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This paper presents the status and ongoing development of a new model for the predic-
tion of aft-radiated turbofan broadband noise. The proposed model is developed using data
from two full-scale flight tests, the Boeing Quiet Technology Demonstrator 2 (QTD2) and
the NASA/Boeing Propulsion Airframe Aeroacoustics and Aircraft System Noise (PAA&ASN)
flight tests. The proposed model accounts for an observed coupling between directivity and
fan relative tip Mach number. Additional features such as improved spectral and directivity
characteristics are discussed. Significant improvements over priormethods implemented in the
NASA Aircraft Noise Prediction Program are demonstrated, and predicted deltas to measured
levels are reduced from +10/-20 dB to ±3 dB or better at the most relevant frequencies. This is
expected to greatly improve the ability of NASA to predict the noise of both current and future
aircraft concepts.

I. Introduction
Projected growth of the aviation sector highlights the need for significant reduction in environmental impact to

ensure a sustainable future for the globe and for local communities around airports while meeting market demands
for improved payload, speed, and range performance. The goal of the NASA Advanced Air Transport Technology
(AATT) Project is to explore and develop technologies and concepts for safe, economical, energy-efficient, and quiet
fixed-wing subsonic transports [1]. To inform technology development planning and decision-making, the AATT
Project is continually improving the quality of system noise assessments of current and prospective aircraft. Full-scale
flight data are a critical means of improving and validating system noise assessment tools, including the NASA Aircraft
NOise Prediction Program (ANOPP).

Fan source noise, the performance of engine acoustic liners, and Propulsion Airframe Aeroacoustics (PAA) effects
associated with fan noise are key elements of system noise, even for aircraft concepts that feature significant engine
noise shielding. June et al. [2] found that a strong majority of uncertainty present in the system noise prediction
of a hybrid-wing body (HWB) aircraft could be attributed to the prediction of fan source levels, engine acoustic
liner performance, fan PAA effects, and Krueger flap noise. NASA has funded research on Transonic Truss-Braced
Wing (TTBW) configurations both internally and externally [3] since 2010, leading to the planned test of the X-66A
demonstrator in coming years. The most recent acoustic assessment of the TTBW concept [4] shows fan noise, liner, and
PAA effects to be critical to the overall noise and key targets for noise reduction technology. In spite of the demonstrated
importance of fan noise, liner effects, and PAA effects, limited in-flight acoustic data are available to rigorously evaluate
the modeling of these effects.

To address this limitation, the Propulsion Airframe Aeroacoustics and Aircraft System Noise (PAA&ASN) flight
test was performed in August 2020 in collaboration with The Boeing Company as part of the ecoDemonstrator 2020
program. The test was carefully designed for high signal-to-noise ratio and repeatability, yielding a complete dataset
with which to evaluate many of the models that comprise ANOPP, including those for fan noise and liner effects. An
overview of the full test campaign is presented by Thomas et al. [5] and Czech et al. [6]. Clark et al. [7] performed a
first analysis of the measurements focused on fan noise and liner effects and found significant discrepancies between
the measured noise and noise predicted using the method of Krejsa and Stone [8], particularly in the aft arc. The aft
directivity was found to vary significantly with throttle setting, a feature that is not present in the prediction model.

The current work extends the work of Clark et al. [7] by improving the analysis of fan noise data. In particular, the
fan broadband noise is the focus of the current work, while fan tones are treated separately in a companion publication
by Nesbitt et al. [9]. The previous analyses and conclusions [7] offered several opportunities for improvement. First, the
fan noise spectra were not separated into tonal and broadband components. These components have different physical
mechanisms responsible for their generation, and as a result, exhibit different characteristics with respect to directivity,
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throttle setting, etc. Second, while fan noise was extracted from total flyover noise using a process that involved ANOPP
predictions and post-processing additional flight test configuration data, the resulting fan noise spectra were limited in
frequency range due to masking by uncertainties in the subtracted components. Third, the fan noise was not decomposed
into inlet- and aft-radiated components, which again have different physics governing their generation and propagation
and exhibit their own scaling characteristics. The present work seeks to overcome these limitations through more
advanced processing and additional steps to better isolate fan noise from flyover data and to separate that fan noise
into constituent components. In addition, data from the Boeing Quiet Technology Demonstrator 2 (QTD2) test [10]
conducted in 2005 are utilized in this study to broaden the database and consider the effects of two different engines.

