will broadcast its message on the
S-band multiple access channel of NASA’s TDRSS. Broadcasts will be available from three or
more TDRSS satellites, providing global coverage. In addition to the GPS differential corrections,
TASS will provide real-time Earth orientation and solar flux information and GPS integrity
information (which can be used to screen GPS SV measurements for processing).

When available the TASS differential corrections are added to the ECEF GPS SV position and
velocity vectors computed using Equations (5.2-22) through (5.2-24) and (5.2-30c) prior to
transforming these vectors to the ECI frame in Equation (5.2-25) and (5.2-30b):

(Cyy cos2® — C,, sin2®)

Pir (O Comrectea = Tpr (1) + APy (tDC,; )+ Arg (tDCk )[t - ZDCk ]

Ao (tpe, ) = Agp(tpe, ) [t B ] (5.2-44)
DC,

Fep (2 )Corrected = T (1) + Arg (2 DC, )+
tDCk - tDCk_I

where

tpc, = time tag of TASS differential correction value closest to the request time t

AFy (2 e, )= position differential correction at time 7, from the TASS message

A¥, (t nc, )= rate of change of position differential correction at time #,,. from the TASS

message
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5.2.5 GPS Improved Clock and Ephemeris (ICE) Differential Correction
Parameters

To enable decimeter level orbit determination in real time, differential correction parameters are
provided as part of the GPS Broadcast message in message types 34 or 13 and 14. Section 30.3.3.7
of Reference 10 provides a detailed discussion of these corrections. In addition to the normal quasi-
Keplerian elements, 4,, e,, i, ,,Q, ,,®,and M, , discussed in Section 5.2.1, the differential

correction parameters listed in Table 5-3 are provided. These parameters apply to the clock and
ephemeris data transmitted by other GPS SVs.

Table 5-3. Clock and Ephemeris Differential Correction Parameters Contained in
the Broadcast Navigation Message Types 34 or 13 and 14

Parameter Description Units
PRN ID PRN of satellite to which correction applies
ton Reference Time of week of the Differential Correction Seconds from the
data relative to the GPS week beginning of GPS week
5af0 SV Clock Bias Correction Seconds
da SV Clock Drift Correction Seconds per second
UDRA User Differential Range Accuracy Index dimensionless
Aa Alpha Correction to Ephemeris Parameters dimensionless
AB Beta Correction to Ephemeris Parameters dimensionless
Ay Gamma Correction to Ephemeris Parameters Radians
Al Angle of Inclination Correction Radians
AQ Angle of Right Ascension Correction Radians
AA Semi-Major Axis Correction Meters
UDRA Change Rate of User Differential Range Accuracy Index | dimensionless

Note that some of the parameters in Table 5-3 are given in units of radians not semicircles (i.e.,
radians) as in the raw navigation message. The value of 7 to be used to convert from semicircles
to radians is 3.1415926535898. The following user algorithm for GPS ephemeris computations
assume parameters with units listed in Table 5-2.

A set of corrected quasi-Keplerian parameters is computed as follows. First construct a set of initial
(uncorrected) elements for SV n using the parameters listed in Table 5-1.:

4; = (\/Z)Z



Q =Q,, (5.2-45)

o, =e, cos(w,)

B =e, sin(w,)

Y, =M, ,+o

- 0-n n

The terms ¢, B, and y, form a subset of stabilized ephemeris elements which are corrected as
follows:

o, =a; +Aa
B.=B;+AB (5.2-46)

Yo=Y + Ay
The corrected quasi-Keplerian elements are then given by

A =4 +AA

e, =(02 +p2)"”
i =i +Ai (5.2-47)
Q. =0, +AQ
o, =tan"' (B./a,)

MO—C :7c_a)c+AM0
where

AMg = =22 EE[(t,, + 604800 « WN,,) — (top + 604800 x WN)]  (5.2-48)

24,

where W N,,, is the week number associated with t,,, the reference time of the broadcast
message parameters, and WN is the current week number associated with t,p, the reference
time of the differential correction data. The AM,, term in serves to propagate the mean anomaly
at the reference time to the epoch time of the navigation message being corrected. The
corrections calculated by the fitting process are good at the epoch time of the specific broadcast
elements being corrected.

The corrected quasi-Keplerian elements are then used to compute the position and velocity of the
GPS SV using equations provided in Sections 5.2.2 and 5.2.3.
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5.3 GNSS Pseudorange, Doppler, and Carrier Phase Measurement
Models

The computational algorithms for the GNSS C/A code pseudorange, Doppler, and integrated
carrier phase measurements are discussed in this section. GNSS sources supported in GEONS are
GPS, WAAS, and Galileo. The general form of the measurement model is as follows:

Yk =G [X(tk), tk] + & (53-1)

where f; is the true measurement time, referenced to UTC, and € is the measurement error. It is

assumed that & has a zero-mean Gaussian distribution with standard deviation o, which is
commandable for each measurement type. The measurement standard deviation is typically
determined through analysis of the random component of the measurement error as part of the
filter tuning process. GEONS models the GPS measurement standard as a constant value; however,
in situations where there is a large variation in the received signal strength, computing the
pseudorange measurement standard as a function of the received signal strength can provide a
more realistic value of the noise contribution. Section 12.4 provides GPS pseudorange noise model
that have been used to simulate weak GPS signals.

For GEONS, the estimation state vector, X (¢) includes the receiver position vector, R ; velocity

vector, R ; optional corrections to the atmospheric drag and solar radiation pressure coefficients,
AC, and AC;; GNSS receiver bias, bg; and GNSS receiver bias rate, d, , for one or more receivers;

ionospheric delay scale factor, y,; and measurement-dependent biases. In addition, when GNSS

pseudorange and Doppler measurements are processed, one pseudorange bias and one Doppler
bias can be estimated for each GPS SV, WAAS GEO, and Galileo SV that is tracked. When
integrated carrier phase measurements are processed, one integer ambiguity bias is estimated for
each GNSS SV-receiver pair. When a ground-based receiver state is estimated, corrections to the
drag and solar radiation pressure coefficients are not estimated.

Section 5.3.1 addresses preprocessing of pseudorange measurements obtained from the GNSS
receiver. The measurement model for the one-way pseudorange measurements from the GPS
SV/WAAS GEO to the user receiver is presented in Section 5.3.2. The one-way Doppler
measurement model is defined in Section 5.3.3. The integrated carrier beat phase measurement
model is defined in Section 5.3.4. Note that, if the TDRSS Augmentation Service for Satellites
(TASS) supports GPS-like ranging from the TDRSS GEO transmitters, these transmitters would
be handled as WAAS GEOs in GEONS. Section 5.3.5 discusses the ionospheric correction model
using GPS navigation data. Sections 5.3.6 through 5.3.8 present the Galileo pseudorange, Doppler,
and integrated carrier phase measurement models, respectively.

5.3.1 Pseudorange Measurement Preprocessing

GEONS processes full pseudorange measurements. This section provides algorithms that can be
used to compute the full pseudorange measurement given raw measurement data provided by
typical GPS receivers. Section 5.3.1.1 provides an algorithm for computing the full pseudorange
given a fractional measurement. Section 5.3.1.2 provides an algorithm for computing the full
pseudorange given the transmit time measured by the receiver.
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5.3.1.1 Fractional Pseudorange Measurement Preprocessing (not implemented in
GEONS)

The preprocessing of fractional GPS/WAAS pseudorange measurements is discussed in this
section. Note that the units in which the fractional C/A code is expressed vary with the type of
receiver. For the Loral Tensor receiver, the fractional C/A code pseudoranges are given in units of
one-sixteenth (1/16™) of a code phase chip. The nominal C/A code chipping is 1.023 megahertz,
which gives a one-C/A-code chip length of (1/1.023) microseconds. Thus, 1/16" of a C/A code
chip is given by

Y= 1076/(16><1.023)] seconds in time

= ¢ vy meters in equivalent distance (5.3-2)

where ¢ denotes the speed of light (c = 299792458 meters/second).

The observed fractional pseudoranges given in units of 1/16™ chip, R’, ., can be converted into

obs®

meters as follows:

Eﬁobs (in meters) =c y R’ (in units of 1/16™ chip) (5.3-3)

obs

Note that the time interval y is defined in terms of the reference receiver clock. The fractional
pseudorange measurement obtained from Equation (5.3-3) does not include the C/A code
pseudorange integer ambiguity. This range ambiguity is generally given by an integer times
1 millisecond, which is the repetition interval of C/A code. Let 7, denote this integer ambiguity

(in milliseconds), then the observed full preudorange will be given by

R, (in meters) = ¢ ¥ R’ (in units of 1/16™ chip) + ¢ L% 10° (5.3-4)

obs

where R/, (in units of 1/16™ chip) and the associated measurement timetag referenced to the GPS

system time are provided by the receiver.
If 7,,,, (in milliseconds) is not available from the GPS receiver, it can be computed as follows.

Define ¢ such that
g =c- (1073 seconds) = 299792.458 meters (5.3-5)
Then, the observed full pseudorange, ‘R.., from GPS SV/WAAS GEO j to user receiver n can be

expressed as:

(ER obs )n = Iamb ' q + E,ﬁobs (53-6)

GIW,

where 1,,,, denotes the integer millisecond ambiguity of the pseudorange measurement and iﬁobs,

whose value lies between zero and t¢, represents the actual fractional pseudorange measurement
expressed in meters. The integer ambiguity, /,,,, can be obtained from the computed pseudorange
[given later in Equation (5.3-20)] based on the predicted user position vector and user clock offset
at the time of each measurement processing, as follows:
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Define N. (an integer) and R (a real number between 0 and * g) as

S

N = P} (5.3-7)
q INT

R=R-N, -q (5.3-8)

where ‘R is the computed pseudorange obtained using Equation (5.3-20). In the first expression
above, [ ]ar denotes the integer part of the quotient enclosed by the square brackets. Note that N.
and R obtained from Equations (5.3-7) and (5.3-8) can be both positive or negative depending on
the sign of K. The integer N. obtained in this manner can, in most cases, be used for /,,,, which is
needed in Equation (5.3-6) to construct the observed full pseudorange. However, there are some
cases where this simple replacement may not work due to errors associated with the computed full

~¢ and \eﬁ\ ~0or (2)

pseudorange. These exceptions will most likely occur when (1) ‘iﬁobs

‘mobs

~ 0 and ‘iﬁ‘ ~ q . These conditions can be stated in a more quantitative manner as follows:

Case (1): q-¢ S‘iﬁobs
Case (2): 0< ‘iﬁom

<q and OS‘SN%‘SF,

<¢ and q—ss‘iﬁ‘<q

where € denotes an assumed maximum range error magnitude (on the order of 20 kilometers). The
measurement diagrams shown in Figure 5-2 illustrate these two cases graphically. The diagrams
suggest that the magnitude of 7, for Case (1) should be (|V. |- 1), and that for Case (2) should be
(IN. |+ 1). In all other cases, 1,,, should be equal to N.. The appropriate values of /,,, for these
various cases are summarized in Table 5-2.

4—‘14>|
-

Case (1) G A |<~Sﬁ _»‘
< obs >

| ———— 4>|
\ T >
Case (2) G |‘ &m
RN

»
>
Rops

Figure 5-2. Special Cases for Computing the Pseudorange Integer Ambiguity
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Table 5-4. Relationship Between lamb and Nc

Sign of R Case lamb
Positive Case (1) Nc -1
Case (2) Nc +1
All other cases Ne
Negative Case (1) Nc +1
Case (2) Nec-1
All other cases Nec

5.3.1.2 Transmit Time and Carrier Frequency Measurement Preprocessing (not
implemented in GEONS)

The preprocessing of raw GPS/WAAS transmit time and carrier frequency measurements is
discussed in this section.

Many GPS receivers are built using the Plessey GPS Builder chip set, which performs pseudorange

and Doppler measurements at multiples of “TICs” of the processor clock. The measurement times

in TICs, N, , can be converted to a raw GPS receive time, t}fc) , as follows:

18 =18 48ty + Ny * Aty (5.3-8b)

where
t,(efc) = offset of receiver clock at N, =0 from GPS time, set at power-on or initialized
by command

ot,,, = offset of the current receiver clock from GPS time computed using the Time of

Word (TOW) from the GPS navigation message, which can be determined to
within £0.5 second

At,,. = time interval per TIC, nominally 0.0999999 seconds

Whenever the receiver is in contact with the GPS constellation, the raw GPS receive time should
be within £0.5 second of GPS system time.

The Plessey GPS Builder chip set provides the following raw measurements:
N,,=number of 20 millisecond code epochs
N, =number of 1 millisecond code epochs
¢.=number of half chips of code phase

¢.., = fractional code digitally controlled oscillator (DCO) phase below one half chip,
with resolution of 1/2048 of a chip
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N, = Carrier DCO cycle count in whole cycles between TICs (nominally over
0.0999999 seconds)

The code transmit time (modulo 1 second), #/°’, is constructed as follows from these raw

measurements

00 _ | L Loon, N 4P P 0002443792766 +1 (5.3-8¢)
1000 2046  2046*1024

FRAC

In the expression above, [ ]« denotes the fractional part of the quotient enclosed by the square
brackets.

The observed code time delay, A7 , can then be computed as follows:

AT = )R — 15O (5.3-8d)*

where the code receive time (modulo 1 second), 7%, equals the fractional number of seconds in

the measured raw receive time, ¢\,

(1RO — [t,(fc) ]FRAC (5.3-8e)

For pseudoranges of less than 150,000 kilometers, the true code time delay will lie between 0 and
0.5 seconds. Assuming that the current raw receiver time estimate is accurate to within 0.5
seconds, A7 should lie between -0.5 and 0.5 seconds. Therefore if A7 > 0.5, subtract 1 second
and if A7 <-0.5 seconds add 1 second.

The full raw pseudorange measurement is then given by
R,, (in meters) =c A7 (5.3-80)

where ¢ denotes the speed of light (c = 299792458 meters/second).

The Doppler measurement is computed as follows from the raw carrier DCO cycle count, N,

F

obs = _(Ndco /AFN - CNom )Rdco (53-8g)
where

AF,,= Carrier DCO cycle scale factor

C, = Nominal carrier DCO

Nom

R, = Carrier DCO resolution

5.3.1.3 Dual-Frequency Pseudorange Preprocessing

If GPS measurements are available simultaneously on more than one frequency (i.e., L2 C or L5
in addition to L1 C/A), the pseudorange measurements are corrected for the group delay effects
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using the following relationships defined in Reference 10 (Section 30.3.3.3.1.1.2) and Reference

46 (Sections 20.3.3.3.1.2.2):

mLZC _ leC/A +c ISCL2C IScLIC/A
ot v )1 s 1. ). T, ;for L1-C/A and L2C
Y
(r2s7 — o clisCr —yasCp)
= Ty, : for L1-C/A and LS5
Y1s
mLSQS leC/A +c ISCLSQS ISCLIC/A
R, = s abs )1 ( Y1s ) T, :forL1-C/AandL5Q5 (53-8
Tis
L5I5 iRLZC +c [ScLSIS IscL2C
S )1 ( Tos ) T,y ; for L2Cand L515
Yas
SRLSQS _ SRL2C +c ISCLSQS _ ISCLZC
( b V25 Tohs ) ( Vs ) Tgp, s forL2Cand L5Q5
1=v,;
where
- = Pseudorange in meters corrected for ionospheric and group delay effects
R, Pseudorange i d for i pheric and group delay effs
R!, = Pseudorange in meters measured on the L-band channel indicated by i
ISC;. = Inter-signal correction for SV j for the channel indicated by i in seconds;
measured values of the mean SV group delay differential between the L1 P(Y)-
code and i code are provided as message type 30 data (Table 20-IV in
Reference 46)
T, o, = Associated group delay correction for SV, in seconds, which is available in
message type 30
v; = Ratio of nominal center frequencies
(FRY (157542 (77
Te = Fe 1227.6 60
L1)? 2 2
F; (1575.42) (154) (5.3-81)
Y15 = I = =| —— .
F; 1176.45 11
(FPY _[ 1227.6 T _[gjz
T = 1176.45 23

If Galileo measurements are available simultaneously on more than one frequency (i.e., ESa or
ES5b in addition to El), the pseudorange measurements are corrected for the group delay effects

using the following relationships:
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(mfbls ~V1saRom ) + C(l — V154 )BGDJ(EI, E5a)

obs

; for E1 and ESa

R - =75 (5.3-8j)
" (inblv _ylsbmfhsvb)+C(1_7/15h)BGD'(E17E5b)
- - " ! ; for E1 and E5b
~Visp

([ EF 2_(1575.42j2_(gj2
isa P 1176.45 115

(EPY (157542 (154Y
Fisp o 1207.14 118

5.3.2 GPS/WAAS Pseudorange Measurement Model and Associated Partial
Derivatives

(5.3-8k)

This section provides an expression that can be used to compute the observed pseudorange given
by Equation (5.3-3) in terms of the GPS/WAAS and receiver states and the corresponding times.
The pseudorange is obtained from the signal transit time interval, which is defined as

At = 1O — 450 (5.3-9)

where " denotes the receive time measured by the receiver clock and #{° is the transmit time

measured by the GPS SV/WAAS GEO clock. The pseudorange R is then defined as the speed of
light (¢) times the time interval At given by Equation (5.3-9):

R=cAr (5.3-10)

Equation (5.3-9) can be written in terms of the GPS/WAAS system times ¢, and ¢, corresponding

to ¢\*9 and #{° and the respective clock offset terms 8¢ and 8t as follows:

At=(t, +0ty)—(t, +0ty)

(5.3-11)
= At + (0t —dty)

where
At=ty—t; (5.3-12)

Some GPS receivers provide the measurement timetag 71 corrected to within 500 microseconds
of tz . In such cases, the residual receiver clock bias, b, (1), can be estimated and used in Equation
(5.3-19).

The GPS SV/WAAS GEO clock offset term, dtg, is computed using Equation (3.3-9) and may be

assumed to be known.

The definition of the pseudorange defined by Equation (5.3-10) can be written as
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R = cAt + c(dtp — S) (5.3-13)

The above equation will be used to compute the pseudorange measurement in terms of the position
vectors and clock offset parameters of the GPS SV/WAAS GEO and the receiver.

The time interval At appearing in the first term on the right-hand side of Equation (5.3-13)
represents the true signal travel time from the GPS SV/WAAS GEO to the receiver. The first term
on the right-hand side of Equation (5.3-13) can be expressed as

cAt = pg’/iwj + 8p1ono + 5ptropo + 6pet + 6w (5.3-14)
with
pgjwj = EAin(t;;)_EG/Wj (17) (5.3-15)

In the above equation, pnG’ﬂWj denotes the distance between the position of GPS SV/WAAS GEO

j at the signal transmit time #,and the position of receiver n’s i™ antenna at the signal receive time
tg- The 8pjono and 6psrep, terms represent the time delay due to the ionospheric and tropospheric
refraction effects, the § p,; term represents the effects of the GPS SV/WAAS GEO ephemeris and
time errors (after the dtg correction is applied), and the §py,, term represents a possible (receiver
and SV) hardware-related delay. In Equation (5.3-15), the position of the transmitting antenna of
the GPS SV/WAAS GEO at the time (#;) of signal transmission is denoted by EG ", (t;), and the

position of the i receiving antenna at the time of the signal reception (¢;) is denoted by Ej’i (tz)-
Combining Equations (5.3-13) and (5.3-14) yields the following expression for the pseudorange:
s‘RnG/Wj = p’é’l/'W, + C(St; - 82‘S) + 8plano + 8ptropo + 8pet + 8phw (53-16)

The correction terms representing the tropospheric refraction effect and hardware-related delays
are not modeled in GEONS. Then, Equation (5.3-16) reduces to the following equation:

Rew, = PG, + Bty +8p,, +8p,,, —cdl; (5.3-17)
with

R,"(t) = Rg,y, (1) (5.3-18)

For a spacecraft-based receiver, the location of the i receiving antenna with respect to the
spacecraft’s center of mass can be modeled in terms of constant offsets with respect to the
spacecraft body frame [(AXZ,- )B , (Ay 4 )B , (Azji )3 ] . In this case, the position of the receiving antenna
is computed using Equation 3.2-61 in Section 3.2.8.

The computation of p using Equation (5.3-18) requires knowledge of the signal transmit time (¢7)
given the signal receive time (7 ). Note that the equivalent UTC signal receive time will be needed
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for the propagation of the user state vector to the signal receive time. The equivalent measurement
time with respect to UTC can be computed using the procedure given in Section 3.3.1.

The following Newton-Raphson iterative scheme is used to solve for the actual signal transmit
time, 7, as follows

C'(t}rel_tT,m)_|Rzi(t}rel)_RG/Wj(tT,m)|

C—[ﬁ;ln'é(;/wj(tnm)]

trm+1 = trm

where
trne = (m+1)" approximation for ¢,
t;, = m" approximation for ¢,

A th . . . R:i (t; ) - RG/Wj (tT,m )

u, = m" approximation for the unit vector ;— —
RA,» (tR ) - RG/W/ (tT,m)

R,y (t;,,) = velocity of the transmitting GPS SV/WAAS GEO j at time ¢, ,
t, = signal reception time at the receiver n

Ignoring negligible terms, the above equation reduces to

}_a/’:i (t}’;) - }_EG/WJ‘ (tT,m)

C

t

_n
T.m+1 — tR

The iterative solution of the above equation is started by setting 7, ,=¢;, such that
R,y (tro) = R, (t;). This iterative scheme is continued until the condition ‘tT,mH —tp,|S€ 18

satisfied, where ¢ is a small tolerance (nominally equal to 10" second).

This algorithm requires the knowledge of I;QG s, » the velocity vector of GPS SV/WAAS GEO |

(the computation of the velocity vectors was discussed in Section 5.1). Computations of
measurements and associated partial derivatives will be performed using state vectors given in the
mean of J2000.0 coordinate system.

The residual receiver time offset 8¢, is computed as follows:
coty =b," (t) (5.3-19)

where the computation of b,"(¢) or optionally b,"(¢) is discussed in Section 4.3.

The correction due to the ionospheric refraction in Equation (5.3-17), 6p,,,,, can be modeled

using the algorithm defined in Section 5.3.5 and the ionospheric delay scale factor 7y, can be
estimated. Alternatively, measurements with large ionosphere delays can be edited based on the
height of the signal path above the Earth. The measurement corrections due to GPS SV ephemeris
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errors and time dithering (SA effects) in Equation (5.3-17), Jdp, , are known to be sizable.
Pseudorange biases, b_pG/W’ , can also be estimated to absorb the combined effects of the

ionospheric and GPS SV/WAAS GEO ephemeris and clock errors. One pseudorange bias is
estimated for each GPS SV/WAAS GEO tracked by the local receiver. The last term on the right-
hand side of Equation (5.3-17) represents the GPS SV time correction, which is given in Section
3.3.2. Currently, a WAAS GEO time correction is not implemented.

Each receiver timetags its measurements using a receive time based on its own clock, .

Therefore, when multiple spacecraft states are estimated, the measurement timetags for each
spacecraft will generally not be at exactly the same times. The GEONS filter propagates and
updates all spacecraft states at a common UTC epoch time, which is determined based on the
estimation mode as discussed in Section 2.3. To account for the offset of the true UTC receive
time for spacecraft n measurements, t, ™ , from the UTC filter state epoch, Equation (5.3-18) is
linearized about the current filter state t1me, te:

)= PG, (6 = PG, (8L (5.3-19b)

ni  (UIC,
Paiw, (tx

where the offset of the true UTC receive time for spacecraft n measurements from the UTC filter
state epoch is given by

=l =500 Vi 1500 — 010 )] = =00 Vo = g — 15 o PR (5.3 190y
C

Note that in Release 2.7 and prior releases, Az, is implemented assuming that ¢, = 1 this is

corrected in Release 2.8. Under these conditions, Equations (5.3-17) and (5.3-18) can be rewritten
as

SRIé/W (tUTC) pG/W () - pG,W (t )ALy +b," (t,)—d " (t,) Aty +bG/W( t)

(5.3-20)*
+ 7/1 (tk )5p10nu (tk) C(5t + 5tSF)
pG/Wj ()= Al-n(tk)_EG/Wj (; (5.3-21)*
AL t . En t _E t(
D%, &, LA 020, 6) (5.3-22)*

1= (1) (Ry 0 @) )

In the above equations, the subscript ;j indicates the j* GPS SV/WAAS GEO The timetag of the

K" measurement, #,, is equal to the value of the measured receive time, 7,"*”’, and ¢/, is the signal
transmit time, ¢,, computed based on ¢,. The receiver clock bias b," (¢) or optionally bR (¢) is
computed using the estimated parameters b,"(f,) and b,"(t,), as defined in Equation 4.3-14a

and 4.3-14 of Section 4.3. The term — p'ng (¢,)At," is significant when the receiver time bias or

measurement timetag difference is large. The GPS-system pseudorange bias, b " is defined in
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Section 4.3. For single frequency measurements, the ionospheric delay correction, 8p;. . can be

modeled using the algorithm defined in Section 5.3.5, where y,(#) is the ionospheric delay scale

factor, which can be estimated. The last two terms on the right-hand side of Equation (5.3-20)
represent the total SV time correction, which is computed using Equations 3.3-10 or 3.3-11 (for
single and dual frequency GPS users) and Equation 3.3-12 (only for single frequency GPS users)
in Section 3.3.2 evaluated at the signal transmit time ¢. Currently, a WAAS GEO time correction
is not implemented in GEONS. The position and velocity of the receiving antenna are computed
using Equation 3.2-61 in Section 3.2.8.

(Equation deleted) (5.3-23)

The matrix (a row vector in this case) of partial derivatives of the pseudorange measurement with
respect to the estimation state vector, X(¢,), is defined as follows:

_ afR'é/Wj (tzTC)

S (5.3-24)

[HOL

The partial derivatives with respect to those parameters that are not explicitly included in the
pseudorange measurement equation will be zeros. The following are the only nonzero elements if
the state vector consists of absolute states for both the local and remote satellites:

&RZ‘/WJ (’(RJTC) G/W w (4 5PZ;W (% )

" _ At (5.3-25)*
R"(t,) R"(t,)  R"(t)
&Rn tUTC n,i t
GLW,( ) Pom ) AL (5.3-26)*
R"(t) R"(1,)
amn tUTC
Mom, ) _g 5% () (5.3-27)*
oy, (%)
n urc N n
&RGWZJ (fR ):l_pG/Wj(tk) _dR () (5.3-28)*
by (1) ¢ ¢
MGy (67
Y (5.3-28b)*
Ay (1)
OR” .(tUTC)
% —1 (5.3-28a)*
by (1,

where
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6PZ}LW] (tk) RAin(tk)—RG/Wj(t;() Ani .
OR™(ty) N [ PZ'/in(tk) (pG/W](tk)) (53-28]3)
apZ;I/W (tk) 1
R"(t)
P, (t’f)[l Pl (1)-\R ( o, )/ )] (5.3-28¢c)*

- - . ;G/W]- ()
X (Rn(tk)_RG/Wj (t; )) pZ;I/W () pnGl/W (t,)- f

. T
L Cn) (PBfw, @)

AR™(ty) 1‘ﬁ(;/le (tr) RG/Wj(tl;)/C

(5.3-28d)*

The superscript 7" on the right-hand sides of Equations (5.3-28b) through (5.3-28d) denote the
transpose, indicating that these partial derivatives are given as row vectors. Equation (5.3-28c¢) is

an approximation in which the dependence of ¢}, the argument of R, (f,) and I;QG (8, on

R (¢, ) is ignored.

If the state vector includes relative states for the nonlocal satellites, the associated nonzero
pseudorange measurement partial derivatives are as follows:

ém’(l;/wj‘(tkwc) aE]E{nc;/wj(tUTc) AR (¢, ) P am, (%) Of’pn/lW (%)
AR'(t,) OR"(t,) OR'(t,) OR'(t,) OR"(1,)

Aty (5.3-25a)

My (1) MG (07 R (1) _ P o0 P, (4 )A nzl (53-25b)

AR (t,) OR"(t,) OR.(t, ) AR"(1,) OR" (1))
&Rg/_wj @) ﬁR?}/Wj(t ) é’l_in(tk) aIOG/W (%) AL (5.3-26a)*
OR'(t,) OR’ (t,) OR'(,) AR’ ()

MGy (17) _ B, (]7) OR (1) _ ﬁpé’iw(m
OR (1)) AR"(t) OR’ (r) OR"(t,)

Ath;n#l (5.3-26b)*

amn ,(tUTC)
— (5.3-28¢)*

by ()
PR (") _ R () 0b3w) _ | Pow, ) _d,

AbL(t) Obi(t)  ObN(t,) c c (5.3-280)
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n urc n urc n - n,i
R, ): R G (L77) Obi(t,) zl_pG/W/ (tk)-d—R;n;tl (5.3-28¢)*

ob,(t,) oby(t,) ob.,(t,) c c
%:zspﬁm (5.3-28h)"
@ZZ’—IS:C)?N; (5.3-28i)*
% = A", n#l (5.3-28j)*

5.3.3 GPS/WAAS Doppler Instantaneous Measurement Model and Associated
Partial Derivatives

An instantaneous Doppler shift data extracted at the receiver can be defined as
Fp(8) = Fr(0) = Frgr (5.3-29)

where F, () is Doppler-shifted receive carrier frequency and F,, is the receiver-generated local

reference frequency. When the receiver and the transmitter use the same frequency standards, the
receiver-generated reference frequency, Fppp, will be equal to the transmit frequency, £ . For

GPS tracking, this is not the case. There will be small difference between the two frequency
standards used by the receiver and the transmitter. The frequency difference due to this difference
will be interpreted as the receiver reference frequency bias. Even when the two frequency
standards are the same, the frequency difference obtained from Equation (5.3-29) does not
represent a pure Doppler effect. It will include contributions from non-Doppler sources such as the
atmospheric refraction effects, which are not modeled in GEONS.

A procedure to compute the Doppler shift is discussed below. The first term on the right-hand side
of Equation (5.3-28), £/, , the instantaneous Doppler shifted carrier frequency observed at the

receiver, can be represented by the following equation:

F, = FT’(I - 9 +0F,,  +0F, (5.3-30)
where
Fr = actual GPS SV/WAAS GEO transmit carrier frequency
p = time rate of change of the light-time-corrected range from the SV to the
receiving antenna p [defined in Equation (5.3-22)]
dF,,,, = frequency perturbation due to the ionospheric refraction effect
OF, = frequency uncertainty due to limited accuracy in Fand p due to SA effects
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Doppler biases, l;dG/W" , can be estimated to absorb the combined effects of the ionospheric and

GPS SV/WAAS GEO ephemeris and clock errors. One Doppler bias is estimated for each GPS
SV/WAAS GEO tracked by the local receiver.

The second term on the right-hand side of Equation (5.3-29), F,.. , the receiver-generated
reference frequency, can be written as

Frpr = Fy +8F g, (5.3-31)

In Equation (5.3-31), F, denotes the nominal transmit frequency, which may be different from
the actual transmit frequency, F7, used in Equation (5.3-30). Using Equations (5.3-30) and (5.3-
31), Equation (5.3-29) can be written as

Fo=Fp(1-2)+ bs™ — (Fy + 6Fgr) (5.3-32)
Neglecting the second- and higher-order terms,
Fp = —Fp 24 by + 8Fp + 8F/oy — 8Fpgr (5.3-33)

where OF, denotes the difference between 7 and Fj and can be approximated for GPS SVs
using the SV clock correction parameters discussed in Section 3.3.2,

0ot g )

OF, = F, — | =0t F, (5.3-34)
Oty /

The term OF,., on the right-hand side of Equation (5.3-33) represents the relativistic correction to

the Doppler measurement. This term can be computed using the following approximate

expression:

2

R

rel

F, 20

Rw,

F _ 1 ( 2j+£ o v (5.3-35)
| [R] ‘EG/W/‘

The first term on the right-hand side of this equation is due to the special relativistic effect, and
the second term is due to the general relativistic effect.

However, in the case of a GPS SV/WAAS GEO, the transmit frequency is already adjusted to
reduce this effect. With such an adjustment in the transmit frequency, almost 100 percent of the
relativistic effect is compensated for the receiver located on the ground. However, for Earth-
orbiting satellites, the compensation is not as complete. The fractional frequency correction
computed using Equation (5.3-35) for a low-Earth satellite is approximately 0.714x10”°. This is
equivalent to 1.125 hertz in terms of the L1 carrier frequency (L1 carrier frequency) = 1.57542%10°
hertz). According to the GPS frequency plan (Reference 10, Paragraph 3.3.1.1), the amount of the
fractional frequency correction (used for all SV transmit frequencies to compensate the relativistic
frequency shift for the ground receiver) is 0.44647 x10™°. When this correction is applied to a low-
Earth satellite, there is a residual relativistic effect amounting to a fractional frequency shift of
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approximately 0.269x 10”° (= 0.42 hertz). The term OF),, on the right-hand side of Equation (5.3-

33) represents this residual relativistic effect. The amount of the fractional frequency shift due to
the relativistic effect does not change much as long as the GPS SV/WAAS GEO and the user
receiver each maintains a relatively constant geocentric radius. The residual relativistic effect for
GEONS orbit determination is computed using the following equation:

2

OF' 1 (=
rel — . UR
F, 2

o RG/W/

2 7R 1
t5 == |~ )0 (5.3-36)
j | |R] RG/W/‘ ’

where

(oF,,)., = fractional frequency correction applied to the GPS SV transmit frequency
(0.44647x 10_9) or the WAAS GEO transmit frequency (TBD)

The last term on the right-hand side of Equation (5.3-33) represents the receiver frequency bias,
which can be expressed in terms of the receiver time bias rate parameter introduced earlier in
discussing the pseudorange modeling as follows:

SF oy = (Mj F, (5.3-37)
C

Thus, using Equations (5.3-34), (5.3-35), and (5.3-37), Equation (5.3-33) can be rewritten as
follows (note that ionospheric refraction and SA effects are not included):
)

2

G/Wj

p’é’iwj(tk)+8t. 4 @), 1 Ufen
S.

2
c ] c 2c

(FD(tk))g/Wj = FT!

(5.3-38)*

1 1 GIW,;
+ % __n = 1| (SFrel)cor + bd ’ (tk)
c ‘R

Rom,

In this equation, the subscript j indicates the GPS SV/WAAS GEO number; and the transmit
frequency, F, is assumed to be known (nominally 1575.42 Mhertz for the L1 carrier, 1227.6

Mhertz for the L2 carrier, and 1176.45 Mhertz for the L5 carrier).

In most GPS receivers, Doppler measurements are obtained by averaging the instantaneous
Doppler shift over a short interval of 500 milliseconds centered about the measurement output.
Considering the short averaging interval, it is appropriate to use a formulation based on the
instantaneous Doppler shift for GEONS. The instantaneous Doppler shift is given by
Equation (5.3-38). The instantaneous range-rate (p ) that appears on the right-hand side of this

equation can be expressed in terms of the position and velocity vectors of the transmitter and the
receiver. The expression for the instantaneous range rate (p ) is defined by

: | P () —p, (1, — A
ot = fim) =

(5.3-39)
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where p(#,) was defined earlier by Equation (5.3-21), which can be equivalently rewritten as
n,i 2 (_n D ' ) (_n D ' )
PG iw; ()= RA,- () - RG/WJ- () RAl- () - RG/Wj- (%) (5.3-40)
Note that, in Equation (5.3-40), the transmit time (#;) is a function of p"G’in (t,):

Peiw, (1)
=t - _Péim ) (5.3-41)

C

Differentiating both sides of Equation (5.3-40) with respect to ¢, yields

O (0 1) = (R (1) = Re, ()| R (1) = R, 1 )(dtkﬂ

dt,
- (5.3-42)
<_n 55 ' ) o 2] ' G/W( )
= RA,(tk)_RG/W,(tk) : RAi(tk)_RG/Wj(tk) 1- B
Using the line-of-sight unit vector, f)"g/Wj (t,), defined by
. R (t,) = Rg, (1))
PG, (1) = ’ (5.3-43)*
G/Wl (t )
Equation (5.3-43) can be rewritten as
i ANl on o ’ p ( )
pc’/erk)pc’/W/(rk)-[RA,ak)RG/W,m)[l G”Z H (5.3-44)
Solving for pr W, (¢, ) from the above equation,
P (1) \R (¢ Ry (1
Py (6) = B 0 (R100) R, ) (5.3-45)*

1- pG/W (#)-\R ( G/Wj(tk)/c)

The desired instantaneous Doppler shift is obtained using Equations (5.3-38) and (5.3-45), where
the position and velocity of the receiving antenna are computed using Equation (3.2-61).

From Equation (5.3-38), the following nonzero partial derivatives of the Doppler shift are obtained
if the state vector consists of absolute states for both the local and remote satellites:

6(FD(tk))g/Wj _ FT { G/W (tk)} (FD (tk))nG/Wj _ &[ G/Wj (t )

OR"(t,) c

_ ; (5.3-46)*
OR"(t,) OR"(t,) oR"(1,) J
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(F (% ))G/W F,

=—T 5.3-47)*
adR (tk) ¢ ( )
F,
o G_(/;))G/W =1 (5.3-47a)*
()

The state partial derivatives of p;(#,) on the right-hand side of Equation (5.3-46) can be obtained

using the following equations:

G/W () 1
OR" (¢, )

g]/W @ )[1 ISZI/W ) (fec/w, (t,'()/c)] (53.48)"
X (ﬁn(tk)_fec/Wj (t )) Po/w (t )[ﬁgl/w (t,)= GWC]W]

0D, (1) bt @)

OR" (1) 1P, ) (R, 1) )

(5.3-49)*

The superscript 7 on the right-hand sides of Equations (5.3-48) and (5.3-49) denote the transpose,
indicating that these partial derivatives are given as row vectors. Also note that Equation (5.3-48)

is an approximation in which the dependence of f;, the argument of EG . (t,) and EG e (8,), on
R"(t,) isignored.

If the state vector includes relative states for the nonlocal satellites, the associated nonzero Doppler
measurement partial derivatives are as follows:

(F (tk))G/W __i G/W (t,)
oR'(t,) ¢ | OR"(t,)
(5.3-46a)
(F (; ))G/W __FT Z}I/W ()
oR'(t,) c | okt
(F (, ))G/W F, G/W (%)
— L = T p]
OR”, (t,) c OR" (t,)
(5.3-46b)
(F (t ))G/W F, G/W (%)
— L =T 7 |:p=zl
ORI () o | k')
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(F (t ))G/W F;

S (5.3-47b)*
) e
o(Fyt))em,
preloms _ P (5.3-47¢)*
adR,»e] (tk) ¢
Fy(t,)
( k )G/W :1 (53_47d)*

oby"" (2,

5.3.4 GPS/WAAS Integrated Carrier Phase Measurement Model and Associated
Partial Derivatives

This section provides an expression that is used to compute the integrated carrier beat phase
measurement in terms of the GPS/WAAS and receiver states and the corresponding times. The
carrier beat phase measurement is formed in a GPS receiver as the difference between the phase
of the local receiver oscillator and the phase of the received carrier signal. The measurement is

) when the

signal is first acquired from each GPS SV. At any epoch other than the initial acquisition epoch,
the receiver measures the fractional phase difference and the number of integer cycles accumulated
since that epoch. Prior to processing in GEONS, the resulting raw integrated carrier beat phase

observation (in cycles), (¢ ) », (¢77), is multiplied by the wavelength of the carrier (A, =c/F,

, where F,=1575.42 Mhertz for L1, 1227.6 Mhertz for L2 carrier frequency, and 1176.45 Mhertz
for L5 ) to scale the carrier phase observation to meters:

(CDDM )?I/Wj (thC”) = Xc((bm )?;/Wj (thC") (5.3-50)

. . . G/W; .
ambiguous with respect to the number of integer cycles (N, (¢, ) ) at the time (¢

acq

The integrated carrier beat phase measurement (in meters), @, , can be modeled as follows:

1 () = Py (1) = i, (E)ATE 4B, (1) =7, (6)8p5, (1) + b7 ™ (1)~ clty +5157 ) (5.3-51)*

where the offset of the true UTC receive time for spacecraft n measurements from the UTC filter
state epoch is given by

A [ S I T A p

Note that in Release 2.7 and prior releases, At is implemented assuming that £, = t(RC) ; this is

corrected in Release 2.8.

In the above equations, the superscript # indicates the n* receiver, the superscript i indicates the i
antenna, and subscript j indicates the j#* GPS SV/WAAS GEO. The time tag #, is the measured

. . th . . . . .
receive time of the £~ measurement, and ¢, is the signal transmission time. The geometrical range
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(p”G”}Wj ) and range rate (p*ngj ) are computed as described in Sections 5.3.2 and 5.3.3, respectively.

The receiver clock bias, b,"(¢), is in meters. The correction due to the ionospheric refraction,

Spy- (%), can be modeled using the algorithm defined in Section 5.3.5 and the ionospheric scale
factor, v, (t,), can be estimated. The terms &7y, and SI;_F are the SV time offset from GPS system
time and group delay correction for single-frequency users, defined in Equations (3.3-10) and (3.3-
12), respectively. The term bfn i (t,) =AN, ¢G Wi (%,.,) 1s the estimated carrier phase bias between

GPS SV/WAAS GEO and receiver n at the carrier phase acquisition time ({,,,), scaled to meters.

The carrier phase bias b; Wi (z,) 1s different for each acquisition of a GPS SV/WAAS GEO by a

receiver. The carrier phase bias is reinitialized at the start of each new acquisition based on the
difference between the predicted pseudorange R, w; (t,.,) (defined in Equation 5.3-20) and the

observed integrated carrier phase at the acquisition time /,,, :

b(i)Gn/Wj (tk = tacq) = ((Dobs)nG/W/ (tacq) - CDZ;/W, (tacq) (53_52)*

Similarly, the carrier phase bias variance is reinitialized at the start of each new acquisition to the
predicted carrier phase residual variance computed as described in Step 3 in Section 2.3.1.

The matrix (a row vector in this case) of partial derivatives of the integrated carrier beat phase
measurement with respect to X'(¢z, ) is defined as follows:

oD, (1))

5.3-53
X (5:353)

[H(tk )]‘D’é/wj ) =

The partial derivatives with respect to those parameters that are not explicitly included in the
measurement equation will be zeros. The following are the only nonzero elements if the state
vector consists of absolute states for both the local and remote satellites:

aq)nG/Wj @) B ap"djwj @) B b () apnG’jo @)

: i 2 (5.3-54)*
oR"(t,)  OR'(t) ¢ OR'(@)
a(DE/W_/ ) _ _bp(@y) apgl/wj (t) (5.3-55)*
oR"(1,) ¢ aR"(t)
0Dy, (6) PGl (1)
UG (5.3-56)*
oby" () ¢

oo, (t,)
# _1 (5.3-57)*

ab¢n ! (tk)
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oD’
DBom ) _ g0 1) (3.3-57a)*
o1, (1)

where the partial derivatives of the geometrical range (pg’iWi ) and range rate (pJ;) W ) are computed
as defined in Equations 5.3-28b through 5.3-28d in Section 5.3.2.

If the state vector includes relative states for the nonlocal satellites, the associated nonzero
pseudorange measurement partial derivatives are as follows:

a(DnG/Wj(tk) oD nG/W () oR "(1, ) ap G/Wj(t )_b;(tk) apgjwj(tk)

o - (5.3-58)
oR' (1) O0R"(t,) OR'(t,)  OR"(t,) ¢ OR'(t)
a(DnG/Wj(tk) _ oD Z;/W_,-(l‘k) oR ") _ ap giW_i(tk) B b (t,) 8pgl/W (7 ) n#l (5.3-59)
R () ~ OR"(t,) OR.() OR"(t) ¢ OR'()
8@"6/Wj () _ oD 'Z;/Wj(tk) a};en(lk)_ _b;(tk) apnG,jWi(t") (5.3-60)*
oR'(t,) oR"(t,) OR'(t,) ¢ AR"(t,) |
acp;g/wj (6,) 200Gy, (1) OR " (1, ) _ b, )6PG/W (2, ), 1 (5.3-61)*
OR,, (1) oR"(t,) OR.,(1,) ¢ OR"(4)
om0 _ (5.3-62)"
ob, " (t,)
0P (0 _ 0D G (1) 3D (1) :l_p’é”}W, () (53-63)
oby(t,)  aby(t) b, c |
PG, (1 ) 0P G (1) Oby(t,) =1- pnG’in (tk);n #1 (5.3-64)
ob!,(t,) Oby(t,) 0b,,(t,) ¢
0PGw, (1) _
0P, (1) ") (5.3-64a)*
A

5.3.5 lonospheric Refraction Delay Using GPS lonospheric Parameters

This section provides a general model for computing ionospheric pseudorange and carrier phase
delays between transmitting and receiving satellites that is appropriate for single frequency GPS
receivers. Uncorrected ionospheric delays can be a significant source of error in the absolute
position and clock estimates for orbits with a long path through the ionosphere.
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This model has the following characteristics:
e Suitable for a wide range of GPS-user geometries including
- High and low elevation from below the GPS constellation

— Across the Earth’s limb from above the GPS constellation

e Models the overall physical characteristics of the delay, i.e. account for variations in
the ionosphere with latitude, longitude, height, and time of day

e Models the value of the delay to within about 50% and include a parameter that can be
estimated in real-time to correct the modeled delay

e Suitable for implementation as part of an autonomous navigation system integrated
with the flight receiver

This model makes use of the ionospheric parameters provided in page 18 of Subframe 4 of the
GPS broadcast navigation message (Reference 35). These parameters model the ionospheric time
delay from ground receivers to a GPS space vehicle (SV), based on a model developed by
Klobuchar (Reference 36) and validated by Feess and Stephens (Reference 37).

