3D Lightning Geolocation with the CubeSpark Constellation

Jackson Remington^{1*}, Timothy Lang¹, Patrick Gatlin¹, Mason Quick¹, Sonja Behnke², Harald Edens², Nikhil Pailoor²,

Sarah Stough³

¹NASA Marshall Space Flight Center, ²Los Alamos National Laboratory, ³NOAA National Severe Storms Laboratory, *NASA Postdoctoral Program jackson.r.remington@nasa.gov

CubeSpark Motivation

The concept of CubeSpark as a next generation lightning mapper is to improve on the 3D accuracy of these observations and make use of the wide electromegantic spectrum of lightning emissions, particularly in infrared (IR), ultraviolet (UV), and radio very high frequencies (VHF).

Its primary goals are:

- < 1-2 km spatial resolution of individual lightning sources
- **Colocated VHF sensor and combined UV/IR optical imager**

Ionospheric Propagation & Geolocation Simulations

Simulation work of these methods is largely based on the Lightning Mapping Array (LMA) simulation package (Chmielewski & Bruning 2016), modified for orbiting detectors.

Level-0 study by MSFC Advanced Concepts Office explored constellation design optimized for low Earth orbit (LEO).

Science/Application Benefitted	Flash Altitude	Charge Structure	Channel Length
Severe Weather	\checkmark	\checkmark	
Precipitation Science		\checkmark	
LNOx (Atmos. Comp & Climate)	\checkmark		\checkmark
<i>Optical lightning detection (Weather forecasting & Climate)</i>	\checkmark		
Wildfire/Winter Weather	\checkmark	\checkmark	

Bispectral

Enabled Science and Applications 3-D Observations of Lightning:

 \rightarrow Hazards \rightarrow Processes \rightarrow Climate \rightarrow Composition

- Simulates individual, high-power VHF sources in the 600 x 600 km grid below the network.
- Satellite spacing is varied along two orbital planes to reduce baseline symmetry

Ionospheric dispersion of RF signals is robustly simulated and corrected first order to determine the estimated time of arrival at each satellite.

- Ionospheric electron density is simulated at 5, 30, and 60 total electron count units (TECU = 10^{16} electrons/m²).

3D Mapping Methods

Extract lightning

1 satellite	2 satellites	3 satellites	4 satellites	5 satellites	6 satellites
Reflected pulse solution	Reflected pulse solution (averaged)				
	Constrained TOA + optical (0 DoF) 🔇	Constrained TOA + optical (1 DoF)	Constrained TOA + optical (2 DoF)	Constrained TOA + optical (2 DoF)	Constrained TOA + optical (2 DoF)
			Pure TOA method (0 DoF)	Pure TOA method (1 DoF)	Pure TOA method (2 DoF)

Arrival time is dithered further to account for instrumental uncertainty (conservatively 100 ns) before being used by time-of-arrival (TOA) methods to locate sources. This can be relaxed to 500 ns to improve convergence rate (see right panels).

Results

Vertical Resolution vs Flash Activity

R1: Optical + RF reflected pulse R2: Optical + RF TOA

Reflected Pulses:

Uses Earth-reflected pulse to calculate time and source altitude

Reflected pulse

Direct pulse

040

Up to ~32% of \bullet sources have reflected pulses

Constrained time-of-

arrival (TOA):

- Horizontal position constrained by optical imager
- Time and altitude overdetermined by signal arrival times

Pure TOA method:

- Source locations and times overdetermined from 5+ RF measurements
- **3D** Reconstruction depends on relative signal arrival times

(x, y, z, t)

 (x_i, y_i, z_i, t_i)

Pure-VHF TOA approach(5-6 satellites):

Size represents relative number of well-resolved sources (approx.)

- ~260 m horizontal, ~980 m vertical error
- Not feasible for <5 satellites

Constrained TOA approach (3-4 satellites):

- 580 m horizontal, ~1,800 m vertical error
- Not feasible for <3 satellites

Reflected pulse approach (1-2 satellites):

- 580 m horizontal, ~260 m vertical error
- Fewer resolvable sources

Work funded by the NASA Postdoctoral program administered by Oak Ridge Associated Universities. Thanks to V. Chmielewski for assisting with LMA simulation software