To make progress toward improved system-level predictions, of which fan noise plays a key part, the functional
forms of current fan noise models will be investigated and modified in an attempt to find better correlating parameters
that can more accurately predict fan noise across a range of conditions and fan designs. Improvements will be made to
the throttle setting and directivity characteristics of the fan prediction which were shown to be sources of significant
discrepancy in Clark et al. [7]. Spectral shape characteristics will also be addressed. Finally, the reformulated prediction
will be verified via direct comparison to the PAA&ASN 787 flight test data to confirm and characterize the potential
improvements of the proposed framework. Aft-radiated fan broadband noise will be the focus of this paper, and this
framework will be expanded for inlet-radiated fan broadband noise in future work.

II. Flight Test Setup
The NASA PAA&ASN flight test was conducted in collaboration with The Boeing Company as part of their 2020

ecoDemonstrator program. Extensive acoustic measurements were made on a newly manufactured Boeing 787-10
Etihad Airways airliner with GEnx-1B engines. For the test conditions considered in this paper, the port engine was
set at a target N1C (corrected fan shaft rotation speed), while the starboard engine was kept at flight idle. Flight
data recorders on board the aircraft enabled highly accurate, time-resolved aircraft state telemetry. The test site was
a privately owned airfield near Glasgow, MT with no other air traffic in the vicinity. Ground-based instrumentation
included eight community microphone arrays with 42 ground-board microphones in total (see Fig. 1). This paper
focuses primarily on the centerline microphone array, which contained eight microphones for high-quality averaging.
Further details of the PAA&ASN flight test setup are provided by Czech et al. [6].

Fig. 1 Drone photograph of test aircraft flying over acoustic instrumentation. Array locations highlighted in
yellow for clarity. Not all arrays are shown/highlighted. Photo credit: The Boeing Company.

A variety of aircraft configurations were measured throughout the five test days of the NASA PAA&ASN flight test.
In addition to the production (unmodified) configuration, a hardwalled configuration was tested, in which aluminum
tape was used to cover the aft bypass duct liner, thereby removing the acoustic effect of the liner. In each configuration,
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a series of flyovers were performed at intervals of throttle setting. These conditions are the focus of this paper.
In addition to the primary dataset from the PAA&ASN flight test, data from the QTD2 flight test, conducted on a

Boeing 777-300ER airplane equipped with GE90-115B engines, will also be used to supplement the analysis of fan
noise. This flight test was conducted at the same test site as the PAA&ASN flight test, with a similar setup and layout of
ground-based microphone instrumentation. Further details of the QTD2 flight test are provided by Herkes et al. [10].

III. Data Processing
In contrast to the analysis of Clark et al. [7], which began with one-third octave band acoustic data, this paper begins

analysis with narrowband acoustic data. Standard data processing as developed for noise certification testing was used
to generate narrowband spectra from the time-series data and to correct for atmospheric conditions, normalize to a
standard flight path, and ensemble average. Time-dependent narrowband spectra were delivered with a polar angle
resolution of two degrees; each spectrum was generated from 0.16-second segments of pressure time history with 50%
overlap and ensemble averaged over the microphones in the array.

For this study, the tone-accurate narrowband spectra were first processed to remove the Doppler frequency shift using
the precise Mach number recorded during each individual flyover and the reported emission angle for each spectrum.
The spectra were then backpropagated to convert to equivalent 1-ft lossless spectra, removing the effects of spherical
spreading and atmospheric absorption using the method described in ANSI S1.26-1995. Broadband noise was then
extracted from the spectra using a median filter stencil method [11], followed by the minimum broadband algorithm
described by Nesbitt et al. [12]. As described in the companion paper on turbofan tones [9], this combined algorithm
yields a high-quality estimate of the broadband noise without including the broad "hay-stack" tones that are otherwise
included by the median filter alone. Finally, the narrowband spectra were integrated to one-third octave band spectra
and calibrated to the 0.5-second integration one-third octave data.