Figure 5-3 illustrates one possible signal path from a GPS SV to a receiver on a user spacecraft.
In this example, the user spacecraft (S/C) is located at point § within the ionosphere, points A and
B are at the upper limits of the ionosphere in the direction of the signal path, and the signal path
segment within the ionosphere is from point § to point B. The ionospheric delay model numerically
integrates the delay along the signal path segment within the ionosphere

lono

8p3 (1) :43—'23 [ N0ty t)ds (meters) (5.3-65)
T 0

where £, is the GPS transmission frequency (1.57542 GHz for the L1 frequency, 1.2276 GHz for

L2 frequency, and 1.17645 for L5 frequency), p, and p, are the end points of the signal path

segment within the ionosphere, N,(A,,0,,h, ,té) is the local electron density at a point 2~ on

the signal path, which is expressed in electrons per cubic meter, and A p and @, are the geodetic

longitude and latitude of the subpoint, hpi is the height of the point above the Earth, and l‘f,i is the

local time at the subpoint.
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Figure 5-3 Signal Path Geometry

At any point P; along the signal path segment, N,(Ap,9,,%, ,té) is computed using a modified
Chapman profile that relates the local electron density values along the path to
TECy (Xp, 950, t}L,i ), the total vertical electron content computed using the GPS broadcast
ionospheric correction parameters.
The Chapman electron density altitude profile relates N,(Ap,0p,%, ,té ), the local electron
density at a point with altitude £, , to N, (K ps0psh,,t }L,i ) , the maximum electron density at height
hm,

N, ol o tE) = Ny (k0 Bt )t (5.3-66)

where

Typically, in , the maximum density height, is selected to be 350 kilometers and 4s , the
ionospheric scale height = 100 to 200 kilometers, which is a commandable parameter.

The value of the maximum density in the Chapman profile N,,(A,¢, .4, ,tf,t_ ) for a point along
the ray path segment, is computed by equating TEC.(),,9,, t}L)i ), the total vertical electron content

computed based on the Chapman profile, to TECy (A, ,0, ,t,fi ), the total vertical electron content
computed using the GPS broadcast ionospheric correction parameters.
The total vertical electron content based on a Chapman profile is given by:
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TEC, (hps0pt5) = [ N.Orp by hoty )

=N, (hpsbp bt )j:’ exp(l -z —exp(~z)dh
=N, (Ap>bp.h,,t5 )k [exp(l—exp(=2))], = (5.3-67)
=N, Ap,0p,h,, ty)Yh,[e—exp(1—exp(h, / )]
=N, (Xp,0, ,hm,tf,‘_ )he  where e = 27182818
Equating 7EC,. to TEC, gives

CTEC, (Mp.bp.t5)

N, (0 btk ) = - (5.3-68)

The value of TECy (A, 0, ,té ) is computed using Equation (5.3-72), which is provided in Section
5.3.5.1.

The total ionospheric delay (in meters) is computed over the signal path following Equation
(5.3-65):

TEC, (A, ,,t5
sF 40.3 IB kp 0 E)eXp(l—Zp,_—eXP(—Ze))dS (5.3-69)

8p[ono(tk) = fz 4 h e
T s

where the parameter s denotes distance along AB and the altitude of P can be expressed in terms
of this parameter (s) and the factor y;(#) is introduced as an arbitrary overall scale factor, which
can be estimated. This integral is obtained using a simple trapezoidal summation rule:

40.3 v, (¢
8p3" (tk)=2—y];(k)ZTEcK(xE J0psth)exp(l—z, —exp(~z,))As  (5.3-70)*

Iono
T se P,

The integration algorithm is described in Section 5.3.5.2. Alternatively, a numerical quadrature
rule could be used but was not selected since it was unlikely that the more complex algorithm
would improve the overall accuracy of the computation.

5.3.5.1 Algorithm for Computing Total Vertical Electron Content

The GPS single-frequency user ionospheric correction algorithm provides the ionospheric delay
for an L1 signal (in seconds) along the path from a user located on the ground at geodetic latitude
and longitude 3, and ¢, to a specific GPS SV at an elevation el and azimuth az with respect to the

user

40.3
T[ono(}\‘U’(bUJlL/ ) = CjﬂsTelTECK(}L[,(I)[,t]L ) (SCCOIldS) (53-71)
L1

where 2, and ¢, are the geodetic longitude and latitude of the ionospheric subpoint (i.e. the

geographic point where the ray path intersects the mean ionospheric height, chosen to be a vertical
height of 350 kilometers) and £, is the L1 transmission frequency (1.57542 GHz).
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If the correction algorithm is evaluated for the case where the GPS SV is directly above the ground
location,

2
¢f,
TECy(hyy0y,t) )= 25T, (hy 0,011 ) (5.3-72)*
40.3
The following algorithm is used to compute7,,, (A,,0,,¢; ). This algorithm is adapted from

References 35 and 38 and simplified for the case where the GPS SV is directly above the ground
location. The coefficients ¢, and g are transmitted in page 18 of Subframe 4 of the GPS

navigation message.
1. Compute 2, and ¢, (in semicircles) corresponding to the position vector of Pi expressed
in the ECEF frame, (7 ) pezr = BR,C (R, £ ) 72000

A, =2
="
T (semicircles) (5.3-73a)*
o,
(I)[ ="
T
where
Ap =tan’1(yp")—ECEF; 0<A, <2m
, X, ,
( P’) e (radians) (5.3-73b)*
.1 \Zp Jpcer i T
=sin ————; ——< <—
o ry 2 b 2

2. Compute the local time ¢, at the subionospheric point.

t; =4.32x10%*%, +t, (seconds) (5.3-74)*

where 7, is the current UTC seconds of day. If 1, >86,400, use ¢; =t; -86400. If #; <0,

use ¢, =t; +86400.

3. Compute the geomagnetic latitude ¢,, of the subionospheric location

$,, = ¢, +0.064cosn(r, —1.617) (semicircles) (5.3-75)*

4. Compute P, the period of the ionospheric time delay
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36,6,). it 6,(6,) >72000

=0 (seconds) (5.3-76)*

P
72000 it 3B, (6] <72000
n=0

5. Compute x

2nfs” —50400)
P

xX= (radians) (5.3-77)*

6. Compute the amplitude A

3

>a,(0,), ifian(dn,)f >0

A=1n=0 , (seconds) (5.3-78)*
0 it >a,0,) <0
n=0

7. Compute the ionospheric time delay

2 4
{SXIO‘) +A[l—%+;—4ﬂ, ] <m/2

5x107%, x| >7/2

Toe My ®y017) = (seconds)  (5.3-79)*

5.3.5.2 Algorithm for Integrating Along the Ray Path

In Figure 5-3, & denotes the altitude of the receiver, and HORP denotes the height of the ray path
above the Earth. It is assumed that, above a specified altitude (#max), there are no free electrons
that contribute to the ionospheric delays in signal propagation. Thus the ionospheric delay
correction is computed only when HORP is less than /max. In Figure 5-3, A and B are two points
on the ray path for which the altitudes are equal to max. The following parameters are used in this
computation.

R = Position vector of the receiving satellite

R.ps = Position vector of the transmitting GPS SV

R=|R]
hmax = 3000 kilometers, the assumed maximum ionospheric altitude
R =mean Earth’s radius

s = EGPS, —R , line-of-sight vector from user s/c to GPS

§ ==, line-of-sight unit vector from user s/c to GPS

v |«
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HORP =R, — ﬂ}")
! S

-R

e

R4 = Re + hmax , radial distance of point A
Rp= Ra , radial distance of point B

Ry = R.+ HORP , radial distance of point H (point with #= HORP)

0= sin_l(%j , 0 <0 <r radians

Omin= sin{R—HJ , 0 < Omin <m radians
A
As : line integration step size, a commandable parameter

When computing the line integral defined by Equation (5.3-70), the following cases are considered
separately.
Case 1: When HORP > hmax , the ionospheric correction is 0

Case 2: When HORP < /max, and 6 < /2
(1) if & < hmax, the integration is performed from the user S/C position to B
(11) if & > hmax, the integration will be performed from A to B

Case 3: When HORP < hmax, and 6 > n/2

(i11) if & < hmax, the integration will be performed from the user S/C position to B
(iv) if & > hmax, the ionospheric correction is 0

Thus, there are three cases where the finite ionospheric corrections are computed:
(1) HORP < hmax, 0 <7/2, and & < hmax

In this case, the line integral defined in Equation (5.3-70) is computed by integrating the electron
density function from the user S/C position to B. The total distance from the user spacecraft to the
point B is given by

d =RcosO+R,cos0, (5.3-80)*

The number of points at which the Chapman electron profile computation is required is computed
as follows:

Using N = [d/As]in (integer part of the quotient), redefine As as
As =d/N (5.3-81)*
The (N +1) position vectors needed for the Chapman profile computation are given by:

R, =R+(iAs) :i=0,1,2, ..., N (5.3-82)*
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Now {E psl } is converted into the corresponding geographical latitude, longitude, height, and local
solar time: {d)l’f Apshp ,l‘é} using Equations (5.3-73) and (5.3-74). The associated altitudes are

computed approximately as follows:

hy, =[R,|- R, (5.3-83)*

Using {¢B ,kPI_ ,hpi ,tﬁi |i=0,1,2, -,N}, Ap,,,, (¢) given by Equation (5.3.70) can be obtained.

(i1)) HORP < hmax, 0 <7/2, and & > hmax

In this case, the line integral defined in Equation (5.3.70) will be computed by integrating the
electron density function from A to B. The total distance from A to B is given by

d=2R, cos0, (5.3-84)*

The position vector of the point A is given by:

R,=R+d,s (5.3-85)*
where
d, =Rcos®—R, cosO (5.3-86)*

and the (N +1) position vectors needed for the Chapman profile computation are given by:

R, =R, +(iAs)§ :i=0,1,2, ..., N (5.3-87)*

The computation of As and N, and of the final integral can be performed following the steps given
above for case (i)..

(iii) HORP < fimax, 0 > 1/2, and /1 < fmax

In this case, the line integral defined in Equation (5.3.70) is computed by integrating the electron
density function from the user S/C position to point B. The total distance from the user S/C to B
is given by

d =RcosO+ R, cos0 (5.3-88)*

min

and the rest of the computational steps are similar to those given for case (i).
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5.3.6 Galileo Pseudorange Measurement Model and Associated Partial
Derivatives

This section provides an expression that is used to compute the observed pseudorange in terms of
the Galileo and receiver states and the corresponding times. The pseudorange is obtained from
the signal transit time interval, which is defined as

At =1 -5 (5.3.6-1)

where % denotes the receive time measured by the receiver clock and #{°° is the transmit

time. The pseudorange ‘R is then defined as the speed of light (¢) times the time interval At given
by Equation (5.3.6-1):

R=cAr (5.3.6-2)

Calculation of the Galileo pseudorange measurement follows the same procedure that is
discussed in Section 5.3.2 for the GPS/WAAS pseudorange. The pseudorange measurement
equation is as follows:

GAL; GAL GA-Lv k R R \!k) @R Uy R ;;AL' k
R’ (tUTC) P (t) ooy )AL, +b,"(t,)—d," (¢ )At, +b "7 (t,)

o (5.3.6-3)*
+ 7,1 (80050, (8) — C(5tGAL 5tGALj)
Pou, (t)=|R," (5.3.6-4)*
P ) (R )= Re ()
Pea, (&) = (5.3.6-5)*

ﬁZ;L (%) ( GAL, (% )/C)

In the above equations, the subscript j indicates the j# Galileo SV. The timetag of the K"

i . . RC
measurement, #,, is equal to the value of the measured receive time, tR( )

, and ¢/ 1is the signal
transmit time, ¢, computed based on #,. The receiver clock bias b," () is computed using the
estimated parameters b,"(z,) and BR"(tk), as defined in Equation 4.3-14a and 4.3-14 of

Section 4.3. The term pZ/jL (t,)At," is significant when the receiver time bias or measurement

timetag difference is large. The Galileo pseudorange bias, bgALf , 1s defined in Section 4.3. For

single frequency measurements, the ionospheric delay correction, 8p}. , can be modeled using

GPS ionospheric coefficients in the algorithm defined in Section 5.3.5, where y,(¢) is the
ionospheric delay scale factor, which can be estimated. The last two terms on the right-hand side
of Equation (5.3.6-3) provide the total Galileo satellite time correction, which is defined in
Section 3.3.9. This correction is evaluated at the signal transmit time ¢/, converted to GST using
Equation 3.3.9-2 for both single and dual frequency GPS users and in addition Equation 3.3.9-4
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for single frequency GPS users. The position and velocity of the receiving antenna are computed
using Equation 3.2-61 in Section 3.2.8.

The matrix (a row vector in this case) of partial derivatives of the pseudorange measurement
with respect to the estimation state vector, X (¢, ), is defined as follows:

urc
’CIJA L )

H ——O’m £ 5.3.6-6
[ (tk)]wc/m = ﬁ)_((tk) ( J3.0- )

Note that the equations for the partial derivatives of the Galileo pseudorange measurements are
the same as for the GPS pseudorange measurements. The partial derivatives with respect to those
parameters that are not explicitly included in the pseudorange measurement equation will be
zeros. The following are the only nonzero elements if the state vector consists of absolute states
for both the local and remote satellites:

My, (1) ﬁpm ) P, ()
OR"(t,) AR"(t,)  OR"(t)

At (5.3.6-7)*

émnGAL/. (ti]Tc) GAL (t )

u _ AL (5.3.6-8)*
OR'(t,) R ()
&Rn tUTC
Ao ) _posr 0 (53.6-9)*
(%)
n urc n,i n
éRGAL_, () _1- pGAL ) _dy () (5.3.6-10)*
Oby" (,) ¢ ¢
ﬁRn tUTC
#:—At; (5.3.6-11)
ady" (1)
P, 07 (53.6-12)*
abT (t,)
where
nl p R ! g
Peir, (, ) R, (tk)_RGALj () (5.3.6-13)*
OR'(t) Pou, () B
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Pui (1) I
OR'(1)

pGAL A )[1 ﬁg‘/;L () ( GAL, (@ )/C)} (5.3.6-14)*

Lo A R )]
x {(R"(a)—RGAL,o;)) P (@ >[pz;L (1) -—" H

i (P
aR"(zk)

(5.3.6-15)*
Aéﬁ;[, (%) ( GAL, (% )/C)

The superscript 7 on the right-hand sides of Equations (5.3.6-13) through (5.3.6-15) denote the
transpose, indicating that these partial derivatives are given as row vectors. Equation (5.3.6-14)

is an approximation in which the dependence of ¢}, the argument of R, (¢,) and R, (¢,), on

R (t,) 1is ignored.

If the state vector includes relative states for the nonlocal satellites, the associated nonzero
pseudorange measurement partial derivatives are as follows:

&RnGALj(ti/TC) g/lu (%) é)pGAL (% )

AL _ At (5.3.6-16)
OR'(t,) OR'(t,)  OR'(1)
AR (1) o, (@ P (2
GA;LJ(R ): pSAL( 9] pGAL (%) nel (5.3.6-17)
IR (1) OR"(t,)  OR'(t,)
éERn tUTC t
GA_'L,»( r )= GAL 1 ( ) AL (5.3.6-18)*
OR'()  OR'()
ﬁ){n v(tUTC) (t )
GiL_/ R — GAL R’ n+l (536'19)*
OR (1) - oR (%)
OfERn tUTC
% _ (5.3.6-20)*
ob, (1)
n urc 5yl
MR, () _ l_pGALf () _de (5.3.6-21)*

Oby(t,) c c
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O’mnGALj (IUTC) p(r;/;L ) d,
R =1- i B

= £1 (5.3.6-22)*
abrnel () c c
ﬂRn ‘(tUTC)
— = Spn (1) (5.3.6-23)*
oy, ()
O’ERH (tUTC)
— e A (5.3.6-24)*
ad, (t,)
O’g'{n _(tUTC)
— e T A n#] (5.3.6-25)*
é’dreln (tk)

5.3.7 Galileo Instantaneous Doppler Measurement Model and Associated Partial
Derivatives

An instantaneous Doppler shift data extracted at the receiver can be defined as
Fp(t) = Fp(t) = Frer (5.3.7-1)

where F,(¢) is Doppler-shifted receive carrier frequency and F,,.. is the receiver-generated

local reference frequency. When the receiver and the transmitter use the same frequency
standards, the receiver-generated reference frequency, Fpzr, will be equal to the transmit

frequency, F'. . For Galileo tracking, there will be small difference between the frequency
standards used by the receiver and the transmitter. The frequency difference due to this
difference is modeled as the receiver reference frequency bias. Even when the two frequency
standards are the same, the frequency difference obtained from Equation (5.3.7-1) does not
represent a pure Doppler effect since it includes contributions from non-Doppler sources such as
the atmospheric refraction effects, which are not modeled in GEONS.

Calculation of the Galileo Doppler measurement follows the same procedure that is discussed in
Section 5.3.2 for the GPS/WAAS Doppler. The desired instantaneous Doppler shift is obtained
using Equations (5.3.7-2) and (5.3.7-3), where the position and velocity of the receiving antenna
are computed using Equation (3.2-61). Note that unlike GPS the Galileo satellite frequency is not
adjusted to compensate for the relativistic bias experienced by a receiver located on the ground.
This bias is absorbed in the total apparent frequency offset of the satellite clock given by afl in
Equation (3.3.9.2).
)

2

- RGAL,

(FD(tk))Z;ALj =F f—l—é‘tGALj_ B +2_Cz R’

_pg‘jL/.(tk) . d."(t,) 1 ( =

(5.3.7-2)*
LA T | TS

e ;
c | |IR"

RGAL} ;
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where
Pl (1R (00 = Ry ()

Ibg/;L (%) ( GAL; (% )/C)

pGAL ()= (5.3.7-3)*

In this equation, the subscript j indicates the Galileo SV number; and the transmit frequency, F_,
is assumed to be known (i.e., 1575.42 Mhertz for the E1 carrier, 1176.45 Mhertz for the ESa
carrier, and 1207.14 Mhertz for the ESb carrier for the Galileo Open Service). Doppler biases,

l;dGALf, can be estimated to absorb the combined effects of the ionospheric and Galileo SV

ephemeris and clock errors. One Doppler bias is estimated for each Galileo SV tracked by the
local receiver. &%, is computed using the Galileo SV clock correction parameters discussed in

Section 3.3.9.

Note that the equations for the partial derivatives of the Galileo Doppler measurements are the
same as for the GPS Doppler measurements. From Equation (5.3.7-2), the following nonzero
partial derivatives of the Doppler shift are obtained if the state vector consists of absolute states
for both the local and remote satellites:

(F @ ))GAL F, GAL (t ) (F (, ))GAL F, GAL ( )
_— = =———| ——— | (5.3.7-4)*
OR"(t,) OR"(,) OR"(t) OR"(t)
F (¢
O, __fr (5.3.7-5)*
ady'(t,) c
F (¢
—( ( ))GAL =1 (5.3.7-6)*

b (1)

The state partial derivatives of p,(#;)on the right-hand side of Equation (5.3-46) can be obtained

using the following equations:

P, ) . 1
OR'(t,)

pit @] 1=t 6 (R € ¢)| (5.3.7-7)*

L R @)]
N {(R”(tk)RGAL/(Z,;)) pGAL (% )[pg/;L (t)- c/ H

i (Pw)
aR"(rk)

(5.3.7-8)*
ﬁg;L (%) ( GAL (% )/C)
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The superscript 7 on the right-hand sides of Equations (5.3.7-7) and (5.3.7-8) denote the
transpose, indicating that these partial derivatives are given as row vectors. Also note that

Equation (5.3.7-7) is an approximation in which the dependence of ¢#;, the argument of EG ()

and R, (1), on R"(t,) is ignored.

If the state vector includes relative states for the nonlocal satellites, the associated nonzero
Doppler measurement partial derivatives are as follows:

a(FD(tk))GAL/- F, ﬁpgij(tk)

AR'(t,) c| OR'(t,)
n | (5.3.7-9)
é,(FD(tk))GAL/ __i é)pg?;;Lj(tk)
OR'(t,) ¢ oR"(t,)
OFoou, _ F [ Pin, )
— = —— —— . n
OR! (1) c| OR"(,)
n | (5.3.7-10)
a(FD(tk))GALv FT ﬂpgjL(tk)
———=—— | ——=———|;n=#l
OR! (1)) c | OR"(t,)
2(F,(,)).
_lgﬁﬂ}ﬁ_ (5.3.7-11)*
adR (tk) ¢
A(F,(t))
_Lillﬂi:_f@n¢1 (5.3.7-12)*
od, "(t,) c
A(F,(t))
__E_Q%ﬂﬁ_EfﬁﬁLzzl (5.3.7-13)*
by (t,)

5.3.8 Galileo Integrated Carrier Phase Measurement Model and Associated Partial
Derivatives

This section provides an expression that is used to compute the integrated carrier beat phase
measurement in terms of the Galileo and receiver states and the corresponding times. The carrier
beat phase measurement is formed in a GNSS receiver as the difference between the phase of the
local receiver oscillator and the phase of the received carrier signal. The measurement is

) when the

signal is first acquired from each Galileo SV. At any epoch other than the initial acquisition

epoch, the receiver measures the fractional phase difference and the number of integer cycles

accumulated since that epoch. Prior to processing in GEONS, the resulting raw integrated carrier
5-47
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urce,

beat phase observation (in cycles), (¢ g, L (t; "), is multiplied by the wavelength of the carrier

(Ao =c/F,, where F,=1575.42 Mhertz for the E1 carrier, 1176.45 Mhertz for the E5a carrier,

and 1207.14 Mhertz for the E5b carrier for the Galileo Open Service) to scale the carrier phase
observation to meters:

(@ )ZAL, (tp )= Ao )nGAL/. (') (5.3.8-1)

The integrated carrier beat phase measurement (in meters), O GAL, (t,), can be modeled as

follows:
G, (tUTC) pGAL t)— pGAL (t )AL, +by" () -y, (t, )5/0,0,,0(t )+b (tk)_c(é‘tGALj GAL )(5 3.8-2)*

where the offset of the true UTC receive time for spacecraft n measurements from the UTC filter
state epoch is given by

i =l Y = =Y =)o B 5302

Note that in Release 2.7 and prior releases, Az is implemented assuming that ¢, = ¢" ; this is
corrected in Release 2.8.

In the above equations, the superscript 7 indicates the n receiver, the superscript 7 indicates the
i antenna, and subscript j indicates the j# Galileo satellite. The time tag #, is the measured
receive time of the &” measurement, and t, is the signal transmission time. The geometrical

range ( p;, ) and range rate (0%, ) are computed as described in Section 5.3.6. The receiver

clock bias, b,"(¢), is in meters. The correction due to the ionospheric refraction, 8p;. (¢,), can
be modeled using the algorithm defined in Section 5.3.5 and the ionospheric scale factor, v,(¢,),
can be estimated. The terms 67, and ot 4., are the Galileo satellite time offset from Galileo

system time and group delay correction for single-frequency users, defined in Equations 3.3.9-2
and 3.3.9-4 through 3.3.3-9.5, respectively. The term b(ZAL’ ()= /ICNZAL (¢

carrier phase bias between Galileo satellite j and receiver n at the carrier phase acquisition time
(., )» scaled to meters.

) is the estimated

acq

The carrier phase bias b(ZALf (z,) 1s different for each acquisition of a Galileo satellite by a

receiver. The carrier phase bias is reinitialized at the start of each new acquisition based on the
difference between the predicted pseudorange R, (¢, ) (defined in Equation 5.3.6-3) and the

acq

observed integrated carrier phase at the acquisition time 7,

bgaGnALj (tk = tacq) = (CDobs )’z?ALj (tacq) - cD},(I?AL]- (tacq) (5 3 8-4)*

Similarly, the carrier phase bias variance is reinitialized at the start of each new acquisition to the
predicted carrier phase residual variance computed as described in Step 3 in Section 2.3.1.
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The matrix (a row vector in this case) of partial derivatives of the integrated carrier beat phase
measurement with respect to X (¢, ) is defined as follows:

Ay, (1)
O A AR (0382

The partial derivatives with respect to those parameters that are not explicitly included in the
measurement equation will be zeros. The following are the only nonzero elements if the state
vector consists of absolute states for both the local and remote satellites:

aDnGALj ) 3 apgj;, ) _bp(3) a/.)gj;, )

G _ P G (5.3.8-6)*
oR"(t,)  OR'(y) ¢ OR'(y)
aDnG;ALj ) _ _b; (%) ﬁpgf% ) (5.3.8-7)*
OR"(t,) ¢ OR'(t)
Ay, () 1 PGAL (t.) (5.3.8-8)*
ob," (t,) ¢
apt . (t
ij( W _ (5.3.8-9)*
by (1,)
a", (t
R, ) _ 507 (1) (5.3.8-10)*
o)

where the partial derivatives of the geometrical range (., ) and range rate (o, ) are

computed as defined in Equations 5.3.6-3 through 5.3.6-5 in Section 5.3.6.

If the state vector includes relative states for the nonlocal satellites, the associated nonzero
pseudorange measurement partial derivatives are as follows:

@ZALJ(t ) aDGALJ(t ) R "(t, ) P G GAL, (t ) bn(l‘ )Oﬂ,pn/;L (%)

= (5.3.8-11)
OR'(t,) AR"(t,) OR'(t,) OR'(t,) c  OR'(t,)
aD’éALj(tk) _ D gALj(tk) OR "(t,) _ ap glL/(tk) _b,';(l‘k) é’pgij (%) nzl (53.8-12)
é)E:[(tk) é’ﬁ"(tk) é’Eer(tk) é’ﬁn(tk) ¢ é’ﬁn(tk) ’ o
Roar, (4) _ AV (1) OR"(t,) _ by(t,) P, (1) (53.8-13)*

AR'(1,)  OR'(1,) OR() ¢ ARt
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Ay, (4)  AbY,, (1) AR"(t) A é’,b?;}iLj () el

OR',(t)  OR'(t,) OR.(,) ¢ OR'(t)

aI)gAL/ (tk) _1
ab;“f (t,)

A1, () _ A G, (4) Ob (1) _ P, (t)
0”[91‘e (t,) ob; (t,) o”b}? ) c

A, (1) _ A G (1) Oby(t,) :l_p(r;jL/. ) ]

by, (1) Oby(t,) by, (1) c
étDnGALj () ——5,DSF )
0»71 (tk) Iono \"k

5-50

(5.3.8-14)*
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5.4 Singly Differenced GPS/WAAS Measurement Models

The computational algorithms for singly differenced GPS/WAAS pseudorange, Doppler, and
carrier phase measurements are discussed in this section. The general form of the measurement
model is as follows:

Yk =G [X(tk), tk] + ¢ (54-1)

where #; 1s the true measurement time, referenced to UTC, and ¢ is the measurement error. It is
assumed that & has a zero-mean Gaussian distribution with standard deviation o, which is
commandable for each measurement type. The measurement standard deviation is typically
determined through analysis of the random component of the measurement error as part of the
filter tuning process.

For GEONS, the estimation state vector, X (¢) includes the receiver position vector, R ; velocity

vector, R ; optional corrections to the drag and solar radiation pressure coefficients, AC, and ACy;
GPS receiver time bias, bg; and GPS receiver bias rate, d,, for one or more receivers. For ground-

based receivers, corrections to the drag and solar radiation pressure coefficients are not estimated.
There are no measurement biases associated with the singly differenced pseudorange and Doppler
measurements. When singly differenced integrated carrier phase measurements are processed, a
singly differenced integer ambiguity bias is estimated for each GPS SV/local receiver/remote
receiver configuration.

Section 5.4.1 addresses processing of the pseudorange, Doppler, and carrier phase measurements
obtained from the GPS receiver to produce the singly differenced measurements. The measurement
model for the singly differenced pseudorange measurements is presented in Section 5.4.2. The
singly differenced Doppler measurement model is defined in Section 5.4.3. The singly differenced
carrier phase measurement model is defined in Section 5.4.4.

5.4.1 Singly Differenced Measurement Preprocessing

The preprocessing of standard GPS/WAAS pseudorange, Doppler, and carrier phase
measurements to form the singly differenced measurements is discussed in this section. The singly
differenced pseudorange measurements are formed as follows using two pseudorange
measurements from the same GPS SV/WAAS GEO measured by GPS receivers on the local
receiver (1) and on one nonlocal receiver (n):

L Ly (5.4-2)
where
(A obs )IG’”/Wj = singly differenced pseudorange measurement from the ;™ GPS SV/WAAS
GEO between the local receiver 1 and the n'™ nonlocal receiver
(SRobS )lG w, Full observed pseudorange from the ;™ GPS SV/WAAS GEO to local

receiver 1
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(SRobs )n = Full observed pseudorange from the j™ GPS SV/WAAS GEO to the n™

G/Wj

nonlocal receiver

The singly differenced Doppler measurements are formed as follows using two Doppler
measurements from the same GPS SV/WAAS GEO measured by GPS receivers on the local
receiver (1) and on one nonlocal receiver (n):

@r,,, ), =Eo ), = Eo ) (543)
where
(AF Dps )l:/W/_ = singly-differenced Doppler measurement from the /" GPS SV/WAAS GEO
| between the local user receiver 1 and the ™ nonlocal receiver
(F D, )IG/WJ- = Observed Doppler from the /" GPS SV/WAAS GEO to local receiver 1
(F o )’;/W/_ = Observed Doppler from the /" GPS SV/WAAS GEO to the »n™ nonlocal

receiver

The singly differenced carrier phase measurements are formed as follows using two carrier phase
measurements from the same GPS SV/WAAS GEO measured by GPS receivers on the local
receiver (1) and on one nonlocal receiver (n):

1,n 1 n
(Aq)obs )G/Wj = ((Dobs )G/Wj _(q)abs )G/Wj (54-321)
where

(A(I)()bs )lGn/ v, = singly differenced carrier phase measurement from the j GPS SV/WAAS

GEO between the local receiver 1 and the n'™ nonlocal receiver
(d)obs )IG w, = observed carrier phase from the /™ GPS SV/WAAS GEO to local receiver 1

(scaled to meters)

(<Dobs )HG w, = observed carrier phase from the j GPS SV/WAAS GEO to the n™ nonlocal

receiver (scaled to meters)

5.4.2 Singly Differenced GPS/WAAS Pseudorange Measurement Model and
Associated Partial Derivatives

This section provides the algorithm used to model the observed singly differenced pseudorange

given by Equation (5.4-2) in terms of the GPS/WAAS and receiver states and the corresponding

times. The geometric pseudoranges and instantaneous geometric range rates from GPS SV/WAAS
GEOQj to antenna i on local receiver 1 and antenna m on nonlocal receiver n are defined as follows:
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Péw, (t)=|R, o, r (5.4-4)*
pnc’;nWj ()= E/I:m (tk)_ﬁc/wj (t7 (5.4-5)*
"ll
4, () (R (1)~ Ro, 1))
6w, )— ’ (5.4-5a)*
G/W (7)-\R ( GIW; (t )/C)
ﬁg;”W (tk)'(];en(tk)_l;ec;/w.(tn ))
G/W/(k ! L (5.4-5b)*
1=pu, (0 (R, (21 )
where
ty,t; = Transmission times for signals received at time ¢, at receiver 1 and

receiver n, respectively.

GEONS computes the geometric pseudoranges and instantaneous geometric range rates using the
algorithms provided in Sections 5.3.2 and 5.3.3, respectively.

The predicted singly differenced pseudorange measurement is computed as follows
ARY, () = Pl ()Pl (M + B0 - [P, (6) - Bihy DA +5)] (546

where the offset of the true UTC receive time for spacecraft n measurements from the UTC filter
state epoch is given by

Aty =g, =85O0 )4 (5 — )] = (e, =8O )+ 52 = (o, t,(fC)")+M (5.4-6a)*
c

Note that in Release 2.7 and prior releases, Af; is implemented assuming that ¢, = Y This is
corrected in Release 2.8.

Note that, if the GPS receiver resets the clock bias whenever it exceeds +0.5 milliseconds, 5, (7, )

defined in Equation (4.3-2a) should be used above instead of by (z, ).

The row vector of partial derivatives of the singly differenced pseudorange measurement with
respect to the estimation state vector, X(z,), is defined as follows:

[H(t ] =w (5 4_7)
Db, ="2%0,) '
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The partial derivatives with respect to those parameters that are not explicitly included in the
differenced pseudorange measurement equation will be zeros. The following are the only nonzero
partial derivatives if the state vector consists of absolute states for both the local and remote
satellites, where n > 1:

aAERlC}r;Wj(tk) _ op léi/Wj(tk) B by (t,) 8pléi/Wj (%)

' LT o (5.4-8)*
oR'(t,) OR'(t,) ¢ OR (%)
OARG (1) bl(z,) PG, (1) (5.4-8a)*
oR'(¢,) ¢ 8R'()
8Ai]qlc’;n/wj (%) 3 G/Wj(t ) by (t) pG/W/ () (5.4-9)*
R') | R ¢ oR() |
OAR Gy, () _ by(e,) BT, (40) (5.4-9a)*
oR"(t,) ¢ OR"(t;)
OAR Gy, (1)) i Peim, (t) (5.4-10)*
obL(t,) c
AR (t,) PG, (1)
e YRy /) (5.4-10a)*

oby (t,) c

The partial derivatives of the geometric range and range-rate are defined in Equations (5.3-28b)
through (5.3-28d).

If the state vector includes relative states for the nonlocal satellites, the associated nonzero
pseudorange measurement partial derivatives are as follows, where n > 1:

aAiRgn/Wj(tk) apG/Wj(l ) _b}q(l‘k)aplGJ/Wj(tk) _apg’TWj(lk) bp(t,) pG/Wj( )

— = — — (5.4-8b)
OR (t,) OR'(t,) c OR (t,) OR"(t,) c OR"(t,)
OARY” Of Of
j/Wj (%) _ b () pG/W (%) b () pG/W (%) (5.4-80)*
OR'(t,) ¢ oR" () ¢ oR" ()
aAmIC}’;W k a Z,;nW i\“k G/W
)00l biy) Petn, 0) (5.4-9b)

R, ()  OR'(t) ¢ OR"(t,)
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6A§R1GJ;WJ- () _ bi(t,) apg;nwj (%)

- ¢ (5.4-9¢)*
RL() ¢ OR'(G)
OARY L (1) Pl (6) P (1)
GI/WJ k _ _ G/Wj k n G/Wj k (54-10b)*
0b,(t,) c c
OAR, (1) Perw, ()
R, @) _ | Poiw () (5.4-10c)*
Oby (1) ¢

5.4.3 Singly Differenced GPS/WAAS Doppler Measurement Model and Associated
Partial Derivatives

This section provides the algorithm used to model the observed singly differenced Doppler given
by Equation (5.4-3) in terms of the GPS/WAAS and receiver states and the corresponding times.
The instantaneous geometric range rate from GPS SV/WAAS GEO ; to local receiver 1 and
nonlocal receiver i are computed as follows using the algorithms provided in Section 5.3.3

y Bl (1) (R () = Ry, @)
P, (1) = (5.4-11)*

1=pt, () (Ro, ) /c)

pr () (R (1)~ Rey )

Peiw, () = (5.4-12)*
lanc;nw (4,)-R ( GIW; (t )/C)
where the line-of-sight unit vector, f)"G’j"Wj , defined by
R} (t) =Ry, (1)
Py (1) = k,, _ (5.4-13)*
/ G/W] (t )
The singly differenced Doppler measurement is then computed as follows
(AF (t, ) GIw; [pG/W (tk)+d}12(tk) pG/W () —dg(t, )] (5.4-14)*

The computation of the state partial derivatives of the Doppler shift is presented below. The
following are the nonzero elements of the vector of measurement partial derivatives if the state
vector consists of absolute states for both the local and remote satellites, where n > 1:

(AF (tk))G/W B FT G/W ()
oR'(t,)  c| OR'()

(5.4-15)*
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OAF, (1)), Fr[ o, (tk)]
- _ L TFem VRS (5.4-15a)*
OR'(t,) ¢ oR'(t,)
AF,
( (% ))G/W _ﬂ[MJ (5.4-16)*
AR"(t,) c| OR"(t,)
(AF (tk))G/W [ G/W Z )J
_ ey kY (5.4-16a)*
OR"(t,) ¢ aR"(t,)
AF,
( (2 ))G/W =_£ (5.4-17)*
od(t,) ¢
AF,
( (4 ))G/W =£ (5.4-17a)*

ody (t,) ¢

The state partial derivatives of p’g’fwi (¢, ) on the right-hand side of Equations (5.4-15) and (5.4-16)

are computed using Equations 5.3-28c and 5.3-28d, where n > 1.

If the state vector includes relative states for the nonlocal satellites, the associated nonzero Doppler
measurement partial derivatives are as follows, where n > 1:

(AF (tk))G/W Fr[ G/W () apG/W (% )J
=— (5.4-17b)*
aR'(t,) c| OR'(t)) AR"(t,)
AAF, (1)), FT[ G, (0) 0T, (rk)}
=— (5.4-17¢c)*
oR'(t,) c| aR'(t,) oR" (1,)
AF k G/W G/W
0F, ), F, [ij Sa17d)
AR () OR"(t,)
O(AF, (1)), FT[ e (4 )}
=T (5.4-17¢)*
oR’,(t,) ¢ aR"(1,)
(AF ( ))G/W F,
o o) = (5.4-171)
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5.4.4 Singly Differenced GPS/WAAS Carrier Phase Measurement Model and
Associated Partial Derivatives

This section provides the algorithm used to model the observed singly differenced carrier phase
given by Equation (5.4-3a) in terms of the GPS/WAAS and receiver states and the corresponding
times and defines the associated partial derivatives.

The predicted singly differenced carrier phase measurement is computed as follows

GIW,

A (6) = P (0) = Pl (6)AL, + B0 = o, (0) =iy (C)AG+B4(e)] +55" (1) (54-18)%

where the offset of the true UTC receive time for spacecraft n measurements from the UTC filter
state epoch is given by

Aty = (e, = 85O0 )+ (67 =27 )| = (e, =17 )+ ot = (e, —t,(fc)")+M (5.4-18a)*
c

Note that in Release 2.7 and prior releases, Af; is implemented assuming that ¢, = " This is
corrected in Release 2.8.

Note that, if the GPS receiver resets the clock bias whenever it exceeds +0.5 milliseconds, 5" (7, )

defined in Equation (4.3-2a) should be used above instead of by (%, ).

The geometric pseudoranges and instantaneous geometric range rates from GPS SV/WAAS GEO

i n,m

Jj to local receiver 1 (plc;[/wj (t, ),pg/wi (¢,)) and nonlocal receiver n (p’c’;j”wl_ (t, ),pG/Wj (t,)) are
defined in Equations (5.4-4) and (5.4-5).

The singly differenced carrier phase bias bAGq)/le" (¢,) 1s the estimated difference between the carrier

phase bias between GPS SV/WAAS GEO j and receiver 1 and the carrier phase bias between GPS
SV/WAAS GEO j and receiver i at the carrier phase acquisition time (7, ), scaled to meters. The

singly differenced carrier phase bias is different for each acquisition of a GPS SV/WAAS GEO by
a receiver. Therefore, bqulfy’ (t,) 1s reinitialized at the start of each acquisition based on the

difference between the predicted singly differenced pseudorange ASRIC’;"/W], (t,,) (defined in

Equation 5.4-6) and the observed singly differenced carrier phase at the acquisition time 7,

GIW Ln

bA(I)ln ’ (tk = tacq) = (A(I)obs )é/W/ (tacq ) - Aml(}’jo (tacq) (54_19)*

Similarly, the singly differenced carrier phase bias variance is reinitialized at the start of each new
acquisition to the predicted singly differenced carrier phase residual variance computed as
described in Step 3 in Section 2.3.1.

The row vector of partial derivatives of the singly differenced carrier phase measurement with
respect to the estimation state vector, X(¢,), is defined as follows:
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L,n
[H ()] _ A%, ) (5.4-20)
GIW; aX(tk)
The partial derivatives with respect to those parameters that are not explicitly included in the
differenced carrier phase measurement equation will be zeros. The following are the only nonzero
partial derivatives if the state vector consists of absolute states for both the local and remote
satellites, where n > 1:

8ACI)IG’H/WA,- (tk) op G/Wj(tk) 3 by (t,) apléi/wj (%)

= = = (5.4-21)*
oR'(t,) oR'(t,) c  OR ()
OAD S, (1) b)) PG, (1) (5.4-20)*
oR'(1,) ¢ oR'(t,)
OADE, (1) 3p g, (1 ) bi(t,) 6w, t,) (5.4-23)*
R (t,) aR'(L,) ¢  OR'(t) |
Ln n s n,m
GACD;G/WA,'(tk) _ by (tk) api/Wj (%) (5.4-24)*
OR"(t,) ¢ 2R"(t,)
Ln - 1,0
aACDGl/Wj(tk) :l_pG/Wj (tk) (5.4-25)*
obL(t,) c
OADY (¢ Perw, (1)
s t) _ Paw, (5.4-26)*
Oby(t,) c
aACDIC’?n/Wj(tk) _ (5 4_27)*
oAb, " (t,) '

The partial derivatives of the geometric range and range-rate are defined in Equations (5.3-28b)
through (5.3-28d).

If the state vector includes relative states for the nonlocal satellites, the associated nonzero singly
difference carrier phase measurement partial derivatives are as follows, where n > 1:

aA(D‘(}n/Wj(tk) B op 1c’i/W_,-(l‘/c) _b}e(tk)épléi/wj ) _8p aw /(1) b = () pG/W] (%)
OR'(t,) OR'(t,) c  OR'(t,) OR"(t,) c OR'(t,)

(5.4-28)
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DY, (1) by W, 1) biay) B, (1)
oR' (1) ¢ oR'Gt) ¢ aR'()

OV (1) O (0) | by(e,) P, ()
6R:ez (tk) aRn(tk) c aR”(tk)

GA(I)I(EH/WJ(ZK/\:) _ be(tp) apg;”Wj (%)
OR”, (t,) ¢ OR"(t,)

oAy (1) B, () B, (1)

ab}l? (%) c c

abrnel (tk) Y

oAy (1) Pl (@)

aAq)lc’i’jo(tk) _1

oAb, " (1))
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5.5 Cross-Link Measurement Models

The computational algorithms for the one-way and round-trip cross-link measurement types are
discussed in this section. The general form of the measurement model is as follows:
Yk =G [X(tk), tk] + ¢ (55-1)

urc

. 1s the true measurement time, referenced to UTC, and ¢ is the measurement error.

where ¢

For GEONS, the estimation state vector, X (7) includes the receiver position vector, R ; velocity

vector, R ; optional corrections to the drag and solar radiation pressure coefficients, AC, and AC;;
GPS receiver bias, bg; and GPS receiver drift, d, for one or more receivers and tracking-system

dependent biases. For ground-based receivers, corrections to the drag and solar radiation pressure
coefficients are not estimated.

The measurement model for the one-way pseudorange measurements from a remote transmitter to
a local receiver is presented in Section 5.5.1. The one-way Doppler measurement model is defined
in Section 5.5.2. The round-trip crosslink range and Doppler measurement models are defined in
Sections 5.5.3 and 5.5.4, respectively.

5.5.1 One-Way Cross-Link Pseudorange Measurement Model and Associated
Partial Derivatives

The one-way cross-link pseudorange is obtained by measuring the signal transit time interval,
which is defined as

Ar=tFO -9 (5.5-2)

where %9 denotes the receive time measured by the receiver clock and ¢! is the transmit time

measured by the transmitter clock. The cross-link pseudorange ‘R is then defined as the speed of
light (c) times the time interval At given by Equation (5.5-2):

R =cAr (5.5-3)

Equation (5.5-2) can be written in terms of the true UTC times ¢, ¢ andt; ¢ corresponding to

& and t{" and the respective receiver clock offset terms 3tz and 3¢y as follows:

At =] +6t,)— () + ;)

(5.5-4)
=At+(0t, —t;)

where
At=t]"" —t]"¢ (5.5-5)

The definition of the one-way crosslink pseudorange can be written as
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R = cAt +c(5t, —8t,) (5.5-6)

The time interval Ar appearing in the first term on the right-hand side of Equation (5.5-6)
represents the true signal travel time from the transmitting spacecraft to the receiver. The first term
on the right-hand side of Equation (5.5-6) can be expressed as

cAt=p+3p,,,+0pP,, (5.5-7)
with

p =R} (") =R} (1) (5.5-8)

In the above equation, p denotes the geometric distance between the position of the transmitting

satellite’s antenna at the true signal transmit time ¢;"¢ and the position of the receiver’s antenna

at the true signal receive time ¢, ¢ . The second term represents the time delay due to ionospheric

refraction effects and the third term represents a (receiver and/or transmitter) hardware-related

delay. In Equation (5.5-8), the position of the transmitting satellite’s antenna (i) at the time of

signal transmission is denoted by R! (¢'°), and the position of the receiving antenna () at the

time of the signal reception is denoted by R fm (7).