The resulting broadband noise represented the total broadband noise measured from all sources on the aircraft,
including airframe noise and engine noise sources other than fan noise. In order to isolate fan noise, a component
build-up approach was used to model the spectral shape of all sources to be removed, including jet, jet-flap interaction,
airframe, and combustor (core) noise. Independent models were built for all throttle settings and emission angles. The
resulting spectra were then fit to the low-frequency region of the measured data, where fan noise was expected to be
a non-dominant contributor to the total levels. This process is illustrated notionally in Fig. 2(a). The fitted spectra
were then subtracted from the total measured levels on a pressure-squared basis, with the result representing fan noise,
as illustrated in Fig. 2(b). The subtraction was performed iteratively from high frequency to low frequency, and at
each frequency the difference between the measured data and fitted sum was computed. As the difference approached
some specified small value, the spectral subtraction was terminated and a constant slope was applied to reconstruct the
low-frequency spectral shape as indicated by the gray region in Fig. 2(b).

Only hardwalled aft duct configurations from the PAA&ASN 787 flight test were considered for this work, but the
QTD2 dataset only included production (lined) aft duct results. To remove the effects of the liner and approximate
an equivalent hardwalled configuration for the QTD2 dataset, the liner attenuation prediction method of Kontos et al.
[13] was used to estimate the liner performance and shift the measured levels appropriately. In addition, propulsion
airframe aeroacoustic (PAA) effects were estimated from data acquired in the Boeing Low Speed Aeroacoustic Facility
(LSAF) [14] and were removed from the extracted fan broadband levels. As mentioned above, the focus of the present
work is aft-radiated broadband noise. Rather than attempt to explicitly separate inlet- and aft-radiated contributions
at all emission angles, this work will simply focus on emission angles from 80 to 150 deg relative to the inlet axis.
Comparisons between noise levels measured for the hardwalled and production aft duct configurations revealed that
aft-radiated contributions to total levels are dominant at these angles.

IV. Fan Noise Prediction
In contrast to the prior work of Clark et al. [7], the individual subcomponents of fan noise as predicted by the

method of Krejsa and Stone [8] will not be combined into total fan noise. The predicted aft-radiated broadband noise
will be compared directly with the corresponding extracted fan noise subcomponent as described in the previous section.
The predictions were made using Boeing-provided information on the aircraft engine cycle and flight conditions for
each individual flyover and input to the method of Krejsa and Stone [8].

The method of Krejsa and Stone [8] can be described as a recalibration of the prior method of Heidmann [15].
There have been other recalibrations published, including the method of Hough and Weir for small engines [16], and the
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Fig. 2 Notional illustration of process to isolate fan broadband noise from total measured broadband noise.

method of Kontos et al. [17] for large engines. In most cases, the functional forms have remained the same. However,
the method of Krejsa is unique in several ways, as seen in Eq. 1 for the aft broadband noise in particular.

(%! = 10 log10 ( ¤</ ¤<0) + 40 log10 (Δ)/Δ)0) + 34.0 − 17.0("A − 0.65) − 5 log10 ('((/300) + 51 (\) + 52 ( 5 ) (1)

First, while the three other methods correlate sound pressure level to the second power of the total temperature rise
across the fan (Δ)), Krejsa puts a fourth-power dependence on this parameter. Second, while other methods express
a logarithmic dependence between SPL in decibels and tip relative Mach number ("A ), which is anticipated by the
physics of aerodynamic noise generation, Krejsa expresses a linear relationship between these two quantities.

Considering the Krejsa method more generally, other characteristics are interesting to note. The correlating
parameters include mass flow rate ( ¤<), temperature rise across the fan, and tip Mach number. These three parameters
are not independent for a given fan, but rather rise and fall together in response to throttle setting. In the model, sound
pressure level increases with mass flow rate and temperature rise, but decreases with tip Mach number. While each
parameter independently would be expected to be positively correlated with SPL, the inclusion of all three parameters
required a negative correlation on tip Mach number to best collapse the source data. This is analogous to overfitting and
could lead to a less generalized model with degraded performance outside of the training dataset. Other frameworks
will be considered in this work to yield a more stable model.

V. Model Development

A. Spectral Fitting
Beginning from the fan noise spectra obtained from the process outlined in Section III, the first step to fitting the

data to a model framework was fitting a spectral shape to the data. For this, the general functional form of the spectral
shape function used by the Heidmann [15] method and its derivatives was used, as shown in Eq. 2.

5 (\) = 10 log10 exp

{
−0.5

[
ln([/�)
ln(f)

]2
}

(2)

Here, [ is the frequency normalized by the blade passage frequency (since the data are de-Dopplerized), � is a
constant that places the peak of the spectra at � times the blade passage frequency, and f is a constant set to 2.2 as in
the Krejsa method. For a given dataset (PAA&ASN 787 or QTD2), the value of � was chosen to give good agreement
to the spectral shape at overhead angles and was kept constant for all angles and thrust settings. For each individual
angle and thrust setting, the spectral shape was shifted in level to minimize the root-mean-square error between the
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modeled spectrum and the measured spectrum in a frequency range from 1-5 kHz, where fan noise was observed
to peak in the data. The main objective of this procedure, which is notionally illustrated in Fig. 3(a) was to yield a
smoothly-varying estimate of the peak level as it changes with angle and thrust setting. As illustrated in the figure, due
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Fig. 3 Notional ilustration of spectral fitting process, with differences between peaks as extracted by fitting
spectral shape function to data and as measured. PAA&ASN 787 data are shown in red, QTD2 data are shown
in blue.

to the variation between the modeled spectral shape and the true shape of the data, the modeled and measured peak
levels do not generally match. The differences between the fitted peak and the absolute measured peak at all angles and
throttle settings for the two datasets is shown in Fig. 3(b).

As can be seen in the figure, generally good agreement is achieved with this method, with the extracted fitted peak
agreeing with the absolute measured peak to within ±2 dB in most cases. More scatter is observed at far aft angles,
where data quality decreases and the spectral characteristics of the measured data do not follow trends as clearly as
observed nearer the overhead angles.

B. Power Setting Normalization
As discussed in Section IV, the Krejsa model has some unique characteristics such as a strong dependence on fan

temperature rise and a negative linear dependence on fan tip relative Mach number. As discussed in Clark et al. [7],
the model shows disagreement with the PAA&ASN 787 flight test data at low throttle settings and aft angles, which
indicates that the throttle setting dependence could be improved. The prior work also showed a change in directivity
with throttle setting.

For a given fan (constant design tip Mach number, rotor-stator spacing, etc.), the Krejsa dependence on throttle
setting for aft-radiated broadband noise is given in Eq. 3.

(%! ∝ 10 log10 ¤< + 40 log10 Δ) − 17.0"A (3)

Here, ¤< is mass flow rate through the fan, Δ) is total temperature rise across the fan, and "A is tip relative Mach
number. The mass flow parameter is also useful for correlating noise levels across different fans of different sizes, but
the temperature rise and tip relative Mach number terms contradict. After testing several formulations, it was found
that the best data collapse for the 787 flight test data could be achieved by neglecting the temperature rise term and
correlating solely on the logarithm of relative tip Mach number, as given in Eq. 4, where � is a constant yielding the
best fit, to be found via regression.

(%! ∝ 10 log10 ¤< + � log10 "A (4)
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The difference in the two approaches can be seen in Fig. 4, where the collapse of the peaks for all throttle settings
and emission angles is shown. In Fig. 4(b), the coefficient � in Eq. 4 is optimized for best fit in the near-overhead
angular range, between approximately 80 and 110 degrees. The normalized levels are shown relative to one particular
thrust setting, separately for the 787 and QTD2 datasets, such that ideal model performance would place all datapoints
at 0 dB for all emission angles.