Combining Equations (5.5-6) and (5.5-7), the following expression for the cross-link pseudorange
is obtained:

R =p+ b +c(dt, - 5t ) (5.5-9)

with
p=[R} (") =R] (1) (5.5-10)
ble = 8piono + 8phw (55-1 1)

where prL ' is the cross-link pseudorange bias exclusive of clock bias effects, an optional element

of the estimated state vector defined in Section 4.3.

The following Newton-Raphson iterative scheme is used to solve for the signal transmit time, ¢,:

RY (t)=R] (tr,)

Lo = Ig (5.5-12)*
c
where
tr, = (n+1)" approximation for #,
tr, = n™ approximation for ¢,
t, = signal reception time at the receiving spacecraft
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The iterative solution of the above equation is started by setting #,, =7,, such that
R'(t,)=R"(1,).

The position of the transmitter at time 7., is computed using linear interpolation. This iterative

< ¢ 1is satisfied, where ¢ is a small tolerance

scheme is continued until the condition ‘tT T

(nominally equal to 10 second).

Generalizing Equations (5.5-9) through (5.5-10) to a formation of Ng satellites yields

R (AS™) = p” (1) + B )+ cloty =81} n=1. NG j =L Ng; j#n (5.5-13)

YR VY, nm=1,.,Ng j=1L.,Ng;j#n (5.5-14)
(tx U7 s> J ssJ

m

P (1) =[R!

where satellite n is the receiving satellite and satellite j is the transmitting satellite. The position of
the j transmitting satellites can either be estimated or obtained from an ephemeris message
provided via the cross-link communications signal. The cross-link pseudorange bias, bpcél, is

defined in Section 4.3. The position of each cross-link transmitting and receiving antenna is
computed using Equation 3.2-61 in Section 3.2.8. In Equation 3.2-61, the position of the receiving
satellite is always a component of the estimated state vector and the position of the transmitting
satellite can be either a component of the estimated state vector or a state vector that is either
propagated or extracted from a ephemeris file (ground processing only). The transmitter and
receiver clock offsets are related to the time bias estimates for the transmitting and receiving

satellites at ¢, < as follows:

cSty =bp(ty’)

C 4 , (5.5-14a)
cdt] = b(t™) = by ) (1) At

The receiver timetags each crosslink measurement using the measured receive time, ¢, = ¢y . To
account for the offset of the measured receive time from the true UTC receive time, ' =¢, — o,
, Equation (5.5-14) is linearized about the measured receive time:

P (ty ) =p" (1) —p" (1,)3t, (5.5-14b)
where

P () =|RI, ()~ R/ (t); n=L..Ngj=L.,Ngj=n (5.5-14c)*

o (0)-[Re (1) - R, ()

A (5.5-14d)*
1-p"()-(R, 1)/ c)

pnj (tk) =
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R:, (1)~ RI (1)
R:, (1)~ R (1)

P (1) = (5.3-14¢)*

where ¢, 1is the signal transmission time computed based on the measured receive time. The

position and velocity of each cross-link transmitting and receiving antenna are computed using
Equation 3.2-61 in Section 3.2.8. Using this approximation, Equation (5.5-13) can be rewritten in
terms of quantities computed at the measured receive time:

o di(t)
CL1 ( UTC, \ ~ nj AN n CL1 R\%k
M = o7 () =7 ()05 + B (a)]{u—c } 55140y

+br(t)—bi(t)+b,(t,); n=1.,Ng; j=1.,Ng; j#n

where the offset of the true UTC receive time for spacecraft n measurements from the UTC filter
state epoch is given by

Aty = (e =5 ) (150 — 7N = (6 =28 )+ 8t = (1, 285 )+ b (t) (5.5-14g)*
c

Note that in Release 2.7 and prior releases, Az, is implemented assuming that ¢, =¢*“" . This is
corrected in Release 2.8. The optional cross-link pseudorange bias state, bpc_“, and associated

covariance are reset when a programmable time lapse is detected in the provided measurement.

In Equation 5.5-14f, the additional bias term b,(#,) is a correction developed in Reference 47 to

account for second-order effects that can be significant prior to convergence of the absolute filter
states. Optionally, this second-order bias is computed as follows

b, = %;mce(z)"fp"elﬂf); 1Sn<NgGI<j<Ngj#n (5.5-14h)*

k,pos

The 3x3 relative covariance submatrix of the relative position of satellite n with respect to satellite
j 1s defined as

P =E( [(1% "(6)-R'(t, ))— (R"@)-R'(, ))] [(1? "(t)-R' (¢, ))— (R"¢)-R'(, ))D (5.5-14i)

If absolute states are being estimated, this submatrix is computed using components of the absolute
covariance matrix

Prel,njz[P]nn _I_[P]jj _[P]"j _[P]j” (55_14])*

k,pos |pos pos pos [pos
where [P]Zm is the 3x3 submatrix of the full absolute predicted covariance matrix [P]
corresponding to the covariance of the satellite n position and the satellite j position. In the case
where satellite j is not being estimated (i.e. its location is provided in a precise ephemeris),

Prel,nj — [P]WI

k,pos pos *
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If relative states are being estimated, the P’ submatrix is computed using components of the

relative covariance matrix [Pm,]

E([(]%” (t)-R"(t, ))] [(ﬁ” (t)-R"(t, ))]T j; satellite j is not estimated

E[[(R )R )[R )R, ))][(1? "R, ))— (f¢-&'0,) )] j; nzl,j=1

Pl = A A . .
v E([(R'(tk)—R'(zk ))—(Ef(z,c >R’ (t, ))][(1?' (t,)-R'(t, ))—(ﬁ'(zk R’ (t,) ) T); n=1jz1  (5.5-14k)*
S — 2 — Y — L. — T
E( [(erl (t) =R (1, ))_ (Rr:’[ (t )R (@, ))] [(anel (t )R (1, ))_ (Rr;/zl (t)-Ry (1)) )] j; otherwise
[Pn,, ]’::S; satellite j is not estimated
— [Prel]::u; nil,j:l
[R‘el]}/zias; n= 17] #1
[t Pl - PR ] otherwise
where
-, B R'(t,), n=1
Rt = {E"(rk) —~R'(t,), n>1
and Pk’josnj is the 3x3 submatrix of the full relative predicted covariance matrix [Pm,]

corresponding to the covariance of the satellite n relative position and the satellite j relative
position.

The 3x3 D" matrix is given by

nj _86”/ _ 1 ( Anj(Anj T)
D= L) 14

where the range vector, geometric range, and range unit vector are given by

ﬁnj ()= ET, (1) - 1?4], (t) (5.5-14m)

p”(t,)=|p" (tk)‘ (5.5-14n)
ﬁnj(tk) — pnl (tk)

P () (5.5-140)

When the second-order correction term b, (z, ) is included in the predicted measurement, a second-
order variance correction term B, is also included in the cross-link range measurement variance

calculation such that

V.=HPH]+R +B, (5.5-14p)*
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This is done by augmenting the value of a used to start the recursive computation of 7,
discussed in Section 2.3, such that:

a, =R, +B, (5.5-14q)*

where the second order variance term By for a cross-link range measurement is given by

B, = %tmce(D”-’P’el D" P

% pos, % .pos, ) (5.5-14r)*
The matrix (a row vector in this case) of partial derivatives of the pseudorange measurement with
respect to the estimation state vector, X(z,), is defined as follows when X(¢,) consists of Ns
satellite state vectors:

)

H =—— =1,. ;J=1,.. 0] 5.5-15
[ (tk)]gngL aX(l‘k) s n s 9N59,] s aNsajin ( )

The following are the nonzero elements of the partial derivative vector when the estimation state
vector consists of absolute state vectors for the receiving satellite #» and the transmitting satellite j,

omitting terms of O(LZ) and higher:
c

CL1 (UTC i nj n - nj
Oy G |, dat) |97 () by(r) 9" (1) (5.5-16)*
OR"(t,) c |6R"(t,) ¢ OR"(t,)
Oy () __bla,) B (1) (5.5-16a)*
OR"(,) ¢ OR"(t,)
amCiLl urc j a nj t n a nj t
—81%’ (: ) ) = {1 + dRitk)} a%/ Etk; by itk) a%f Et’f; (5.5-16b)*
k k k
aERC»Ll tUTC n a"] t
1l(R ) br(t) p;‘(k) (5.5-160)*
OR’(1,) ¢ OR'(t,)
aERCFI tUTC Jj
—"’cu( e )y, delly) (5.5-17)*
b (1)) c
(%RC.L] tUTC - nj ¢
—n]n(R ) _PTW) (5.5-17a)*
obu(t,) c
amCLI tUTC
Ry G (5.5-17b)*

0b; (1)
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aERCLl(thC) 1 .
St GO
where
opv(t)
(A
OR"(t,)

R(®)

R w-R @) ){ “r
op” (t,)

“]

6]?"(1‘,\,) ) p"j(tk)[l—ﬁnj(tk)'(ﬁA,j(t;)/c)]
v b
OR"(t,) 1_‘3nf(¢k).(1;{Aij(t,’{)/c)
A
. _|:(RA,,,"(tk)_RA,j(t )) pnj(t )|:”U(t ) ! ]( )“
ap’?l(tk) ~
oR'(1,)

p” (tk)[ 1=p"(t,)- (f%/(fzi)/ C)]

0" 1) _ e i-p7wyre)
R/ fi-pe) (R, @y e

(5.5-17¢)*

(5.5-17d)*

(5.5-17¢)*

(5.5-17D)*

(5.5-17g)*

(5.5-17h)*

(5.5-17i)*

If the estimation state vector consists of an absolute state for the local satellite (1) and relative
states for the remote satellites (>1), where n and j are >1 -- Note that this option is not implemented

in GEONS 3.0:

GSRCLI(I )
OR' )
%CLl(t )
oR'(1,)

(omitting terms of O(Lz)
c

5-66

(5.5-17j)*



ag{CLl (t )

OR'(t,) iy f0 1 (5.5-17k)*
oRCH L (1) (omitting terms o (C—z)

oR'(t,)

=0

The following are the nonzero partial derivatives of the one-way crosslink pseudorange

o 1 .
measurement, omitting terms of O(—) and higher:
c

O (tx") _ OR (") R (1) _ {1 L i (rk)} " (6 bp(r,) " (1)

oR'(t,)  OR"(t,) OR.(t,) ¢ |eR"(t,) ¢ OR"(t,) (5.5-171)*
CL1 (,UTC CL1 ( ,UICN ATy n o forn>1;j:1 5555 NS;nij
OR," (1 )_69%;1/ (ty ) OR (tk)__b;(tk)ap ()
R’ (t,) oR"(t,) R (1,) ¢ OR"(1,)
ORI G") _ oM (1") OR' (1) |:1+d,é(tk)}aplv(tk)_b;(tk)apnj(tk)
ORL(t)  OR'(t) ORL() c JOR'(t) ¢ OR'(t) ; (5:5-17my*
CL1 /,UTC CL1 ; ,UTC 1 forn=1,..., Y 3J >Ln
R (1") R e™) ARV (0 bia,) 974
aR.(t,) oR'(1,) ORL(t) ¢ OR'(,)
ORI (¢ j
o ) ., dat) forn=1,.,Ngj=1.,Ngn#j (5.5-17n)*
b (t,) c
5iRCL1 urc ~njt
v U )=_p @) forn=1,..,Ng;j=1.,Ngn#j (5.5-170)*
abR(tk) ¢
ORE(Y 1p,
nj \"R _ nj CL1 _ .7 . .
—_— = t)+b (¢ forn=1,..,.N;j=1..,.N;n# 5.5-17p)*
S raoata)] "y gn#j  (55-17p)
aERC{AI tUTC = nj ¢
M=l—p—(k> forn>Lj=1..,Ngn#j (5.5-17q)*
Gbgm(tk) c
a%C'Ll tUTC
'V—(]e)=—1 forn=1,.,Ng;j>Ln#j (5.5-17r)*
ob; (t,)
89?“ tUTC A
MRy e ) 1 p"f(tk)+bgl(zk)] forn=1,.,Ng;j>ln#j (5.5-17s)*

ody , (4,)

Computations of measurements and associated partial derivatives are performed using state vectors
given in the mean of J2000.0 coordinate system.

5-67



5.5.2 One-Way Cross-Link Averaged Doppler Measurement Model and
Associated Partial Derivatives

An instantaneous Doppler shift between transmitting satellite j and receiving satellite n can be
defined as

F[)C;fl(t):FR(t)_FREF(t) (5.5-18)

where

F, (¢) = Doppler-shifted cross-link carrier frequency
Fp.- (t) = receiver-generated local reference frequency

When the receiver and the transmitter use the same frequency standards, the receiver-generated
reference frequency, Fpgr, will be equal to the transmit frequency, F,. For cross-link tracking,

this is not the case. There will be small difference between the two frequency standards used by
the receiver and the transmitter.

The procedures to compute the instantaneous (not implemented in Release 2.2) and averaged one-
way cross-link Doppler shift are presented below. The first term on the right-hand side of Equation
(5.5-18), F,, , the instantaneous Doppler shifted carrier frequency observed at the receiver, can be

represented by the following equation:

F, =F;[l—%}y}+8Fm (5.5-19)
where
Fr = true cross-link transmit frequency
p” = time rate of change of the light-time-corrected range from transmitting antenna i on
satellite j to receiving antenna m on satellite n [defined in Equation (5.5-14d)]
oF,, = frequency perturbation due to the atmospheric refraction effects

The second term on the right-hand side of Equation (5.5-18), F..(¢), the receiver-generated
reference frequency, can be written as

For(t) = F, +8F,,, = F{l T dR(’)) (5.5-20)

C

where d(¢) is the receiver’s time bias rate. In Equation (5.5-20), ' denotes the nominal transmit

frequency, which may be different from the actual transmit frequency, F7, used in Equation (5.5-
19),
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J
F!(t)=F, +5F, F(1+d (’)] (5.5-21)
¢
where d](t) is the transmitter’s time bias rate. Using Equations (5.5-19) through (5.5-21),
Equation (5.5-18) can be written as

FD?IZFT(I df(f)](l pj FT[I_'_MJ-’-Sme (5.5-22)
iy C

C C

Neglecting terms of O(Lz) and higher, the instantaneous one-way Doppler shift reduces to
C

FENe) =22 (67 )+ an —dj )+ 8
;

o (5.5-23)
In the case of receivers that provide an instantaneous Doppler shift measurement, the instantaneous
Doppler shift from antenna i1 on the jth transmitter to antenna m on the receiving satellite n is
modeled as follows:

F[i/L.l(tk) _ _%(pn/ () +d! - d£)+ de/“ (5.5-24)

CL1
bd

where is the instantaneous one-way cross-link Doppler bias.

In the case of receivers that average the instantaneous Doppler shift over an interval AT,
nominally equal to 10 seconds, the resulting averaged one-way crosslink Doppler shift
measurement from antenna i on the jth transmitter to antenna m on the receiving satellite n is
modeled as follows:

FSEL(t) = =0 |- 22 (6™ (©) + dft — d}) + 6Fuem| at (5.5-25)
%:—Q(wmg —d,-;ju% (5.5-26)*
" c AT g
where
Ap” (1) =p" (t,)—p" (t, —AT) (5.5-27)*
and p”(t,), the range between the transmitting and receiving antennas, is defined in Equation

(5.5-14c) and the optional one-way cross-link Doppler bias, F, can be an estimated.

(5.5-28)

atm

L1 L1
b = = SF
nj nj
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The optional cross-link Doppler bias state, »“*', and associated covariance are reset when a

Py
programmable time lapse is detected in the provided measurement. In the above equations, satellite
n is the receiving satellite and satellite j is the transmitting satellite. The position of the j
transmitting satellites can either be estimated or obtained from an ephemeris message provided via
the cross-link communications signal.

The computation of the nonzero state partial derivatives of the averaged cross-link Doppler shift
is presented below. From Equation (5.5-26), the following equations are obtained for the receiving

satellite for the case where X(z,) consists of Ns absolute state vectors for both the local (1) and
remote satellites:

OF, () F,  OR"(t, — AT)

— =— p" (1) —p" (t, — AT — 5.5-29)*
oR"(1,) AT p () —p” (1, ) oR"(1,) ( )
aFCLl ¢ B A —n _ 7
o &) _ P 57 (1, - ATyt B =AT) (5.5-30)*
OR"(1,) CcAT| OR"(1,)
aFCLl ¢ r A —n _ T
Dr!/’n( k) — FT ﬁ”j(tk _AT)T —aR (tkn AT) (55'31)*
OACL(t,) cAT| OAC, (1))
aFCLl t r A —n _ T
D,i,.n( D_F 57 (1, — AT)' OR (tkn AT) (5.5.30)*
OACR(t,) cAT| OAC(t,)
CL1
M —— F_T (5.5-32a)*
adg(tk) c '
and for the j transmitting satellites being estimated, where j # n
aFCLl ¢ A A o) _
= () _ 1t pr () —p" (¢, - AT)TM (5.5-33)*
OR’'(t,) cAT OR’(t,)
aFCLl t B A o/ _ ]
2o &) __F @W(tk—AT)T—aR U, —AT) (5.5-34)*
OR'(t,)  cAT| OR'(t,)
aFCLl t r ‘ o _ ]
o, W) F 5 (1, —ary R (—AT) (5.5-35)*
OAC)(t,) cAT | OAC)\(t,)
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OF"(t)  F,

= 0" (t, — AT
anCi) ~ ear|P AT

7 OR/(t, — AT)
OAC; (1))

OF, (1))
obsH' (1)
aFDCi}(tk) Fr

ddp (tx) c

(5.5-36)*

(5.5-37)*

(5.5-37a)*

The partial derivatives of the range in Equations (5.5-29) through (5.6-36) are defined in Equation
(5.5-16) in Section 5.5.1. These derivatives are evaluated at the current measurement timetag, #,
and at the time #—AT, where AT is the Doppler averaging interval. The partial derivatives of the
measurement with respect to the atmospheric drag coefficient and solar radiation pressure
coefficient corrections in Equations (5.5-31), (5.5-32), (5.5-35) and (5.5-36) are computed only if

these state parameters are being estimated.

The matrix of partial derivatives of the position vector at time #—A7 with respect to the estimation
state vector in Equations (5.5-29) through (5.6-34) is related to the components of the state

transition matrix defined by Equation (4.4-1a) in Section 4.4.1 as follows

AR"(t, —AT)
[é’]?ﬁ—(tk)j :(W)i:1,2,3;j:1,2,3

{w] = (W)i:l,2,3;j:4,5,6
AR"(t,)

R"(t, — AT) W)
é’ACZ i=1,2,3;j=7

AR"(t, —AT)
é’Ak—C;J = (W)i:1,2,3;j:8

where
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- — — — — -1
R"(,) R"(t,) R"(t,) R (1)
R"(t, —AT) R"(t, -AT) NACL(t, —AT) ANAC(t, —AT)
W = _é’ﬁn(tk) ;ﬁﬁn(tk) &En(tk) é’}?”(tk) (5.5-38d)*
R"(t, —AT) R"(1, —-AT) AACh(t, —AT) AAC;(t, —AT)
01x3 01x3 1 0
L 01x3 01x3 0 1 n

If the atmospheric drag coefficient correction and/or the solar radiation pressure coefficient
correction are not estimated, the matrix W does not include the columns associated with these state
components.

If the estimation state vector consists of an absolute state for the local satellite (n, j=1) and relative
states for the remote satellites (n, j/>1), the following are the nonzero partial derivatives of the
crosslink Doppler measurement -- Note that this option is not implemented in GEONS 3.0:

OFW) R

OR" (1, — AT)
AR (t,)  cAT

OR! (t,)

{(}”j(tk)T _ f)”f(tk —AT)" }for n>lj=1..,Ngn#j (55-38¢)*

oF,'(t,) F,
OR!,(t) AT

~OR, (4, —AT)
OR" ()

!ﬁ"j(tk —AT) }for n>Lj=L..Ngnzj (55380

AFCH (¢ - AR’ (t, — AT) |
Dy *) = fy p" (¢, —AT)TM forn>1;j=1,.,Ng;n=#j(55-38g)*

OAC) (1) cAT OAC) (1)

OF (¢ . OR" (t, —AT) |
D:l/ ( k) — FT ﬁnj(l‘k _AT)T rel (1/1{ )

0AC; (1) cAT| 0AC; (1) |

forn>1;j=1,..,Ng;n# j (5.5-38h)*

aFDC;/L.l(tk) F,
OR!(t,) AT

AR/, (t, — AT)
6‘1?,{, (tk )

|:ﬁnj(tk)T _‘Snj(tk _AT)T :| forn = 199N53J > 1, n+ ] (55‘381)*

6ch,jl(tk) F,
OR. (1) AT

+ OR/ (t, —AT)
R, (t,)

[{)”j(tk —AT) } forn=1..,Ngj>1n=j (5.5-38)*

GFDC,fl(tk) _F

_ + OR! (t, — AT)
OAC) (1) cAT

OAC 19,4 (t,)

l:f)"j(tk _AT) :l forn = 1""9NS;j >ln+# ] (55-381()*

5-72



0Fy'(t) R
OAC; (t,) AT

+ OR/, (t, — AT)
OAC; (1)

ﬁnj(tk —AT) forn=1,..,Ng;j>Ln#j (5.5-381)*

—6 b, () =l forn=1,.,Ng;j=1L...Ng;n# (5.5-38m)*
- ,forn=1,..,N.;j=1,...N;n#j .5-38m
abdcju( £) 55 s J

['he partial derivatives of the measurement with respect to the atmospheric drag coefficient and

solar radiation pressure coefficient corrections in Equations (5.5-31), (5.5-32), (5.5-35) and (5.5-
36) are computed only if these state parameters are being estimated.

The partial derivatives of the relative position vector at the time #—AT with respect to the estimated
relative state vector components in Equations (5.5-30a) through (5.5-36a) are related to the
components of the inverse of the state transition matrix defined by Equation (4.4-1b) in Section
4.4.1 as follows:

— — -1
oX (t, — AT oxX (t
( Vel_(k )J :( _rel(k) j (55'38n)*
aXrel (tk ) a‘erel (tkfl )
where
_ 7 _
. yfel
rel = : (5.5‘380)
X
— E -
and
B R"_R! 7 ﬁrﬂd
R'-R' R,
X, =X"-X'=|ac" -aC! | =|(acy) |in=1 (5.5-38p)
n 1 n
AC?_R o éCR (AgR )rel
| by —by | b

If the atmospheric drag coefficient correction and/or the solar radiation pressure coefficient
correction are not estimated, the state transition matrix does not include the columns associated
with these state components.
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5.5.3 Two-Way Cross-Link Range Measurement Model and Associated Partial
Derivatives

The two-way cross-link range is obtained by measuring the round-trip signal transit time from the
source satellite n to target satellite j and back to satellite n. This interval is defined as

At=t) -t (5.5-39)
R T

where ¢, denotes the receive time measured by the receiver clock on satellite n and #; is the

transmit time measured by the clock on source satellite n. The two-way cross-link range
measurement is defined as one-half of the speed of light (c¢) times the time interval At:

c 1 nj nj
R (17 =2 Ar = ol (67 + P (T + 5P ) |

47 (1) ‘ ' (5.5-40)
X 1+—c ; n=1.,Ng j=1.,Ng; j#n
where
pY (13" ) =R, (137 ) = Rl (7)) (5.5-41)
pY (14) = |R1, (17) = R, (77 (5.5-42)

and bpc "2 is the round-trip cross-link range bias exclusive of clock bias effects, an optional element
of the estimated state vector defined in Section 4.3.

urc

Linearizing p"” (¢7) and p’zj (¢,"°) about the measured receive time tag 7, = /¥

+ 8¢, yields:

1 ni - nj n nj = nj n
SRS,-LZU;]TC" ) = E[plj (&) =Py (G )AL +p5 (8,) — 5 (¢ AL, + bpchz(tk )]

» (5.5-43)*
X{I_FM],_[JZ(;]{); n=1,.,Ng; j=1,.,Ng; j#n
c
where
p”(t,) =R/ (t;)-R., (tZ)\ (5.5-44)*
pY (t) =|R", (1)~ RY (¢}) (5.5-45)*
‘ E/{ t, _E:; tﬂ
/31741 (t,)=— (%) () (5.5-45a)*

plnj ()
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R, (t) - R/, (1)

”;j £)= . 5.5-45b)*

P ) Py (t,) ( :

0y ) i) R <rz'>)[1_ b m)j (5.5-46)"
l—ﬁ;?’(tk)-(§£1(t,'c')/c) ¢

sty = L RO Fi) (5.547)"

1-p2 ) (R1 ) )

The offset of the true UTC receive time for spacecraft n measurements from the UTC filter state
epoch is given by

o =l P =7 ] = Yoty =)o B 570
C

Note that in Release 2.7 and prior releases, Ay is implemented assuming that ¢, =¢*“" . This is
corrected in Release 2.8. The optional cross-link range bias state, b/fj“ , and associated covariance
are reset when a programmable time lapse is detected in the provided measurement. The optional
bias term b,(¢,), which is a correction developed in Reference 47 to account for second-order
effects that can be significant prior to convergence of the absolute filter states, is computed as
discussed in Section 5.5.1.

The initial transmission time from satellite n (¢, ), the intermediate receive and transmission times
(assumed to be equal) from satellite j (7, ), and the associated transmitter and receiver positions
and velocities are computed using the Newton Ralphson iterative scheme defined in Section 5.5.1

4

(Equation 5.5-12) to solve for 7, given ¢, and then for ¢/ given ¢, . The position of each cross-

link transmitting and receiving antenna is computed using Equation 3.2-61 in Section 3.2.8. In
Equation 3.2-61, the position of the satellite # is always a component of the estimated state vector
and the position of the intermediate satellite j can be either a component of the estimated state
vector or a state vector that is either propagated or extracted from an ephemeris file (ground
processing only).

In Equation 5.5-43, the additional bias term b,(¢,) is a correction developed in Reference 47 to

account for second-order effects that can be significant prior to convergence of the absolute filter
states. This second-order bias is computed as defined in Equations 5.5-14g through 5.5-140 in
Section 5.5.1. When the optional second-order correction term b,(¢,) is included in the predicted

measurement, a second-order variance correction term B, is also included in the cross-link range

measurement variance calculation such that

V,=H,PH' +R, +B, (5.5-47b)*
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The second-order variance correction B, is computed using Equation 5.5-14r in Section 5.5.1.

The following are the nonzero elements of the partial derivative vector when the estimation state
vector consists of absolute state vectors for the receiving satellite # and the satellite j, omitting

terms of O(LZ) and higher:
C

ORZW) 1], di) | opr ) , 0pY @) | bR | 39T () | 9pY (1)
R"(t,) 2 ¢ | orR" (zk) AR"(t,) 2¢ | R"(t,) TR (t,)
OR) _ bp)| 90y () | a9y (t,)
oR" (t,) 2 | oR"(,) R ()
ORG) 1, di@) | opr ) , 0pY () | bRe)| 3pY (), 9P (1)
OR(t) 2 c 6R’(t) OR’(t,) 2¢ | 3R’ (t) OR’(t,)

R W) _ byt [591” ), apzfak)}

aR'(t)  2¢ [oR'(t) OR'(t,)

O 1|, di)
b () 2

C

&RCLz( UTC)_1|: (t) p (t )}

C C

oby(t,) 2

R
Oby (t,)

R _

1 nj crL2
S [p () +p2 (1) + b (1,)]

ai}{ffz t,l{TC) _
od (1,)
where

6Pfj(tk) Anjr, \T

——==—P"7(f

oR"(1,) pY (1)
3 (1)

_'\”jt T
R ) Py (%)
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(5.5-48)*

(5.5-49)*

(5.5-50)*

(5.5-51)*

(5.5-52)*

(5.5-53)*

(5.5-54)*

(5.5-55)*

(5.5-55b)*



L o (o RO
» {(Rf (t)—RI, (tl,c,))_ oy (tk)[pfj () - H _
() . ‘ 1P (tk)j

R s ®L @y ‘ (5.5-56)"
1 pY (t,)- (f?f, (1))~ (tZ)) opY(t,)
e [ ey Fw
{(zé;a, - EL6)-52 6, )[;33" - )J]
7 (1,) (5.5-57)*

oR"(t,) pf(a)[l—ﬁf(&)'cﬁi(%)/cﬂ

j_l B (t;c.) ) B (55.58)
¢ L1-pre)- (R @ye)| R @)

oo () _~(r @) fi-pr ) re] (1 oY)

oR"(t,) ll —PY(t,)- (fejm )/ c)J ¢
oY1) _ A (5.5-59)*
aR"(tk) l_f);f(lk).(];e/{i (l]’{)/C)

apnj(tk) i s T
T 5.5-60)*
R P ) (5.5-60)
pr) .,
= =P ) 5.5-61)*
R P (5.5-61)
- . 4 . E:’m " T
' {(R!'(t’i)'RA"m<’f?'))‘pi”<fk)[ﬁff<rk)— & )H |
(L) ¢ [1 o (tk)J
c (5.5-62)*

OR’ () - pfj(tk)[ 1 —ﬁfi (t,)- (ﬁ;m (t;;,)/c)]
e R e-Fe) gy
‘ [1—51”' (tk)~(fe,f,,, (t,;’)/c)] oR"(t,)
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Ln L/. 4 N A nj Aj (l ) '
. (RAm (tk)—RA,(tk)) () pU(E,) -
e (5.5-63)*

ﬁﬁj(tk): p;j(tk)[l pU(t,)- (R}(t )/c)]
1) bra) (l_p;f(lk)J 18- [ o- L @) B 55 0y
R g e ¢ oo Laye] @
002 _—p7 @) I-pY e/ c] (5.5-65)*

afef(tk)_ [1 pY(t,)- (R’ (tk)/c>]

If the estimation state vector consists of an absolute state for the local satellite (1) and relative
states for the remote satellites (>1), where n and j are >1 -- Note that this option is not implemented
in GEONS 3.0:

ORT(t) _
oR'(1,)
aiRCL2 (t )

oR (1)

(omitting terms of O(Lz) (5.5-66)*
c

mCL2(t )

oR'(1) omittingt fol | : (5.5-67)*
omitting terms o —
amCL2(t ) g C2

oR'(1,)

=0

ORL2(1Y™)

4 =0 forn=1...Ng;j>Ln#j 5.5-68)*
ob;, (1) o / (568

The following are the nonzero partial derivatives of the round-trip crosslink range measurement,

omitting terms of O(LZ) and higher
c
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ai1’1’5,“(UTC) OR,2 (1) OR" (1)) _1 1+d£(fk) apf"(tk)+5p§"(fk) bp ()| opY (t) ap3 (t,)
OR!\(t,) oR"(t,) OR!(1,) 2 ¢ |orR"e) R )| 2¢ | Rz R'(,)

59%3“(””) 89%“2(””)61?”00 A OIS
R’ (t,) oR"(t,) OR! (t) 2c aR”(t) oR"(t,)
forn>1L;j=1..,Ng;n#j

} (5.5-69)*

ORGP _ oW (™) 6R’<tk>:1{1+d;(rk>}{ Py (1) | 007 (1 )} b;(r»[ap (ANA )}

oR.(t,)  OR’(t,) ORL(t,) 2 ¢ R R@,)| 20 |Ri,) oR'(,)

= 5.5-70)*
PRET) PG SR 1[bie) B0 By V() (5-5-70)
R/, (1,) oR'(t,) 61;?,{,(4() 2| e 6R’(t) ¢ OR'(t,)
forn=1,...,Ng;j>Ln#j
OR() 1 n
—ggz(") =— 1+M forn=1,..,Ng;j=1...,N;n#j (5.5-71)*
Oby 2 (t,) 2 ¢

OR,E) 1 Pl pY @)
oby(t) 2

} forn=1..,Ng;j=L..,Ng;n#j (5.5-72)*
c c

CL2 UTC
OR,;“(tx

_ [p (t)+p?(t, )+bCL2(t,()] forn=1,.,Ng;j=1..,Ng;n=j (5573)*

od (t,)
amCLZ urc
ORy e ) L) BV P | oot it Ny (5.5-T4)F
6b;m[(tk) 2 c c
aiRCLZ UTC
W:—[p (t)+p5 () + by (¢, )] forn=1,.,Ngj>Ln=j (55-75)*
k

5.5.4 Two-Way Cross-Link Averaged Doppler Measurement Model and
Associated Partial Derivatives

The instantaneous two-way cross-link Doppler is obtained by measuring the round-trip signal
frequency shift from source satellite n to target satellite j and back to satellite n.

FSP (1) = Fy(6) = Figre (1) (5.5-76)

where

F, (¢) = Doppler-shifted cross-link carrier frequency

Fp.- (t) = receiver-generated local reference frequency
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For two-way measurements, satellite n generates both the transmitted and local reference
frequencies. Therefore, the receiver-generated reference frequency, Fjyzr, will be equal to the true

transmit frequency, 7.

The first term on the right-hand side of Equation (5.5-76), F', , the instantaneous Doppler shifted

carrier frequency observed at the receiver, can be represented by the following equation:

, p’!/_l_p n
FR :FT(I—%]-FSF;”"

(5.5-77)

where

Fr = true cross-link transmit frequency from satellite n

. nj

Py

time rate of change of the light-time-corrected range from transmitting antenna m

on satellite n to receiving antenna i on target satellite j [defined in Equation (5.5-
46)]

p,” = time rate of change of the light-time-corrected range from transmitting antenna i on

target satellite j to receiving antenna m on satellite n [defined in Equation (5.5-47)]

OoF = frequency perturbation due to the atmospheric refraction effects

atm

The true transmit frequency, F7, is related to the nominal transmit frequency, F' 1 as follows

Fl(t)=F, +8F, = F{l +mj (5.5-78)

C

Using Equation (5.5-78), Equation (5.5-76) can be written as

j Cn
FDC,,/LZ :_FT[H_dR(t)j[p] P, j_l_SF

atm
C C

(5.5-79)

Neglecting terms of O(Lz) and higher, the instantaneous two-way Doppler shift reduces to
C

FE2 ) =="L(p7 0+ 7 0) 4 F,, (5.5-80)

In the case of receivers that provide an instantaneous Doppler shift measurement, the instantaneous
two-way Doppler shift from antenna i on the jth transmitter to antenna m on the receiving satellite
n would be modeled as follows -- note that this model is not implemented in GEONS 3.0:

Fo () = —FTT(/?{” (6)+ P (1)) + 5" (5.5-81)
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In the case of receivers that average the instantaneous Doppler shift over an interval AT, nominally
equal to 10 seconds, the resulting averaged two-way crosslink Doppler shift measurement is
modeled as follows:

T CL2 ..~ F.[A ¢ )+ A 4 t n no, "
FDCn,LZ(tk)z_f( P (k)AT P (k)+dR(tk)_dR(tk ))—'_deLz(tk)

‘ ‘ (5.5-82)*
E. [ Ap!(t,)+Ap) (¢ . "
=—7T( PSP 1 g, i, -+, )J+b§“<rk)
where bS"*(t,) is the averaged two-way Doppler measurement bias and
Ap{!/ (%)= p1ﬂj () _p1nj (t, —AT)
Ap;j (tk) = p;j (tk) _p;j (tk —AT)
Al () =R ()~ R., (1)) (5.5-44)*
pY (t) = |RY, (1)~ RY (¢)) (5.5-45)*
. R/ (#')-=R" (¢"
pr ()= ‘(;)nj 7 )”’ &) (5.5-452)*
U
i R, (t,)-RI (1)
pu(t,) = u £ (5.5-45b)*

pznj (%)

The optional cross-link Doppler bias state, de“ , and associated covariance are reset when a

programmable time lapse is detected in the provided measurement.

For the source satellite n for the case where X(¢,) consists of Ns absolute state vectors for both
the local (1) and remote satellites:

i i AR™(t} —AT)
apgz(tk) e =1 ()" + Py’ (t — AT)T aR"k(tk) (5.5-83)*
R - eat| i i OR™(ty—AT) o
I o O B o D i
OF(t,) A R"(t, — AT : R"(t, — AT
2 0 F |- ary PRGEAD g gy PRGEAT (s s gy
OR'(t,) AT IR"(t,) IR (t,)
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OFy(4) F [
ANC(t,)  AT|
OFy () F [
AC)(t,) AT |

_Ibln] (t

_Iblnj (tk -A

OFSP(t,)
ody (t,)

— AT

7’

OR"(t, —AT)
ANCI(t,)

OR"(t, —AT)
ANCA(t,)

+ ,b;j (tk - AT)T

+ ,b;j (tk - AT)T

OR"(t,—AT) |
ANC?(t,)

OR"(t,—AT) |
ENATA I

__i(t _t”)__g(pf"<rk>+p;"<rk>j
_ B )
C C C

and for the target satellite j being estimated, where j = n

i . OR’(t, — AT)
nj T n] —AT T _k
FCLZ(t ) A+ (@, ) R (1,)
AR’ (¢ AT , R/(t —
@) AT sty - prs, —ary ZEG=AD
AR (1)
OﬂFCLZ(t ) r 5J _ - 5/ _ ]
i"; Do ZTT 5 ATy OR (—ti AT)+/3;] (- ATY OR (_t,; AT)
ORI(,)  AT| OR (1) OR(1,)
OF () F[ OR/(t, —AT . AR/ (t, —AT) |
o T - ary PRUZAD s ary CR G ZAT)
ANCH(t,)  eAT| ANCI (L) ANCh(1,) |
OF () F[ OR/(t, —AT A OR/(t, —AT) |
2 0 B —ary PRGZAD g _ary R ZAD)
ANC)(1,)  cAT| ANCi(t,) ACY(t,) |
FCL2(t)
bffz(tk)

(5.5-85)*

(5.5-86)*

(5.5-87)*

(5.5-88)*

(5.5-89)*

(5.5-90)*

(5.5-91)*

(5.5-92)*

The matrix of partial derivatives of the position vector at time #—A7 with respect to the estimation
state vector in the equations above are related to the components of the state transition matrix.
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5.6 GS Measurement Models

The computational algorithms for one-way range and Doppler measurements from ground stations
to a satellite receiver are discussed in this section. Although a ground station-to-satellite range
measurement capability is not currently available, one-way range measurement processing is
included in GEONS to support ground processing applications. The general form of the
measurement model is as follows:

Yk =G [X(tk), tk] + ¢ (56-1)

where ¢, is the true measurement time, referenced to UTC, and ¢ is the measurement error. It is

assumed that & has a zero-mean Gaussian distribution with standard deviation o, which is
commandable for each measurement type. The measurement standard deviation is typically
determined through analysis of the random component of the measurement error as part of the
filter tuning process.

For GEONS, the estimation state vector, X(¢) includes the receiver position vector, R ; velocity

vector, R ; optional corrections to the drag and solar radiation pressure coefficients, AC, and AC;;
receiver time bias, bg; and receiver time bias rate, d ., for one or more receivers. Optionally, a GS

range bias can be estimated. There are no additional measurement bias parameters associated with
the GS Doppler measurements.

Section 5.6.1 addresses preprocessing of the raw GS Doppler measurements obtained from either
a GS S-band receiver or a transceiver capable of providing integrated Doppler extracted from an
forward link signal. The measurement model for the one-way range from the GS to the receiver,
which is also used in the computation of the GS Doppler measurement, and associated partial
derivatives are presented in Section 5.6.2. The GS one-way forward Doppler measurement model
and associated partial derivatives are defined in Section 5.6.3. Section 5.6.4 provides an algorithm
for preprocessing round-trip range-rate measurements so that they can be processed as one-way
Doppler measurements, which is not appropriate for autonomous navigation but is useful in
preflight analysis of the expected performance using the one-way range and Doppler
measurements.

5.6.1 Raw GS Doppler Measurement Preprocessing ( not implemented in GEONS)

The GS tracking signal path is shown in Figure 5-4. An S-band signal is transmitted from the GS
and the Doppler shifted signal is received at the local satellite. One-way GS tracking can be
operated using either a fixed radiated carrier frequency (FRCF) with onboard Doppler
compensation (OBDC) or a GS frequency sweep to aid signal acquisition. In either case, the
nominal RCF after acquisition is 2106.406250 megahertz. Note that the discussion below is based
on the Doppler extractor flown as an experiment on the Extreme Ultraviolet Explorer (EUVE)
spacecratft.
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Figure 5-4. GS Forward-Link Signal Path

The GS receiver measures the Doppler shift of the forward-link signal with respect to an internal
frequency reference. The Doppler measurement function is accomplished via a software
accumulation of a scaled and biased nondestruct Doppler shift to provide a Doppler frequency sum
measurement. The stability requirements for this frequency reference are dependent on the
accuracy requirements of the user spacecraft. To achieve the highest accuracy, the frequency
reference should be stable to 1 part in 10'? (15) over 10 to 100 seconds, with a drift of less than 1
part in 10'* per day (3c). All timing associated with the Doppler measurement process should be
synchronized with the spacecraft’s timing reference.

The receiver’s raw Doppler measurement output consists of the nondestruct frequency sum, Dy.
The raw Doppler frequency sums are available nominally every 1.024 seconds. The navigation
software samples the Doppler frequency sums, nominally every 8.192 or 16.384 seconds, checks
and corrects the measurements for accumulator rollover, and converts them to the averaged
Doppler measurements that are input to GEONS.

The navigation software driver performs the following checks on the receiver’s telemetry to
validate the sampled Doppler frequency sum measurements:

1. Set a Valid Doppler Frequency Sum indicator if all the following receiver conditions are
true:
a) Carrier Lock

b) Receiver Lock
C) STDN Mode
d) Subcarrier Detect/Lock

e) Non-Zero Doppler Frequency Sum
5-84



f) External Frequency Reference Selected

g) External Frequency Reference Status is healthy

2. Check the cycle slip indicator every 1.024 seconds and set a cycle slip indicator if a cycle
slip was detected at any time between successive Doppler frequency sum samples.

3. Check the carrier drop pending indicator every 1.024 seconds and set a carrier drop pending
indicator if a carrier drop pending was detected at any time between successive
measurement collections, or during the first 1.024 second major cycle after the second
Doppler frequency sum.

When two successive valid Doppler frequency sums are available, the navigation software driver
differences successive S-band receiver Doppler frequency sums to compute a Doppler frequency
sum difference, AD, . If this difference is negative, accumulator rollover has occurred. In this

case, the maximum value that the accumulator can hold is added to the difference.

The k" average measured frequency difference measurement between the Doppler-shifted GS

radiated carrier frequency (RCF) and the receiver’s frequency reference, F\5° (), » 1s then
computed as follows:

F (t,)

obs

K
= AD, - B, (5.6-2)

where

K = resolution of the receiver’s carrier tracking numerically controlled oscillator
(NCO) in hertz per bit

M = product of the number of accumulated NCO samples in each Doppler
accumulation interval with the number of 1.024-second intervals in the
Doppler averaging interval, AT; where the the number of accumulated NCO
samples in each Doppler accumulation interval may be a function of the
command rate

AD, = difference between successive valid Doppler frequency sum samples at times

tr and tx —AT, accounting for the accumulator rollover

AT = Doppler averaging interval, typically 8.192 or 16.384 seconds

Bp = constant frequency bias that ensures that each frequency sum is a positive
number

The measured average frequency difference is related to the k”* average Doppler shift of the actual

GS RCF over the Doppler averaging interval, f,(k), as follows:

fo(k)=F55(t,),,, — AF, (5.6-2a)

where
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AF, = difference between the actual GS RCF, frcr, and the receiver’s S-band Doppler

frequency reference, fef

The navigation software driver performs the following checks to validate the average Doppler
frequency difference measurements:

I. Sets an indicator if the Doppler measurement exceeds a ground commandable maximum
value.

2. Sets a Valid Doppler Measurement indicator if the following conditions are true:
a) The number of 1.024 second cycle slip indicators is below a ground commandable

threshold, and

b) The number of 1.024 second carrier drop pending indicators is below a ground
commandable threshold, and

C) The Doppler measurement is less than a ground commandable maximum value.
d) The Doppler measurement does not span a day boundary.

The first valid average Doppler frequency difference measurement following a time interval
without measurements larger than a commandable maximum time interval is considered to be at
the start of a new tracking contact.

5.6.2 GS One-Way Forward Range and Associated Partial Derivatives

The timetag associated with the & measurement is the UTC receive time of the signal at the local
receiver as measured with respect to the spacecraft/receiver clock, #\"“’. In the presence of a
spacecraft timing bias, the true measurement receive time is given by

ty7¢ = ¢ _ 5t (5.6-3)

where o, is the offset of the receiver’s timing reference from UTC, given by

The accumulated receiver clock bias, b,(f), can be estimated using one-way GS range
measurements alone or in combination with GNSS measurements.