80 90 100 110 120 130 140 150
Emission Angle (deg)

−10

0

10

20

30

No
rm

al
ize

d 
ΔS

PL
 (d

B)

(a) Krejsa Normalization

80 90 100 110 120 130 140 150
Emission Angle (deg)

−10

0

10

20

30

No
rm

al
ize

d 
ΔS

PL
 (d

B)
(b) Overhead-Fitted Normalization

Fig. 4 Quality of normalization based on relations of Krejsa vs the proposed formulation fitted to overhead
angles. PAA&ASN 787 data are shown in red, QTD2 data are shown in blue.

As can be seen in the figure, the proposed formulation and fit greatly improve the data collapse from a 25 dB spread
to about a 3 dB spread at near-overhead angles, indicating a more accurate relationship between operating condition and
sound pressure level. However, the collapse is still not satisfactory at aft angles, and choosing a different value of � to
improve the fit at aft angles would necessarily degrade the performance in the overhead region. It is clear that there is no
single value of � that would yield accurate prediction of levels across all emission angles. Therefore, as a next step, the
constant � is replaced with a function of emission angle V(\). To understand the characteristics of V(\), the value of V
is found at each emission angle individually by finding the best collapse of the 787 data. As seen in Fig. 5, a blending
function based on the error function (Eq. 5) is easily fit to the results, and can be used to normalize SPL as in Eq. 6.

V(\) = � + �
(
erf

(
\ − �
�

))
(5)

(%! ∝ 10 log10 ¤< + V(\) log10 "A (6)

In Eq. 5, the constants �, �, �, and � define the shape and position of the blending function. Normalizing on the
proposed relation in Eq. 6 yields Fig. 5(b), where good data collapse is observed at all angles. This purely empirical
approach to model development does not yield a physical understanding of the broadband noise behavior; however, there
are several notional explanations. Several sources of fan broadband noise exist, including the interaction of the inlet
boundary layer with the rotor, rotor self-noise, and turbulence from the rotor wakes impinging on the stators. While
these have similar physical mechanisms (scattering of convected turbulence), one possible explanation for the observed
behavior is that two hypotheses are simultaneously true. First, the physical sources of fan broadband noise scale
differently on rotor tip Mach number. Second, the physical sources generate noise with different far-field directivities.
Together, this would indicate that some physical sources scale on a certain tip Mach number and propagate primarily to
overhead directions, while other sources scale on a different tip Mach number and propagate primarily aft. There is
some physical grounding in the first statement - rotor self-noise scales differently than the rotor leading-edge noise
produced by interaction with the inlet boundary layer, for example. However, there is less evidence available to assess
the second hypothesis regarding directivity, especially since broadband noise is less organized into specific duct modes
as would be the case with tones. This hypothesis requires additional research with more detailed information than is
available for this study.
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Fig. 5 Fitting of blending function for coefficient of tip relative Mach number dependence, and quality of
normalization based on the fully-defined proposed formulation. PAA&ASN 787 data are shown in red, QTD2
data are shown in blue.

C. Directivity
The throttle-dependent directivity characteristics have been covered in the previous section, which now makes the

choice of a general function for directivity more straightforward. By scaling the spectral peak levels using the function
given in Eq. 6 above, a clear directivity function was revealed once the data were normalized to the peak emission
angle, at least for a given data set. While not shown here, some minor but significant differences were observed in the
directivity characteristics between the PAA&ASN 787 flight test and the QTD2 flight test, as might be expected for
different engines. To move forward with a generalized model, a directivity function was chosen that was best fit to both
datasets simultaneously, and it remains for future work to develop a more complete directivity model that accounts for
specific characteristics of a given engine (geometry, etc.).

D. General Prediction
With the individual fan-specific frameworks for spectral shape, throttle dependence, and directivity established, a

general function for aft broadband noise prediction can be expressed as in Eq. 7.