If the forward-link GS signal is transmitted from GS j at time #7 and received at satellite receiver
n at time 7z (equal to the measurement time), the measured pseudorange is given by:

b, (t8T€) = ¢ - (tg — tr) = Pt (t87C) + 8Paum (tr) + br(t¥T6) + by (t47€)  (5.64)
In this equation, c is the speed of light, dp_,, (¢,) is the modeled tropospheric delay associated

with a signal transmitted at time 77 in meters, pr %/ is an additional time delay due to hardware
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and unmodeled atmospheric signal delays, and pg';j (tJT%) is the distance traversed by the signal
from the GS j to antenna i

pgs,(tR™€) = |RR,(ta) — Res, (tr) (5.6-4a)*

R, (t;) = position of the transmitting GS ; at time ¢7
R’ (t,) = position of the ith receiving antenna on satellite » at time ¢, which is computed
using Equation 3.2-61 in Section 3.2.8.

The backward signal-trace method is used to determine time #7 when the signal was transmitted
from the GS. This method uses the following Newton-Raphson iterative scheme to solve for the
time f1

EZI- (tR) - EGS]' (tT,m)

by =g (5.6-5)*
c
where
trwn = (m+1)"approximation for #,
tr,, = m"™approximation for 7,
t, = signal reception time at the satellite receiver
The iterative solution of Equation (5.6-5) is started by setting
tro =Ig (5.6-6)*
such that
EGSj (tT,O) = EGSj (tz) (5.6-7)*

The position vector for the transmitting GS is available in ECEF coordinates and must first be
transformed to J2000.0 inertial coordinates using the transformations defined in Sections 3.2.1

through 3.2.3. This iterative scheme is continued until the condition ‘tr’mﬂ - tT’m‘ < ¢ is satisfied,

where ¢ is a small tolerance (nominally equal to 10 second). After the GS signal transmit time,
t,, 1s found, the distance between the local satellite receiver and the GS can be calculated using

Equation (5.6-4a).

The tropospheric delay associated with a signal transmitted at time ¢r in meters, dp,,, (f;), 1s
computed using the following empirical formula
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1.8958 &
340

(0.06483 +sin E)"*

0Py (17) = (5.6-8)*

where
a 1s the monthly surface refractivity index for the GS in parts per million
E is elevation angle from the GS to the spacecraft, which is computed as follows:
Pes;(tR' )Res;(tr)

PBs (tRTO)|Ras ¢r)|

SinE = (5.6-9)*

,53; (tR™9) = RE,(tg) — RGS]-(tT) (5.6-10)*

The GEONS filter propagates and updates all spacecraft states at a common UTC filter state epoch
t-

Note that linearization of the GS PR measurement is not implemented in GEONS 3.0. To account
for the offset of the true UTC receive time for spacecraft n measurements from the UTC filter state
epoch, Equation (5.6-4) can be linearized about the current filter state time:

pes,(te ™) = pgs (&) — bgs, (L) AtR (5.6.2-1)

where the offset of the true UTC receive time for spacecraft n measurements from the UTC filter
state epoch is given by

Aty = (e, = 28O ) (15O = 7] = (g =8 )+ ot = (g, — 8O )+ bl (5600
C

Taking this offset into account, Equation (5.6-4) can be rewritten as follows:

Ris, (tn ™) = ppa () = PEd (E)AEE + Sparm (ti) + be" (t) — d™(E)ALE + by (£) (5.6.2-3)*

where
pes(ti) = |Ra," (ti) — Ras, (6] (5.6.2-4)*

PG5t (RR, (10 ~Res  (¢h)

s, (t) = 103, () (Res; (th) /)

(5.6.2-5)*

In the above equations, the subscript j indicates the j# GS, #, is the current filter epoch time, and
¢/, is the signal transmit time, #,, computed based on ¢,. The receiver clock bias b," (¢) is computed

using the estimated parameters b," (¢,) and b « (t,) as defined in Equation 4.3-14a and 4.3-14
of Section 4.3. The term —p;’;";'j(tk)AtR" is significant when the receiver time bias or measurement
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timetag difference is large. The GS pseudorange bias, b;; %1 is defined in Section 4.3. The position
and velocity of the receiving antenna are computed using Equation 3.2-61 in Section 3.2.8.

The following are the nonzero components of the row vector of partial derivatives of the GS range
with respect to the components of the estimation state vector, X (#,), consisting of absolute states

for the local and nonlocal satellites:

ORGs; (tRTC)  dpgs, (i) 9pgs;(tr)

_6)*
AR™M(ty)  AR™(ty) AR™(ty) tR (5.6.2-6)
IR%s (UTC) dpgs (ti)
— ] - T AP 7%
P SR AR (5.6.2-7)
0‘Rn ‘(tUTC)
R o (5.6.2-8)*
ab, 1 (tFTC)
dRGs (LR )
—Il =1 6.2-9)*
abr(ty) (5.6.2-9)
dRGs (LR
S = — n - %k
I Ath (5.6.2-10)
Where
0pgs;(t) _ pgs; ()" (5.62-11)°
AR"(ty) pggj(tk) o
aprL (tr) . . , ; i Res; (t1) T
p : [(R"(tu—Ra/wj(tk))—pgg,.(tk) (ﬁg‘;j(tk)—%ﬂ (5.6.2-12)*
)

Pt 0] 1-93 (- (Ros (/e

. . T
0Pt () (P2t ®0)

OR™M(tK)  1-pgs (1) (Res (6)/c)

(5.6.2-13)*

If the estimated state vector includes relative states for the nonlocal satellites, the following are the
nonzero components of the row vector of partial derivatives of the GS range with respect to the

components of the estimation state vector, X (t,):

oy UTC ni M,
e e S NP (5.6.2-14)*
OR(tx) OR™(tk) OR™(ty)

ONGs;(t" ) 9pgs, (i) 0pgs,(tK)

— n, _ *

aﬁ;lel(tk) - AR™ (ty) AR™ (ty) AtR’n 1 (562 15)
ONREs, (tFTE) dpit (ty)

J — j n ) %

R oRn AR (5.6.2-16)
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ongs; R 9bgs (10

— J n. _ %
ORY (ty)  OR™M(ty) Atgin # 1 (5.6.2-17)
O%Gs;(tR™) _ 9%Gs;(tR") abR(ty) _ P850 ape) (5.6.2-18)*
abj(tr) bR (tr) abj(tr) c c o
oWl ORE) _ e CRO) ongee _ 4 OO _ag o (5.6.2-19)*
ab;}el(tk) abg(tk) 6b,’}el(tk) c c ’ U
NG (tRTE)
) R P | A
Pan ) Aty (5.6.2-20)
ONGs (tRTC)
—_J - n. _ %
30 (00 Atg; n#1 (5.6.2-21)
ONGs; (tk)
——=1 (5.6.2-22)*
ab, (tx)

5.6.3 GS One-Way Forward Averaged Doppler Measurement Model and
Associated Partial Derivatives

If the transmitting GS is not known, the GS associated with the first measurement in each tracking
contact is identified by the process of elimination. All visible GSs are identified using the algorithm
provided in Section 7.1 of this document to test the visibility of each GS located in the onboard
GS catalog. For each the visible GSs, the GS-to-satellite Doppler measurement is modeled using
the model provided below. The GS that produces the smallest measurement residuals is selected
as the transmitting station for that contact.

The instantaneous Doppler-shifted RCF received at the spacecraft is equal to

Srer =fRCF[1_%j+6me +0F (5.6-12)
f};CF = fRCF(l_%j+8Fatm (5~6'123)

where
Srer = Doppler-shifted RCF
faer = transmitted GS RCF

p = time rate of change of the light-time-corrected range from the GS to the
receiving spacecraft antenna, p [defined in Equation (5.6-4)]

oF = = signal delay due to atmospheric effects

atm
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oF

rel

= signal delay due to relativistic effects

GEONS models the atmospheric correction due to tropospheric refraction near the GS. The
corrections for relativistic effects are not applied in the GS measurement model.

The true instantaneous Doppler shift is given by

(fD)Irue = fR’CF _fRCF (5.6-13)

The Doppler shift is measured onboard with respect to the receiver’s S-band frequency reference,
such that the instantaneous Doppler measurement is given by

(fD)ext = fR’CF - fre/(t) (56'14)

where
Sy (t) = receiver’s S-band frequency reference at time t, nominally equal to

2106.406250 megahetz

Substituting Equation (5.6-12) into Equation (5.6-14), omitting the relativistic corrections, and
averaging over the Doppler averaging interval, AT, the averaged Doppler measurement from the
jth GS to satellite n can be expressed as

1

= [0 (5.6-15)

tp —AT

(FD (tk))ncsj:

L1 PGs; . |
(FD(tk))st:EJ. fRCF{l_ CJJ+6Fatm_f;ef(t) dt“‘bdGSj(tk) (5.6-16)

A n,i
(FD (tk)) gsj: fRCF [1 - pGSj (tk) - APan (tk)J - f;Z/ (tk) + bdGSj (tk) (5.6-17)*

cAT cAT
where
Apgs, (t,) = pgs, (t,) = pas, (1, = AT) (5.6-18)*
AP () = 0P () =8P (8, — AT) (5.6-19)*

The range between transmitting ground station j and receiving antenna i on satellite n, pJi (z,), is
computed using Equation (5.6-4); dp ,,(¢,) is the tropospheric delay associated with a signal

transmitted at time ¢, in meters, which is computed using Equation (5.6-8); be" (¢,) is the value

of the GS Doppler measurement bias in Hertz associated with the jth GS; and f, (7,)is the
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averaged value of f," (¢,) over the time 7, — AT to t,. The value of f,(,) is approximated as

follows, neglecting the effects of frequency drift over the averaging interval:

p n dp(t
S = £ = f )[1 : L)} (5.6:20)*
where d(t,), the receiver time bias rate, is computed using Equation 4.3-19 and f, ,(¢,) is the
initial value of the S-band Doppler reference frequency, a commanded parameter nominally equal
to 2106406250 Hertz.

Note that the measurement model as currently implemented in GEONS assumes that the Doppler
averaging interval is equal to the interval between calls to the state estimation task, or equivalently
the integration stepsize.

Note that because the Doppler measurement model requires the computation of the range at an
earlier time, p’ésj (t, — AT), the first Doppler measurement in a contact is rejected if the state vector

1s not available at that time.

The nonzero components of the row vector of partial derivatives of the GS Doppler measurements
with respect to the components of the estimation state vector, X(¢#,), consisting of absolute states
for the local and nonlocal satellites are as follows:

AF )i, g [PE0) 56D R A
oR"(t,)  cAT| 8R"(t,) OR"(t,-AT) \ OR"(t,) (5-6-21)
G(FD (tk))ésj  frer 0p &, (6, = AT oR" (e, —AT) )] (5.6-22)"
R"(1,)  cAT| OR"(t,—AT) | aR"(t,) '
G(FD (tk))”csj Foen | 0P 65,6, = AT )(aﬁ "(t, - AT))|
_ ¢ (5.6-23)*
OACI(t,)  cAT| OR"(t, —AT) | BACH(t,)
olFy )i, r [o0 @, -AT) [amk —AT)J_
= > (5.6-24)*
OAC!(t,)  cAT| 8R"(t, —AT) | 0ACL(t,)
olF, ) alF, )i o V

od ) (t,) ofn () aedit)  c
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o7y )i,

GS ; = 1 (5.6‘25b)*

ob, (1)
The partial derivatives of the range in Equations (5.6-21) and (5.6-22) are defined in Equation
(5.6.2-11) in Section 5.6.2. These derivatives are evaluated at the current measurement timetag, #,
and at the time #—AT, where AT is the Doppler averaging interval.

The partial derivatives of the position vector at the time #—AT with respect to the estimated state
vector are related to the components of the state transition submatrix defined by Equation (4.4-1a)
in Section 4.4.1 as follows

OR"(t, — AT)
[5[‘?:—(1‘,()] :(W)i:1,2,3;j:1,2,3 (5.6-26)*
M =(W)i:1,2,3;j:4,5,6 (5.6-27)*
OR" (1)
OR"(t, —AT)
T = (W).c1250j0 (5.6-28)*
OR"(t, —AT)
6Ak—C; =(W)i:1,2,3;j:8 (5.6-29)*
where
[ R aR" (1,) aR" (t,) Rty |
OR"(t, —=AT) 6R"(t, —AT) OACp(t; —AT) OAC(t, —AT)
W= _6§ () OR"(t,) OR"(t,) OR"(t,) (5.6-30)*
OR"(t; —AT) @R"(t, —~AT) OAC}(1, —AT) OAC,(t, —AT)
le3 01x3 1 O
L le3 01x3 0 1 n

If the atmospheric drag coefficient correction and/or the solar radiation pressure coefficient
correction are not estimated, the matrix W does not include the columns associated with these state
components.

If the estimated state vector consists of an absolute state for the local satellite (n=1) and relative
states for the nonlocal satellites (#>1), the nonzero partial derivatives of a GS Doppler
measurement with respect to the components of the estimation state vector, X (¢, ), are computed

as follows:
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The partial derivatives of the range are defined in Equation (5.6.2-11) in Section 5.6.2. These
derivatives are evaluated at the current measurement timetag, #, and at the time #—AT, where AT
is the Doppler averaging interval. The partial derivatives of position vector at the time #—AT with
respect to the estimated state vector components are related to the components of the inverse of
the state transition matrix defined by Equation (4.4-1b) in Section 4.4.1

— — -1
oX (t, —AT oxX (¢
[ rel_( k )] :( s rel( k) J (56_26a)*
8‘erel (tk) a‘erel (tk—l)
where
— )?1 -
- )?fel
Xrel =
X3
- E -
and
[ R'-R' ] R,
§I1 _1;31 E}Zi
vn _ yn v _ n _ n .
Xrel _X _X - ACVD _AC1D - (ACD )rel N il
n 1 n
AC_R _éCR (AgR el
L bl? _bI; a brr;l

5.6.4 GS Round-Trip Range-Rate Measurement Preprocessing (not implemented in
GEONS)

Round-trip measurements are not suitable for onboard processing. However, since the capability
to measure one-way forward GS Doppler measurements has been implemented on very few
spacecraft, the following procedure can be used to preprocess real range-rate measurements so that
they can be processed in GEONS using the one-way GS Doppler measurement model given in
Section 5.6.3.

The GS round-trip range-rate measurements are accumulated over a Doppler averaging interval,
AT, equal to 10 seconds. These measurements reflect the total Doppler shift of the signal from the
transmitting GS, through the receiving/transmitting satellite, to the receiving GS averaged over the
Doppler averaging interval. The real round-trip GS measurements provided by the ground tracking
network are timetagged at the receive time of the signal at the GS associated with the end of the
averaging interval. For compatibility with the one-way GS Doppler model given in Section 5.6.3,
the measurement timetag must be modified to reflect the receive time at the satellite. This
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adjustment, which is performed external to GEONS, is computed based on a reference “truth”
satellite ephemeris (R, (1), R, (¢)).

The round-trip signal is transmitted from the GS transmitter (node 1) at time ¢,, received at the
spacecraft receiver (node 2) at time ¢, (equal to #), and received at the GS receiver (node 3) at
time ¢,. The following Newton-Raphson iterative scheme is used to solve for the signal

receive/transmission time at the satellite, #:

- [Re0-R,@,)

t2 n+l t} (56-3 1)
' c
where
byt = (n+1)" approximation for ¢,
t,, = n" approximation for ¢,

Iz,gf (z,) = position of the transmitting satellite at time %

R (1)

The iterative solution of Equations (5.6-31) is started by setting

position of the GS at time the reception time #;

fy =1, (5.6-32)

Erqf (tz,o) = Eref (%) (5.6-33)

The receiving GS position vector is available in ECEF coordinates and is transformed to J2000.0
inertial coordinates using the transformations defined in Sections 3.2.1 through 3.2.3. This iterative

scheme is continued until the condition ‘tlm -t n‘ < ¢ 1is satisfied, where ¢ is a small tolerance

(nominally equal to 10" second).
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5.7 Geometric Point Solution Measurement Models

As an alternative to processing the GPS pseudorange and Doppler measurements discussed in
Sections 5.3 and 5.4, the GPS receiver’s geometric point solutions can be processed as
measurements in GEONS. The geometric point solutions, which are typically available every 0.5
to 1 second, are sampled based on a specified minimum measurement spacing, nominally every
10 seconds. The general form of the measurement model is as follows:

Yk =G [X(tk), tk] + ¢ (57-1)

where ¢, is the true measurement time, referenced to UTC, and ¢ is the measurement error. It is

assumed that & has a zero-mean Gaussian distribution with standard deviation o, which is
commandable for each measurement type. The measurement standard deviation is typically
determined through analysis of the random component of the measurement error as part of the
filter tuning process.

When GEONS processes the point solution measurements, the estimation state vector, X(¢)

includes the receiver position vector, R ; velocity vector, R ; corrections to the drag and solar
radiation pressure coefficients, AC, and AC:; GPS receiver bias, bg; and GPS receiver bias rate,
d, for one or more receivers.

Section 5.7.1 addresses preprocessing of the raw geometric point solution measurements obtained
from the GPS receiver. The geometric point solution measurement and partial derivative models
are presented in Section 5.7.2. Section 5.7.3 provides the measurement update processing
algorithm to be used in conjunction with the geometric point solution vector measurements.

5.7.1 Geometric Point Solution Measurement Preprocessing

The measurement model defined in Section 5.7.2 assumes that the raw geometric point solutions
consist of the three Cartesian components of the spacecraft position vector referenced to the

instantaneous ECEF coordinate frame, 7* = (x *op* oz *), and a time bias from GPS time, b*
Pt = (,,*’ b *)

with a GPS-referenced receiver time tag, ¢ . Note that if the measurement time tag has been

corrected by the receiver to account for the current estimate of the receiver clock’s time bias
with respect to GPS time, the measurement component b* should be set to 0.

5.7.2 Geometric Point Solution Measurement Model and Associated Partial
Derivatives

This section provides the algorithm used to model the observed point solution measurements,
p*= (r*, b *) The true point solution time ¢, is related to the point solution measurement timetag,
t 59, as follows:
t, =t —5t, (5.7-2)*
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where 07, is the measurement timetag error, which is related to the residual receiver clock bias,
b, (1), defined in Section 4.3:

o, = 2ul0) (5.7-3)*
C

Optionally the current estimate of the measurement timetag error, 6z, , can be used to correct the

measurement timetag following Equation (5.7-2). This option is normally exercised when the point
solution timetags have not been corrected by the receiver using the point solution time bias
estimates.

The geometric point solution measurement model corresponding to the nth spacecraft is computed
as follows:

F* = P (8, ) = BR,CR" 2000 (£, ) (5.7-4)*

where B,R,,C are the pseudo-body-fixed to ECEF, True-of-Date to pseudo-body-fixed, and

J2000.0 to True-of-Date transformation matrices defined in Section 3.2, respectively, and
R" y2000 (¢ . ) is the predicted value of the spacecraft position at the UTC-referenced measurement

time, ¢, , corresponding to the GPS-referenced receiver’s measurement time tag, ¢,. The GPS
time to UTC time conversion algorithm is provided in Section 3.3.1.

The computation of partial derivatives of the geometric point solution measurement model with
respect to the estimation state vector, X(z,), is as follows. The matrix of partial derivatives of

the geometric point solution measurements with respect to X (¢, ) is defined as follows:

ap*" (1)

[H ()]0 == ™

(5.7-5)

The following are the nonzero elements with respect to an estimation state vector consisting of
absolute state vector for all satellites:

or *" (t,)
—_ Y _BRC (5.7-6a)*
OR"(1,) ¢
N
B | 576y
abR( tk)

The following are the nonzero elements with respect to an estimation state vector consisting of an
absolute state vector for the local satellite and relative state vectors for all remote satellites:

& (1,)
— " -BR,C (5.7-6¢)*
oR'(z,)
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ar *" (1)

— = BR,C; n>1 (5.7-6¢)*
aR:lel (tk)
Y
B 5760y
abR ( tk )

5.7.3 Measurement Update for Geometric Point Solution Processing

At each valid measurement time, #, the measurement update processing is performed successively
for each component of the point solution measurement for each of the n spacecraft being estimated.
The height of ray path editing test, defined as step 1 in the measurement update procedure
presented in Section 2.3.2 is not applicable for this measurement type.

Given the results of the time update (defined in Section 2.3.1), )L(k(—), U,(-), and D,(-), compute

the updated total state vector, X i (-1—) , and the updated state error covariance matrix factors, Ui (+)

and Dy (+), successively for the four components of the observed measurement, [;7 *" ],. ,i=1,2,3;
b*",i=4:

1.

Compute the point solution measurement model, (7. (¢, ), by ), and the measurement
partial derivative matrix, H(¢,), at time #, as defined in Equation 5.7-5. Compute the
J2000 to ECEF coordinate rotation matrix, BR .C> only for i = 1 and save for use with

the i = 2 and 3 components.

Compute the measurement residual, y,, for the ith measurement component

yZ={[r*n]i_ I:FEHCEF]I‘ ,i=12,3 (5.7-9)%

)bl s

Perform the following n-sigma measurement residual edit test for the ith measurement
component before measurement updating the state vector and state error covariance

matrix. Compute the predicted measurement residual variance, Vi, using the [U - ] and

[D'] factors following the algorithms given in step 3 of Section 2.3.2.

Edit the ith measurement component as follows:

Calculate the sigma ratio

D, =2 (5.7-10)*




If |Dy| £ N, accept the ith measurement component and continue the measurement update
processing. If |Dy| > No, reject the entire point solution measurement, and the calculation
is complete. In these tests, NV is a specifiable integer with a default value of 4.

5. Update the state error covariance factors, based on the ith measurement component for
spacecraft n following the algorithm given in step 5 of Section 2.3.2.

6. Compute the Kalman gain vector for the ith measurement component following step 6 in
Section 2.3.2.

7. Update X (=) based on the ith measurement component following step 7 in Section
2.3.2.

8. For the i= 1, 2, and 3 components, reset the predicted covariance elements and the
predicted estimation state elements as follows and return to step 1 to process the
remaining measurement component(s)

[U’] = [U] (5.7-11)*
[D‘] = [D+] (5.7-12)*
X, (=X, (+) (5.7-13)

9. If fault detection is enabled, perform the navigation fault detection tests on the updated
state and covariance after the entire point solution measurement is processed, as defined
in step 8 of Section 2.3.2.
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5.8 Celestial Object Measurement Models

This section contains the mathematical specifications for the celestial object measurement models.

The general form of the measurement model is as follows:
Yk =G [X(tk), tk] + ¢ (58-1)

where #, is the measurement time, referenced to the satellite timing reference, and ¢ is the
measurement error. It is assumed that € has a zero-mean Gaussian distribution with standard
deviation o, which is commandable for each measurement type. The measurement standard
deviation is typically determined through analysis of the random component of the measurement
error as part of the filter tuning process. Note that GEONS models the measurement standard
deviation as a constant value. However, in situations such as relative range and bearing
measurements where there is a large variation in the sensor’s measurement noise with relative
distance, computing the measurement standard deviation as a function of distance to the target
based on calibrated sensor performance can provide a more realistic value of the noise
contribution.

The timetag associated with the £ measurement is the sensor measurement time as measured with
respect to satellite time, ;' . In the presence of a satellite timing bias, the true measurement time

is given by
t, =t + 7 (5.8-2)
where ¢; is the offset of the satellite timing reference from UTC.

For GEONS, the estimation state vector, X(z), includes the user satellite position vector, R ;

velocity vector, R ; receiver time bias and time bias rate, and optional corrections to the solar
radiation pressure coefficient, AC; and atmospheric drag coefficient, AC,. When celestial object
measurements are processed, the estimation state vector can be augmented to include sensor
measurement biases.

Section 5.8.1 describes the satellite attitude models used for three-axis stabilized Sun-pointing and
Earth-pointing satellite and for spin-stabilized satellite. Section 5.8.2 provides the models for
processing line-of-sight (LOS) measurements to either a celestial object or another satellite and
the associated measurement partial derivatives. Section 5.8.3 provides the models for processing
planetary sensor measurements for spin-stabilized satellite and the associated measurement partial
derivatives. Section 5.8.4 provides the models for the processing measurements of the angular
separation of the line-of-sight vectors to two bodies and the associated measurement partial
derivatives.
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5.8.1 Satellite Models

This section defines the satellite configuration and attitude models used by GEONS to simulate
and model celestial object measurements. Sections 5.8.1.1 and 5.8.1.2 provide the models used for
three-axis stabilized and spin-stabilized satellite, respectively.

Three-Axis Stabilized Sun-Pointing Satellite

This model is based on the nominal attitude configuration of the Solar and Heliospheric
Observatory (SOHO) satellite. Figure 5-5a illustrates the nominal sun-pointing satellite absolute
reference frame. The satellite is controlled to maintain the roll, pitch and yaw angles about these
axes near zero. The origin of the absolute reference frame is the center of mass of the satellite.
The absolute reference frame xa-axis is aligned with the satellite-to-sun vector, the ya-axis is
perpendicular to the plane that contains the xa-axis and the normal vector to the ecliptic plane, and
the za-axis is orthogonal to the xa-and ya-axes. The boresight of the sun sensor is assumed to be
located along the xa-axis. The boresight of the star sensor is assumed to be nominally located along
the za-axis. Figure 5-5b illustrates the relationship of the normal vector to the true ecliptic
coordinate frame to the inertial frame. Figure 3-7 illustrates the relationship of the true ecliptic
coordinate frame to the inertial Mean of J2000.0 frame.

N/ (North Ecliptic Pole)

User S/C Ya
R
ESW[ \\
Earth » sun

Figure 5-5a. Definition of Sun-Pointing 3-Axis Stabilized Absolute Reference
Frame
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Az, N, (North Ecliptic Pole)

Earth > V.

True Ecliptic of J2000

Ron X, (Vernal Equinox)

Figure 5-5b. Definition of True Ecliptic Coordinate Frame

The components of the normal vector to the ecliptic in the inertial frame are given as follows:
NI =(0,-sing, ,coss,) (5.8-4)*

where em 1s the mean obliquity of the ecliptic defined in Equation 3.2-17 in Section 3.2.2.

In this case the absolute reference frame unit vectors referenced to the inertial frame are computed
as follows:

.5(\: Sun _E

A - — —]

‘ Sun _R‘

A i, x N
Py= AL (5.8-5)*

5&/4 XNI

Zy=%,%D,
The corresponding matrix M ,,(¢) that transforms from the geocentric inertial frame to the
absolute reference frame at time t is given by

AT
X 4

M,0)=3, (5.8-6)*
2,
The corresponding matrix A4(¢) that transforms from the absolute reference frame to the satellite
body frame at time t is given by
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cosfcosy cos@sin —sinf
A(t) =| —cos¢gsiny +singsinfcosy  cosgcosy +singsin@siny  singcosf (5.8-7)*
singsiny + cosgsinfcosy  —singcosy + cosgsindsiny  cosgcosd

where

¢, 0, y = satellite body roll, pitch, and yaw angles at time t with respect to the xa, ya,
and za axes, respectively, corresponding to the 3-2-1 sequence of Euler angle

rotations used for SOHO
or equivalently
G —q,—q5 +4; 24,9, +459,) 2(9,9; — 4,9.)
A =| 249, -9:9) —4 +9 -0 +q; 2095 +4,4.) (5.8-8)*
24,4:+9:9) 299 -494.)  —4i —4; +4; +4;
where
q.,-49,-95-9, = quaternions or Euler symmetric parameters defining the orientation of the

satellite body at time t with respect to the xa, ya, and za axes

The capability is available to input an attitude history file into GEONS. Operationally, this attitude
information could be provided by an onboard attitude estimator operating in parallel with the
GEONS orbit estimator or by an advanced star tracking system that provides the attitude
quaternion directly.

5.8.1.2 Spin-Stabilized Satellite

This model is based on the nominal attitude configuration of the Polar Plasma Laboratory (Polar)
satellite. Figure 5-6 illustrates the nominal spinning satellite reference frame. The satellite spins
at a rate  about the satellite spin axis, nominally parallel to the geometric axis of the satellite, +Z
axis. The orientation of the spin-axis with respect to the inertial frame is expressed as follows:

cos o cos O
A=|sina cosd (5.8-9)*
sin o
where
121 = unit vector along the spacecraft spin axis, referenced to the geocentric inertial
frame
o = the right ascension of the spin axis

0 = declination of the spin axis
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Earth’s Mean

Spin Axis at J2000.0
z,
‘ Spacecraft
Spin Axis
A
6 E ~
Mean — 0
Equatori
Plane
X7
Vernal Equinox
atJ2000.0

Figure 5-6. Definition of Spin-Stabilized Attitude Reference Frame

5.8.1.3 Three-Axis Stabilized Earth-Pointing Satellite (not implemented in GEONS)

This model is based on the nominal attitude configuration for an Earth-pointing satellite. The
satellite is controlled to maintain the roll, pitch and yaw angles about the orbital coordinate system
(OCS) axes near zero. The origin of the OCS is the center of mass of the satellite. The OCS z,-
axis points to the center of the Earth, the yo-axis is aligned with the negative orbit normal, and the
Xo-axis is orthogonal to the y,-and z,-axes.

The OCS axes referenced to the inertial frame are computed as follows.

A

Xo =Yoo XZg

Vo =-— Ijxf (5.8-10)*
‘RxR‘

5 _ﬂ

TR

The corresponding matrix M ,,(¢) that transforms from the geocentric inertial frame to the OCS

frame at time t is given by

My (0)=| 5" (5.8-11)*



The corresponding matrix A4(¢) that transforms from the OCS frame to the satellite body frame at
time t is given by
COS pcos y —sinrsin psiny €os psin y+sinrsin pcosy —sin pcosr
A(t) = —cosrsiny COS ¥ COoSs y sinr (5.8-12)*

sin pcos y+cos psinrsiny sin psin y —cos psinrzcosy  COS»CoS p

where

r, p, v = satellite body roll, pitch, and yaw angles at time t with respect to the Xo, yo, and
Z, axes, respectively, corresponding to the 3-1-2 sequence of Euler angle
rotations typically used for 3-axis stabilized satellites

or equivalently

G -0, —q5+4s 24,9, +459.) 2(9,95 — 4:9.)
AD=| 249, -9:9) —4 +9, -0 +q; 2095 +4,4.) (5.8-13)*
29,9:+9:9.)  A0.95-49.)  —d7 —45 T4+
where
q.,-49,-95-9, = quaternions or Euler symmetric parameters defining the orientation of the

satellite body at time t with respect to the xo, yo, and z, axes

5.8.2 Celestial Object and Intersatellite Measurements For a Three-Axis
Stabilized Satellite

This section presents measurement models that are appropriate for visual and infrared cameras and
digital Sun sensors. These models are not appropriate for the scanning horizon sensors and static
Earth sensors typically flown on Earth-orbiting, three-axis-stabilized satellite; these models are
provided in Sections 5.8.2.4 and 5.8.2.5, respectively. Section 5.8.2.1 provides models for line-of-
sight measurements to a celestial body or another satellite. Section 5.8.2.1 provides models for
bearing measurements to another satellite and Section 5.8.2.3 provides models for bearing
measurements to a celestial body and landmarks located on that body.

5.8.2.1 Line-of-Sight Measurements for a Three-Axis Stabilized Satellite

This measurement model is appropriate for the type of sensor typically flown on a three-axis
stabilized satellite where the celestial object (CO) is a point source, e.g. a digital Sun sensor. This
model is also appropriate for intersatellite LOS measurements, such as those described in
Reference 29 that are derived from an optical sensor combined with specific light sources (i.e.
beacons).

This model was used to process measurements from the Adcole fine pointing sun sensors (FPSS)
on the SOHO satellite. Similar sensors have flown on the Solar Maximum Mission (SMM) and
Upper Atmosphere Research Satellite (UARS) satellite. Figure 5-7 illustrates the geometry of the
SOHO FPSS measurements.
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Sun

Figure 5-7. SOHO Fine Pointing Sun Sensor Measurements

The raw sensor measurements are the pitch and yaw angles of the LOS unit vector from the satellite
to the CO (Sun, Moon, or planet) or another satellite, with respect to the sensor frame of reference.
These angles are equivalent to the projection angles of the LOS vector onto the FSS X-Z and X-Y
planes, respectively. These angles are related to the satellite-to-CO LOS unit vector components
as follows

o = arctan(P. / P,)

5.8-14
B =arctan(-P,/ P,) ( )

where

o = pitch angle measurement in radians

B = yaw angle measurement in radians

Pl = ( PP ) = components of the sensor k-to-CO or sensor k-to target-satellite unit vector in

y 2t z

the sensor k frame (e.g. X Fss. Y Fss. 7 e » as defined in Figure 5-7)

Equation 5.8-14 is used external to GEONS to convert the raw angle measurements to components
of the sensor k-to-CO or sensor k-to target-satellite LOS unit vector in the sensor k frame, ]Ssk :

The observed LOS measurement unit vector is then transformed to the imaging satellite body
frame, applying corrections for calibrated misalignments between the sensor and satellite body
frames

(BY), =M, Bt (5.8-14b)
where
M}, = transformation matrix from the imaging satellite body frame, X 5 Y 3 Z 5 1O

the sensor k frame
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For the SOHO satellite, the FSS frame, X FSS, Y, fo Z s » is nominally aligned (i.e. except for

sensor misalignments) with the satellite body frame, X 5. Y, 5. Z,.

GEONS uses the following equation to model the components of the LOS unit vector to the CO
from sensor k on imaging satellite j in the body frame:

j kP Dk | Tk
MV + AP +b,

By =2 LRis (5.8-15)*
M}, V" + APy +b,
where
M}, = rotation matrix from the geocentric inertial to the satellite j body frame,
X1,Y],Z1, equal to the attitude matrix defined in Section 3.2.8.1
Vi" = Sensor k-to-CO LOS unit vector, referenced to the geocentric inertial frame
(J2000.0)
A}A’lf = calibrated line-of-sight measurement biases for sensor k (an input to the orbit

estimation process)
by = estimated line-of-sight measurement biases for sensor k

GEONS uses the following equation to model the components of the intersatellite LOS
measurement in the body frame from sensor k on imaging satellite j to a beacon on target satellite
n:

se ML VE"+ AP + by

Py = 2L N (5.8-15a)*
M, VE" + APy + by
where
M}, = rotation matrix from the geocentric inertial to the satellite j body frame,
X;.Y).2;
Vlm = LOS unit vector from sensor k on satellite j to beacon m on satellite n,
referenced to the geocentric inertial frame (J2000.0)
Af?Bk = calibrated line-of-sight measurement biases for sensor k (an input to the orbit

estimation process)
b} = estimated line-of-sight measurement biases for sensor k

The rotation matrix M }, , which is provided by an onboard attitude determination process, is the
product of the following two rotations

M = A ()M, (5.8-15b)
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where

A’(¢t) = rotation matrix from the absolute reference frame, X,, y,, Z, to the satellite
body frame, X, Y/, ZJ, at time t, as defined in Equations 5.8-7 and 5.8-8.
M’ = transformation matrix from the geocentric inertial to absolute reference frame,

X!, y’, 2’ , such as that given by Equation (5.8-6) for the SOHO satellite

For the SOHO satellite, the satellite attitude is controlled to maintain the X , axis in alignment
with the absolute reference frame X, axis defined in Equation (5.8-5).

The predicted inertial LOS unit vector from sensor k on satellite j to the CO P is computed as
follows

sor _ RI-R/
il ;_IP—_IJ,; ignoring offSets of sensor image center (5.8-15¢)*
‘Rl _RI
where
R/ = position vector of satellite j, referenced to the geocentric inertial frame
(J2000.0)
R = Position vector of the CO P referenced to the geocentric inertial frame

(12000.0)

The Earth is at the origin of the geocentric reference frame. The inertial position vectors for the
Sun, Moon, and other planets are computed using the planetary ephemeris algorithms given in
Section 4.1.1.

The predicted inertial LOS unit vector from the image center of sensor k on satellite j to beacon m
on satellite n is computed as follows

onm Pk
R[ R[

I}k’m e S — (58-15d)*
I ‘R[n,m _R[],k‘
where
R/* = position vector of the image center of sensor k on satellite j, referenced to the

geocentric inertial frame (J2000.0), which is computed as follows, given the

locations of the image center in the satellite body frame (Ax,] * Ayt Az ’k)
Ax]*

Ri*“=R' +(M§, )T Ay (5.8-15¢)*
Az]*
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R/"™ = position vector of beacon m on satellite n, referenced to the geocentric inertial
frame (J2000.0), which is computed as follows, given the locations of the
beacon in the satellite body frame (Ax}""’,Ay}”’”,Az}“ ””)

Ax7,n1
Ry =R"+(M, | ayy (5.8-15)*
AZ;’m

The CO’s position as viewed from the satellite, R”- R, is not its true position. Equation 5.8-15¢

can be modified to account for planetary aberration. For the case of Sun sensor measurements, the
following is the apparent satellite-to-Sun unit vector in the geocentric inertial frame (Reference
28):

pr_ (B =R))ecl B+ 7))

1

(5.8-15g)

\—/‘\4\

R’ -R/ +r(—f€,5 +R/

where

~
%}
I

Position vector of the Sun referenced to the geocentric inertial frame (J2000.0)

I;QS __ E[S(t_pé‘t)—]?ls(t)
ot

where ot = 1 second

} instantaneous velocity of the Earth relative to the Sun,

R /= instantaneous velocity of the satellite relative to the Earth

R R/

o]
R} R}

c

¢ = speed of light

Note that this correction is not currently implemented in GEONS for Sun sensor measurement
processing.

If the estimation state vector consists of only absolute state vectors, the nonzero components of
the row vector of partial derivatives of the ith component of CO LOS vector measurement by
sensor k on satellite j, ignoring aberration effects, are equal to the ith row of the matrix of partial
derivatives computed as follows:

Dk 5> k,P
VPB } :{Mg,%%)} i=1,2,3 (5.8-16)*

éﬁ?/
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=1 =123 (5.8-16a)*
olby )
where
> k,P . .
i% = G im [— Ly + VP07 (5.8-16b)*

If the estimation state vector consists of the absolute state vector for the local satellite and relative
state vectors for nonlocal satellites, the nonzero components of the row vector of partial derivatives
of the ith component of the CO LOS vector measurement by sensor k on satellite j, ignoring
aberration effects, are equal to the ith row of the matrix of partial derivatives computed as follows:

Dk 5 k,P
| [T |5 v 55160
Dk 5 k,P
{5}%} {M’;’%} i=123:j>1 (5.8-16d)*
rel _|; i
olpr )
o ) 1 =123 (5.8-16¢)*
P )i

If the estimation state vector consists of only absolute state vectors, the nonzero components of
the row vector of partial derivatives of the ith component of the intersatellite LOS vector
measurement from sensor k on satellite j to beacon m on satellite n are equal to the ith row of the
matrix of partial derivatives computed as follows:

i k| B Skm ]
j%f - Méz% ; 1=123 (5.8-16)*
_aﬁ;— r ; aV"[k,m_ . ) .
| T\ Mg |3 17123 (5.8-16g)
a\Pr )
5 bi)’ =1; i=123 (5.8-16h)*
P )i
where
Aj,m R R
Z%j =T 1 E,»,k‘[—laxﬁVf"”Vf””T (5.8-16i)*
ro Ay
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Of’VAj’m -1 5 le,mpy le,mT .
0"!1%’1 = ‘Eﬂ,m _Ej,k‘ [_ ]3«‘63 + Vlk, I/Ik’ ] (58-16.])*

If the estimation state vector consists of the absolute state vector for the local satellite and relative
state vectors for nonlocal satellites,

Dk S k,m S k.m
B}%} =[Mé) O;VI%]_ } 7{M§1 5;% } —0; =123 (5.8-16k)*

1

The nonzero components of the row vector of partial derivatives of the ith component of the
intersatellite LOS vector measurement from sensor k on satellite j to beacon m on satellite n are
equal to the ith row of the matrix of partial derivatives computed as follows:

Dk S k.m
é)fB. = Mélé’Vi. ; 1=1,23;5>1 (5.8-161)*
x| x|

Dk S k,m
@ = Mé,aVi ; i=123;n>1 (5.8-16m)*
e R |

olpr)

( ‘,’; L=1; i=1,2,3 (5.8-16n)*
o\by )

5.8.2.2 Intersatellite Bearing Measurements
The following intersatellite model assumes that the sensor provides dimensionless bearing
measurements (x’;’j e )obs , derived from the line-of-sight vector from a sensor on the imaging

satellite to the centroid (or center of mass) of the target satellite, measured with respect to the
sensor frame, with distortion corrections applied.

The predicted bearing measurements from sensor k on the imaging satellite i to the target location
j on the target satellite at measurement time 7z are defined as follows

x5 (1) L[ X5 () || | Axs + 0 (t) .
k.j DTS VRN Iy + s i (5822-1)
v/ ()| Zg'(tp) | Y (2,) Ay +by(tR)
where
x&/,y&/ = predicted bearing measurements from sensor k on the imaging satellite (i.e.
chaser) to the target location j on the target satellite with respect to the sensor
frame
Ax§,AyS = calibrated bearing measurement bias corrections for sensor k in the sensor

frame (optional input to the orbit estimation process
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k k
bE,b!

kj yki 7k
XY, Zy

estimated bearing measurement biases for sensor k

components of the sensor-to-target vector, P/, from sensor k to target location
J with respect to the sensor frame

The sensor k-to-target j position vector with respect to the sensor frame, P/, is computed by

rotating the sensor-to-target position vector in the imaging satellite body frame, P,"/, to the sensor

body frame

where

i
My,

-y
I

Xslf’j(tk)
Ysk,j () |= I_)Sk’j = MgB]_)Bk’j (5.8.2.2-2)*
Z?‘/ (tk)

rotation matrix from the imaging satellite body frame to the sensor k frame,

computed using sensor quaternions (updated periodically via commands if
thermal and other effects have changed the attitude of the sensor with respect
to the body frame of the spacecraft).

sensor k-to-target j position vector in the body frame of satellite i given by
Py =M}, P (5.8.2.2-3)*

rotation matrix from the inertial frame to the satellite i body frame, computed

using the attitude quaternions provided as input from an external subsystem
(or file)

sensor k-to-target j position vector, referenced to the inertial frame, which is
computed as follows

phi _ i i\ AR —[R i\ AR
BY =R} +(M},) AR]—[R]+(M},) AR} (5.8.2.2-4)*

predicted position vector of the target satellite j at the measurement time,
referenced to the inertial frame (components of the estimated state vector)

rotation matrix from the inertial frame to the target satellite j body frame,

computed using the attitude quaternions (an input to the orbit estimation
process)

coordinates of the target location j with respect to the target satellite body
frame (an input to the orbit estimation process)

predicted position vector of imaging satellite i at the measurement time,
referenced to the inertial frame (components of the estimated state vector)
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AI?;‘ = coordinates of the sensor k image center with respect to the imaging satellite
body frame (an input to the orbit estimation process)

If the estimation state vector consists of only absolute state vectors, the partial derivatives of the
(x';j,yl_é’j) bearing measurements from sensor k on satellite 1 to the target j with respect to the
chaser satellite i and target satellite j position vectors are computed as follows:

ax];’j (1) 6X§’j ()

=i Di a Zk’j . k.

azf ®) |_ i azi(tk) o <—S,» (1 )){XZ'(tk)} 558225
W) | 2| 0w | (z @) R LK)

G‘Ei(tk) a]?(tk)

Which reduces to

axlsc’j(tR) - _ 1 0 _X?j(tk) ME M
Di . . 2 SB BI
R (z7w)  (z7w)
- - (5.8.2.2-6)*
aylsc’j(tk) -_|o 1 _Ysk’j(tk) MM
Di . . 2 SB*™" BI
R ) (Z5' @) (z5'w)
Similarly
ax];’/(tR) — 1 0 _Xk];’j(tk) Mk Mi
DJ . . 2 SB BI
KRG |(#w) (7w
- - (5.8.2.2-7)*
aylg,j(tR) —lo 1 _Ysk’j(tk) ME M
= : _ s gy
OR’(t,) (ze/ @) (2¢ (tk))2

If the estimation state vector consists of the absolute state vector for the local satellite and relative

state vectors for nonlocal satellites, the partial derivatives of the (x’s"j e ) bearing measurements

from sensor k on satellite i to the target location j with respect to the position of reference satellite
1 and non-local satellites i and/or j are computed as follows:

oxy’ oxg! oxt
OR' R OR 0 00
N T (5.8.2.2-8)*
s ays’j_i_ays’j 000
OR' OR'  OR’

And the non-zero partial derivatives are as follows:
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oxki | [k

R | _| O c 0>, j>0i% ) (5.8.2.2-9)*
s’ | | vy’

(OR, | | oR' |

_Gxg’j_ _8x§’j_

R | | R 0,2 (5.8.2.2-10)*
8y’§’-’ 1;/ ’ ’ ’ e

| oR), | | OR’ |

Partial derivatives of the (xé’j, ye! ) bearing measurements with respect to the bearing

measurement biases for sensor k, bf ,b;‘ , are computed as follows:

8x§’j

ob* 1

ot | H (5.8.2.2-13)*
S

61);‘

5.8.2.3 Landmark/Celestial Object Bearing Measurements
The following model assumes that the sensor £ provides dimensionless bearing measurements
(x’S"L ,yet )obs, computed from the line-of-sight vector from a sensor on the imaging satellite to a

landmark on/centroid of a celestial body measured with respect to the sensor frame, with distortion
corrections applied. Note that in the following discussion, a bearing measurement to the centroid
of a celestial body is treated as a landmark located at the centroid of the target body.

The predicted bearing measurements from sensor k on the imaging satellite i to landmark L on the
target body at the measurement time #z is defined as follows

{x’ﬁm}: ! {X;"L(ru}[Ax’hbf(tR)} (5.82.3-1)*
vt ] Zs ) [ Y ) | [ Ays + b (t)
where
xtt,yet = predicted bearing measurements from sensor k on the imaging satellite to
landmark L on the target body with respect to the sensor frame
XSHYER ZE = components of the sensor-to-landmark vector, P,*", from sensor k to landmark

L with respect to the sensor frame
5-115



Ax§,Ayt = calibrated bearing measurement biases for sensor k (an input to the orbit

estimation process). Note this input would not be required if totally accounted
for in measurement pre-processing.

bt ,bf = estimated bearing measurement biases for sensor k

The sensor k-to-landmark position vector with respect to the sensor frame, P,*", is computed by

rotating the sensor-to-landmark position vector in the satellite body frame, P,**, to the sensor body
frame

l_’Sk’L = MﬁB}_’B"’L (5.8.2.3-2)*
where

M?, = rotation matrix from the satellite body frame to sensor k frame, computed using
sensor quaternion periodically updated via commands

Pj" = sensor-to-landmark vector measured by sensor k on satellite i in the body
frame (where i=1 for single-satellite asteroid missions) given by

Pt =M, PM* (5.8.2.3-3)*
M}, = rotation matrix from the inertial to the satellite i body frame, computed using
the attitude quaternion provided as input from an external subsystem (or file)

P,k " = Sensor k-to-landmark L position vector, referenced to the inertial frame, which
is computed as follows

— — —. N =
B =R ~[R]+(M},) AR} (5.8.2.3-4)*
R | = Position vector of landmark L referenced to the inertial frame given by
5L _ pT T
Rl =R} +(My) 7 (5.8.2.3-5)*
E; = predicted position vector of satellite i at the measurement time, referenced to

the inertial frame (components of the estimated state vector)

AR, = coordinates of the sensor k image center with respect to the satellite body frame
(an input to the orbit estimation process)

R/ = Center of mass (COM) position vector of the target body on which the

landmarks are located, referenced to the inertial frame. This position is either
computed based on a planetary ephemeris available in GEONS or an
externally-provided ephemeris for a body such as an asteroid.
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M, = rotation matrix from the target-centered inertial (TCI) frame to the target body

frame (TBF), computed using the cartographic coordinates of the body
consisting of the orientation (i.e. right ascension and declination of date) of the
axis of rotation (north pole) and the location and rotation rate of the prime
meridian of the object with respect to the inertial ICRF.

7" = coordinates of landmark L referenced to the target body frame. This position
vector is provided along with the measurements.

The measurement model for the (xf;’r , yé’T) bearing measurements of the target body centroid with
respect to the sensor k frame is the same as the model for the (x’;L,yfé’L) bearing measurements of
landmark locations on the target body except that the “landmark” is the COM of the target body.

If the estimation state vector consists of only absolute state vectors, the partial derivatives of the
(xlg’L ) yf’L) bearing measurements from sensor k on satellite i to Landmark on the target body, with
respect to the position of satellite i are computed as follows:

ax_l‘;L 1 8)(25% 1 6(ZkL) XkL
R N=—z| R, |- are—a B (5.8.2.3-6)
st Zgt | OVt | (zk ) AR LXE
oR' oR'
Which reduces to the following
1
PAI(TY)
[M}Tz_wk mi,|" (Sok)
AR(ty) SBYBI —Xif'l‘(tk)
(25 o)
0
T _r
ayé"L(tR)] U IGED)
Zs R — _[MEM , (5.8.2.3-7)*
[3R (&) [M5a M| vk
(25 o)

If the estimation state vector consists of the absolute state vector for the local satellite and relative
state vectors for nonlocal satellites, the partial derivatives of the (xf;’L , yf;’L) bearing measurements

from sensor k on satellite i to Landmark L with respect to the position of satellite i are computed
as follows:
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k,L k,L
OXg Oxg

oR oR' (5.8.2.3-8)*
Gyg’L Gyg’L 8.2.
OR' OR'
Gx;f’L Gx’;’L
OR. oR > 1 (5.8.2.3-9)*
= ; 01> .8.2.3-
a)}_/;,[ 6y§,L
OR!, OR'

Partial derivatives of the (xb’f’L,yb’i’L) bearing measurements with respect to the bearing

measurement biases for sensor k, bf ,b;‘ , are computed as follows:

kL
Oxg

obt | |1
ot |7

k
ob!

(5.8.2.3-10)*

5.8.2.4 Camera Range Measurement

. k
The camera range model assumes that sensor & provides a 1D range measurement Co ’x) ,, fosome
obs

3D point of interest x attached to a target body with known location in the inertial frame. The target
body can be a celestial object or another satellite state that is being estimated. Note that in the
following discussion, a range measurement to the centroid of a celestial body is treated as a point
of interest located at the centroid of the target body.

The predicted range measurement from the camera sensor center k£ on the imaging satellite i to
point of interest x on the target body 7" at measurement time 7z is computed as follows

where

ﬁk,x

Ap

pk,x(tR) — ‘l_)lk,JC(tR)‘ +Apk +b;1§(tR) (5824'1)*

vector from camera sensor k to point of interest x, referenced to the inertial
frame

calibrated range measurement bias for sensor k (an input to the orbit estimation

process). Note this input would not be required if totally accounted for in
measurement pre-processing.

estimated range measurement bias for sensor k
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The following equation is used to compute the components of the camera sensor-to-point of
interest vector measured by sensor k on satellite i1 in the inertial frame, (where i=1 for single-
satellite asteroid missions):

Pr(t) =R (1) —[E}‘ )+ (M) AE’;} (5.8.2.4-2)*

where

R = vector from the inertial frame origin to point x at the measurement time,
referenced to the inertial frame, given by

R =R + M7} (5.8.2.4-3)*

R/ = position vector of the origin of the target body frame on which the point x is

located, referenced to the inertial frame. This position is computed based on a
planetary ephemeris available in GEONS, an externally-provided ephemeris
for a target body such as an asteroid, or predicted state of a second satellite j

M, = rotation matrix from the target body frame (TBF) to the inertial frame

r, = coordinates of the point of interest x in the target body frame. This position
vector is provided along with the measurements.

E} = vector from the inertial frame origin to origin of the imaging satellite i body

frame at the measurement time, referenced to the inertial frame (components
of the predicted satellite state vector)

M}, = rotation matrix from the inertial to the imaging satellite i body frame, computed

using the attitude quaternion provided as input from an external subsystem (or
file)

AR, = vector from the origin of the imaging satellite i body frame to the camera sensor

k image center, referenced to the satellite body frame (input to the orbit
estimation process)

If the estimation state vector consists of only absolute state vectors, the only non-zero partial
derivatives of the camera range measurement from sensor & on satellite i to the point of interest on
the target body are with respect to the inertial position of imaging satellite 7, computed as follows,
ignoring the linearization correction

_ _ T
0P () _ 9™ (4) OR (1) _ | B (1) (5.8.2.4-4)*
OR(t) OB () OR(t) | [B ()|

Similarly, if the target body is another satellite j that is being estimated:
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_ _ T
op" () _ 9p"" (1) B (1)) [ P () } (5.8.2.4-5)*

OR/(t,) OP“'(1,) OR!(t,) ‘E’M(;k)‘

If the estimation state vector consists of the absolute state vector for the local satellite (i=1) or
target satellite (j=1) and relative state vectors for nonlocal satellites,

apk’x(tk) _ op" (%) )
OR,(4,)  OR/(t,)

if target body state is not estimated (5.8.2-4.6)*

apk’x (%) _ apk’x (%) 4 apk’x (%)
aRII (%) aR[i (%) ale (%)

=0; iftarget body state j is estimated (5.8.2-4.7)*

The following are the nonzero partial derivatives of the range measurement for the relative state
vectors:
8o~ k Dk !
X ¢ X X
P oo ) | BTG | (5.8.2.4-8)*
OR,.(6) R  |[B)

Similarly, if the target body is another satellite j that is being estimated:
T

c >l (5.8.2.4-9)*

op" (1) _0p @) _| By
oL, (1) OR/(1) | [P ()|

The partial derivative of the camera range with respect to the range measurement bias for sensor
k, b}, is computed as follows:

k,x

op
ob’

=1 (5.8.2.4-10)*

5.8.3 Planetary Sensor Measurement Models for Spin-Stabilized Satellite

This section presents models used to process CO sensor measurements for spin-stabilized satellite.

5.8.3.1 Sun Angle Measurements from a Spinning Satellite

This model is appropriate for the Sun sensor assemblies (SSAs) flown on spinning satellites such
as WIND and POLAR. The SSA measures the angle between the Sun sensor-to-Sun LOS unit
vector and the satellite spin axis when the sun is in the measurement plane, i.e. the plane containing
the spin axis and a vector normal to the sensor. Figure 5-8 illustrates the measurement geometry.
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Figure 5-8. Sun Angle Measurement Geometry

The SSA generates a command eye pulse (CEP) when the Sun is in the measurement plane. The
time of the CEP, ¢, provides the measurement timetag. The accuracy of the sun angle

measurement is nominally £0.10 degree. The sun angle is related to the satellite-to-Sun LOS unit
vector components as follows

where

ABIL;MI’!

k
BSun

B§u11 = arCCOS(I}SJ} ’ "le) + ABI;un + bkﬁSun (58-17)*

sun angle measurement in radians from sensor k on satellite j

satellite-to-Sun line-of-sight (LOS) unit vector at ¢, referenced to the
geocentric inertial frame (J2000.0)

unit vector along the satellite j spin axis at 7., , referenced to the geocentric
inertial frame (J2000.0) (input to this process)

calibrated sun angle measurement bias for sensor k in radians (an input to the
orbit estimation process)

estimated sun angle measurement bias for sensor k in radians

The predicted inertial LOS unit vector from satellite j to the Sun is computed as follows

I}/ _ ES(tCEP)_IEJ
)R’

(¢
5 =T Cerr) (5.8-18)*
‘RS (tCEP (t

CEP )‘
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where

R/(t.,) = satellite j position vector at ¢, , referenced to the geocentric inertial frame
(J2000.0)

Ry(t .,») = Position vector of the Sun at 7., referenced to the geocentric inertial frame
(J2000.0)

The inertial position vector for the Sun is computed using the analytic algorithms for the solar
positions given in Section 4.1.2.

If the estimation state vector consists of only absolute state vectors, the nonzero components of
the row vector of partial derivatives are computed as follows for measurements associated with
sun sensors on satellite j:

A T r
_a.f’éu" =— ! [ Vg } A (5.8-19)*
OR’ (tczp) \/1 - (I}é . A'j)z OR (tcp)
k
@:1 (5.8-19a)*
abﬁslm
where
7
vy ! [_ Ly + PP (5.8-20)*

R’ (tcep) B ‘Es (eep) — R’ (¢cep )‘

If the estimation state vector consists of the absolute state vector for the local satellite and relative
state vectors for nonlocal satellites, the nonzero components of the row vector of partial derivatives
are computed as follows for measurements associated with sun sensors on satellite j:

k 7 ! . '
QBSun _ L ( Iy ] L (5.8-20a)*
OR (trzp) \/1 _ (VS/] A7)’ OR’ (tp)
k i ! !
J ~ .
_aBSun - _ ,\1 = [ _aVS] ] A‘/ ; ] > 1 (58-20]3)*
OR (tepp) \/1—(Vsj} A7) |\ OR (tcgp)
B

un_ 1 (58-20C)*

k
abﬁsm,

5.8.3.2 Horizon Scanning Measurements from a Spinning Satellite

This model is appropriate for horizon sensor assemblies (HSAs) flown on spinning satellites such
as the Barnes HSAs flown on WIND and POLAR. Figure 5-9 illustrates the measurement
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geometry. The accuracy of the Earth horizon sensor measurement is nominally 0.1 degree.
However, this accuracy is degraded by fluctuations in the Earth’s horizon radiance that produce
errors of about 10 kilometers in the measurement of the horizon.

Spacecraft
Spin Axis 4

Sun Sensor-to-Sun 5
Unit Vector I}Sl I
Earth’s Mean %

Spin Axis at J2000.0 Z
P ! 1 Earth Sensor-to-Earth

Cross Out |
Unit Vector H

Mean
Equatorial
Plane

Vernal Equinox
at J2000.0 fcl

Figure 5-9. Earth-Out Crossing Measurement Geometry

The horizon sensor measures the elapsed time from the Sun sensor’s CEP at ¢.,, to the Earth-in
pulse at #,, and the elapsed time from the Sun sensor’s CEP at ¢, to the Earth-out pulse at 7, .

Each of these measurements is processed independently in the estimation processing. These times
are computed as follows, where horizon sensor £ and Sun sensor m are on satellite j

1 ‘
kom _ Lk m _ k,m k,m k,m
Atin - Z‘in - tCEP - ;(A:I - ¢ + 27”’1)_ §tin + bAtin
1 (5.8-21)*
k.m _  k m _ j k,m k,m k.m
Al‘out - Z‘uut - tCEP - _](A:m - ¢ + 27m)_ &out + bAtom
where
At At = elapsed time in seconds from the CEP from Sun sensor m to the Earth-in/-out
pulse from horizon sensor k, normalized to a value between 0 and one spin
period
o’ = satellite j spin rate in radians per second (an input from the attitude
determination process)
A, A/ = dihedral angle on satellite j from the plane containing the spin axis and the

satellite-to-Sun vector and the plane containing the spin axis and the satellite-
to-Earth-cross-in/out point in radians
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#*", """ = nominal azimuth from the Sun sensor m to the Earth sensor & in radians (an

input sensor configuration parameter)

n = integer number of revolutions such that 0 < (A_f — P " + 27271) <2rx:

1, if (47 ¢ )>2x
n=10,if0<(4’ —g"")< 27 (5.8-21b)*
+1,if (47 ¢ )<0

61‘;”” , St(’j;’l” = calibrated measurement biases between the Sun sensor m and the Earth sensor

k at Earth-cross-in/-out in seconds

bEm pEm = estimated measurement biases between the Sun sensor m and the Earth sensor

Atip > 7 Atoyr

k at Earth-cross-in/-out in seconds

The dihedral angles 47 , 4’ ~ are computed as follows

A}L = arctan Z[N;; , Dljn ]
A({ut = arctan2[N£m , D’

out

] (5.8-22)*

where

P i (0T T I =HJ VIV ANH A7
Niljl - AA | (VEI'X[_IAin')’ Din ' HinA ?/SI i '(VSI ,\4 )’(\].{in ,\4 ) N (58-23)*
Nl =BG <L) DL =11, V) (7 WA, - )

out out

S>
I

Satellite-to-Sun line-of-sight (LOS) unit vector at 7., referenced to the

geocentric inertial frame (J2000.0), computed as in Equation 5.8-18

A’ = unit vector along the satellite j spin axis at ¢, referenced to the geocentric
inertial frame (J2000.0) (input to this process)

in/out ®

H lfn,ﬁl (’)'m = unit vector from the satellite j to the Earth cross-in/-out point at ¢,

referenced to the geocentric inertial frame (J2000.0)

The components of H - H ! are derived based on the following relationships, illustrated in
Figure 5-10:
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H A (i) = cos(v})
H’ -E'(t,)=cos(p,)
H) -1 =1

I:[({ut : "aj(tCEP) = COS(YI; )
H;Mt : E/ (tout) = Cos(pout)
Iflzj)lut ’ [:\Iiut = 1

(5.8-24)

where
y]; = measured HSA k mounting angle with respect to the spin axis
PP, = Earth angular radius at the crossing point
E’(t,), E'(t,,) = unitvector from satellite j to the center of the Earth at ¢, ,, , referenced to

the geocentric inertial frame (J2000.0)

. R/(t.)
Jj _ in
) R (t,)
4 (5.8-25)*
[ ! (tout)
E (tout) = j
R (t,,)
Spacecraft
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Figure 5-10. Earth/Out Measurement Geometry
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A A
in out

— nd — satisfy the following
OR’(t,) OR (¢

The corresponding partial derivative matrices:

out

system of equations

A T
[5]@'] A =0 (5.8-26)
AN Y r
OH | pi = | O | fy [ 2cos(p) (5.8-263)
R R R
A T
H o (5.8-26b)
R

Necessary conditions for Equation 5.8-24 to admit two unique solutions, H , and H , »1s that the

two vectors A’ and R’ are independent, that is A’ xR’ #0. The following procedure is used to
compute these solutions.

The first set of solutions for A, and H, is computed using R’(z,,,,., = tepp)» A’ (tozp), and

.| Ry +h
Do = Py = arcsin ——= (5.8-27)*
#
where
R, = Earth spherical radius, equal to 6371.38 kilometers
h, = nominal carbon dioxide height, 38 kilometers

in the following:

H, = ad +bE +cW (5.8-28)*

H, = ad+bE—cW (5.8-28b)*
. N L

= AxE (5.8-28¢)*
A’ x E’

cos(y*)— A" - £ cos(p,, )
a =

— (5.8-28d)*
1— (4 -E'Y
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b _ COS(pin/out) - Izlj : Ej COS('Yi)
- 1—(A'-E7)

(5.8-28¢)*

c=v1-a*—b* —2abA’ - E’ (5.8-280)*

If the value of ¢ in Equation (5.8-28) is imaginary, the measurement is discarded as invalid. To
identify which solution to Equation (5.8-28) corresponds to H’ , the dihedral angle (more

in/out
precisely, the rotational angle for the spinning satellite) ® fromthe Ax H . plane to the AxH 5
plane is computed as follows:

®=arctan2[12[~(1f11 Xﬁzl (fll -1:12)—(A 'ﬁlel ﬁz)]

(5.8-29)*
if©<0,0=0+2n
If® <n, A, = H, and H,, =H, .1f® >n, A, = H, and H,, =H, .
Next updated Earth cross-in/out times are computed as ¢,,,,,, = tcpp + AL, .., Where A, - is

computed using the initial A,

in/out

solutions to compute the dihedral angles A,

mow 11 BEquation
(5.8-21). Then two sets of updated values for //, and H, are computed using R" evaluated at

t, =typ +At, and t,, =t +At,, to compute E(z,) and E(z,,) and correcting p, and p,,

m

to account for the Earth’s oblateness. The updated values for R’(z,) and R’(z,,) are
approximated as follows:
R ~RJ km T
R1G,) =R l) 80" R ) 55307
RI(t,,) =R (tegp)+ A" R (1epp)
The corrected Earth angular radii are computed as follows
_l_
_ . Ein/ out N _ %
pin/out = arcsin ‘RJ‘ (58 31)
where
R, = > RA-J, E)2 — (5.8-32)*
\/(l_fE) +(2fE _fE )Sln Pinsour
SINQ,,, .. = (f(’Em/om)Z (5.8-32a)*
. H’ +R’
Einfows = C.OSpN (5.8-32b)*
sinp,,



R, = Earth’s equatorial radius, 6378.1363 kilometers

e

f = Earth’s flattening coefficient, equal to 1/298.257

= magnitude of the vector from the center of the Earth to the Earth in/out crossing

Ein/out
point
R Fovew = Uit vector from the center of the Earth to the Earth in/out crossing point
expressed in the inertial frame
R, = z-component of unit vector from the center of the Earth to the Earth in/out
Ein/out/ z p
crossing point
H’ = unit vector from the satellite j to the Earth in/out crossing point based in initial

in/out

solution of Equation (5.8-28)
The test given in Equation (5.8-29) is then used to determine which of the two solutions at ¢,

out

corresponds to H ,]n and which of the two solutions at ¢, corresponds to H (’)'m . Updated values

for the measurements are then computed using the updated A ;,”'1 and H ;juz solutions to compute
the dihedral angles A;; out in Equation (5.8-21).

If the estimation state vector consists of only absolute state vectors, the nonzero components of
the row vector of partial derivatives associated with the Earth crossing sensors on satellite j are
computed as follows. Note that in the partial derivative computations, the value of the satellite
position vector at 7., 1s used.

OAL"" 1 o4’
OR’(tegp) @ OR'(1op)

oAL"
ab"/j’” =1 (5.8-33a)*

!

antkm 1 oA

—_— = s (5.8-33b)*
OR(tepp) ' OR(teyp)
OAL:™
— 5.8-33¢)*
ﬁbi’m ( )
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where

o4’ 1 1 ON’ N’/ oD’
oR’ (Nj Jz D’ éR’ (p/f oR’
14| == "

D’

o4, 1 1 ON) N oD
oR’ (Nj JZ D’ R’ (Df)2 oR’
14| o

Dj

vy _ 1
R’ |Ry-R’

ST SI

‘[_zmmw]

Finally let

aﬁ;’ ~ aﬁ;’ aﬁ;’ aﬁ;’
OR’ ox ' oYy oz

r_ L (sinr agi
(KinX’KinY7KinZ) _Rj (R R _]3x3)Hm

n=Ry+hy
Solving the system of equations (5.8-26) yields
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(5.8-34)*

(5.8-34a)*

(5.8-34b)*

(5.8-34c)*

(5.8-35)*

(5.8-352)*

(5.8-36)*

(5.8-37)*

(5.8-37a)*

(5.8-37b)*



a]_}‘/n i 2y 4 ’ (Rjz— 2)1/2Rj3 o
o @ e ) o)
a[f]/ _ 2y ; (Rjz_ 2 1/2R_j3 .
8Ym ) (an( f_;,;[i)) (RJ?_nz)luRn AT xH] (5.8-38)"
@]_}i I 27 4 ’ (RJZ— 2)1/2RJ»3 o
oz ( in(jix’;_[i)) (Rl?—nz)”zRJS ATxH,
Similarly let
oH’ (6H’ 6H' oH’ i
R | ox v ez (58-39)
(KoutX’KoutY’ Kouz )T = %(klﬁﬂ — 1 )[:’], (5.8-392)*
then
A_;.ut __ 1’]X+Kom (R’ )1/2 _N -
oG ) e [
[f[:‘ut _ 2y . (R’ 2)1/2RJ _A_ -
oL S
Ai.m i 2Z+ N (R’ 2)1/2R/ _A. o
R ET Te

If the estimation state vector consists of the absolute state vector for the local satellite and relative
state vectors for nonlocal satellites, the nonzero components of the row vector of measurement
partial derivatives associated with the Earth crossing sensors k and m on satellite j are computed
as follows:

OAL*™ 1 o4’
OR (tCEP) o’ OR (tCEP)
OAL™™ o4’
! SN (5.8-40b)*

OR/, (*cep) - ; R’ (tcep) ’
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oAt

| 5.8-40¢)*
ob*" ( )
k,m aA/
Ay L % (5.8-40d)*
OR(t.gp) @ OR’(tygp)
k,m aA/
Oy _ 1 %A, o j>1 (5.8-40e)*
OR/, (tCEP) o’ OR’ (ICEP)
N’ _ (5.8-400)*
ob*m '

At out

5.8.4 Pseudoangle Measurements

In Reference 30, Battin describes an approach for computing a celestial position fix based on the
measurement of the angular distance between a planet and a star or two planets. Because typical
satellite star and planetary sensors do not provide direct measures of this angular separation,
Battin’s method has been adapted to use the angle between simultaneously measured LOS unit
vectors to the planet and star or two planets. (Note that if simultaneous measurements are not
available one of the measurements will be interpolated to the time of the other measurement.)

The advantage of this method is that the resultant pseudoangle measurements eliminate the need
for direct input of the attitude matrix, A(t). Disadvantages of this method are that it requires
simultaneous measurements and that it requires the processing of star sensor measurements, which
requires access to an onboard star catalog. In addition, it should be noted that in the future
advanced star sensor systems will output the attitude quaternion directly rather than the individual
LOS vectors to the stars.

5.8.4.1 Pseudoangle Measurement Preprocessing (not implemented in GEONS)

The pseudoangle measurement is the cosine of the angle between the LOS unit vectors to a planet
and a star. It is formed as follows from the LOS measurements to the planet and star or another
planet, after rotating them to the common satellite body frame:

Dy = (Fy) e (v)) (5.8-41)*
where
P, = LOS measurement from planet sensor k on satellite j, referenced to the satellite
body frame
W/, = LOS measurement from star sensor m on satellite j to the sth star, referenced

to the satellite body frame
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If the raw planet/star measurements are the pitch and yaw angle measurements in the sensor frame
(typical for a sun sensor), the components of the measured LOS unit vector to the planet/star in the
sensor frame can be computed by inverting Equation (5.8-14) and then rotated to the satellite body
frame using Equation (5.8-14b). If the raw planet/star measurements are the ys and zs coordinates
of the LOS unit vector to each planet/star with respect to the sensor focal frame (typical for a star
tracker), the components of the measured LOS unit vector to the planet/star in the sensor frame
can be computed as follows

wi, =(1+tan’ Q, +tan’ Q)"
wy, = —wj, tanQ (5.8-42)

Jo— oyl
wi =—-w¢ tanQ

where the star angles, Q ,Q_, are related to the sensor ys and zs coordinates as follows

_ Vs

Q= n n
pixels_per_degree” " C_units_per_ pixel

(5.8-43)
z
J— S
Q. =
npixelsiper _degree n C _units _per _ pixel
where
Q,,Q. = star angles in the star sensor ys and zg directions

M icels per degree — DUMber of pixels corresponding to one degree

= number of subpixels in a pixel

n C_units_per_ pixel

and then rotated from the sensor frame to the satellite body frame using Equation (5.8-14b).
Similarly the pseudoangle measurement between the LOS unit vectors to two near bodies (e.g. the
sun and Mars) is formed as follows:

Din = (Py)e(P}) (5.8-44)
where
131;‘ = LOS measurement from planet sensor k, referenced to the satellite body frame

5.8.4.2 Pseudoangle Measurement Model and Partial Derivatives

Because the angle between the LOS vectors is independent of the coordinate frame in which the
vectors are expressed, the following relationship is used to compute the predicted planet-to-star
measurement:

ko _ 1) o) k ko _ (A INT K, K, *
Dp" =V e Wl + ADp + by = (W),)' Vi + ADR" + by (5.8-45)
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where

V4 = LOS unit vector from satellite j to the planet, referenced to the inertial
geocentric frame

W/, = LOS unit vector from satellite j to the sth star, referenced to the inertial

geocentric frame (which is identified by the star tracker and provided along
with the pseudoangle measurement)

AD g’” = calibrated residual pseudoangle measurement bias between planet sensor k and
star tracker m on satellite j (unitless) (an input to the orbit estimation
processing)

bf);'j = estimated residual pseudoangle measurement bias between for planet sensor k

and star tracker m on satellite j (unitless)

If the estimation state vector consists of only absolute state vectors, the nonzero components of
the row vector of partial derivatives for planet-to-star pseudoangle measurements associated with
sensors on satellite j are computed as follows:

m A AL ALT i i AL AT
% _ (WSI)T aKPI( _ (W;,)T _132 + VEJIVIJI _ _(W&])Tj(wil_)TVlj[Vf{[ (5.8-46)*
OR’ oR’ R, -R’| R, —R|
oDy." *
6b—k;m =1 (58-463)

If the estimation state vector consists of the absolute state vector for the local satellite and relative
state vectors for nonlocal satellites, the nonzero components of the row vector of measurement
partial derivatives for planet-to-star pseudoangle measurements associated with sensors on satellite
j are computed as follows:

m A . AL ALT N n AL ALT
oDy; = (Y Vp _ Y — L+ VeV | — W) + W) ViV (5.8-46b)*
= sl ] sl - =] - e~ .
oR" oR’ R, -R’| R, —R|
km i (N (NI T
a(%’j = ()" Zg’j - ) ‘[;; (WSI%) ,.‘VP’VP’ ; J>1 (5.8-460)*
rel P -
oD;." *

Similarly the pseudoangle measurement between the LOS unit vectors to two near bodies (e.g. the
sun and Mars) is modeled as follows:
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kom 5 > k,m k,m 1 T > k,m k,m *
Dy =V ®Vi, +ADpy, +bDaP2 =Vp, Vi +ADpp +bDap2 (5.8-47)
If the estimation state vector consists of only absolute state vectors, the nonzero components of

the row vector of associated measurement partial derivatives are computed as follows:

km i i _pit o piTpipi T it i Tpipi T
aDPIPZ e 5sz1 Ap aVPI, Vi +Vi VaVi, Var +Var VilVa

—2 = — + — = — + — 5.8-48)*
oR’ " oR’ ™R R, -R’| R, ~R’| 549
oDy, *
%#:1 (5.8-48a)

PR

If the estimation state vector consists of the absolute state vector for the local satellite and relative
state vectors for nonlocal satellites, the nonzero components of the row vector of partial derivatives
for pseudoangle measurements between the LOS unit vectors to two near bodies associated with
sensors on satellite j are computed as follows:

ke,m 2 5i it piTpipi T i T i i T
8DP1P2 . aVPZ, ~r 8VP11_ Vir +Vir ViVis Var Vo, ValVir

EALE R 6t L == — — = (5.8-48b)*
oR' "R’ ™ oR R, —R’ R, —R'|
m AL A ALT AT A. A.T ALT AT A. A.T
0Dy oy OV, o OV VA VI VAV Vi Vi VAV .
S TR - T i —— + e i j>1 (5.8-48¢)
R, —R| R, ~R'|
0D, 1 (5.8-48d)*
LR 8-
abDaPz
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5.9 TDRSS Measurement Models

The computational algorithms for one-way TDRSS Doppler measurements are discussed in this
section. The general form of the measurement model is as follows:

Yk =G [X(tk), tk] + ¢ (59-1)

where ¢, is the true measurement time, referenced to UTC, and ¢ is the measurement error. It is

assumed that & has a zero-mean Gaussian distribution with standard deviation o, which is
commandable for each measurement type. The measurement standard deviation is typically
determined through analysis of the random component of the measurement error as part of the

filter tuning process. For GEONS, the estimation state vector, X (¢) includes the receiver position

vector, R ; velocity vector, R ; optional corrections to the drag and solar radiation pressure
coefficients, AC, and AC,; receiver time bias, b; receiver time bias rate, d,, for one or more

receivers; and measurement-dependent biases. The Tracking and Data Relay Satellite (TDRS)
state vectors are propagated in the navigation filter.

Section 5.9.1 addresses preprocessing of the raw TDRSS Doppler measurements obtained from a
TDRSS S-band receiver onboard the spacecraft. The model for the one-way forward link range
from the TDRSS Ground Terminal (TGT) to the TDRS to the local satellite receiver, which is used
in the computation of the TDRSS Doppler measurement, is presented in Section 5.9.2. The TDRSS
one-way forward Doppler measurement model and associated partial derivatives are defined in
Section 5.9.3. Section 5.9.4 provides the measurement model and associated partial derivatives for
TDRSS differenced one-way Doppler (DOWD) measurements, which are appropriate for ground
processing using GEONS.

5.9.1 Raw TDRSS Doppler Measurement Preprocessing (not implemented in GEONS)

The TDRSS tracking signal path is shown in Figure 5-11. A K-band signal is transmitted from an
antenna at the TGT to the space-to-ground link (SGL) antenna on a TDRS. The TDRS translates
the signal to the required transmit frequency by converting to S-band and removing a pilot
frequency. The S-band signal is then transmitted from either the TDRS multiple access (MA)
antenna system or a single-access (SA) antenna to the user satellite. One-way TDRSS tracking is
operated using a fixed radiated carrier frequency (FRCF) with onboard Doppler compensation
(OBDC). The nominal RCF is 2106.406250 megahertz.

FORWARD-LINK USER

TDRSS/GS RECEIVER/TRANSPONDER FREQUENCY
FORWARD-LINK ‘ " REFERENCE
SIGNALS DOPPLER (FREF)
MEASUREMENT GEONS
CAPABILITY
TDRSS

GROUND
TERMINAL

Figure 5-11. TDRSS Forward-Link Signal Path
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The user satellite can have more than one TDRSS receiver/transponder, often with one tied to an
omnidirectional antenna and one tied to a single-access antenna. The receiver on the user satellite
extracts the Doppler frequency by differencing the incoming frequency with the S-band reference
frequency. The Doppler measurement function is accomplished via a software accumulation of a
scaled and biased nondestruct Doppler shift to provide a Doppler frequency sum measurement.
The receiver’s raw Doppler measurement output consists of the nondestruct frequency sum. The
raw Doppler frequency sums are available nominally every 1.024 seconds. The navigation
software samples the Doppler frequency sums, nominally every 8.192 or 16.384 seconds, validates
and corrects the measurements for accumulator rollover, and converts them to the averaged
Doppler measurements that are input to GEONS. Section 20.9 in Reference 3 describes the
measurement validation and conversion processing that was implemented for the TDRSS Doppler
extraction capability on the Terra spacecraft.

5.9.2 TDRSS Pseudorange and Associated Partial Derivatives

The timetag associated with the " measurement is the UTC receive time of the signal at the local
receiver as measured with respect to the spacecraft/receiver clock, . In the presence of a
spacecraft timing bias, the true measurement time is given by

t, =t 8t (5.9-2)

where o, is the offset of the receiver’s timing reference from UTC, given by

o, = 2nlt) (5.9-3)

C
If the receiver time offset, of,, is larger than 1 millisecond, it should be used to correct the
measurement receiver time tag as shown in Equation 5.9-2. The accumulated receiver clock bias,
b, (?), can be estimated if GPS/WAAS measurements are processed in GEONS in addition to

TDRSS Doppler measurement data. However, if only TDRSS Doppler measurements are
processed, the receiver time offset correction is not observable and would have to be provided by
another satellite subsystem.

TDRSS tracking does not provide a measurement of the TGT-to-TDRS-to-satellite pseudorange;
however, the TGT-to-TDRS-to-satellite range is computed as part of the Doppler measurement
model. The backward signal-trace method is used to determine when the signal was transmitted
from the TGT and the TDRS. After the actual transmit times are determined, the range between
the TGT and the TDRS and the TDRS and local satellite receiver are computed.

If the forward-link signal is transmitted from an antenna at the TGT at time ¢, , received by the

SGL antenna on TDRS p and transmitted from MA or SA antenna g on TDRS p at time ¢, , and

received at antenna i on satellite n at time 7, (equal to 7, ), the distance traversed by the signal is

given by the range, p%mp :
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p;gRSp =c-(t - I, )+c- (th -1 )= EZ () — ETDRSM (trz )|+ ETDRSP.SGL (th )— ETGTP (tTl ) (5.9-4)*

where
¢ = speed of light
R} (t,) = position of antenna i on receiving satellite n at time , , which is computed
using Equation 3.2-61 in Section 3.2.8

ETDRSp’q (th) = position of transmitting MA or SA antenna g on TDRS p at time ¢, (currently
the TDRS antenna offsets are not modeled in GEONS)

RTDRS,, L (th ) = position of receiving SGL antenna on TDRS p at time t, (currently the TDRS
antenna offsets are not modeled in GEONS)

ETGTP (tT1 ) = position of the transmitting ground antenna associated with TDRS p at the TGT

at time ¢,

The transponder delay on the TDRS or the user satellite is not modeled.

The Newton-Raphson iterative scheme is used to solve for the actual signal transmit time, ¢, , as

follows
E:. (tR) - ETDRS (th m)
bry e =g = (5.9-5)*
C
where
tr = (m+1)" approximation for ¢,
= th S
t,, = m" approximation for f;
t, = signal reception time at the satellite receiver

The iterative solution of Equation (5.9-5) is started by setting
tr o =1ts (5.9-6)*

7,0

such that
RTDRSM (trz,o) = RTDRSM ) (5.9-7)*

The TDRS state vector is propagated to the time ¢, = ¢, using a Runge-Kutta integrator and the

full acceleration model. The TDRS positions at the updated transmission times are computed as
follows

ETDRSM (tTZ,m) = ETDRSM (tr) - AtmETDRSM (tz) (5.9-8)*
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where

At, =t,—t, (5.9-9)*

,m

This iterative scheme is continued until the condition ‘tT,mH —1r,,| S € is satisfied, where € is a

small tolerance (nominally equal to 10 second). The TGT transmission time t,. 1s then computed

using the same iterative scheme to solve:

RTDRS, SGL (tr2 ) - RTGT (tT, m

6 =t - p i (5.9-10)*

Ty ,m+1 T,
C

After the signal transmission times are found, the distance between the local satellite receiver and
the TDRS and the TDRS and the associated TGT antenna are calculated using Equation (5.9-4).
The position and velocity vectors for the TGT antennas are available in ECEF coordinates and

must be transformed to J2000.0 inertial coordinates using the transformations defined in Sections
3.2.1 through 3.2.3.

If the estimation state vector consists of absolute states for the local and remote satellites, the
following are the nonzero partial derivatives of the range with respect to the components of the
estimation state vector, X(z,), where R"(z,)is the receiving satellite state vector:

?‘DIRS (%) ap %Rsp (tk) R (tr) - TDRS (th )
OR" (tk) OR" (t2) RA,. (tx)— RTDRSM (th )

(5.9-11)*

If the estimation state vector includes relative states for the remote satellites, the following are the
nonzero partial derivatives of the range with respect to the components of the estimation state
vector, X(z,):

TDRS () 6P mors, (1) OR" (1) B EZ (tR)_Iv_zTDRSM (tr,)
R | R'(t) OR'(ty)

(5.9-12)*

TDRS,,,, ( T, )

TDRS (t ) ap ;gRS (t ) aﬁn(tR) R (t ) TDRS (Tz) n#l (5 9-13)*
8R,e,(tk) T OR'(t) ORL() |

TDRSp'q (l‘r2 )

5.9.3 TDRSS Forward-Link Averaged Doppler Measurement Model and
Associated Partial Derivatives

The TDRS associated with the first valid measurement in each tracking contact is identified by the
process of elimination. All visible TDRSs are identified using the HORP test defined in Section
7.4 of this document. For each the visible TDRS, the TGT-to-TDRS-to-satellite Doppler
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measurement is modeled using the model provided below. The TDRS that produces the smallest
measurement residual is selected as the transmitting TDRS for that contact.

The instantaneous Doppler-shifted RCF received at the spacecraft is equal to

fI;CF = frer (1 —%j‘F OF, +0F., (5.9-14)

where

f wor = Doppler-shifted RCF

Jrer = transmitted TDRSS RCF, a commandable parameter, nominally equal to
2106406250 Hertz

p = time rate of change of the light-time-corrected range from the TGT to the

TDRS to the spacecraft receiver, P %st [defined in Equation (5.9-4)]

oF, = signal delay due to atmospheric effects

atm
oF , = signal delay due to relativistic effects

rel

GEONS does not apply corrections for atmospheric and relativistic effects in the TDRS
measurement model.

Jrer = fRCF(l_%j (5.9-15)

The true instantaneous Doppler shift is given by

(fD)[rue = fR'CF - fRCF (5.9-16)

The Doppler shift is measured onboard with respect to the receiver’s S-band frequency reference,
such that the instantaneous Doppler measurement is given by

(fD)ext = fR'CF - fref (t) (5.9-17)

where
f...(t) = receiver’s S-band frequency reference at time t, nominally equal to

| 2106.406250 megahetz

Substituting Equation (5.9-15) into Equation (5.9-17) and averaging over the Doppler averaging
interval, AT, the averaged Doppler measurement can be expressed as

(FD (tk)) ;l",DiRSp: ﬁ T(fp)zxt ()dt (5.9-18)

1, -AT
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AT

t—A

. 1 t pn,i
(Fu(fk))%zes,,=— | [ch{l— ”c”“”] f,e,(t)}dwrbms”(zk) (5.9-19)
T

(F (t, ))TDRS ch{l %T()] Lo (t)+b, () (5.9-20)*
where
;DIRS (t)= pTDRS () - pTDRS (t, —AT) (5.9-21)*

and deDRS” (t,) is the current value of the Doppler bias associated with TDRS p in Hertz and

Jrer (t,)1s the averaged value of £ (z,) over the time ¢, — AT to ¢,. This value is approximated

as follows, neglecting the effects of frequency drift over the averaging interval:

dil
Jrer G = Jrer (6) = [y (to){l +#} (5.9-22)*

where dj(z,), the receiver time bias rate, is computed using Equation 4.3-19 and f,  (¢,) is the

initial value of the S-band Doppler reference frequency, a commanded parameter nominally equal
to 2106406250 Hertz.

Note that the measurement model as currently implemented in GEONS assumes that the Doppler
averaging interval is equal to the interval between calls to the state estimation task, or equivalently
the integration stepsize.

Note that because the Doppler measurement model requires the computation of the range at an
earlier time, p(¢, — AT), the range is computed at the time of the first Doppler measurement in a

contact but the measurement update is not performed. In addition, the measurement update process
is not performed for the first Doppler measurement following the uplink of a new TDRS vector
because the discontinuity in the TDRS state will produce a large Doppler residual.

If the estimation state vector consists of absolute states for the local and remote satellites, the
nonzero partial derivatives of the Doppler measurements with respect to the components of the
estimation state vector, X(z,), for the receiving satellite n are computed as follows:

(F (t, ))TDRS o Srer l:ap ;’[;RSp(tk) 3 op %Rsp(tk —AT) (@En(tk - AT)J] (5.9-23)*

OR"(t,) cAT| OR"(t,) OR"(t, — AT) OR"(t,)
a(FD (tk)) %RS,, _ Jrer op %RSP (t —AT)( 6R" (t, —AT) (5.9-24)*
OR"(t,) cAT| OR"(t, —AT) oR"(t,)
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a(FD (tk)) %Rs,, _ fRCF TDRS (4 —AT) (R (4 —AT) _ (5.9-25)*

OACy(t,)  ¢AT| OR"(1,—AT) | 6ACH() )| '
8(FD (tk)) %Rsp B fRCF TDRS (t =AT)( 6R" (1, —AT) | (5.9-26)*

OACL(t,)  cAT| OR'(1,—AT) | 0ACL,) '
AF ) tes,  AFN D) s, 070 fr@) .

- k AT (5.9-27)
ady(2,) afref(tk) odp(t,) c
Ml (592
(1)

The partial derivatives of the range in Equations (5.9-23) through (5.9-26) are defined in Equation
(5.9-11) in Section 5.9.2. These derivatives are evaluated at the current measurement timetag, #,
and at the time #—AT, where AT is the Doppler averaging interval.

The matrix of partial derivatives of position in Equations (5.9-23) through (5.9-26) is related to
the components of the state transition matrix defined by Equation (4.4-1a) in Section 4.4.1 as
follows

(MJ = 071220050 (5.9-32)*
OR"(t,)

(GE;(Z—C_,’;AT)J =)z (5.9-33)*
(aﬁna(;k—c_fn} = 7)1 (5.9-34)*

where
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[ OR"(t,) oR"(t,) OR"(t,) R"(t) |
OR"(t; —AT) @R"(t, —~AT) OAC}(t, —AT) OAC,(t, —AT)
W= _6R (t) ;GR (t) OR"(t,) 853 (4) (5.9-35)*
OR"(t; —AT) @R"(t, —~AT) OAC} (1, —AT) OAC,(t, —AT)
01x3 01x3 1 0
L 01x3 01x3 0 1 ]

If the atmospheric drag coefficient correction and/or the solar radiation pressure coefficient
correction are not estimated, the matrix W does not include the columns associated with these state
components.