(%! = 00 + 01 log10 (1 − "∞2>B(\)) + 02 log10 �4 5 5

+ 03 log10 "A + 04

(
erf

(
\ − �
�

))
log10 "A

+ 05 log10 "34B + 06 log10 '(( + 51 (\) + 52 ( 5 )

(7)

Here, 00 is a constant, the 01 term corresponds to convective amplification, the 02 term corresponds to the bypass
nozzle effective area, the 03 and 04 terms correspond to the tip relative Mach number dependence of the same general
form as Eq. 5, the 05 term corresponds to the design relative tip Mach number at the Aerodynamic Design Point (ADP),
and the 06 term corresponds to the rotor stator spacing (RSS). Finally, 51 (\) is the general directivity function and
52 ( 5 ) is the spectral shape as a function of frequency.

It is noted here that the effective area �4 5 5 has replaced the mass flow rate ¤< to correlate over engine size. With
only two datasets, it is impossible to say purely from the data which parameter might be better suited to a general model
for any arbitrary engine. However, it is expected that the effective area embodies characteristics that are key to fan
noise, including bypass nozzle performance, in addition to simple geometric scaling. In total, three design variables
are present in Eq. 7, namely effective area, design tip Mach number at ADP, and rotor-stator spacing, but only two
datasets and engine designs are available for fitting. As a result, two coefficients (08) are chosen manually based on
prior convention, and one is left for the fitting routine to best collapse the two datasets.
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To choose the remaining coefficients, the differential evolution optimization method of Storn and Price [18] was
used as a multivariable regression solver to fit the spectral peak levels to the measured spectral peaks, which is given
by removing the term 52 ( 5 ) from Eq. 7. The final coefficient solutions converged to values that were well within the
specified bounds, and the A2 value was approximately 0.98 indicating an excellent fit. The resulting model performance
is shown in Fig. 6, where datapoints for all datasets, throttle settings, and directivity angles between 80 and 150 deg are
shown, and the diagonal line represents equal predicted and measured levels.
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Fig. 6 Quality of multiple linear regression analysis to fit the model framework to the measured data.

VI. Comparison to Data
In order to verify the model resulting from the above procedure, comparisons similar to those shown in Clark et al.

[7] are now shown here comparing both the Krejsa model and the proposed prediction model. It is emphasized that this
is a model verification, demonstrating the performance against the training data in a clear way. Model validation requires
an additional, independent dataset that was not included in the model fitting procedure, and this remains for future work.

Spectral comparisons are first shown for two representative emission angles, one near overhead (Fig. 7) and one at
an aft emission angle (Fig. 8). The first and most obvious improvement with the proposed prediction is the reduction in
absolute differences for the lowest thrust cases, but the agreement with mid to high thrust is improved as well. Generally,
agreement between predicted and measured levels has been improved from approximately +10/-20 dB for the Krejsa
method to ±3 dB or better for the proposed model in the frequency range surrounding the spectral peak. In addition, the
negative slope in the curves comparing the Krejsa prediction to data indicate a mismatch in spectral shape between
prediction and measured data. With the improved spectral fit as discussed in Section V.A, the proposed prediction
shows a more constant trend with frequency. More discrepancy between the proposed prediction and measured data
is observed at lower frequencies; however these values represent levels farther from the spectral peak, and where the
uncertainty is greater in the low-frequency component subtraction process used to isolate fan noise.

To show additional trends as presented in Clark et al. [7], Figs. 9 and 10 show additional normalized comparisons
between prediction and measurement. Note that some differences are observed between the Krejsa comparisons
presented here and those presented previously because the prior work made no attempt to separate broadband and tone
levels.