If the estimation state vector includes the relative states for the remote satellites (n#1), the nonzero
partial derivatives of the Doppler measurements with respect to the components of the estimation
state vector, X(z,), for the receiving satellite n are computed as follows:

a(FD (tk));biRS,, _ Jrer op ;gRSp ) B op l;,DiRSp (t, —AT) OR'(t, — AT) (5.9-36)*
OR'(t,) cAT| OR"(t,) OR"(t, —AT) OR'(t,) '

a(FD (tk));biRSp _ _fRCF op %Rsp (%) _ op %Rsﬂ (4 —AT) aﬁr’z” (4 —AT) n#l (5.9-36a)*
RL@)  T| ') OR'(—AT) (| ORLG) |
G(FD (fk)) %Rs,, _ Jrer op %;Rsp (&, —AT)( oR" (tk —AT) (5.9-37)*
OR'(t,) cAT| OR"(t, —AT) OR'(t,)

Aottt _ fs |90 =D R -8D| Ly (59370
ORL(t) AT OR'G-AT) 3Ry ()

(5.9-38)*

6(FD (tk)) %RSP _ Jrer op ;gRSp(tk —AT)( 6R' (t, —AT)
OAC,(t,) cAT| OR"(t, —AT) OAC,(t,)

oo 00) s, fuge [ 9P s = AD) (R, —AD) )| P
OAC), (1) cAT| OR"(t,—AT) OAC) (1)

o 1) s, _ Jrcr Fp o, (4~ 41) (aﬁl STl ﬂ (5.9-39)*

OAC,(2,) cAT| OR"(t, —AT) OAC(2,)

6(FD (tk)) ;biksp _ Jrer op ;ZRSP (t, —AT)( oR" (t, —AT) nzl (5.9-39a)*
OAC; (1) cAT| OR"(1,—AT) | 0AC; (1)
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0P @) 1ius, ARt )i, 200 £ )

N - . (5.9-40)*
ody(t,) af;’ef (%) od(t,) c
o(F, (3)) thes, P (3)) s, U0 L)y (59400
adR,“,, (%) afref (%) adRm, (%) c
o\F, ()%
—( D,(D,’gg ) 2y (5.9-41)*
ob, (1)

The partial derivatives of the range are defined in Equations (5.9-12) and (5.9-13). The partial
derivatives of position vector at the time #-AT with respect to the estimated state vector

components are related to the components of the inverse of the state transition matrix defined by
Equation (4.4-1b) in Section 4.4.1

— — -1
X (t, —AT X (¢
(a rel_( k )j :( 6_ rel( k) j (59_42)*
a‘erel (tk) a‘er’el (tk—l)
where
_ yl _
. ‘Yfel
rel —
X
- E —
and
. R"-R' | R,
R"-R' R,
vn _ yn v _ n _ n .
X, =X"-X"=|ac" -aC' | =|(acy) |sn=1
n 1 n
ACiR B éCR (A(_jR )rel
bl; —b}; B erl

5.9.4 TDRSS Differenced One-Way Doppler (DOWD) Measurement Model and
Associated Partial Derivatives

The DOWD measurements are suitable for ground processing. With a wide-beam antenna system,
the one-way return signal generated from the user spacecraft can be received by more than one
TDRS. By differencing the one-way return Doppler measurements, most of the spacecraft

5-143



oscillator’s frequency bias is cancelled. The following discussion is based on the description
provided in Section 7.3 and Appendix A.8 of the Goddard Trajectory Determination System
(GTDS) Mathematical Theory (Ref. 27).

The observed DOWD measurements are formed by differencing averaged (nondestruct) one-way
return Doppler measurements from the transmitting antenna i on spacecraft n via two different
return-link TDRS (p and ¢q) to the TGT that are measured at time 7.

AP 00)) s, = Fon (000 s, = Fo 00 s (594-1)*

The corresponding DOWD measurements are modeled as follows

TDRS,,_

A(Fp 60 s, = (Fo ) s~ Fot)) s+ 48] (5942)"

where (FD (tR)) %Rsp is the one-way return link Doppler shift via TDRS p averaged over the

Doppler count interval AT from 7k -ATto Tr and Ab;DRS”"’ is a DOWD measurement bias.

Calculation of (F b (tR)) ’}5RS and (F b (tR)) ;[’,RS is discussed below.

In the case of TDRS return link tracking, the Doppler shifted signal is made of two components.
The long-trip path component, which is transmitted at time 7; from the user spacecratft,
received/retransmitted at time 7> at the TDRS, and measured at time 7 at the TGT, is given by

(p;"l’DiRS ) () =

TDRS (trz) Rn (t TGT (tR) - ETDRS,, (trz ) (5-9-4'3)*

where the signal transmission times 7> and 77 and associated state vectors are computed via
backward tracing using the Newton-Raphson iterative procedure described in Section 5.9.2.

The phase of the Doppler signal is maintained by transmitting a coherent pilot-tone frequency to
the return-link TDRS. This short-trip path component, which is transmitted at time 73 from the
TGT, received/retransmitted at time 7, at the TDRS, and received at time 7z at the TGT, is given

by

(P%Rsp s(tr) = |§TDRSp (tT4) — Regr(tr)| + |RTGT(tR) - RTDRSP (tT4) (5.9.4-4)*

where the times 7, and 73 and associated state vectors are computed using the Newton-Raphson
iterative procedure described in Section 5.9.2.

The two Doppler-shifted frequencies are mixed in the transponder of the return link TDRS
according to a fixed ratio to produce the observed Doppler shift. The resulting Doppler shift
averaged over the Doppler count interval AT is modeled as follows:

(F (" )) TDRS, = ﬁ(A(A ;DIRS ) (tx )+B(Ap;zD1RS ) (tR)) (5.9.4-5)*

where
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(APsms, 1)), = (Pries, 1)), = ( Phis, (6 =AT)) (5.9.4-6)*

(Apfies, 1)) =(Piins, €)= (Phins, e —AT)) (5.9.4-7)*
In this equation A is the effective transmit frequency from the user provided with the tracking data
and B is the pilot-tone frequency translation from the return-link TDRS. The values of the pilot-
tone frequency translation depend on both the return-link service type and the frequency band of
the link. Table ANX-1 in Reference 77 lists the values of the translation frequency for each service
type associated with the TDRSS ground terminals prior to the Space Network Ground Segment
Sustainment (SGSS) changes and after SGSS.

The partial derivative of a DOWD measurement with respect any solve-for parameter, s, can be
written as follows

aA(FD (tR)) ;ZRSM _ a(FD(l‘R)) %RS” ) a(FD (tR)) %qu (5.9.4-8)*
os s Os

N () AR )
Calculation of 5 and p 1s discussed below.
s s

The non-zero partial derivatives of a DOWD measurement with respect to the components of the
estimation state vector are computed as follows for TDRS p and similarly for TDRS ¢. Note that
the partial derivatives of the short range with respect to the user satellite state vector are zero and
the partial derivatives with respect to the user spacecraft time bias parameters are not computed
because they would cancel out when differenced. In addition, the GEONS estimation state vector
does not include the TDRS state vectors or TDRS transponder delays.

o(Fot)iis, 4 [0(pihes ), 0 3Pl ), =0T (aﬁ" (1, - AT)

- R" (t,)

_ . o (5.9.4-9)*
OR" (1) ¢cAT|  OR" (1) OR" (t, —AT) J

5(%) %RSP A 6(p;biRSp )l (tx —AT) | 6R" (tR —AT)
oR"(1,) AT

OR" (1, — AT) oR" (1,) J (5.9.4-10)*

a(FD(tR));'gRSp A {a(p;i;mp)[(tzeAT)}(@E”(ZRAT)J

OACp (1) ¢AT|  OR" (1, —AT) OACS (1) (5.9.4-11)*
8(FD (tR)) ;’;Rsp 3 A 5(,0}1[’)"”” )[ (t, —AT) OR" (tR —AT) (5 0 4-12)*
OACi(t,)  ¢AT|  OR"(t,—AT) AAC; (t,) o
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and

aA (FD (tR )) ;};RSp_q
oAb, (1)

=1 (5.9.4-13)*

The partial derivatives of the long range in Equations (5.9.4-9) through (5.9.4-12) are computed
as follows where these derivatives are evaluated for 7z equal to the current measurement timetag,
tr, and at the time tz—-AT.

5(p %Rsp )1 (1) ETDRSP (47,)
OR"(t,)

— - _Z"(tr‘) OR"(t7) (5.9-14)*
RTDRSM (t,)— R (1) OR"(ty)

8(/0 %Rsp )[ (t, —AT) ETDRSP (t;, —AT)
OR"(t, —AT)

(t;, —AT) (aﬁ" (t; —AT)

= = — (5.9-15)*
Rypgs, , (tr, =AT) = R (t; =AT)|\ O (1 =AT)

i

: : : o . .. OR'(t
Note that in the calculation of measurement partial derivative, the partial derivative GE—ETI;
n tR
be small and likely can be ignored. The matrix of partial derivative of position in Equations
(5.9.4-9) through (5.9.4-12) are relative to the components of the state transition matrix as

defined previously in Equations (5.9-31) through (5.9-35) in Section 5.9.2.

will
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5.10 X-Ray Pulsar Navigation Measurement Models

X-ray observations of celestial sources can provide useful navigation information for spacecraft in
a range of applications from Low-Earth Orbit (LEO) to interplanetary and even interstellar space.
X-ray emitting pulsars, which are neutron stars whose X-ray emission is modulated at the
rotational period of the star, are a source of such information. A subset of pulsars, the millisecond
pulsars, are highly stable clocks, with long-term stability comparable to laboratory atomic clocks.
The X-ray navigation (XNAV) concept implemented in GEONS uses X-ray observations of such
pulsars. For these pulsars, a physical model with a handful of parameters can predict the arrival
time of pulses to microsecond accuracy over months or years. A measurement of the difference
between the measured arrival time of a pulse at a spacecraft and the predicted arrival time
according to an onboard navigation solution can provide an error signal that can be used to measure
the location of the spacecraft in a manner similar to GPS.

X-ray pulsar measurement models were implemented in GEONS to support the Station Explorer
for X-ray Timing and Navigation Technology (SEXTANT) technology demonstration on the
Neutron-star Interior Composition Explorer (NICER) mission. References 60 and 61 provide
additional details about the implementation of the X-ray pulsar measurement models and
associated simulation structure for the SEXTANT demonstration.

The general form of the pulsar measurement model is as follows:
Yk =G [X(tk), tk] + ¢ (510-1)

where #; is the true measurement time, referenced to UTC, and ¢ is the measurement error. It is
assumed that & has a zero-mean Gaussian distribution with standard deviation o, which is
commandable for each measurement type. The measurement standard deviation is typically
determined through analysis of the random component of the measurement error as part of the
filter tuning process.

When GEONS processes the x-ray pulsar navigation measurements, the estimation state vector,
X(¢) includes the receiver position vector, R ; velocity vector, R ; receiver time bias, bg; and
receiver time bias rate, d,, per pulsar phase bias, o, and corrections to the drag and solar
radiation pressure coefficients, AC, and AC,; for one or more spacecraft.

Section 5.10.1 addresses preprocessing of the raw measurements. The x-ray pulsar measurement
and partial derivative models are presented in Section 5.10.2.

5.10.1 X-Ray Pulsar Navigation Measurement Preprocessing

The key measurable for an XNAV detector are the pulse arrival times determined from a set of
detected X-ray photons. For the SEXTANT demonstration, preprocessing consists of collecting
photon events, identifying the source pulsar, and buffering photon events from the X-ray Timing
Instrument until a target accumulated observation time from a single pulsar is met. The photon
events are then batch processed using a Maximum Likelihood (ML) estimation algorithm to
produce single pulsar phase and frequency measurements. A detailed description of the associated
algorithms is provided in Sections 3 and 7 of the SEXTANT ADD (REF 73).
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5.10.2 X-Ray Pulsar Navigation Measurement Model and Associated Partial
Derivatives

This section provides the algorithms used to model the observed X-ray pulsar phase and frequency
measurements. A pulsar almanac, which consists of a list of pulsars, with their associated timing
models, X-ray light-curve templates, count rate estimates, and energy distributions, and associated
raw data, is maintained in the ground system. The SEXTANT ground system relies on the Tempo2
pulsar timing software for the generation of timing models by fitting parameterized models to
measured radio and X-ray pulse time-of-arrival data and for generating the piecewise polynomial
approximations to the full timing models that are used for efficient onboard processing.

The pulsar pulse phase observed at the detector on the spacecraft at time ¢, , ¢(¢,), is modeled as

() = Prer (tA ) +0p (5.10-2)*

where ¢,..(t,) 1s the phase evolution at a hypothetical reference observatory, ¢, is the arrival
time of the pulse wavefront at a hypothetical reference observatory, and o¢ is a constant per pulsar
phase bias. The delayed arrival time at the reference observatory is given by

by (1)

t, =t —RT+r(tk) (5.10-3)*
where ¢, is the arrival time of the pulse wavefront at the spacecraft detector, by is the receiver time
bias, and 7(¢) is the light propagation time of the pulse wavefront moving from the detector to the
reference observatory.

For a geocentric reference observatory, the model for the light propagation time from the detector
to the reference observatory is the first order approximation

iR, - D)
¢ (5.10-4)*

o(t,) =

where 7 is the pulsar direction unit vector and R is the spacecraft position in a coordinate frame
centered at the reference observatory. For the geocentric reference observatory, GEONS evaluates
the phase model, as referenced to Universal Coordinated Time (UTC), at the reference observatory
and accounts for the Romer, or geometric, delay. In this case, the relative parallax and solar system
Shapiro delays, etc., are negligible.

For a SSB reference observatory, additional terms are needed to meet high accuracy timing
requirements. These terms include timing parallax, orbital parallax, Shapiro delays due to Sun and
planets, which are discussed in References 60 and 61. For the SSB reference observatory, GEONS
transforms the spacecraft state to barycentric coordinates and time and evaluates the phase model,
as referenced to barycentric time, accounting for parallax, Romer delay, and Solar Shapiro delay.

The frequency measurement model is determined by differentiating Eq. (5.10-2), with respect to
time leading to
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C C

) =90) = Puur (a){l— UM 'E“k)] (5.10-5)*

The SEXTANT flight software relies on the pulsar timing software TEMPO2 (REF 73) to provide
a model for phase evolution at a hypothetical reference observatory. TEMPO2 models are least-
squares fits to radio observatory data of the form

Prer (1) = p(t - A(t)) (5.10-6)*

where p is a quadratic or cubic polynomial shifted by timing correction A(#) that includes terms
for Romer, Einstein, and Shapiro, and binary delays. TEMPO?2 also provides piecewise polynomial
approximations to the full timing model ¢, (¢) , which are used by the SEXTANT flight software

to compute the phase and frequency at the arrival time at the reference observatory:

Brae (L) = Brar (1) + e (1) — 1]+ &REF(tO)@ (5.10-7)*
¢.5REF (tA) = ¢REF (to) + éREF (to)[tA - to] (5.10-8)*
éREF(tA) = &REF (to) (5.10-9)*

The following are the nonzero partial derivatives of the X-ray pulse measurements with respect to
the estimation state vector, X(,), consisting of absolute state vector for all satellites and the
constant phase bias:

W) _ 2 0) 00 )[”_} (5.10-10*
OR"(t,)  0t"(t,) OR"(t,) ¢
00" (t) _ Prer (1) (5.10-11)*
ab1(t,) ¢
99"(%) _, (5.10-12)*
00¢

" (0) _ 003 (1,) 07" (1) _ %(&){ﬁﬂl_ a) ﬁ-ﬁ"(m} (5.10.13)
oR'(1,) 07'(t,) OR'(1,) c c c

() 0 (0) 070 _ (tA)F } (5.10-14)"

oR'(1,) or'(t) or'(c) Y e
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") :_¢IZEF (tA) l_d;(tk)+ﬁ'§n(tk) (5.10-15)*
) ¢ c |
of"(t) __ Prer ) (5.10-16)*

adi(t,) e
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5.11 Two-Leg GPS Pseudorange Measurement Model

This section provides the computational algorithms for one-way range measurements transmitted
by a GPS SV, received and retransmitted by a relay satellite, and received by a ground station.
These measurements are referred to as “Two-Leg GPS” pseudorange measurements in GEONS.
The general form of the measurement model is as follows:

Yk =G [X(tk), tk] + ¢ (511-1)

where #; is the true measurement time, referenced to UTC, and ¢ is the measurement error. It is
assumed that & has a zero-mean Gaussian distribution with standard deviation o, which is
commandable for each measurement type. The measurement standard deviation is typically
determined through analysis of the random component of the measurement error as part of the
filter tuning process.

For GEONS, the associated estimation state vector, X(¢) includes the receiver position vector, R

; velocity vector, R ; optional corrections to the drag and solar radiation pressure coefficients, AC,
and AC,; receiver time bias, bg; and receiver time bias rate, d ,, for one or more receivers. There

are no two-leg GPS measurement bias parameters in the estimation state vector.

Note that the timetag for the two-leg GPS pseudorange should be the signal reception time
measured at the GS. However, in the current implementation of the two-leg GPS pseudorange
measurement model, the timetag associated with the & measurement is the UTC receive time of

the signal at the local receiver as measured with respect to the spacecraft/receiver clock, ¢ .

This is a simplification made for a preliminary implementation to evaluate expected performance.

Assuming that the forward-link L-band signal is transmitted from GPS SV j at time ¢, received
at the local receiver n at time #, retransmitted with delay A¢2¢ due to signal processing on the relay
satellite, and received at GS m at time ¢G5 with delay Azgs, the two-leg GPS pseudorange is modeled
as follows:

SR;GM () =c-(tgs—1;) = Pgiém (7)) + pg’/in () +by" (1) —dy" (t,)At;

5.11-2)*

+0p,,, (t;)+ c(AtzG + Al )— c(é'tsf + ot gF ) ( )
pg;i?im (tk) :‘EGS”I (th)_Eji (tk)‘ (5.11-3)*
pcm;’jwj (1) = EAi”(tk)_EG/Wj (t7) (5.11-4)*

In the above equations, the subscript j indicates the j# GPS SV and the subscript m indicates the
m'™ GS. The timetag of the K" measurement, ¢, is equal to the value of the receive time, ¢ R(RC) at

the local receiver. In the presence of a spacecraft timing bias, the true receive time on the relay
satellite is given by
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t, =t -5t (5.11-5)

where ot, is the offset of the receiver’s timing reference from UTC, given by

n,i

Pes (t,) is the distance traversed by the signal from antenna i on the relay satellite to GS m where

EGSM (t;s) = position of the receiving GS m at time f,,. The position vector of the
transmitting GS is transformed from ECEF coordinates to J2000.0 inertial coordinates at the time
tcs using the transformations defined in Sections 3.2.1 through 3.2.3.

R (t,) = position of the ith receiving antenna on relay satellite n at time #, which is
computed using Equation 3.2-61 in Section 3.2.8.
In the current preliminary implementation, this signal receive time on the relay satellite is assumed
to be known; however, actual two-leg GPS measurements would be timetagged with the time of
reception at the ground station and the time of signal transmission from the relay would be

computed using the Newton Raphson iterative scheme defined for the spacecraft-to-GS segment
in Section 5.6.4.

p,. denotes the distance between the position of the j# GPS SV at the signal transmit time
J

and the position of receiver n’s i antenna at the signal receive time # where

R, (t;) = position of the the transmitting GPS SV j at the transmission time ¢, , which is

computed based on #, using the Newton-Raphson iterative scheme defined in Section 5.3.3.

The receiver clock bias b," () is computed using the estimated parameters b,"(,) and b,"(t,)
, as defined in Equation 4.3-14a and 4.3-14 of Section 4.3.

The atmospheric delay, dp,,, (¢;), is not currently implemented. The last two terms on the right-

hand side of Equation (5.11-3) represent the total SV time correction, which is computed using
Equations 3.3-10 or 3.3-11 (for single and dual frequency GPS users) and Equation 3.3-12 (only
for single frequency GPS users) in Section 3.3.2 evaluated at the signal transmit time #,.

Note that the linearization correction to account for the offset of the true UTC receive time from
the UTC filter state epoch, e.g. see Equation 5.3-19b and 5.3-19c, is not implemented for the two-
leg GPS measurements.

The matrix (a row vector in this case) of partial derivatives of the pseudorange measurement with
respect to the estimation state vector, X (¢, ), is defined as follows:

M, , (1)
1@y, = &) (5.11-6)
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The partial derivatives with respect to those parameters that are not explicitly included in the
pseudorange measurement equation will be zeros. The following are the only nonzero elements if
the state vector consists of absolute states for both the local and remote satellites:

am;cm () B ﬁpg’;w/ (%) N 5,03;”1/ (%)

20 _ o - (5.11-7)*
R'(t,) R"(t,) R,
amﬂ t n
QGJ_m( k) :1_ dR (tk) (511-8)*
b, (1) ¢
OR% (4)
ZG;,m ko _ —At! (5.11-9)*
aly (t,)
where
‘ . _ T
apit, (1 R, (t)=Rg,y (t7)
pi/nW-'(k)z 4 0~ o, (5.11-10)*
R"(t,) Paciw, (%)
n,i n R !
é’p_G:Zm () _ RGSm (tGi?_RAi (%) (5.11-11)*
AR"(t,) Pas, (%)

The superscript 7" on the right-hand sides of Equations (5.3-28b) through (5.3-28d) denote the
transpose, indicating that these partial derivatives are given as row vectors.
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Section 6. Real-Time State Propagation

The GEONS real-time state propagation function takes the near-real-time output of the GEONS
filter and propagates it forward to a requested time. Figure 6-1 illustrates the relationship between
the GEONS filter and real-time prediction processes for a filter execution frequency of 10 seconds.

Section 6.1 defines the algorithm used to propagate the user position and velocity filter estimates
to real-time. Section 6.2 provides the simplified acceleration model used in the real-time
propagation.

6.1 Real-Time Propagation Algorithm

The real-time propagation algorithm is defined as follows:

Sequence: Shown in Table 6-1 for a filter execution frequency of 10 seconds
Integrator: 4th-order Runge-Kutta defined in Section 4.2

Accelerations included: Central body point mass and Earth J> zonal harmonic when the
central body is the Earth

where

R and I;QC = user position and velocity vector in the central-body mean of J2000.0

coordinate frame

R, and R = real-time user position and velocity vectors in the central-body mean of
J2000.0 coordinate frame

6.2 Real-Time Propagation Acceleration Model
For real-time propagation, the spacecraft acceleration, a , includes the following components:
e QGravitational acceleration (point-mass contribution) due to the central-body mass (Z)

¢ Gravitational acceleration due to the oblateness of the Earth’s gravitational potential, if
the Earth is the central body (@)

The acceleration, a, is expressed in terms of these components as

_ |ay +a,; centralbody= Earth
a=q _ 7 (6.2-1)*
a.; central body # Earth
The central body point mass acceleration is computed as follows
R,
a, =—tc=c (6.2-2)*
RC



where

u. = gravitational constant of the central body

Section 4.1.2 of this document discusses the computation of the complete nonspherical
gravitational acceleration. The acceleration due to the oblateness of the Earth’s gravitational

potential is obtained by including only the effects due to the C' term in the computation. In this

case, the TOD components of the acceleration vector, defined in Equations (4.1-55) through
(4.1-57), reduce to the following:

v, Ay
X = 1NWs _ W'Z (6.2-3)*
r or X2 +y2 od
10y, z v, J
Vs ="~ =y (6.2-4)*
’ [’” or riyx+y* 0

10 Ax?+ 0
ENS—(r W'ZJ > y A (6.2-5)*

or 00

The partial derivatives of the oblateness portion of the Earth’s potential with respect to » and ¢
are given by

TN
a;’_d)h: 3“715(?)2(33 cos¢sin ¢ (6.2-7)*
where
sin¢ =f (6.2-8)*
cosd = —“xz+yz (6.2-9)*

r

The TOD components of the Earth’s J2 acceleration are then transformed to the mean of J2000.0
reference frame using Equation (4.1-39).
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Time

GPS
Measurement GPS GPS
(Data Collection Measurement Measurement
1 per second)
GEODE Filter
GEODE Filter (Background GEODE Filter
Processing 1 per
10 seconds)
Real-Time
Real-Time Real-Time Propagator
Propagator Propagator (Foreground Proces-
sing 1 per second)
t.— 10 seconds t t,+ 10 seconds t,+ 20 seconds

1 Oth

t,+ 11 seconds eee [;+ 20 seconds

N

Most current output from
GEODE, available for use
by Real-Time Propagator

Propagation performed by
Real-Time Propagator
between spacecraft clock time
t;+ 10 seconds and t; + 11 seconds

\/

Propagation performed by
Real-Time Propagator

between spacecraft clock tin

L, + 19 seconds and t; + 20 sec

Figure 6-1. GEONS Real-Time Interface Sequence
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Table 6-1. Real-Time State Propagation Sequence

Current Spacecraft Time

Action

System Component*

t

GPS measurement

GPS Receiver

t;+ 1 second to #; + 10 seconds

Propagate:
R;_1(+) to R; (-)
Ri_4(+) o R;(-)

If GPS measurement is selected, process
measurement and update state:

Ri(-) > Ri(+)

R(5) - R(+)

GEONS Filter

t;+ 10 seconds to #; + 11 seconds

Propagate:
R; (+) to R(z; + 11 seconds)

72,»(+) to fe(r,- + 11 seconds)

GEONS Real-Time
State Propagator

t;+ 11 seconds to #; + 12 seconds

Propagate:

E(ti + 11 seconds) to ﬁ(ti + 12 seconds)

ﬁ(t,- + 11 seconds) to f?(t,- + 12 seconds)

GEONS Real-Time
State Propagator

GEONS Real-Time
State Propagator

t; + 19 seconds to #; + 20 seconds

Propagate:

R(t; + 19 seconds) to R(t; + 20 seconds)

f?(ti + 19 seconds) to ﬁ(t,- + 20 seconds)

GEONS Real-Time
State Propagator

*For illustration purposes, the GEONS Filter sequence shows only position and velocity vector propagation

and update; it does not show the propagation and update of other state vector elements and the state error
covariance matrix.
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Section 7. Doppler Compensation Prediction

This section provides the algorithms used in computing the predicted Doppler shift and creating
the associated frequency control word (FCW).

Onboard Doppler Compensation (OBDC) involves calculating the predicted frequency shift of
the forward-link GS or TDRSS signal due to user spacecraft dynamics. By offsetting the
receiver’s center frequency appropriately, the Doppler shift due to user spacecraft dynamics can
be compensated to assist user acquisition of the GS or TDRSS signal. Assuming fixed radiated
carrier frequency (RCF) operation, OBDC can be performed autonomously by the user
spacecraft.

GEONS computes FCWs for all GSs or TDRSs visible to the spacecraft at the next real-time
state output time, nominally as part of the real-time state prediction function, which is typically
executed every 1.0 or 1.024 seconds. GEONS outputs these FCWs ordered in terms of increasing
GS/TDRS-to-satellite range. Selection of the FCW to send to the receiver would be performed
by a receiver control function in the spacecraft primary computer. If FCWs are needed at a
higher rate than every 1.0 or 1.024 seconds for the receiver to achieve carrier lock, the
spacecraft's receiver control function could use a linear interpolator to compute intermediate
values. Section 7.1 discusses the algorithm used to identify the visible GSs. Sections 7.2 and 7.3
present the algorithms used to compute the GS and TDRSS FCWs, respectively.

7.1 GS Visibility Test

GEONS identifies which GS(s) are visible at time ¢ using the following procedure.

The instantaneous line-of-sight vector from the satellite to each GS in the GEONS GS catalog is
computed as follows:

p'=R(1)-Ris (1) (7.1-1)*
where

R(t)

position vector of the satellite at time ¢, referenced to the Mean of J2000.
inertial reference frame

Ris(t) = position of the i GS at time ¢, referenced to the Mean of J2000. inertial
reference frame

The position vectors for each GS are available in ECEF coordinates. The GS position vector is
transformed from the ECEF frame to the J2000.0 reference frame using the transformations
defined in Sections 3.2.1 through 3.2.3.

Visibility is determined based on whether the elevation angle, E, of the line-of-sight vector with
respect to the local horizon is greater than a minimum elevation angle, £, . Figure 7-1

illustrates a visible (A) and not visible (B) case. The GS is visible if the following is true:
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sinE >sink, ; (7.1-2)*

where E is a commandable minimum elevation angle within the 0 to +90 degrees range,

min

E i, and E are positive above the local horizon and negative below the horizon, and

min

P Rs(0)

simnf =———
P'[[Rés 0

(7.1-3)*

User S/C

User S/C

Case A:sin E>sin E i, Case B: sin E<sin E

minyis

Figure 7-1. Line-of-Sight Visibility Cases

7.2 GS FCW Computation

FCWs are computed for all GSs that pass the visibility test defined in Section 7.1. If no GS
passes the visibility test, a zero FCW is output.

The following algorithm is used to compute the predicted instantaneous frequency offset of the
GS’s Doppler-shifted RCF with respect to the receiver’s frequency reference:

_[ﬁ_ﬁg}'[f?_ﬁav]
o|R - R

fD(t):{l :lchF _fref (1) (7.2-1)*
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where

f,(t) = predicted frequency shift at time 7 in Hertz

R = satellite position vector at time ¢

R = satellite velocity vector at time ¢
R,, = ground station position vector at time ¢
R, = ground station velocity vector at time ¢

¢ = speed of light

Sfrer = GS radiated carrier frequency in Hertz (a commanded parameter nominally
equal to 2106406250 Hertz)

[, (t) = Doppler frequency reference at time ¢ [defined in Equation (5.6-20)]
The formula for computing the frequency control words is then given by
t
FCwW = So® (7.2-2)*
where
f.. = frequency resolution of the receiver FCW in hertz per bit (a commanded

parameter)

For input the receiver, the interface driver must convert the FCW to the appropriate serial
command format.

The receiver uses the FCW to adjust its receive frequency. The receiver frequency will be offset
by this FCW according to the following equation:

Jouw =Fep +(FCW x [, )= Fo, + [,,(2) (7.2-3)
where
f.. = receiver output frequency
F.. = receiver’s assigned center frequency, nominally equal to 2106.406250
megahertz

f... = frequency resolution of the receiver FCW, in Hertz per bit

GEONS outputs these FCWs and the associated GS identifiers ordered in terms of increasing

GS-to-satellite range, |p’

, where the line-of-sight vector p’ is defined by Equation (7.1-1).
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7.3 TDRSS FCW Computation

FCWs are computed for all TDRSs that pass the visibility test defined in Section 7.4. If no TDRS
passes the visibility test, a zero FCW is output.

The following algorithm is used to compute the predicted instantaneous frequency offset of the
TDRS’s Doppler-shifted RCF with respect to the receiver’s frequency reference:

[R - Ripps ; ] [Ri ~ Rypps ; ]+ [RTDRS i RTGT, ] [RTDRS,. - RTGTj ]
‘Ri ~ Rypps ;

Ripps ;o RTGT_,

Jo @ = frer|1- _f;gf(t)(7'3_1)*

C C

where

f,(t) = predicted frequency shift at time 7 in Hertz

R’ = receiving satellite i position vector at time ¢
R = receiving satellite i velocity vector at time ¢
R, s = TDRS; position vector at time ¢
R, = TDRS; velocity vector at time ¢
R,.;, = position vector of TGT ground antenna associated with TDRS ; at time
R,.;, = velocity vector of TGT ground antenna associated with TDRS ; at time

¢ = speed of light (meters per second)

frer = TDRS radiated carrier frequency in Hertz (a commanded parameter
nominally equal to 2106406250 Hertz)

S, (t) = Doppler frequency reference at time ¢ in Hertz [defined in Equation (5.9-22)]

The formula for computing the frequency control words is then given by

Fow = 2o@ (7.3-2)*

where

f.. = frequency resolution of the receiver FCW in hertz per bit (a commanded
parameter)

For input the receiver, the interface driver must convert the FCW to the appropriate serial
command format.
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The receiver uses the FCW to adjust its receive frequency. The receiver frequency will be offset

by this FCW according to the following equation:

Jor =Fer +(FCW X f ) =Fop + [,(0)

where

f.. = receiver output frequency

F,

CF
megahertz

f.. = frequency resolution of the receiver FCW, in Hertz per bit

(7.3-3)

receiver’s assigned center frequency, nominally equal to 2106.406250

GEONS outputs these FCWs and the associated TDRS identifiers ordered in terms of increasing

TDRS-to-satellite range.

7.4 TDRS Visibility Test

GEONS identifies which TDRS(s) are visible at time ¢ using the following procedure for each

TDRS.
a. Verify that the TDRS is not occulted by the Earth. Compute the distance

L o)
d:‘d‘: RTDRS/ - xxx#
where
X=R _ETDRS,
and
_TD RS, TDRS j position vector at the measurement time
R = receiver position vector at the measurement time
X = magnitude of x

(7.4-1)*

(7.4-2)*

The TDRS is not occulted if d>R, [case (a) in Figure 7-2], where R, equals the mean equatorial

radius of the Earth.

If d<R, [case (b) in Figure 7-2], compute
8=x'—(R, ) —d*
where
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xR
x= (7.4-4)*
X

If x < 6, the TDRS is not occulted. Otherwise, the TDRS is not visible.
b. Verify that the signal path is within the TDRS antenna field of view. For each TDRS,

compute the angle

RTDRSj j (74_2)*

4] x
B=cos™| —-
X RTDRS].

is a commandable parameter. For multiple access

If B<B,.., the TDRS is visible, where B, ..
users, the field of view is £13 degrees with respect to the nadir vector. For single-access users,

the field of view is £22.5 degrees East-West and +31 degrees North-South.
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USER S/C

a. d=Ry

RAY PATH IS ABOVE
THE EARTH

USER S/C

b. d<R,

RAY PATH PASSES THROUGH
THE EARTH

Figure 7-2. TDRS Visibility
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Section 8. Averaged Orbital Element Ephemeris

As part of the GEONS fault detection process, the difference between the estimated state vector
and a comparison state vector is computed and tested against a commanded tolerance to detect
degradation in GEONS performance prior to filter divergence. In addition, this comparison state
vector can be used for (re)initialization of the GEONS state estimation process. This section
provides an averaged ephemeris method that can be used to provide a comparison state vector if
another source (e.g. GPS point solutions) is not available.

Section 8.1 describes the overall procedure for computing the averaged state vector. The
algorithm for computing the reference averaged equinoctial elements and equinoctial element
rates is given in Section 8.2. The transformations between equinoctial elements and spacecraft
position and velocity are defined in Section 8.3.

8.1 Computation of the Averaged State Vector

The averaged state vector i1s computed using a set of reference averaged equinoctial elements and
equinoctial element rates. The reference averaged equinoctial elements and equinoctial element
rates can be computed using state vectors from two orbital periods previous to the current period,
as presented in Section 8.2. Alternatively, reference averaged equinoctial elements and
equinoctial element rates could be uplinked to the spacecraft. The equinoctial system, defined is
Section 8.3.1, was selected because all of its elements are slowly varying for any orbital
eccentricity and inclination.

The averaged state vector at the request time, #, is computed as follows

a. Compute the averaged equinoctial elements at the request time, z., as follows

t)=E2+E> M (8.1-1)*

|

) = vector of averaged equinoctial elements (E,Z,lg,ﬁ,q_j) evaluated at the
request time #.
E> = vector of reference averaged equinoctial elements associated with the

reference time trj

E? = vector of reference averaged equinoctial element rates associated with the

. -2
reference time ¢,

t, = reference time for the reference averaged equinoctial elements computed over

the next-to-last orbital period
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At = te—t,,

b. Compute the averaged state vector by converting the averaged equinoctial elements at
the request time to position and velocity using the transformation provided in Section
8.3.2.

8.2 Computation of Reference Averaged Equinoctial Elements and
Rates

Reference averaged equinoctial elements are computed over each successive spacecraft orbital
period as follows:

N
LZE[(tO +ndt), i=1,5
N+1:5 (8.2-1)*

(Eg)py =Met,y)

0
(Ei )ref =

where

E' , = reference averaged equinoctial element vector (Z,E,lg,ﬁ,ﬁ,ﬁ associated

with the current reference time ¢,,,

t.. = reference time for new set of reference averaged equinoctial elements, equal

to the center of the averaging interval

t, = time of the first point in the current summation interval

E.(t) = component of osculating equinoctial element vector at time t obtained from

the osculating position and velocity vectors (R(?), I;Q(I))using the
transformation given in Section 8.3.3

N = number of osculating equinoctial element sets included in the summation

ot = time interval between successive osculating equinoctial elements included in

the summation, a commanded parameter typically 1.0 or 1.024 seconds

The value of N is chosen so that the average is performed over one spacecraft orbital period, P,

to within <1.024 seconds:
N = 2| int £ (8.2-2)*
29t

8-2



where

(8.2-3)*

and

= gravitational constant of the Earth

=
=
|

a,, = reference averaged semimajor axis associated with previous set of the
reference averaged equinoctial elements
The averaged equinoctial element rates for the semimajor axis, @, and mean longitude, A, are

computed as follows using the averaged semimajor and mean longitude computed over the
current and previous orbital periods

0 0 71
Argp = e

(8.2-4)*

0 -1
= P Tyt 2“]
ref ref
The rates for the remaining reference averaged equinoctial elements are assumed to be zero.

To minimize the amount of data that must be stored onboard, the summation in Equation (8.2-1)
is accumulated incrementally. Note that the algorithm must be restarted following a spacecraft
maneuver. The algorithm is as follows:

For n =0, first execution:

a. Set the initial value of 7, equal to the current osculating state vector time tag

b. Convert the predicted osculating position and velocity at time 7, to equinoctial

elements using the transformation in Section 8.3.3, and initialize the summation for
elements 1 through 5

SUM; =E,(t,)

c. Compute N and ¢,

3
p=2r |2 (Z)
We
N =2| int p+or
20t
;o Not
ref — "0 7



For O<n<AN:

Convert the predicted osculating position and velocity at time ¢, +nd¢ to equinoctial
elements and continue to accumulate the summation for elements 1 through 5:

SUM; = SUM; + E (t, + not)
For n=N:

a. Convert the predicted osculating position and velocity at time ¢, + Not to equinoctial

elements
b. Complete the summation for elements 1 through 5
SUM; = SUM; + E (t, + Not)
c. Compute the reference averaged equinoctial elements using Equation (8.2-1)

1
0o _ .
(B =~ SUM,, i=1,5

(E6 )gqf = }\‘(tref )

d. Ifthis is the first time reference averaged equinoctial elements are computed, set

o _ 2m
NSt

Otherwise, compute the reference averaged equinoctial element rates using Equation
(8.2-4):

_ 0 Al

= Py Ty +2“]

ref ref

e. If this is not the first time that reference averaged equinoctial elements and
equinoctial element rates have been computed, update the saved values for the
reference averaged equinoctial elements and equinoctial element rates for the next-to-

last orbital period




Update the saved values for the reference averaged equinoctial elements and
equinoctial element rates for the last orbital periods

0 -1

By > E,

=0 -1
Eref - Eref

N

lp = Ly

f. Compute N for the next orbital period average using Equations (8.2-2) and (8.2-3),

N =2 in £+
260

g. Update the value of ¢, for the next orbital period where ¢, is the first time point in the

next averaging interval, equal to the last point in the last averaging interval
tref = ZLO +—

h. Initialize the summation for » =0, i = 1 through 5 for the next orbital period average
SUM;=E (t,)
Note that only the current value of N and the reference averaged equinoctial elements and rates
over the previous two orbital periods must be saved onboard.
8.3 Equinoctial Element Transformations

This section provides the algorithms used to transform between the equinoctial elements and
position and velocity. Section 8.3.1 provides a definition of the equinoctial elements. Section
8.3.2 discusses the transformation from equinoctial elements to Cartesian coordinates and
Section 8.3.3 discusses the transformation from Cartesian coordinates to equinoctial elements.

8.3.1 Definition of Equinoctial Elements

The equinoctial elements are defined as follows:

a semimajor axis

h = projection of the eccentricity vector & on the y  axis

k

projection of the eccentricity vector e on the X, axis

= projection of the nodal vector N on the y,, axis

i
|
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where

N

=l

projection of the nodal vector N on the X,, axis

mean longitude

eccentricity vector pointing in the direction of the X, axis (perifocus) and
having a magnitude equal to the orbital eccentricity

nodal vector pointing in the direction of the ascending node and having a
magnitude equal to tan(i/2), where i denotes the orbital inclination and j=+1
for direct orbits and -1 for retrograde orbits

The equinoctial system, which is denoted by xep, yep, and zep, has its X, axis (principal direction)

directed toward the “origin of longitudes.” The “origin of longitudes” lies in the plane of the
orbit and is displaced by the angle Q from the ascending node N , where Q is the right ascension
of the ascending node. Unit vectors along the coordinate directions, Xep, Vep, and zep, are denoted

by f , &,and w, respectively. The equinoctial system is illustrated in Figure 8-1. In this figure,

X, J,and Z indicate the inertial coordinate frame.

A
A z

Zep A

i
Orbit Plane
X A
Equatorial o XV - Yep
Plane —pm ~ \
/ A A
\ >
/
\ . \ Y
~_ /LS Perifocus
A \
X Q \ A
Vernal ® X
Equinox Q ‘ .
A —_
Xep N
Origin of Line of Nodes
Longitudes

Figure 8-1. Equinoctial Coordinate System



8.3.2 Transformation From Equinoctial Elements to Cartesian Coordinates

Conversion from equinoctial elements, E(t)= (a, h, k, p, g, A), to inertial Cartesian coordinates,

R(¢) and R (?), is performed in the following manner. First, the generalized Kepler equation for
the equinoctial elements,

A=F+hcosF —ksinF (8.3-1)*

is solved for the eccentric longitude F, which is the sum of the eccentric anomaly, the argument
of perigee, and the right ascension of the ascending node.

This equation is solved by the following iteration scheme:

f(F,)=F, +hcosF, —ksinF, -\ (8.3-2)*
D, =1-hsin[F, —05f(F,)] - k cos[F, —05/(F,)] (8.3-3)*
F
= F, = /I5) (8.3-4)*
Dn
where
F,=A—hcosA + ksinA (8.3-5)*

Next, the position and velocity coordinates in the equinoctial coordinate system (xep, Vep, Zep) are
obtained as follows for the direct and retrograde cases:

X, = a[(l — h*B)cos F + hkPsin F — k] (8.3-6)*
Y, = a[(1- k*B)sin F + hkf cos F — h] (8.3-7)*
X, = ”;2 [Ahp cos F — (1 h*B)sin F] (8.3-8)*
Y = ”;’; [(1- k*B)cos F — hk sin F] (8.3-9)*
where
: (8.3-10)*

B=
1+41-h" - k°
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The transformation from the equinoctial system to the inertial Cartesian system is given by
R=X[f+Y$ (8.3-11)*
R=Xf+7g (8.3-12)*

where [ and g are unit vectors directed along the X, and p, axes, respectively. These vectors

in inertial Cartesian coordinates are as follows:

1 I-p"+q’ 2pqj 2p
[/ & wl=—"——=| 20  (+p -4’ 24 (8.3-13)*
l+p° +¢ ' i N
—2p 2q (1-p° —q*)j
where
j = 1 for direct orbits (0 < i <90 degrees)

j = -1 for retrograde orbits (90 <i < 180 degrees)

In the GEONS, the operational choice of direct or retrograde elements is an input option.

8.3.3 Transformation From Cartesian Coordinates to Equinoctial Elements

Conversion from inertial Cartesian coordinates, R(#) and R(f), to equinoctial elements, E (¢) =

(a, h, k, p, g, 1), 1s performed in the following manner. The semimajor axis is computed as
follows:

, -1

) R
a=|=-— (8.3-14)*
R p,

where £ is the gravitational constant of the Earth.

The mean motion is given by

n= |t (8.3-15)*
a
and the eccentricity vector is given by
g R _RXR)xR :L[(Rz _“_Ejﬁ_(ﬁ.fe)ﬂ (8.3-16)
R My Moy R
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The unit vector w is defined as

The unit vectors f and ¢ can then be computed as follows:

A w? ww
=|1- X - —w
/ { l+w.j l+w.j XJ}

g=wxf
The equinoctial elements 4, &, p, and g are then given by

h=¢-8

Q|

>

N
I
ol

w

X

P:1+sz

Wy

I+w_j

The mean longitude is computed using the generalized Kepler equation

A=F+hcosF —ksinF

F=tan"' ( sinFj
cos F

(1- k*B)X, — hkBY,

where

with

cosF=k+

aN1—=h* = k2

1-4°B)Y — hikBX
sinF=h+( PY, pX,

aN1-h> =k’
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(8.3-19)*

(8.3-20)*

(8.3-21)*

(8.3-22)*

(8.3-23)*

(8.3-24)*

(8.3-25)*

(8.3-26)*
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and
1

B=
1+41-h" - k?

Finally, the position and velocity coordinates, relative to the equinoctial coordinate system, are
given by

(8.3-28)*

X =R-f (8.3-29)*
Y=R-% (8.3-30)*

8.3.4 Transformation From Keplerian Elements to Equinoctial Elements

Conversion from the classical Keplerian elements, (a,e,i,Q2,®,M), to equinoctial elements,
E(t) =(a, h, k, p, q, 2), is performed in the following manner:

a=a

h = esin(o + ()

k = ecos(ow+ )

NN/

p:(tan(%jj sin Q2 (8.3-31)*
Y

=|tan| — || cosQ

! ( @]

A=M+o+Q)

where

j = 1 for direct orbits (0 <i <90 degrees)
j = -1 for retrograde orbits (90 <i < 180 degrees)

In the GEONS, the operational choice of direct or retrograde elements is an input option.

At the time of perigee passage, 1,, M =0 and A=0+Q.
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Section 9. Orbit Control Algorithms

This section provides a generic maneuver targeting algorithm that can be used to compute a
change in velocity needed to reach a desired target orbit, i.e. to compute a direct transfer orbit
maneuver. This algorithm is appropriate for computing intercept maneuvers (employing a single
impulsive burn) and rendezvous maneuvers (employing two impulsive burns). One specific
application for this capability is the computation of rendezvous maneuvers that will return a
satellite to its correct location in a formation. This section also includes more advanced
formation control algorithms developed by GSFC personnel.

Section 9.1 discusses the generic maneuver targeting algorithm. Section 9.2 presents the
advanced formation control algorithms.

9.1 Generic Maneuver Targeting Algorithm

Figure 9-1 illustrates the geometry of the two maneuvers associated with the rendezvous
problem. The intercept problem requires only the first of these maneuvers. Given two position

vectors [the satellite location at the desired maneuver start time, to,(l? (to)) and the target

trajectory location (ET (t f)) at the desired maneuver end time, 7, ], the Lambert targeting

algorithm gives the initial velocity (I;QMS (to)) that will generate the transfer trajectory connecting
the two positions (17 (ty)and R, (¢, )).

V(tf) Rtrans(tf)

Figure 9-1 Geometry of Rendezvous Targeting Problem

Since the Lambert problem is defined in a two-body (i.e. the satellite and the central-body)
environment and the optimum time of flight is not known, the targeting algorithm is performed

iteratively to compute both the Al7(to) required for the initial insertion into the transfer
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trajectory and the Al7(tf) required for insertion into the target trajectory from the transfer
trajectory. Figure 9-2 provides an overview of the Lambert targeting algorithm implemented in
GEONS.

Input Update TOF
< At + Step size

tO’E(tO)aE(tO)5 Er(tf)rﬁr (tf)a lf’ €

v

{1} Initialize:

Etf{ms(to) = ﬁ(to)a ETL (Zf) = Er (tf)

23 Lambert Problem Solver
RrLans(tO )’ Elfans(tf) for R‘fanx(to) - I?t;ljans(tf)

v

Condition
If Av =180+8v degrees

A

B3} Compute AV (1,)=R" (t,)-R(1,)

1rans
J _

4 GEONS Propagate
TranSfer State: (ﬁtram(t() )’ Etrans(to )ﬁé (ﬁtran.v(tf)i’ Emn.v(tf))

v

Condition (Earth Collision)
If R, <R, (userspecified collision radiuQ

5} Targeting Position Error
) AE:Rruru(t/’)_ET (t/)

|
Condition 6} New Target
If[AR|>e [] B/ () =R/ (t,)-AR

|
Condition = {7} Co mpute
If [AR|< ¢ = = =

| _\ AV(tf) = RT (tf) - Rrranx(t/')l

Figure 9-2 Overview of the Lambert Targeting Algorithm
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Because the solution method presented in Section 9.1.1 uses classical f and g functions to
represent the two-body transfer trajectory, the Lambert problem must be solved in the central-
body coordinate frame. If the central body is not the Earth, the current GEONS ECI state vector
must be transformed to the central-body frame as discussed in Section 3.2.11. The details of the

targeting algorithm are as follows, with inputs #,, R (to),l;? (¢,), and tf,I?T (tf),l;?r (¢,) referenced

to the central-body frame and the convergence tolerance ¢ :

1.

2.

Initialize R (1) =R(t,), R;(t;)=R,(t,).

Solve the Lambert problem in the central-body frame to determine the initial and final

velocity (RE, (t,),R: (¢ ,)) of the transfer trajectory from the satellite position at ¢,

(RE (t,)) to the target position at time t, (R, (t,)=R(t,)). The solution method is

trans trans

provided in Section 9.1.1. If a solution cannot be computed (e.g. Av =180+ dv degrees
or initial and target orbits are normal), exit this procedure.

Compute the change in velocity required for the initial insertion into the transfer
trajectory AV (t,) =R} (t,)—R(t,).

trans

Propagate  the  transfer  trajectory  state from the maneuver time
(Rtrans (tO) = R (tO )’ Rtrans (tO) = R :

trans

(t,)] to the desired target orbit insertion time,

1, =t,+At to obtain (I?,mm (tf),lzmm (tf)). Determine if the transfer trajectory will

impact the central body using the procedure defined in Section 9.1.3. If collision occurs,
exit this procedure.

Compute the targeting position error: AR =R, (¢ P R, (t )

If ‘Aﬁ ‘ > ¢, adjust the Lambert target position to R, (¢,)=R; (1,)— AR and repeat the

process starting at step 2. Figure 9-3 illustrates this iterative process. Exit if the maximum
number of iterations is exceeded.

If ‘Aﬁ ‘ < g, compute the change in velocity required for insertion into the target trajectory

from the transfer trajectory AV (t )= I;QT (t,)- I;thm (t,).

A series of calculations using different times of flight is needed to determine the time of flight

that requires the minimum AV(ZO) . In general, the AV(IO) is larger if the time of flight is longer

than one satellite orbit.
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Etrans(tf)

\\4— Initial Transfer Trajectory

\V7 Target Trajectory

,'Id—/é Initial Trajectory
Figure 9-3 First Iteration of the Lambert Targeting Problem

9.1.1 Solution to Lambert’s Problem

In Lambert’s problem, two position vectors and the time of flight between them are known but
the orbit between the endpoints is not known. Many different solutions to this problem have been
developed. Section 6.7 of Reference 31 provides a detailed discussion of several solution
methods.

The solution method presented in this section, uses classical f and g functions expressed in terms
of universal variables to represent the two-body transfer trajectory between the two position
vectors. Consequently, the solution must be computed in the central-body coordinate frame. The
f and g functions can be used as follows to propagate a satellite state vector using two-body
dynamics:

R(t)= fR(t,) + gR(t,)
R() = fR(t,)+ R (t,)

Computation of the f and g functions is discussed in Section 9.1.2.

(9.1-1)

The followmg algorithm is used to solve the Lambert problem to determine the velocity

( Rtram

(), RL (1)) of the transfer trajectory given the satellite position and velocity at 7,
(Rms (t,)=R(t,)and R(t ) ), the time of flight (A7), and the target position at time ¢, =, + At

( trans

in true anomaly (v ) <180 degrees (for which 7, =1 below) and (2) the long way for which the
change in true anomaly (Av) >180 degrees (for which ¢, =1 below). The special case of
Av =180 degrees cannot be solved using this method.

(¢,)). Two distinct solutions exist corresponding to (1) the short way for which the change

1. Determine value for ¢, that will require the minimum velocity change. The short way
should be used when the normal vector to the initial orbit plane, ]VO, and the normal

vector to the transfer orbit plane, N,

trans

are in the same direction. The long way should
be used when the normal vectors are in the opposite directions:
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Mo = R () R(ty)
Ntmm tiam (t ) X Rtranv (t )

IfN,-N,,, >0,useshort way (¢, =1) (9.1-2)
IfN,-N,,. <0,uselong way(t, =~1)
If N,-N, . =0,solution cannot be computed because the orbits are normal

2. Use the universal variable approach provided in Section 9.3 to compute the functions
f,g,and g for the transfer trajectory from R" (z,) to R" (t,+At)=R" (z,), for

the selected value of ¢, and Ar.

3. Compute the velocity of the transfer trajectory at times ¢, and 7,

(t,)- /R, (&)

];z L (t() ) trans trans

trans
gR: (¢)-R. (1)
g

(9.1-3)

( t ) trans trans
t) ans -

9.1.2 Computation of f and g Functions

Using f and g functions, the transfer trajectory state vector at time 7, can be expressed in terms

of the transfer trajectory at time ¢, as follows:

nam(f) fRnam( )+gRL ( )

trans (9.1-4)
L) = RE (1) +ER”, (1)

tl ans trans

Several different representations for the f and g functions are available. Section 4.3.1 of
Reference 31 and Sections 4.5, 4.6 and 9.7 in Reference 32 discuss these functions in detail. The
universal-variable formulation was selected because it provides a single set of equations for all
the conic sections.

Reference 31 shows that, for the case when the change is the true anomaly Av is known (as it is
in the Lambert problem), the f and g functions can be expressed as follows
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f=1-22

RO
f — VHCyn (_Rf _RO +yn)
R, R,A
(9.1-5)
g=A|"
He
: Y
g=1-=r
R,
where . is the gravitational constant of the central body and
RO = Etfans (to )‘
_, (9.1-6)
Rf = Rtrans (tf )‘
The value of A is determined as follows for either the short or long way:
A=1,|R,R,(1+cos(Av)) (9.1-7)
where
R" (t,))-R* (t
COS(AV) — trans ( O) trans ( f) (9' 1_8)
RyR,

For the special case A=0.0 (i.e. Av =180+ v degrees ), there is no solution using this method.

The value of the remaining variable in Equation 9.1-5 ( y, ), depends on the value of the variable
y that corresponds to the specified change in time, A¢. The value of y is determined iteratively

using the following bisection technique, which is more robust than the Newton-Ralphson scheme
for a wider range of orbits. This technique is performed by bounding the correct value of v and

picking a trial value of y that halfway between these bounds. Subsequent iterations successively

readjust the upper and lower bounds until the interval is tight enough to locate the correct value
of y.

The details of the algorithm are as follows with inputs R” (z,) and R’ (t,+A)=R’ (t,)

trans

referenced to the central-body frame, ¢,, and Az:

1. Determine the value of A as follows

R, =

trans

R (ty)
R, =

RE (t,+ Az)\
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RY (t,)-R* (t,+At
COS(AV) — trans ( 0) trans ( 0 )
RoR,

A=t, \/RfRO (1+cos(Av))
If Av =180= v degrees, exit the procedure; solution cannot be computed.

2. Set the initial values for the square of the change in the eccentric anomaly, (appropriate
for single revolution solutions, adjust initial bounds to solve for multiple revolution

cases) and c¢,,and ¢, :

y,, =4n’ (radians)’

v, =—4n’ (radians)’

y, =0.0
1

C, 3
1

=

3. Solve for the value of vy, that corresponds to the desired time of flight As using the

following iteration bisection technique:

a.) Compute y,

A(WncS — 1)

7

If 4>0.0and y, <0.0,readjusty,,, as followsuntil y, > 0.0

v, =R, +R/. +

l//low =l//low _Tcz
\|] _ \Vlow +\‘Vup

" 2

A -1
Y, = RO +Rf' +M
e
_ | Va
b.) Compute y, =
=)

c.) Compute the current time of flight based on the current values for
Y., %> C;and . (gravitational constant of the central body in meters®/second?)

_ %G+ Ay,

T ke

At
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d.) Compare the current time of flight to the desired time of flight

If |Atn - At| <107°, iteration has converged, proceed to step 4
If Az, — At >107°,
Adjusty, as follows

If At, <At,resety,,, = v,
If Az, > At,resety,, = v,

\l] _ \Vlaw + “I”up
n+l 2

\Ijn = \|In+1
Recompute ¢, and c; as follows
If v, >107°, (elliptical case)
I—cos4vy,
C,=———
v,
\ \ljl’l - Sin \ljl‘l
c, = -
V()

If v, <—10"°, (hyperbolic case)

_ l—coshy/-vy,
v,
L _sinhy-y, -y,
’ NESS

Otherwise, (parabolic case)

¢,

and repeat iteration procedure starting at step 3a.

4. Compute the f and g functions using Equation 9.1-5.

9.1.3 Central Body Collision Detection Algorithm

One of the most important factors that determine if a trajectory solution obtained for Lambert’s
Problem is usable is that the transfer trajectory does not intersect the central body. The standard
method of calculating a collision involves determining the flight-path angle and the radius of
perigee (R,). For computational efficiency, the flight-path angle will not be calculated; instead
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an examination of the behavior of the transfer trajectory between apogee and perigee will be
used to determine a possible collision. The algorithm listed below uses a series of dot products of
the position and velocity vectors to check if it is necessary to compute the R, to determine if the

transfer trajectory intersects the central body. Section 7.7 of Reference 32 provides the detailed
discussion of the collision detection algorithm listed below.

The parameters of interest are the following, expressed in the central body frame:

{Emns (to )’ ]?trans (tO )’ I?tmns (tf )’ ]?trans (tf )9 Rp }

The flight-path angle is the angular separation between the velocity vector and the local
horizontal plane. The sign of the flight-path angle is positive when the trajectory travels from
perigee to apogee and negative from apogee to perigee. The change in sign will be analyzed
using the dot products of the position and velocity at the start and end of the transfer trajectory
(maneuver period). The sign at the start and end of the transfer are used to determine if the
transfer orbit’s perigee occurred during the maneuver. The central body collision detection
algorithm is given below.

1. Compute the dot product of the satellite position vector R, (¢,) = R (¢,) and the velocity

trans

vector R

trans

(t,) atthe start of the transfer trajectory:

}_atrans (tO) ’ Emns (IO)

2. Compute the dot product of the satellite position vector R, (¢,)and the velocity vector

Izms (¢,) at the end of the transfer trajectory (end of the maneuver):

Emns (tf) ’ Erans (tf)

3. Determine if perigee occurs during the transfer and if the R, should be calculated.

Emns (t ’ I;QI‘LUIS t
a) If _t 0) _t ) Both Positive or Negative
Rtrans (tf) ’ Rtmns (tf )
perigee passage does not occur and collision is not possible.

b) If R, (t)- I;Qmms (t,) < O (satellite is headed towards perigee)
R, (t ) I;thns (¢,) > 0 (satellite is headed towards apogee)
collision is possible and the following collision test is performed:

Compute R, = all-e)

where
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2—1

Erans (tO )

j— 2 —

Erans (t 0 )‘ l’l C

e= azp
a
h z trans

p =

He
htrans = Erans (tO) x Ei‘ans (tO)

If R, < R.( a user specified collision radius), collision occurs on the transfer

trajectory.

9.2 Formation Control Algorithms

The GEONS software provides generic interfaces to support integration with user-provided orbit
and formation control software.
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Section 10. Cold-Start Initialization Algorithm

In low-Earth orbit (LEO), GEONS can be initialized using a point solution — i.e. an instantaneous
solution for position, velocity, and receiver time bias based on four or more simultaneous GPS
pseudorange and Doppler measurements. Point solutions are available from most GPS space
receivers. This is not the case in high-Earth orbits or highly elliptical orbits, where there are
rarely, if ever, sufficient satellites visible to compute a point solution. In these situations, a
different initialization approach is required.

This section presents a robust method, developed by the Colorado Center for Astrodynamics
Research (CCAR), that can be wused to provide a satellite state vector for
initialization/reinitialization of GEONS, when four or more simultaneous GPS measurements are
not available. This method processes a batch of pseudorange and/or Doppler measurements
collected over an orbital arc to compute an initial state estimate. This algorithm assumes
knowledge of nominal orbital elements, (e.g. a, e, i, ®, Q) and performs a search on the mean
longitude (Ainitial) to estimate the host satellite position within the orbit and the approximate
receiver clock bias and bias rate. Reference 33 discusses the development of this method and
presents the results of a simulation using this method, which includes large orbital uncertainties
and measurement errors.

10.1 Algorithm Overview

This method, which is based on an orbital element representation, uses the constraints of orbital
dynamics to narrow the range of possible initial conditions. The angular orientation of the orbit
(inclination, node, and argument of perigee), and the orbital energy are constrained by the
launch; whereas the position of the spacecraft within the orbital plane is poorly known. The
standard injection errors associated with the orbital elements can be estimated based on the
launch vehicle design and history.

In this initialization method, the spacecraft state vector is represented using the equinoctial
orbital elements (a,h,k, p,q,\ ), which are defined in Section 8.3.1 of this document. These

elements are closely related to the classical orbital elements (a, e, i, Q, @, M), but are better
suited for handling circular, equatorial orbits. The first five elements, which define the geometry
of the orbit, are held fixed, e.g. equal to the nominal post-launch orbit insertion values. The final
parameter, the mean longitude (), defines the position of the spacecraft within the orbit. This
value is not well known ahead of time. So, the goal of the initialization process is to determine
the correct value of A at the requested filter initialization time, ¢, . ,, and to compute the

associated initial position and velocity estimates.

This method assumes that the onboard GPS receiver acquires and tracks as many satellites as
possible using a cold start or blind search technique. The receiver is assumed to form both
pseudorange and Doppler measurements and to collect the broadcast GPS satellite ephemeris
data from all visible satellites at intervals of 1 minute or smaller.
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Time onboard the spacecraft is assumed to be known to within 1 second after acquisition and
tracking of the first GPS satellite. The stability of the clock is assumed to be on the order of 1
part in 10'°. In this case, the large receiver clock bias will dominate the pseudorange residuals.
However, by comparing residuals for different satellites, a reliable initial bias value can be
computed using these measurements. If measurements from only one satellite are available, it is
not always possible to isolate the correct starting point in the orbit if there is a large receiver
clock bias.

The algorithm assumes knowledge of the orbital elements, (a,e,i,{), ®), and performs a search

to estimate the remaining unknown — the location within the orbit, characterized by the mean
longitude at the initialization time, A, . To process all the measurements in the batch, the
nominal spacecraft orbital elements are used to predict the spacecraft position and velocity at
each of the measurement times. The expected pseudorange and/or Doppler measurements are
computed using the spacecraft position and velocity predictions and the GPS satellite positions
computed from the broadcast ephemerides. These are compared to the actual measurements from
the receiver and the residuals for the entire data arc are accumulated.

The characteristics of the measurement residuals for the batch indicate which value of A, . is
best. For PR measurements without clock biases and for Doppler measurements, the root-mean-
square (RMS) of the residuals is unambiguously smallest for the correct position within the
orbital plane. In the presence of a large clock bias, there is an offset in the pseudorange residuals
that prevents the use of a simple RMS evaluation. When measurements are available from more
than one GPS SV within the batch, the correct A, can be identified by the minimum standard

deviation of the measurement residuals. The value of A that minimizes the residual standard

initial

deviation locates the correct host vehicle position within the orbit. The mean of the pseudorange
residuals for this A, ., provides a coarse estimate of the receiver clock bias. The mean of the

Doppler residuals for this A,,., provides a coarse estimate of the receiver clock bias rate. The

position and velocity estimates can then be produced at the initialization time based upon the
nominal orbital elements and the best A

initial *
The algorithm starts with a coarse search in increments of the mean longitude, AA | for the value
A .. that provides the minimum residual standard deviation. This search provides an initial

estimate for A™"

initial

initial
and brackets the search region in which the minimum occurs. The location of

the minimum 1is then refined using the Golden Section Search method. The accuracy of the
solution is ultimately limited by the uncertainty in the nominal elements. The results presented
in Reference 33 indicate that the search space is well defined for measurement data arcs of 100
minutes or longer eliminating the possibility of searching in a false null region. For initialization
near perigee, data arcs as short as 10 minutes are adequate.

When the best A" is found, the position and velocity at the requested initialization time are
min
initial *

computed based on the nominal elements and A An initial estimate of the receiver clock

bias is provided by the mean of the pseudorange residuals associated with the minimum residual
standard deviation. An initial estimate of the receiver clock bias rate is provided by the mean of
the Doppler residuals associated with the minimum residual standard deviation. The initial
covariance matrix can be computed from the launch uncertainties.
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10.2 Initialization Algorithm Summary

The following steps summarize the algorithm used to successively refine the estimate for the best
Ay (AMn ) and to compute an initial satellite position and velocity at the requested
initialization time based on the assumed nominal orbital elements and the computed A" . This
algorithm requires the following input values, in addition to the Broadcast ephemeris associated
with each GPS SV tracked during the measurement data arc:

a,e,i,2, = nominal classical orbital elements

[P () fons (2,,),8,, 1= batch of M observed pseudorange and/or Doppler measurements,
nominally at 1-minute intervals

!, = 1nitialization time (equal to batch end time)
by= initial value of the receiver time bias in meters, nominally equal to 0
dy= initial value of the receiver time bias rate in meters per second,

nominally equal to 0
AL = size of increment in A, nominally 0.27 radians

1. Convert the nominal classical orbit elements (a, e, i, 2, ®) to equinoctial elements
(a,h,k, p,q) using the algorithm defined in Section 8.3.4 of this document.

2. Use the coarse search algorithm defined in Section 10.3 with a search region of A . =0

initial
to A/

initial

min

=27, in increments of AL to obtain an initial estimate for the A the receiver

initial >

clock bias, b, , and the receiver clock bias rate, d,, and to bracket the search region.

3. Refine the estimate for N;;i;;m

Section 10.4, applying the receiver bias and bias rate estimates computed in step 2,
(from step 2) = 0.5AA. Compute update to the

, using the Golden Section Search method described in

narrowing the search region to A

initial
min
initial *

receiver clock bias, b, , and the receiver clock bias rate, d,, using the best A

4. Use the transformation defined in Section 8.3.3 to convert the element set
a,h,k, p,q,\"™  to obtain the position and velocity at the initialization time, ¢

initial initial *

10.3 Coarse Search Algorithm

min

This algorithm is used to bracket the region in which the best value A7, occurs. The search

algorithm consists of the following steps, given the following input values, in addition to the
Broadcast ephemeris associated with each GPS SV tracked during the measurement data arc:

a,h,k, p,g= nominal equinoctial orbital elements

t = initialization time

initial —
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(P (), [0 (2,),2,, 1= batch of M observed pseudorange and/or Doppler measurements,
nominally at 1-minute intervals

s —
initial

starting value for A, .. search (radians)

initia
M .= ending value for A, search (radians)

AL= size of increment in A (radians)

b,= current value of the receiver time bias (meters)

d .= current value of the receiver time bias rate (meters per second)

1. Foreach A, ()= A, +iAd , i=0,1,..., while 4,,., () <AL,

a. At each measurement time, ¢, , in the batch:

i). Compute the value of the mean longitude at the measurement time 7,

ﬂ’m = ﬂ’initial (l) +'\ %(tm - tinitial) (103-1)*

Using the algorithm defined in Section 8.3.2, convert the equinoctial elements

(a,h,k, p,q,),) to obtain the position and velocity vectors at ¢_, R (,), R (,)-.

ii). Compute predicted measurements for all visible GPS SVs at time ¢, , using the
following equations:

For pseudorange: SR"G/WJ_ ,)= p"G/Wj (t,)+b, - C(Stsj )u (10.3-2)*
Pew; (ty) d,"
For Doppler: (1, )., = F; [— -
(10.3-3)*
- |2 - 2
+$UR” _RG/WJ' )—’_ciz ‘E%_% _(SFrel)cor
RG/WJ'

The terms p”G/Wj (,) (8t5j )u JF,, pg/Wj ,), EG/W] ,(0F ), are defined in
Sections 5.3.2 and 5.3.3 of this document.

i11). Compute measurement residuals for all visible GPS SVs.

For Pseudorange: A, (¢,,) = P, (1,) =R 2y (1,,)

For Doppler : Af] (tm) = foij (tm ) _(FD (tm ))Z/Wj
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iv). Accumulate the sum of the residuals and the sum of the squares of the residuals
over the measurements in the batch.

For Pseudorange :

f“ (Ap(t,)) —mz_i(Ap(t )+ (80, ,))

n=1 n=1 J

m m—1

> (8p,)) =X (8p,)) + X (Ap, (1,))
n=1 n=1 J

For Doppler :

m

(ara,))= Z AF@))+ S (A7, @)

J

=
—_

7

m—

(v @,)F =3 (ar@,)F + 3 (o, 0,))

n=1 n=1

b. Compute the the mean value, mean squared value, and standard deviation of the
measurement residuals over the batch

For Pseudorange :

E[Ap(ﬂm,,wlo))]—ﬁ S (Ap(t,))

n=1

ELAP(y () 1= f (Ap(t.))

&, G ) = EL(Ap(A0 (D)) 1= ELAP Ry ()T
For Doppler :

E[D (A (z))]—ﬁ (A7(t,))

n=1

EL (s 0 1= 2 (870,

& Gt ) =\ EL (A Ry ()] 1= ELA oy ()T

2. Determine the best A7 as the value that produces the smallest pseudorange residual

standard deviations if pseudorange measurements are available or otherwise the value that
produces the smallest Doppler residual standard deviations.

3. Set time bias error flag if there are measurements from only one GPS SV. Otherwise,
compute the receiver clock bias and clock bias rate corrections as the mean of the

pseudorange and Doppler residuals, respectively, for the best A7

initial *

10-5



Aby = E|ap(iy,)

initial

c min
Ad, :—F—E[Af(x )]

initial
T

and update the current value of the receiver clock bias and clock bias rate
b, =b, +Ab,
d, =d,+Ad,

10.4 Golden Section Search for Minimum

The Golden Section Search method can be used to find the location of a minimum when the
minimum has been bracketed. A minimum is known to be bracketed in the interval (a, c¢) if there
is a triplet of points, a<b<c, such that f(b)< f(a) and f(b)< f(c). The following description
is based on that provided in Reference 34. The Golden Section Search method is analogous to
the bisection method, which is used to search for the root of a function.

The search method consists of choosing a new point x, either between a and b or between b and
¢, evaluating f(x), and then selecting a new bracketing triple of points. For example, if b<x<c is

selected and f(b) < f(x), the new bracketing triplet of points is (a, b, x). Otherwise, if
f(b)> f(x), the new bracketing triplet of points is (b, x, ¢). The middle point of the new triplet

is the abscissa whose ordinate is the best minimum achieved so far. The process of bracketing is
continued until the distance between the two outer points of the triplet is tolerably small.

In this application, the search is performed to find the value of A" = that minimizes the standard

initial
deviation of the measurement residuals. The search method consists of the following steps, given
the following input values, in addition to the Broadcast ephemeris associated with each GPS SV

tracked during the measurement data arc:

a,h,k, p,g= nominal equinoctial orbital elements

= initialization time

initial
(P ()5 [0 (2,),8,, 1= batch of M observed pseudorange or Doppler measurements,

nominally at 1-minute intervals

min

initial best estimate for A that minimizes standard deviation of the

initial

measurement residuals (radians)

initial

Al = size of increment in A (radians)

b,= current value of the receiver time bias (meters)

d,= current value of the receiver time bias rate (meters per second)

g= convergence tolerance, nominally equal to 10”7

Golden
1 max

= maximum number of iterations, nominally equal to 50
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R= 0.61803 39887 49894
C= (1-R)=0.38196 60112 50105
Set the initial values for the search as follows:
ﬂ’initiul (O) = /’{;::;:al - A%
/,LinitiaI (3) = //"g:;g'al + A%
ﬂ“imn‘al (1) = Amm C(/vmn ;l’initial (0))

initial initial ~

ﬂ’initial (2)= Ay

initial

. Evaluate the residual standard deviation functions f(4,.,(1)) and A4, .., (2)), where
fAiia @) =0 » (At (1)) for pseudorange measurements or f(4,,., (7)) = o, (A (1)) for

Doppler measurements, using the following algorithm:

a. At each measurement time, ¢, , in the batch:

i). Compute the value of the mean longitude at the measurement time 7,

ﬂ’m = ﬂ’initial (l) + '\ %(tm - tinitial ) (104-1)*

Using the algorithm defined in Section 8.3.2, convert the equinoctial elements

(a,h,k, p,q,),) to obtain the position and velocity vectors at ¢, , R (,), R (,)-.

ii). Compute predicted measurements for all visible GPS SVs at time ¢, , using the

following equations:

For Pseudorange :‘R'é/Wj (t,)= p”G/Wj (t,)+b, —c(BtS/ )u (10.4-2)*
n pnG/W'(tm) d !
For Doppler:(FD (tm))G/Wj :FT[+ a,; — cR
(10.4-3)*
2 e 2
+$UR” - RG/WJ' )—’_ciz ‘E%__# _(SFrel)cor
RG/WJ'

The terms er‘/Wj(tm)ﬁ(Stsj')uaFT’pyCl?/Wj(tm)’EG/Wj’(SFrel)cor are defined in

Sections 5.3.2 and 5.3.3 of this document.

i1i1). Compute measurement residuals for all visible GPS SVs.
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For Doppler: Af; (t,,) = f,, (t,,) = (F,(t, ))G/W

iv). Accumulate the sum of the residuals and the sum of the squares of the residuals
over the measurements in the batch.

For Pseudorange :

(Ap(z,))= mi@p(t +Z(Ap )

n=1 J
-1

(8p(c,)) = X (8p(e,)f + 3 (80, 1,))

M 1DV

=
LK

=
Il

For Doppler :
> (4,))= 3 (are,)+ X (o, )
S (o)) =3 (4 ,)y + 3 (a7, ,))

b. Compute the the mean value, mean squared value, and standard deviation of the
measurement residuals over the batch

For Pseudorange :
M

EAP (s D] =23 (0,)

n=1

ET(AP (s ) 1= -2 (4000,

n=1

& oy ) =\ EL (A9 D) 1= ELAP gy ()T
For Doppler :

B Gy )= -3 (07,))

n=1

BT () 1= 2 (871D

n=l1

& G 00 =\ EL A Gy ()] 1= ELA oy ()T

3. Perform iterative search until the distance between the two outer points is tolerably small.
Use  f(Aiiia @) =0, (A (D) If  pseudorange  measurements are available and

S Pinisiar (D) = 0 1 (A1 (1)) 1f only Doppler measurements are available.

/linitial (3) - /q“initial (O)‘ <& Uﬂ“inmaz (1)‘ +|4

Do until
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If f(ﬂ“initial (2)) < f(j’initial (1)) ’

ﬂ’initial (0) = //Linitial (1)

ﬂ‘initial D= ﬂ’initt’al (2)

//i’initial (2) = R * /Imitlal (1) + C * /Iinitlal (3)
f(ﬂ'initial (1)) = f(/linitial (2))

0, ( At (2)) for pseudorange measurements

Compute f(4,,,,(2)) = { asin Step 2

0 (A (2)) for Doppler measurements

else

//i’initial (3) = /’i’initial (2)

ﬂ“initial (2)= j“inm‘al QY]

//”initial (1) =Rx* //i'initial (2) +Cx* /linitial (0)
f(/linitial (2)) = f(/linitial (1))

0, ( i (1)) for pseudorange measurements

Compute f(4,,,, (1) = { asin Step 2

0 ; (A (1)) for Doppler measurements

4' If f(//iinitial (1)) < f(/linitial (2)) ’ ﬂ’;;;’;al = Ainitial (1)
else ﬂ’g;z'al = ﬂ’initial (2)

5. Set time bias error flag if there are measurements from only one GPS SV. Otherwise,
compute the receiver clock bias and clock bias rate corrections as the mean of the

pseudorange and Doppler residuals, respectively, for the best A™"

initial *

initial

Ab, = E[ap(nmn )]

c min
Ad, :—F—E[Af(x )]

initial
T

and update the current value of the receiver clock bias and clock bias rate
b, =b, +Ab,
d, =d,+Ad,
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Section 11. Attitude Estimation Algorithms

The explicit form for the attitude EKF algorithms is based on the Multiplicative EKF (MEKF)
defined in Reference 39. The attitude state estimation algorithm incorporates the attitude
determination method using non-aligned antenna presented in Reference 40, which uses an
extended Kalman filter to process GPS signal-to-noise ratio (SNR) and GPS double-difference
carrier phase measurements. These algorithms have been demonstrated to provide attitude
estimates in the 0.5 degree range. Section 11.1 defines the estimation state, Section 11.2 defines
the state error covariance, Section 11.3 describes the state estimation processing flow, Section 11.4
discusses attitude state and covariance propagation, Section 11.5 provides the measurement
models, and Section 11.6 provides an attitude state initialization procedure. These algorithms are
not currently implemented but could be implemented in a future GEONS release.

11.1 Attitude Estimation State Vector

The attitude estimation problem determines the rotation that a body has experienced to take it from
its nominal orientation to its current orientation, measured in the external reference frame. The
attitude estimation algorithm estimates an attitude state vector, X,, for each spacecraft being

estimated. The spacecraft attitude is parameterized using a unit quaternion to represent the rotation
from the Mean of J2000.0 inertial reference frame to the body frame.

The unit quaternion has a three-vector part (¢, ) and a scalar part (g, ):

= |q, esin(0/2
g=1= ésin(6/2) (11.1-1)
q, cos(6/2)
where e is the Euler axis of rotation and 6 is the Euler angle of rotation.

The components of the attitude quaternion are also referred to as Euler symmetric parameters. The
column vector of Euler symmetric parameters is a special case of the more general quaternion. For
the Euler symmetric parameters, the inverse quaternion is equal to the conjugate quaternion:

(Zj_l - [_ZV} (11.1-2)

The transformation of a vector from the inertial reference frame to the spacecraft body frame is

performed as follows using the attitude matrix 4, ,,, [5)

] = 45 [Z)[V]m (11.1-3)

where



AB(—XYZ(C_]] = (‘JE _|‘7V|2)[3x3 —2q, [‘71/ X]"' 2‘7%7/ (11.1-4)

and
0 —q; 4,
4, x]=] s 0 -gq (11.1-5)
-4, 4 0
or equivalently
2 2 2 2
_ q, — 49, —4; +q, 2(q,9, +45494) 2(9,95—9,4,4)
Agkm(qj 29,9, -9:44) ~4i+9 —a3+4; 29,95 +90,q.) (11.1-6)

2

29,9, +9,9,)  29:.9:-99,)  —49; —q5 +4; +4;

The following quaternion multiplication convention is used

= = G, +q.,0, — Dy Xq,
p®q{p4% dbr =Py QV} (11.1-7)
P4y~ Py -4y
such that A(p)A(q)= A(p®q).
The MEKF represents the true attitude as the quaternion product
q(t) =8q(@(1)) ®q,,, (1) (11.1-8)

where ¢, (¢) is the current best estimate of the true attitude unit quaternion, 85(6(1)) is a unit

quaternion representing the rotation from ¢, (¢) to the true attitude g(#) . Following Reference 39,

8;(6@)) is parameterized such that

_ 2\ 12| &)
65(&(:)):[1+°‘T] 2 (11.1-9)
|

where @(?) is a three-component representation of the attitude error in the body frame

20q,

a(r) = (11.1-10)

q,4

o) . . . . )
and % is commonly referred to as the Gibbs vector. The associated attitude matrices are

approximated as follows



AGq@() = I, — [ox]- %(Mk3 - m’), to 2" order in o (11.1-11)

A1) = ABq(@(1) ® q,, (1) = ABgT())A(g,,, (1))

- (11.1-12)
=(I,,-[a x])A(q,,ef (¢)), to first order in o
The nine component attitude state vector estimate for each spacecraft is defined as
(1)
x,(t)=| Ab,(t) (11.1-13)
A§cal (t)

where AB(D (¢) is a vector of estimated attitude rate errors. In the case where gyro measurements
are used to compute the reference angular rate vector (5,-4 (t)), Al;m () is the estimated error in

the gyro drift vector. Otherwise, AED () is the estimated error in the angular velocity vector.

Optionally, As
coefficients.

(¢) can be estimated, which is a vector of errors in the antenna gain calibration

cal

11.2 Attitude State Error Covariance Matrix

The attitude state error covariance at time # is defined as follows:

o1 Cl,ZGIGZ oo CI,NGIGN
C2,16162 o
[PA]: . . Ce e . (11.2-1)
_CN,l G]GN . . . . . . . G?V |




where
[P4] = [N x N] attitude error covariance matrix, where N equals 9
o; = standard deviation of the estimate of attitude state vector element i
o? =variance of the estimate of state vector element i
Cij =Cj; =correlation coefficient for elements i and j, absolute value < 1

The state error covariance is initialized or reinitialized using command parameters. The initial
covariance matrix is diagonal: the initial state error variances o> are used directly in Equation
11.2-1 to form [PA] with C;; = 1 and off-diagonal C;; = 0. The covariance for individual state

vector elements can be reinitialized by resetting the associated diagonal elements in the full
covariance matrix to their initial values and the associated off-diagonal elements to zero.
Whenever the attitude covariance is initialized or reinitialized, it is factored into components [U A]

and [D,] as discussed in Section 2.2.1.

11.3 Attitude Estimation Algorithm

The EKF algorithm consists of the following three major processes:

1. Attitude State Initialization. This process consists of computing an initial estimate for
the attitude states.

2. Time Update. This process consists of propagating the attitude state estimate and state
error covariance from the time of the previous (k —1)” measurement to the time of the

current (k)” measurement.

3. Measurement Update. This process consists of correcting the attitude state and covariance
to include the effects of the current measurement.

These steps are described below.

11.3.1 Attitude State Initialization

At the time of the first SNR measurement, compute an initial attitude state using the algorithm
provided in Section 11.6.

11.3.2 Time Update Process

The time update is performed at each time #, where # is either the time of the next valid
measurement f#; or an intermediate time if the time between measurements is greater than the
maximum integration step size

t.=

1

(11.3-1)*
t,_,+ot 38—t > Ot

max max

{ Iy g RS

where dtmax 1S equal to the maximum state vector integration step size.
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Given the estimated total attitude state vector at the previous measurement time (¢, ;) X 4, (5

associated state variables 5,% (), @efk,, (), §caz,(,1 (+), and l;mk_l (+),; the state error covariance
factors, U, (+) and D, (+);and a measurement at time # denoted by Y%, the following steps are

performed:

1. Compute the predicted attitude reference quaternion c_}refi (-), reference angular velocity

vector éref, (-), gyro bias vector Z;m‘_ (-), antenna gain calibration vector §calj (), and the

attitude state vector, x 4, (—), at the time 4 using the attitude state prediction algorithms that

are defined in Section 11.4.

2 Compute the attitude state transition matrix ¢, and attitude process noise matrix 0, using

the algorithms defined in Section 11.4.

3. Propagate the attitude state error covariance matrix factors to the time # to obtain U, (—) and

D, (-) using the attitude covariance propagation algorithm defined in Section 4.4.3.

Ifti<t,set U, (+)=U, (), D, (H)=D,(-), JLCAI. ()= '%Al. ), gref,. (+)= gz‘efl ), 5,4, ()=

ér o () biw[ (+)= ZZ‘. (-), and sica,‘_ (+)= simll_ (—) and repeat the time update until ; = #; .

11.3.3 Measurement Update

The measurement update is performed separately for each measurement at each valid measurement
time, #. Note that implementation of the measurement update using the hybrid batch EKF
algorithm defined in Section 2.3.2.4 should be considered for processing of multiple measurements
occurring during the same update time span.

If resolution of the carrier phase integers has not been successful, all SNR measurements at # are
processed before the double-difference carrier phase (DDCP) measurements are processed. If
resolution of the carrier phase integers has been successful, the SNR measurements are not
processed to estimate the attitude state but are optionally processed to compute SNR calibration
coefficients as discussed in Section 11.5.2.

>l

Iy

Given the results of the time update, x 4 (s 4, (5, &e (5, Z?mk (-)» S, (=), U, (=), and

D, (-) as well as the measurement variance, Ry, compute the updated total attitude state vector

and related parameters, x 4 (), 5,,% +), . (+), Z;wk (+), and sica,k (+) and updated state error

refy

covariance matrix factors U, (+) and D, (+), according to the following steps:

1. Compute the predicted measurement, fk , the measurement residuals, yx, and the measurement

partial derivatives, Hy, at time # from



h=6lz, (-1 (11.3-2)*

y, =Y, -7 (11.3-3)*
H, = aTG (11.3-4)*
0% I 2, ()

where Yi is the actual scalar measurement. If the DDCP integer resolution is not currently
successful, the measurement model equation, G, and associated partial derivatives, H, for SNR
measurements are given in Section 11.5.1. If the DDCP integer resolution is currently
successful, the SNR measurements can be optionally processed to estimate the antenna gain
calibration coefficients using the formulas for G and H, provided in Section 11.5.2. The DDCP
measurements are processed using the formulas for G and H provided in Section 11.5.3.

Perform the following n-sigma measurement residual edit test before updating the state vector
and state error covariance matrix. The predicted measurement residual variance is computed
using the U and D factors. The following algorithms were taken from References 7 and 8:

f=U)H'HT (11.3-5)*
v=D f; j=l2...N (11.3-6)*
a,=R, (11.3-7)*
where
u- =0,

D~ = the diagonal matrix D, (-)
H =1 x N measurement partial derivative matrix
R, = measurement variance, a commanded parameter, specific to each measurement
type
Then, forj=1, 2, ..., N, compute
a; = aj-1 "‘ﬁ Vi (11.3-8)*
The predicted measurement residual variance, Vx is then computed as

Vi=ax (11.3-9)*

Edit the measurement as follows:

Calculate the sigma ratio



Vi
S = 11.3-10)*
7 ( )
If |S i |SNG, accept the measurement and continue the measurement update. If |Sy| > V., reject

the measurement, and exit the measurement update procedure. In these tests, N, is a specifiable
number with a default value of 4.

5. Update the state error covariance factors for j =1, 2, ..., N, as follows:

D;,=D;,a; ,/a, (11.3-11)*

bj < v (11.3-12)*

pi=—f/a (11.3-13)*
U'=U;+b.p.

S S S E R (11.3-14)*
b<b+U; v,

where q, f, and v are already available from the measurement residual variance computation and

< arrow =replacement or “writing over”

U =0,
Ut =U,
D~ =D,()
D" =D, (+)

The state error covariance matrix P, (+) is computed from its measurement updated U and
D factors:

P, (+)=U, (+)D, (WU} (H)P, (+) (11.3-15)*
6. Compute the Kalman gain vector
K, =b/V, (11.3-16)*

where K, is the [N X 1] Kalman gain vector and the components of b are defined in
Equation (11.3-14)

7. Update x 4,



X, (=X, (+ K, (11.3-17)*

and reset the reference attitude quaternion and the reference angular velocity vector
G, (1) =8q(G(+) ®4,,, () (11.3-18)*
By, (1) = ®,, () —Ab, (+) (11.3-19)*

If gyro measurements are used to model the angular velocity, reset the gyro drift

by (+)=b, (-)+Ab, (+) (11.3-20)*

If antenna gain calibration coefficients are being estimated, reset the calibration coefficient
vector

A

L?calk (+) = Scalk (_)+A§calk (+) (113-21)*

Note that in the case of DDCP measurements, these are saved as temporary updates.

8. After processing the double-difference carrier phase measurements for all GPS SVs and all
spacecraft antenna baselines at time #, perform the integer resolution check described in
Section 11.5.4 to detect incorrect assignment of the integer ambiguity. If the test is passed, the
final state and covariance updates computed at time # are permanently applied.

11.4 Attitude State and Covariance Propagation Algorithms
Reference Quaternion Propagation

The predicted value of the reference quaternion is computed by integrating the following equation

g, (1) = ﬂ‘”ﬁ;@} ®q,, (1)

) (11.4-1)
= %Q(aygf. (t)) qref (t)

where ®,,,(¢) is the best estimate of angular velocity of the reference attitude in the body frame

and

(11.4-2)

Q@)= {__[Zf | ﬂ

Assuming that the angular velocity is nearly constant over the integration interval,
Equation (11.4-1) can be analytically integrated to obtain:
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= 1 N _
G, (7)) = eprﬂ(w@; (—))At,} 9, () (11.4-3)*
where, At, =t, —t,_, and following Equation C-79 in Reference 41,

1~ 1 1 — . (1
exp{2 Q(o,, (—))At} =1,, cos(2 (D,,G/AtJ + m—mf Q(w,,) s1n(2 comj.Atj

cos(1 a),,ef.At) s sin(1 ©, Atj — % sin(1 mre/.At] = sin(1 m,e/.Atj

2 (Dref 2 ‘ (Dre/ 2 @, 2 (1 1 4'4)*
= sin[1 m,efAt) cos(1 (o,e,»Atj = sin(1 (o,e,»Atj =2 sin(1 m,e/.At]

| 0, 2 - 2 - O, 2 - ®,, 2

=2 sin(1 (ore/.At] — sin(1 co,efAt) cos[1 co,,efAt) 25 sin(1 (o,e/.Atj

O, 2 O, 2 2 ®,, 2

— sin(1 (ore/.Atj — sin[1 wre/»Atj — % sin(1 o),efAt) cos(1 oo,efAt)

O, 2 O, 2 = O, 2 2 |

ref

where ©,,, =

©,. (—)‘ and ®,, ,, ®, are the components of ®,, ().

Reference Angular Velocity Propagation Using Gyro Measurements

In the case where a set of gyros provides angular rate measurements in the body frame (®,,,(?)),
the true angular velocity is defined as

() = 6gyro (t)- Em(ti) -n, (%) (11.4-5)

where m,(#,) is a zero-mean white noise process with standard deviation o, for all components.
The predicted angular velocity expressed in the body frame is computed as follows

é"ef,' (_) = 6gyr() (tz) - bim[ (_) (1 1 4-6)*

where biml (—) 1s the predicted value of the gyro drift.

Gyro Drift Vector Propagation

The state equation for the true gyro drift is defined as

b (1) =Ti,(t) (11.4-7)

where m;(¢,) is a zero-mean white noise process with standard deviation o, for all components.