To isolate the directivity trends, for each operating condition, the peak spectral level at each emission angle was

8



102 103 104

Frequency (Hz)

−30

−20

−10

0

10

20
Pr
ed

ict
ed

 - 
M
ea
su
re
d 
SP
L 
(d
B)

Low Thrust

High Thrust

(a) Krejsa Prediction

102 103 104

Frequency (Hz)

−30

−20

−10

0

10

20

Pr
ed

ict
ed

 - 
M
ea
su
re
d 
SP
L 
(d
B)

Low Thrust

High Thrust

(b) Proposed Prediction

Fig. 7 Differences (Prediction−Data) in fan broadband one-third octave band SPL predicted using Krejsa and
the proposed formulation at a near-overhead angle.
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Fig. 8 Differences (Prediction−Data) in fan broadband one-third octave band SPL predicted using Krejsa and
the proposed formulation at an aft angle.

normalized relative to the peak at 90 degrees (overhead) emission angle. Figure 9 shows the difference between the
predicted and measured normalized peaks, where the ideal prediction of directivity would lie on the 0 dB line. As
observed in the prior work, not only is there a mismatch in directivity pattern for all thrust settings in the Krejsa model,
there is also a dependence on thrust setting at aft angles. The maximum absolute difference in relative directivity
approaches 9 dB, with a nearly 6 dB spread over thrust settings at aft angles. The proposed prediction framework, which
couples directivity with tip Mach number, not only shows better overall agreement at all emission angles by limiting the
maximum absolute difference in relative directivity to 2 dB, but also largely removes the throttle setting dependence on
directivity at aft angles.

To isolate the effect of throttle setting, at each emission angle, the peak spectral levels are normalized to the peak
level at the highest throttle setting separately for the predicted and measured data. Figure 10 shows the difference
between the normalized measured peaks and the normalized predicted peaks at each throttle setting, which demonstrates
the difference between the predicted and measured correlation of noise levels with thrust. The ideal prediction of the
noise level response to thrust setting would lie on the 0 dB line. Again, as observed in prior work, the extreme sensitivity
of the Krejsa prediction at low thrust settings is demonstrated here, while the proposed prediction framework is stable
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Fig. 9 Normalized differences (Prediction−Data) in directivity trends of aft fan broadband noise.
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Fig. 10 Normalized differences (Prediction−Data) in thrust setting trends of aft fan broadband noise.

even at low thrust. The proposed prediction suggests a slight overprediction at moderate thrust levels, but this is an
artifact of the normalization process. As Figs. 7 and 8 show, the highest thrust setting is slightly underpredicted, and
because this case is the basis for the normalization, the other thrust settings are shifted above the 0 dB line in Fig. 10(b).

VII. Conclusions and Future Work
A new system-level noise prediction model for aft-radiated turbofan broadband noise has been formulated using

two full-scale flight test datasets. The general performance of the new formulation has been shown to greatly improve
prediction characteristics for a range of fan operating conditions, emission angles, and frequencies. Prediction deltas to
measurements have been reduced from a range of +10/-20 dB for the most recent fan noise prediction model in the
NASA Aircraft Noise Prediction Program to ±3 dB or better for the proposed model in the frequency range surrounding
the spectral peak. The improved relation for throttle dependence as a function of directivity is matched to measured
data characteristics. Future work will pursue a framework that fits the data to relevant engine cycle parameters that
may be more directly correlated with the broadband sources responsible for the throttle dependence shift at aft angles.
This work has utilized a shift in spectral peak frequency relative to previous models to improve agreement with the
measured data; however a general relationship between spectral peak frequency and engine characteristics has not yet
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been developed. Similarly, a general directivity function has been developed based on data from two separate flight tests,
although each dataset displayed some differences in directivity characteristics. Finally, future work remains to fine
tune the model, develop a model for inlet-radiated broadband noise, and extend the validation of the model with an
independent dataset that was not used in its development.

Despite the remaining future work, it is emphasized that the proposed model has been created using research-quality
data from a highly relevant full-scale flight test on a state-of-the-art aircraft with modern engines, and has been
shown to exhibit strongly improved characteristics relative to prior system-level fan noise prediction methods that
were developed from model-scale fan test rig data. It is expected that the model presented in this work represents a
significant improvement in the ability of NASA to predict aft-radiated fan broadband noise for both current in-service
aircraft and future aircraft concepts. This will allow for better assessment of the relative performance of future aircraft
concepts and noise reduction concepts that are sensitive to the relative ranking of the various noise sources on an aircraft.
Better information and reduced uncertainty in noise assessments enables better investments into future technologies for
maximum public benefit.
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