A random walk model is used to model the gyro drift rate noise; therefore, the gyro drift is
constant over the propagation interval
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3@ (-)= ZZH (+) (11.4-8)*
Reference Angular Velocity Propagation Without Gyro Measurements

Alternatively, if a set of gyros is not used to provide the angular rates, @ef’ (—) is computed by

numerically integrating Euler’s equations using the fourth-order Runge-Kutta integrator defined
in Section 4.2:

Io=-ox(Io)+T (11.4-9)*

where I is the moment of inertial tensor expressed in the body frame (commanded parameters).
T is the sum of external torques expressed in the body frame. In GEONS,

T=T,+T

external

(11.4-10)*

where T, is the gravity gradient torque and additional external torques 7,

externa,

, can be provided
via command input. The gravity gradient torque is modeled as follows

Too =520, x (1) (114-11y*

where R = ‘E (¢,)|, the magnitude of the spacecraft position vector. The unit vector 7, along the

spacecraft position vector expressed in the body frame is computed by

R _ A, (DR

11.4-12)*
5T R ( )
Antenna Calibration Coefficient Vector Propagation
The predicted antenna gain calibration coefficient vector propagates as a constant:
§cali (_) = §cali71 (+) (1 1 -4‘13)*

Attitude State Vector Propagation

The state equations for the attitude error vector, attitude rate errors, and antenna gain coefficient
errors are as follows
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a(t,) ==, (1,)xa(t,) - Ab, — (11.4-14)
Ab, (1) =T, (t,) (11.4-15)

A‘?cal(ti) =ﬁ3(tz) (114-16)

where M, (¢,), M, (¢,),and M,(¢,) are zero-mean white noise processes with standard deviations o,

, 6;,and o for all components, respectively Since the attitude state vector estimates x ,(2) are

used to reset the values of q, g ()5 @ (+), b (+), and 5

update process, the predicted values for the attltude state vector components are identically zero:

(+) in step 7 of the measurement

cal;

0
X, (=)=| Ab, (-) [=]0 (11.4-17)*
0

Attitude State Transition Matrix

The attitude state transition matrix is obtained by analytically integrating the following state
equation

d)% (t ) J aAi [_ éref ] - 13><3 03><3 aj
Adtl 7 Afm,. = O 055 0 Afmi (11.4-18)
A'Scal,- 03><3 03><3 03><3 Ascal,»

assuming that the angular velocity is nearly constant over the integration interval, to obtain

X, (5 =exp(FAL) x, (+) (11.4-19)
where
[ éef ] 3><3 3><3
F = O 03><3 03><3 (1 1 4-20)
03><3 O3><3 O3><3

Taking the partial derivatives of Equation (11.4-19) yields
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ox’(t)" ‘
0, = % = exp(F At,) = 0s.5 L, 0., (11.4-21)*
i X i
4 : 03><3 03><3 ]3><3
where a-ef = éref,- -, O, = &ref ), and

v, = 1At + |6, x| (1 - cos(w,, AL ) o +[B5,, x| (@, AL —sin(o,, A0l (114-22)%
Attitude Process Noise Matrix
The attitude process noise matrix, Q, , is given by
g
0, =[" ¢,6mOMG (W, dv (11.4-23)
where
- I3><3 03><3 03><3
G()=| 055 Ly 05y (11.4-24)
03><3 03><3 ]3><3
0127[3><3 05,5 05,5
O()=| 0,; o;l5; Oy, (11.4-25)
05,5 05,5 Gf[m
Which yields

2
b

0, = —oALy, ALl Oy (11.4-26)*
0,5 0,,, GiAtiISXS

GALL + oAy, —oiALy, 0,

11.5 Attitude Measurement Models

The attitude estimator processes both SNR and double-differenced GPS carrier phase
measurements.
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11.5.1 SNR Measurement Model and Partial Derivatives

The GPS SNR measurement is a measurement of the signal strength of a received GPS signal,
which is also referred to as the antenna gain. Assuming that the antenna’s gain pattern is known
and is invariant in the spacecraft body frame, the received signal strength is dependent on the
relationship between the direction of the antenna boresight vector, which is constant in the body
frame, and the line-of-sight vector to the receiving antenna to the GPS SV transmitter. The
observed SNR measurements (SNR) are either scaled by an uplinked value for the maximum SNR
(SNR_, ) or used in the antenna calibration equation to form a measurement that is consistent with

the cosine of the elevation angle of the transmitting GPS SV with respect to the receiving antenna
boresight vector:

s, +5,SNR +5,SNR’, if self - calibration coefficients are available

- _1)*
Y, =| _SNR , otherwise (11.5-1)
SNR

max

where (s,,5,,5,) are components of the antenna gain calibration coefficient vector 5., , which can

be commanded or optionally computed using the self-calibration algorithm defined in Section
11.5.2.

The predicted SNR measurement for antenna p on satellite n is computed as follows:

7, =8 ) =B, it @, 0] (11.5-2)*
where
[l_? P ]B = Boresight unit vector for antenna p on satellite n expressed in the body frame

(commanded values)

[ﬁgl_ (mek (_))L: Line-of-sight unit vector from receiving satellite n to the GPS transmitter j
expressed in the body frame

The line-of-sight vector in the body frame is computed as follows using the predicted value of the
quaternion at the measurement time:

2 @y D), = 4G, i @] (115-3)*

where the line-of-sight vector in the inertial reference frame is given by:

_ FGJ. (tr) _E(tR)
) ‘EGJ. (tT) _E(tR)

['22, (tk)]m (11.5-4)*
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In Equation (11.5-4), the position of the transmitting antenna of the GPS SV at the time (#;) of
signal transmission is denoted by R, (¢,), and the position of the receiver pon satellite n at the

time of the signal reception (z,) is denoted by R(z,).

Similarly, the observed SNR measurement for antenna p on satellite n can be expressed as follows
in terms of the true quaternion g(tk)

v, =5 =[5, -l @) (115-5)

where the true line-of-sight vector can be expressed by

[ﬁé/ (Z(tk ))]B =Ap vyz (Z)[ﬁg, (tk)]xyz

= ABG@(N) A, (D] (1) oz (11.5-6)

= A(5q(aU(1)) lig, (Zrefk (_))L

Expanding Equation 11.5-5 to first order in o about the predicted reference yields:

=B, (- [z, @ (0]

_ _ (11.5-7)
=[], fie, G 0] <[], iz G 0] e
The associated measurement partial derivatives are as follows:
a8g" (1) — o S
H, :{ Z}?n - ]: [[B”’p ]B 'II“GJ (qrc{fk ) s X] U Ol><3] (11.5-8)*
A

Note that when the SNR measurements are processed to determine the spacecraft attitude error,
the antenna gain calibration vector is not estimated (i.e. the associated measurement partial
derivations are set to 0).

11.5.2 Self Calibration Using SNR Measurements

The SNR method of attitude determination works best when a calibration of the receiving antenna
gain pattern is available. Therefore, when the DDCP integer resolution is successful, antenna self-
calibration is optionally performed using the SNR measurements. The self-calibration is performed
by using the estimated attitude state and calibrating the SNR map as if the estimated attitude state

is error-free. The coefficients s, , = [so s, Sz]T of a third-degree polynomial are fit to the
calibration data. This calibration model assumes that all GPS SV transmitting antennas have
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similar characteristics and all receiving antennas on a given spacecraft have similar gain patterns
that are symmetric around the boresight. After the calibration coefficient covariance falls below a
specified value, the calibration polynomial is available for use in Equation 11.5-1 to process SNR
measurements for attitude state estimation in the event that the carrier phase integer resolution
procedure fails and carrier phase measurement updates are not performed.

The calibration polynomial is fit to the dot product between the line-of-sight unit vector and the
antenna boresight unit vector. The “observed” measurement is given by

v, =B ”] [ (é,.e_,»k (—)L (11.5-9)*

The line-of-sight unit vector is computed using Equations 11.5-3 and 11.5-4 using the predicted
quaternion estimate obtained from processing DDCP measurements. The predicted measurement
is given by

Y, =5, +5,(SNR) +5,(SNR) (11.5-10)*

with the following non-zero measurement partial derivatives

05,

cal

Hk:(a’}J:[l SNR  SNR’] (11.5-11)*

11.5.3 GPS Double-Difference Carrier Phase Measurement Model and Partial
Derivatives

The GPS single and double-difference carrier phase measurements are dependent on the relative
position of two antennas in the reference frame. Since the relative position of the two antennas is
known in the body frame, these measurements can be used to determine the spacecraft attitude.

The difference in the distance from GPS transmitter i to antennas p and q on satellite n is given by
AP = P (1) - pt ) = [pr ] o (@ )], (meters) (11512

where |b " ’qJB is the antenna baseline vector connecting antennas p and q in the body frame (in
meters).

The fractional carrier phase received at each antenna is measured. The difference in the fractional
carrier phase measurements from GPS transmitter i measured by antennas p and q on satellite n is
given by

ADL (1) = DP (1) - DL (1,)

<]l G| - a8+ A0 B
11-15
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where

Abf *  =Difference in the integer ambiguities between antennas p and q

AD: ., =Difference in the phase due to the polarization of the incoming signal for

antennas p and q

B, =Difference in the line biases between antennas p and g, which is due to the

electrical line length from the antenna phase center to the point interior to the
receiver where the measurement is actually made

The dot products in Equations 11.5-12 and 11.5-13 are independent of the coordinate frame used
to express the vectors. For the GEONS implementation, the computations are performed in the
Body frame. The antenna baseline vector connecting antenna p and antenna q is computed as
follows in terms of the known antenna offsets in the body frame:

brre], = ([7:} ]B - [f;: L) (meters) (11.5-14)

where
[7/11 L = (Ayiim )B (11.5-15)*

where [(ij )B (Ayflm )B (Azjm )BJ are the coordinates of the antenna in the body frame, which

are commanded parameters.

For convenience, the antenna baselines are defined with respect to antenna 1 such that

] =0 ] -] ) 2 =2 Mo i (11.5-16)*

where, for convenience, antenna 1 is selected to be the closest to zenith pointing. The line-of-sight
unit vector is computed using Equations 11.5-3 and 11.5-4. Following the approach presented in
Reference 42, the polarization phase correction A®: ., is computed as follows

Aq)gbcpw = q)JGe}ICPF () - q)g}{cpq () (11.5-17)*
where
Diyer (1) = Mwsier| arctan| Tt ¢l (in meters) (11.5-18)*
’ 2 1€y
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where e is the ellipticity of the E-field vector and T, are components of the GPS transmitter to

receiving antenna rotation matrix 7, , ,,, where
P

TAp<—TR = (TXYZ<—BTB<—AP )rTXYZ(—TR (11.5-19)*

The rotation matrix from the body frame to the inertial frame 7,,,, ,, is computed as follows in
terms of the attitude matrix.

Tyyre s = Ay (c?refk (—)) (11.5-20)*
The rotation from the receiving antenna frame to the body frame, 7} _, , is computed as follows
Xy ')eAp Xy '.);Ap Xy 'éAp
Tyen, = J;B')%Ap JA’B'JA’AP )A/B‘QAP (11.5-21)*

By-R, 2,9, 252
B A, ByAp B 4,

For a distant transmitter such as GPS, the transmitter to receiver line-of-sight vector is the same
for all receiving antennas and the transmitter to Mean of J2000.0 inertial rotation matrix can be
written as

P, ) + Pe 0 (ﬁcn;j )
De. P,
T =| — i ) b )y e ) (5_% ) (11.5-22)*
N A 7 A
62 ) -G2) )
A AR A o
where
ﬁg*j :F”(t;)_ﬁaj (1) (11.5-23)*

The DDCP measurement is formed to remove the line bias contribution. The predicted DDCP
measurement is computed as follows:
Y, =VADL (1) =AD" (t,) - ADL (1)
_ 7 - Z 1 1 (meters) (11.5-24)*
] (e, @y D), = @ O] )~ 127 0 e + VAR, 1)
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where the GPS SV j is the designated Master PRN (selected as the first GPS SV for which carrier
phase measurements are input at a given time). The double-difference integer ambiguity is defined
as follows

1271, = 862 —ab ) (11.5-25)*
and computed as discussed in Section 11.5.4. The GPS SV to spacecraft line-of-sight vector in the
body frame is computed as in equation 11.5-3.

If the residual y, :(Yk—);k)z Voa.» the measurement is edited. Otherwise, the associated

measurement partial derivatives are computed by taking the partial derivative of the true
measurement model, given by

v, =] (-l @, ], -l @, 0] )

) ) ) (11.5-26)*
-5, - ([ @O, -l @ ) )+ 2]l @ ) -l @, 0] c o

to obtain

H;[VMZXW )J 77, iz @ -l @ nL M 0 0] ans2ny

11.5.4 Double-Differenced Carrier Phase Integer Resolution and Residual Check

If the initial estimate of the attitude is sufficiently accurate, the double-difference integers 1.7 (z,)

in Equation 11.5-24 can be resolved simply by assignment by rounding the measurement residual
to the nearest integer:

¥, — VAL (1)

11.5-34)*
T ( )

Carrier

Ig;]j’l(tk) = {

il Rounded to nearest integer

In order to assure that the attitude estimate is sufficiently accurate, an initial integer resolution
procedure is performed at each measurement epoch. After all carrier phase measurements for that
epoch are processed, the measurement residuals are recomputed for all antenna baselines and all
GPS SVs using the most recent attitude state estimate. These residual differences are tested against
a threshold and the residual standard deviation computed for all residuals that fall below the
threshold. If enough of these residuals fall below the threshold and the residual standard deviation
is below a specified tolerance, the a priori estimate is assumed to be accurate and the integers are
assigned. The state and covariance updates are applied only if the test is passed.

The algorithm continues to check the residuals at each measurement epoch. In the event that the
residuals increase above a specified threshold, an error flag is set. If this occurs at successive
measurement epochs, the algorithm will assume that the incorrect integers were assigned, the
measurement update will not be performed and the SNR measurement processing will be resumed
until the resolution is successful again.
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11.6 Attitude State Initialization

The following procedure is used to obtain an initial attitude state. When the first SNR
measurements are available, the measurement from antenna 1 (defined to be the closest to zenith
pointing) and GPS SV with the highest SNR measurement is selected. The algorithm assumes that
the current spacecraft attitude is such that this antenna’s boresight vector is aligned with the known
line-of sight vector from the spacecraft to the transmitting GPS SV. Using this approach, this initial
estimate should be within one hemisphere of truth and typically within a cone of 20 to 30 degrees
of truth.

The line-of-sight vector to the GPS SV with the highest SNR measurement is computed

R () -R"@))
R, - R @)

[ﬁg/ (tk)]XYZ (11.6-1)*
Assuming that the antenna boresight vector B™” is currently aligned with g (tk ), the quaternion

associated with the rotation from the nominal boresight orientation along the zenith vector é to
the current orientation is computed in terms of the Euler angle of rotation 6

0= arccos([ﬁg/ )] é) (11.6-3)
and the Euler axis of rotation
0" ()% C
é:—ff(") q (11.6-4)
iy, ()%

The zenith vector points along +R , which is known from the spacecraft ephemeris. Using

init

Equation (11.1-1) to obtain g ™, the initial attitude is

ZIZXYZ = TB(—AI, T/i:l,[i—xyz (11.6-5)*
where
To vy = Alg™) (11.6-6)*

and T, 4 is computed as in Equation (11.5-21). Implicit in this initialization is an arbitrary

rotation around the boresight vector, which needs to be corrected on the first few filter updates.
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Section 12. GPS/Galileo Measurement Simulation

This section presents the specifications for the simulation of GPS and Galileo measurements.
Figure 12-1 illustrates the top-level simulation algorithm.

Read in GEONS measurement simulation parameters
Open data input and output files

v

Dofor £, St <lp,:

\ 4

Read in data for cuirrant time

v
1 Advance Truth State for all satellites to time ¢ =t + AT :

1.1 Propagate truth 17, r , output to truth file or read in from truth file

1.2 Propagate truth clock states, including Clock errors, output to clock file or read from clock file

» Do for each satellite: Truth State

v

2. If valid measurement time, simulate GPS Measurements at

For each valid GPS SV (i.e. not to be ignored)
2.1 Perform radial distance test and continue if passes
Do for each receiving antenna

2.2 Compute SV transmission time and state including GPS ephem errors

2.3 Perform LOS tests:
- Perform HORP test and continue if passes
- Check for Earth occultation and continue if not occulted
- Rotate antenna boresight to CBI, perform antenna limit tests and continue if
passes

2.6 Perform signal acquisition tests:
- Compute antenna gain (CNO), perform antenna gain tests and continue if
passes
- Compute acquisition probability test, continue if passes

2.8 Compute PR, Doppler and CP measurements

2.9 Add in transmitter clock errors and random measurement noise

GPS Measurements

A 4

3 Output all measurements at current time f :
3.1 Sort measurements based on specified sorting criteria
3.2 Output max allowed number based on sorting criteria

Figure 12-1 Measurement Simulation Algorithm

Section 12.1 defines the measurement simulation models. Section 12.2 defines the receiver clock
error model. Section 12.3 defines the transmitter ephemeris and clock error models. Section 12.4
defines the measurement noise model. Section 12.5 defines the measurement validity tests.
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12.1 GPS and Galileo Measurement Simulation Models

This section defines the simulation models for GPS and Galileo pseudorange, Doppler and
carrier phase measurements.

12.1.1 GNSS Pseudorange Simulation

The GPS/WAAS and Galileo PR measurements are computed at the true UTC receive time,

UTC , following the specifications provided in Sections 5.3.2 and 5.3.7, respectively, with the

addltlon of random measurement noise and transmitter ephemeris and transmission time errors as
follows:

Ry () =0l (7 4" G5O 05 (T 47, (5T N00 T 1)~ el +0687) (12.1.1-1)*
—cAtg +Gg/W(thC)
P (K7 =[Ry " (R = Ry, (7€) (12.1.1-2)*

In the above equations, the subscript j indicates the j* GPS SV/WAAS GEO. The timetag of the

th : . :
k" measurement, f;, is equal to the value of the measured receive time,

tp (RO), = UT ¢ +bp (ZUT C)/ c, and tUT € is the true signal transmit time computed by solving the

UTC. GPS SV ephemeris errors, which are computed as

light time equation starting with ¢
discussed in Section 12.3, are included in the computation of the transmitter position

R; W, (t¥7€) and velocity R W, (tY7€Y) vectors. The receiver time bias b," () is computed

using the simulated time bias parameters bp" (tUTC) dp (tUTC) and d R (tUTC) as defined in

Section 12.2. The GPS-system pseudorange bias, b¢""" . is defined in Section 4.3. For single

P
frequency measurements, the ionospheric delay correction, 8p). , can be modeled using the
algorithm defined in Section 5.3.5, where v,(¢) is the ionospheric delay scale factor. The terms

_C(gt 5, + 5t§{” ) represent the total SV time correction, which is computed using Equation 3.3-10

or 3.3-11 (for single and dual frequency GPS users) and Equation 3.3-12 (only for single
frequency GPS users) in Section 3.3.2 evaluated at the signal transmit tlme(tUTC) The

transmitting GPS time error Afg,;(¢)is computed using ICE data parameters as defined in

G/W

Equation 3.3-10c in Section 3.3. The term o' (7;) is the random measurement noise, which is

computed as discussed in Section 12.4. The position and velocity of the receiving antenna are
computed using Equation 3.2-61 in Section 3.2.8.

Simulation of Galileo pseudorange measurements follows the same procedure that is discussed
above for the GPS/WAAS pseudorange, with the exception that the total SV time corrections are
computed as defined in Section 3.3.9 and ICE time errors are not included.

12-2



12.1.2 GNSS Instantaneous Doppler Simulation

The GPS instantaneous Doppler measurements are computed following the specifications
provided in Section 5.3.3 with the addition of random measurement noise and transmitter
ephemeris and transmission time errors as follows:

i UTC
pow (tr ) g A7) 1 (5P s P
(FD(t,’:)G/Wj i R (c ) 4 OR" —‘RG/W]_ j
(12.1.2-1)*
1 1 G/W
"z ‘E_"—‘E— ~(8Fe) cor |+ /(tUTC)"' G/W(ZUTC)

In this equation, the subscript j indicates the GPS SV/WAAS GEO number; and the transmit
frequency, £, is assumed to be known (nominally 1575.42 Mhertz for the L1 carrier, 1227.6

Mhertz for the L2 carrier, and 1176.45 Mhertz for the L5 carrier). GPS ephemeris errors, which
are computed as discussed in Section 12.3, are included in the computation of the transmitter

position Rg,y (t¥7C) and velocity Rg,y (127C) vectors. The term ¢'% (;Y7C) is the random
J J
measurement noise, which is computed as discussed in Section 12.4.

Simulation of Galileo Doppler measurements follows the same procedure that is discussed above
for the GPS/WAAS Doppler, with the exception that the associated Galileo transmission
frequency is used, 5iGAL is computed using the Galileo SV clock correction parameters

discussed in Section 3.3.9, and (6F,),,, is not included.

cor

12.1.3 GNSS Carrier Phase Simulation

The carrier beat phase measurement is formed in a GPS receiver as the difference between the
phase of the local receiver oscillator and the phase of the received carrier signal. The

measurement is ambiguous with respect to the number of integer cycles (N, fn i (1,,)) at the

time (¢, ) when the signal is first acquired from each GPS SV. At any epoch other than the

acq
initial acquisition epoch, the receiver measures the fractional phase difference and the number of
integer cycles accumulated since that epoch.

The GPS integrated carrier beat phase measurements (in meters), @, , are computed following

the specifications provided in Section 5.3.4 with the addition of random measurement noise and
GPS ephemeris and transmission time errors as follows:

GIW
UTC)+bR (tUTC UTC)+b j(tUTC)

(12.1.3-1)*

) Vi (tk )8p10n0 (t

W, (tUTC)

q)G/W (tk) pG/W (t

—c(8t5j+81§ ) cAtg; +
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In the above equations, the superscript # indicates the n* receiver, the superscript i indicates the

i"" antenna, and subscript j indicates the j”* GPS SV/WAAS GEO. The time tag #; is the

Uurc

measured receive time of the k” measurement, and t7 - is the true signal transmission time.

The geometrical range (pg /Wj) and range rate (pg /W,-) are computed as described in Sections

5.3.2 and 5.3.3, respectively. The receiver time bias, b,"(¢), is in meters. The correction due to

urc

the ionospheric refraction, 8p Tono(tr" ), can be modeled using the algorithm defined in Section

5.3.5. The terms 6ty and St;" are the SV time offset from GPS system time and group delay

correction for single-frequency users, defined in Equations (3.3-10) and (3.3-12), respectively.
The transmitting GPS time error Afg,(¢)is computed using ICE data parameters as defined in

G/w  UTC

Equation 3.3-10c in Section 3.3. The term o'" (5"") is the random measurement noise, which
is computed as discussed in Section 12.4.

urc

"), is computed by

dividing by the wavelength of the carrier (A, =c/F,, where F,= 1575.42 Mhertz for L1,

1227.6 Mhertz for L2 carrier frequency, and 1176.45 Mhertz for L5) to convert the carrier phase
observation from meters to cycles and optionally adding the carrier phase integer ambiguity:

The raw integrated carrier beat phase observation (in cycles), (¢ ) W, (t,

G

O Voiw, () =@ Ve (57 =Ny™ (1) (12.13-2)

where the term N ’(tacq) is the carrier phase integer ambiguity between GPS SV/WAAS

GEOj and receiver n at the carrier phase acquisition time (¢, ), in cycles, which is computed as

acq

follows:
GIW, G/W, G/W, GIW,
Nd)n ( acq) Nlower + (Nupper Nlower )8 (12 1 3-3)
where N lowerj and Nupper’ are the lower and upper bounds set by the user and ¢ is a uniform

W, (tUTC

random number between [0,1]. The integer ambiguity N ) is different for each

acquisition of a GPS or Galileo SV/WAAS GEO by a receiver and is therefore reinitialized at the
start of each new acquisition and held constant for that acquisition.

Simulation of Galileo Carrier Phase measurements follows the same procedure that is discussed
above for the GPS/WAAS Carrier Phase, with the exception that the total SV time corrections
are computed as defined in Section 3.3.9 and ICE time errors are not included.

12.2 Receiver Clock Error Model Simulation

The receiver clock error model can include the effects of clock noise in addition to acceleration
effects due to the presence of a constant acceleration, frequency aging, and temperature changes
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that are associated with eclipses. The effect of aging on the receiver’s frequency reference is
modeled by including a time bias acceleration term that is equal to derivative of the normalized
frequency aging function

—]/:((t’o)) =1+b 1n[(’ib;2’°)+1] (12.2-1)
dgere gy =< AW ___h (1222)

fr@p) dt [, —{h]+b,

The coefficients b1 and b> are determined by fitting the normalized frequency aging function to
empirical data to characterize the magnitude and effective rate of decay.

The effect of frequency variations that occur before/during/after eclipses can be modeled by
including a time bias acceleration term for specific time intervals, which is equal to the a
sinusoidal variation, with amplitude equal to b3 and period equal to the duration of the variation
(in seconds)

event

2n ti B tﬁtvaerrtlt -if tevent
’ end (12.2-3)

. <
d;vent (t) = Cb3 COS( tevent _ tevenz start. <1 =1
! end start

0; otherwise

event

cvert and 59" are input parameters for each event to be modeled.

where b3, to,, »

Frequency variations that occur due to the effect of the Earth’s magnetic field on a spinning
spacecraft can be modeled by including a clock bias acceleration term when the spacecraft is

near the Earth, which is equal to a sinusoidal variation with amplitude equal to b4 (in

seconds/seconds?), period equal to the spin period, Pspin, (in seconds), maximum radius RIS (in

meters), and ¢,,,,, equal to the start time of the simulation.

2mlt, —t¢ .
i start } if R < R™Mag

dmae (1) = 1€0s COS[ max (12.2-4)

P Spin
0; otherwise

In addition, the drift of the satellite clock versus a clock at rest on the surface of the Earth due to
relativity (meters/second) Ady (7) is given by

Ad, (t)=c —Lz He M +6.96929x107" | (m/s) (12.2-4a)*
e ¢ | Ry 2
The full clock propagation is performed sequentially as follows:
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'1 AT* ] )
be(t:1) AT 7 be (1)) AdRRel (2,)AT &
do(t.)|=|0 1 AT |d. () |+ 0 +0| s,
de(t.)] |0 0 1 | dy(t)] | A (L) + AR (1,) + AdRE (L) | |8
where

AdGE (1) = di"™ (t,.) = dE™ (1)
Ad;vent (ti+l) — d}eavent (t[+1) _ d;vent (tl)
Ady*(t,,) = dg™ (4.,) —dR™ (1)

(12.2-5)

(12.2-6)

and AT is the clock prediction step size in seconds. The values €1, €2, and &3 are normally
distributed deviates with zero mean and unit variance, which are initialized with different
random number seeds. The parameters q1, g2, and g3 are process noise variances rates associated
with frequency white noise, frequency random walk, and frequency random run, respectively.

For the correlated clock error model, the components of the matrix Q are defined such that 0O
is equal to the full clock covariance matrix:

\ra AT AT AT’ AT' AT ]
91 9> q93 20 9> > q3 3 q3 6
2 4 3 2
T 2 AT AT AT AT
=c — g —— AT +g,—— -
00 DT 9> 3 B
AT? AT?
B—— S—— AT
q93 6 q93 5 q3
where Q is the upper right triangular matrix given by
P . AT? . AT J . . ATP AT AT |
AT — 40, — AT+Q; =——— AT =——
\/Qbk +QdR 12 +QdR 720 QdR +QdR 12 2 QdR 6
S11 S12 O13 3
. - AT - AT
Q0= 0 oypn oy|= 0 \/QdRAT+QdR Tl QdRATT
0 O (533 .
0 0 0, AT
where
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Op, = cqu =Receiver time bias process noise variance rate (meters?/second)
Oy, = c2q2 =Receiver time bias rate process noise variance rate (meters?/second?)

0 i, = c2q3 =Receiver time bias acceleration process noise variance rate (meters>/second’)
The bias and rate terms are initialized at the start of the simulation by:
by(to) = bf
dg(ty) =dQ (12.2-9)
dp(tg) = df”

where the (0) superscript denotes the initial clock bias, drift, and acceleration values provided by
the user.

The values used to model the performance of the receiver clock are based on the associated
Hadamard variances. The GEONS Ground MATLAB Simulation (GGMS) tool suite has been
configured to model an Oven Controlled Crystal Oscillator (OCXO), an MMS-like Ultra-Stable
Oscillator (USO), a Spectratime Rubidium Atomic Frequency Standard (RAFS) (REF 66), and a
Deep Space Atomic Clock (DSAC) (REF 67). The clock simulation model given above is the
same model used for the GPS clocks in the GPS Master Control Segment as described in REF
65. In that reference the authors show that the Hadamard deviation produced by this model is
given by

O'%_I(T) = (10/3)q07’72 +qm 4 (1/6)gaT + (11/120)Q3T3

where the q-parameters are the variances of the driving white noises processes. The g-parameters
for simulating the clock are obtained by fitting this model to typical performance data for the
associated oscillator as shown in Figure 12-2. Table 12-1 lists the Hadamard deviations used to
simulate the performance of different quality clocks.

Table 12-1. Hadamard Deviations Used in Clock Models

Jo a1 gz as
OCXO |0 1.87e-23 1.50e-23 0.0
uso 0 1.11e-24 1.11e-25 1.11e-35
RAFS |0 3.70e-24 1.87e-33 7.56e-59
DSAC |0 4.23e-26 6.19e-38 2.24e-61
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Figure 12-2. Parameter Fits to Typical Oscillator Performance Data

12.3 Transmitter Ephemeris and Clock Error Model

Ephemeris and clock errors can be added to the transmitter ephemeris and clock offsets that are
computed based on the broadcast ephemeris files as discussed in Section 5.2. These errors, which
can be specified in either the ECEF or RIC frames, are computed using the following model

e(t) = A(0) + i{A(Zi —1)cos (2T—EZJ + A(2i)sin (27"_7”]}

i i

where t is the elapsed time from the start of the simulation, N is the number of periods, 7, is the
length of each period, and the A(i) error vector components are model parameters for each of
the position and clock bias error components. The user can set the model parameters as desired.

The recommended approach is to define model parameters to capture observed characteristic
periods of 24, 12 and 8 hours and correlations based on differences between historical broadcast
and precise ephemerides. Correlations can be modeled using a "Components of Variance" model
(e.g., Louis Scharf, "Statistical Signal Processing: Detection, Estimation, and Time Series
Analysis", Addison Wesley, 1991). In this approach, the (RIC or ECEF broadcast minus precise)
errors are assumed to follow the linear model above with random ‘A’ parameters that have a
zero-mean Gaussian distribution with covariance S. Under these assumptions, the linear least
squares estimate of ‘A’ is also zero-mean Gaussian with covariance S. Therefore, S can be
estimated from a sequence of such least squares estimates over non-overlapping segments of
(e.g., 1-day) of historical broadcast minus precise data and used for sampling ‘A’ for simulation.

This approach was used to compute coefficients to model the typical GPS RIC ephemeris and
clock errors. These coefficients are implemented in the GGMS to simulate GPS RIC ephemeris
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and clock errors. Figure 12-3 shows an example of GPS ephemeris and clock errors generated by
the model, which are randomized from run to run.

Broadcast ephem errors
T T

Rad [m]

Intrk [m]

Crs [m]

Bias [m]

0 5 10 15 20 25 30 35
Time into sim [days]

Figure 12-3. Typical Simulated GPS Ephemeris and Clock Errors

12.4 Measurement Noise Model

The measurement noise sigma for each GPS or Galileo transmitter is modeled based on the
acquired signal strength of the observation using a simple step-function noise model or using a
more realistic noise model based on thermal noise theory.

12.4.1 Step-Function Measurement Noise Model

For antenna gains above the J+1 cut-off value and below the J cut-off value, the &,,(J) noise
sigma is used.

The measurement noise sigma is determined as follows:

For J=1, Jrowa values, where Jro1a1s the total number of noise segments specified as input,
determine the measurement noise sigma ( o,;(J) ) associated with the CNOk, which is
computed as described in Section 12.5.6:

For J=1, if CNO}?5¢(2) < CNO, ,
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For =2, Jrowr-1, if CNO”MO;;e (J+1) <CNO, < CNOBe( )y,

For J= JTotal, if CNOk < CNOnMO;;e(JTotaZ) ’

cG/W<CN0k)=cG/W(JT0m1)
a5 (CNO,) = cd Y (I rorar)
o§ " (CNO) =65 (T rosar)

The measurement noise contribution is then computed as
g165" (CNOy), 265" (CNO,), £355 7 (CNOy),

where the values €1, €2, and &3 are normally distributed deviates with zero mean and unit
variance, which are initialized with different random number seeds and are independent for each
satellite.

12.4.2 Pseudorange Measurement Noise Model Based on Thermal Noise Theory
(currently implemented in the GEONS Ground MATLAB Simulation (GGMS tools)

This simulated noise model incorporates a multi-step additive random error model based on
standard GPS thermal noise theory, e.g. Equation 14.72 in REF 68. For Lunar simulations where
there can be a large variation in the acquired signal strength, a 20-step model was implemented
with 2 dB per step with 2x margin. In this model, the following equation is used to compute the
PR standard deviation in meters for the segment of the model associated with the measured value
of C/No:

G’W(CNO) SF.o g/W(CNok)

where SF_,, 1s a scale factor multiplier with suggested typical value ranges provided below

1/2
Bdll * ddll 2
2*CNO, | (2-d,)T, *CNO,

nt

o™ (CNO,) =cT, {
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CNO0, = minimum value in segment k closest to CNO

Tc = code chip period in seconds; equal to 1/1.023e6 seconds for C/A code

B, = Delay-locked loop (DLL) bandwidth in Hz; typically <1.0 Hz when carrier aiding
1s used, otherwise 5-10 Hz

d , = early-late DLL spacing in units of code chips; typically < 1

T

int

= Predetection integration time in seconds; value depends on code tracked but
typically ranges from 1 ms for strong signals to 20 ms for weak signals

12.5 Measurement Validity Editing

This section defines the measurement validity tests that are associated with GPS measurement
simulation.

12.5.1 Radial Distance Editing

The measurement is included only if the spacecraft radial distance is within the specified
minimum and maximum limits.

Ry < ‘E”(z){ < Rypar (12.5-1)

min =

12.5.2 HORP and Earth Occultation Editing

The measurement is included only if it does not fail the HORP editing test, which is defined in
Section 2.3.2.1. The Earth occultation test is identical to the HORP test performed with a HORP
value =0. The HORP test will not be passed if the transmitter is occulted by the Earth so an
additional test is not required.

12.5.3’Antenna Limit Tests

The antenna boresight angle is computed based on the orientation of the antenna’s boresight
vector. The orientation of the receiving antenna’s boresight vector can be specified in the
following body frames: (1) orbit plane (RIC), (2) VBN, (3) ecliptic, and (4) attitude-based. The
orientation of the transmitting antenna’s boresight vector is assumed to be in the radial direction
in the orbit plane (RIC) reference frame.

The measurement is included only if the receiving antenna boresight angle is within the specified
minimum and maximum limits

9R,boremin = eR,bore (tk) = eR,boreMaX (12.5.3-1)

where the receiver’s boresight angle is defined as the angle between the receiver-to-transmitter

line-of-sight vector, #, ., and the receiver’s boresight vector, iz
g los g R,bore
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A~ Axvz
6R,bore =Cos (ulos '”R,bore)

~ R"(t)= R, (1) (12.5.3-2)
‘En(fk)—ﬁc/wj (tk)‘

A

Ujps

The receiver’s boresight vector in the inertial frame is computed by rotating the receiver’s
boresight vector from its reference body frame to the inertial frame:

 XYZ B
UR bore = 172000 BUR bore (12.5.3-3)

The measurement is included only if the transmitting antenna boresight angle is within the
specified minimum and maximum limits

et,boremin < et,bore (lk) < et7b0’”eMax (12.5.3-4)

where the transmitter’s boresight angle is defined as the angle between the receiver-to-
transmitter line-of-sight vector and the transmitter’s boresight vector rotated to the inertial frame:

X2 ) (12.5.3-5)

1~
et,bore = COS (ulos Ut bore

12.5.4 Receiving Antenna Signal-to-Noise Ratio Calculation

The receiving antenna signal-to-noise ratio (C/No) in dB-Hertz, is given by:

c

C/N,=(EIRP+4)+(G +4 )+20log| ———
o= )+ (G 4) (47z|p,,<r>| 3

]+A€ +4,-10log (T, )+228.6 (12.5.4-1)

where EIRP is the effective isotropic radiated power of the transmitting antenna (specified as
input), 4, is the signal attenuation due to the transmitting antenna pattern (computed based on the
transmitting antenna model file), G- is the receiver’s antenna gain in the maximum gain direction
(specified as input), 4, is the signal attenuation due to the receiving antenna pattern (computed
based on the receiving antenna pattern file), Fr is the transmission frequency in Hertz (specified

as input), 5,(t)| is the transmitter to receiver range, A. is the signal attenuation from the

troposphere (not included), 45 is system losses (specified as input), and 7, is the receiving
antenna system noise temperature in degree Kelvin (specified as input). REF 64 discusses
calibration of the GPS link parameters used in Equation 12.5.4-1 with respect to GPS signal
strengths acquired on-orbit by the Navigator receiver in the MMS Phase 2B orbit.

For lunar simulation analysis, the GGMS can include the effect of the nominal solar maximum
Sun (excluding solar radio burst events) on the receiver system noise temperature. Since the
beamwidth of the antenna is much larger than the total angle subtended by the Sun

(approximately 0.5 degrees), we compute the effective antenna area, A, , assuming a constant

gain toward the Sun, where G

sun

is computed as the receive gain toward the direction of the
center of the Sun,
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A4, =G, AL (4rx) (12.5.4-1)

sun

The effective area is multiplied by the solar flux, S

value during solar maximum of 150 Solar Flux Units (SFU) near GPS frequencies (e.g., solar
cycle flux plot at standard monitored frequency of 1415MHz can be seen in [REF 71])

or S, =150x10%* W/m?*/Hz. We also account for a factor of % due to the fact that the solar

emissions are unpolarized and the GPS antenna is (right hand) circularly polarized. Thus, we get
an increment due to the Sun to the system noise temperature of

approximated using the typical average

T =054S. Ik (12.5.4-2)

sun e sun

with & the Boltzmann constant. This term is then used to increment the system noise temperature
from its nominal value as the simulation progresses. The C/Ny loss due to the Sun is given by

Lsun = 1OlogIO |:(T;ys + 7—;un ) / T;ys:| (1254-3)
For example, for a ~0.5m parabolic dish receive antenna operating near Earth, with peak gain
toward the Sun, the effect is limited to less than about 2 dB. With a higher gain antenna or lower

base noise system noise, this effect would be larger. During transient Solar Radio Burst events,
the solar flux, and resulting impact, can be much, much larger, but we do not model such events.

The antenna gain pattern files provide the signal attenuation for a specific type of transmitting or
receiving antenna. The GPS measurement simulation process currently supports both one- and
two-dimensional antenna pattern models. The one-dimensional (1D) antenna gain pattern, which
is a function of only the elevation with respect to the antenna boresight direction, does not have
any azimuthal dependence. The 1D attenuation pattern is given in tabular form. The attenuation
at a particular boresight angle is computed using a cubic spline interpolator. The default GPS 1D
transmitting antenna patterns are normalized such that the attenuation is zero at the edge-of-Earth
boresight angle. The two-dimensional (2D) antenna gain pattern is a csv file containing a Naz x
Nel array of gain values where Naz = number of azimuth values and Nel = number of elevation
values. The gain at a particular azimuth and elevation with respect to the antenna boresight
direction is computed by linear interpolation.

Section 12.5.8 describes the high-fidelity GPS sidelobe link antenna model currently available in
the GGMS. Section 12.5.9 discusses receiving antenna models.

12.5.5 Antenna Gain Limit Tests

The measurement is included only if the antenna gain (CNO) is within the specified minimum
and maximum limits.

CNO%4 < CNO, < CNOX9 (12.5.5-1)

Where CNOJ;l = CNOJ;L (1) defined in Section 12.5.6.
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The measurement is included only if the relative antenna gain with respect to the strongest
acquired signal is within the specified range (ACNOy7, ):

max(CNO,) — ACNOX4 < CN0, < max(CNO,) (12.5.5-2)

12.5.6 GPS Signal Acquisition Probability Calculation and Tracking Test

The acquisition probability is computed based on the probability associated with the signal-to-
noise ratio (CNO) level and the delay time between attempted acquisitions. The acquisition
probability random seed value and the probability of GPS acquisition segments/values and wait
times before trying reacquisition are specified as input:

The algorithm is as follows:
1. Ifthe GPS SV is already being tracked, continue tracking.

2. Ifthe GPS SV is not currently being tracked, perform the new acquisition probability
test

a. Determine the wait time ( A¢,,,;; ) and probability of acquisition ( 2,(CNO))

associated with the CNO computed as described in Section 12.5.4, starting
with the J=1, Jrow values, where Jrozai 1s the total number of acquisition
segments specified as input:

If  CNO% (J+1)< CNO, < CNOY ()

P,(CNO;) = P, (/)

12.5.6-1
At i = Aty (J) ( :
Else if CNOJ? < CNO; < CNOSSI (7o)
P,(CNO,)=P,(J
a(CNO) =Py (J1ota1) (12.5.6-2)

Atwait = Ata (JTotal)

b. If elapsed time since last acquisition attempt is <At,,,;, , exit process
c. Else if elapsed time since last acquisition attempt is 2 At,,,;; ,

1. Set time of last acquisition attempt =current time

ii. Call random number generator (rand) to return a uniform random
number between 0 and 1 (rand) starting with the input seed value
iacqseed

iii. Determine acquisition: signal is acquired if rand < P,(CNO0)
Where

CNOy;! = Minimum CNO value that can be acquired
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CNOy;d (J) = Maximum CNO value at which acquisition probability for segment J
applies
P,(J) = Probability value when CNO value is associated with segment J

At,(J) = Delay before trying reacquisition (in seconds) when CNO value is associated
with segment J

12.5.7 Time Interval Editing (currently not implemented in GEONS)
The measurement is included only if the measurement time within the specified time intervals.

12.5.8 Transmitter Antenna Models

The GPS signal simulation model available in the GGMS includes a high-fidelity GPS sidelobe
link model based on in-orbit measured transmit patterns from the GPS-ACE project [REF 69].
The mainlobe portion of each transmit pattern is drawn from the best available data for each
block and merged with the sidelobes measured by GPS ACE. The Block IIA and IIF mainlobes
are modeled using a best-estimate of the average gain and shape of the Block IIF mainlobe.
Block IIR and IIRM transmit patterns are modeled on a per-SV basis using data released by
Lockheed Martin [REF 75]. Block III mainlobes are modeled by averaging the public IIRM
mainlobe data, as it is assumed the Block III mainlobe structure and gain is closely related to that
of the IIRM antennas.

This GGMS simulation model also incorporates the International GNSS System (IGS) GPS yaw
model. Based on the calibration analysis, the per-block GPS transmit power and a few receiver
parameters were adjusted to provide a good match between simulated and MMS-2B GPS
measurements in terms of signal-to-noise ratio (C/No), number of signals tracked, tracking arcs
and filter residuals. Figure 12-4 compares the EIRP based on GPS per block ACE Patterns and a
Conservative Gal E1 Antenna Gain Model for Galileo transmissions.

35 35

== = ACE Mean == = ACE Mean
AGE Mean minus 3dB ACE Mean minus 3dB
GalE1

GalE1 30+

1A —A
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IR
IRM

IIF
IR

251
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40 50 80 70 80 a0
Off-Baresight Angle [deg] Off-Boresight Angle [deg]

! ! I I L | L
a 10 20 30 40 50 60 70 80 20 0 10 20

Figure 12-4. Comparison of EIRP based on GPS ACE Patterns and Conservative
Gal E1 Antenna Gain Model. Left plot shows per-SV patterns averaged over
azimuth. Right plot shows all azimuth cuts
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12.5.9 Receiving Antenna Models

In general, the receiving antenna gain pattern must be tailored to the specific user antenna
configuration. The GGMS includes receiving gain pattern files for the following types of
antennas:

e Parabolic lunar high-gain antenna
e Patch antenna

e Omni-directional antenna
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Abbreviations and Acronyms

C/A
CDRS
CM
CPU
DSN
ECEF
EKF
EOS
EP

ET
ERFA
EUVE
FDD
GCRF
GEONS
GHA
GNSS
GPS
GPST
GSFC
HORP
HSI
IAT
ICRF
IERS
ITRF
JD
JIGM

Coarse Acquisition

Command and Data Reception System
center of mass

central processing unit

Deep Space Network

Earth-centered Earth-fixed

Extended Kalman Filter

Earth Observing System

Explorer Platform

ephemeris time

Essential Routines for Fundamental Astronomy
Extreme Ultraviolet Explorer

Flight Dynamics Division

Geocentric Celestial Reference Frame
GPS Enhanced Orbit Determination Experiment
Greenwich hour angle

Global Navigation Satellite Systems
Global Positioning System

GPS time system

Goddard Space Flight Center

height of ray path

Hyperspectral Imager

International Atomic Time

International Celestial Reference Frame
International Earth Rotation Service
International Terrestrial Reference Frame
Julian date

Joint Gravity Model
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MIPS million instructions per second

MID modified Julian date

NASA National Aeronautics and Space Administration
Nav. navigation

RAM random-access memory

RIC radial, in-track, cross-track

ROM read-only memory

RPU receiver/processor unit

SA Selective Availability

S/C spacecraft

sec second

SOFA Standards Of Fundamental Astronomy
SPS Standard Positioning Service

SV space vehicle

TDB barycentric dynamical time

TDRSS Tracking and Data Relay Satellite System
TOD true equator and equinox of date

TONS TDRSS Onboard Navigation System

TT Terrestrial Time

UCB Ultraviolet Cosmic Background

USNO United States Naval Observatory

UTC coordinated universal time

UTI universal time corrected for polar motion
WGS World Geodetic System
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