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A. INTRODUCTION 
 
Tremendous media attention accompanied the public launch of generative artificial intelligence (AI) models1, and novel applications 
of these technologies have continued to evolve. Advancements in AI have long been predicted to influence numerous private and 
public sectors, including medicine2, and the field of aerospace medicine stands to benefit tremendously from AI integration. Many use 
cases for AI precede the introduction of the generative AI models3, but the supportive potential of these tools in healthcare has not 
yet been fully realized. To date, AI is most commonly implemented to support terrestrial medical care through risk prediction in 
hospital electronic health records (EHRs), automated continuous waveform analysis, and radiological and histopathological imaging 
analysis4 with an increasing number of products achieving FDA-approval5. However, myriad applications of AI are described in the 
literature but are not yet accessible to clinicians. These have tremendous opportunity to be leveraged for clinician support in the 
austere environment of spaceflight, but a categorical understanding of the technology available and its projected evolution is critical 
for implementation. While AI cannot fully replace clinicians or chief medical officers (CMOs) of exploration class space missions in the 
foreseeable future, one of the most exciting opportunities lies in the genesis of a physician-curated ‘supervised AI’ clinical decision 
support system (CDSS). CDSS can facilitate clinical care by processing inputs and making diagnostic suggestions for further work-up or 
expanding a differential diagnosis. They may further provide treatment recommendations using precision-medicine algorithms, 
including those in emergency and atypical clinical scenarios. Given the 40-minute round trip communication delay between Mars and 
ground support, space medicine as a field must evolve to increasingly incorporate CDSS and AI technologies for support of human 
health and performance in the pursuit of Earth-independent medical care.  
 
Several AI architectures have been adopted or are being researched for use in medical care, including but not limited to machine 
learning (ML) algorithms6, convolutional neural networks (CNNs)7, recurrent neural networks (RNNs)8, 9, 10, artificial neural networks 
(ANNs or NNs)11, 12, generative adversarial networks (GANs)13, natural language processing (NLP) models14, 15, transformers16, and 
large language models (LLMs)17 (Table 1). Considering that foundation of today’s generative pre-trained transformer models, known 
as “selective attention”, was first described in 201718, the pace of innovation in this area of software engineering is astonishingly rapid. 
The ability of AI technologies to improve both diagnostics and therapeutics within medicine will undoubtedly continue to advance at 
a similarly breakneck speed19. However, it is essential to evaluate the real-world performance of these tools and consider both ethical 
and legal ramifications of their use prior to mass implementation for patient care20, 21. Even when approved, the technology may not 
necessarily be readily adopted by physicians in practice22. However, with increasing clinical demands on medical professionals, 
especially in the wake of the COVID-19 pandemic23, 24, openness to thoughtful AI implementation in clinical practice is increasing25. 
Clinicians that are earlier in their training are less reticent to adopt these technologies, however, given the recency of generative 
language model (GLM) proliferation and lack of validation, this is not yet addressed in most formal medical education curricula26. 
Space medicine affords a unique opportunity for CDSS and AI to be developed and validated with the security of a terrestrial support 
system as a contingency plan for the safety and health of astronauts. 
 
As our species embarks on long duration exploration missions (LDEMs), the complexity of medical care will expand beyond the care 
required for previous orbital missions to the International Space Station (ISS)27. When considering the physiological adaptations that 
will occur during these missions28, maintenance of crew health by the designated CMO will require significant support. Further, 
resources will be limited, rapid re-supply will not be feasible, and ground support will be more limited by distance leading to both 
communication delays29 and impaired timely transmission of large data files (e.g., dynamic ultrasound images). These factors make 
Earth-independent medical operations (EIMO) aboard the spacecraft essential to mission success. Therefore, these missions will 
benefit from an immediately available, multidisciplinary CDSS to assist CMOs or other crewmembers in the diagnoses, treatment, and 
management of medical conditions30. Frameworks for these tools have been suggested31, 32, with most noting the advantages of AI to 
assist with medical decision-making and prompt delivery of medical care33, 34. Others have suggested the use of AI both pre- and post-
flight to maximally mitigate in-flight risk35. Currently, just-in-time training (JITT) for NASA CMOs does not incorporate training in a 
CDSS, in part because this tool has not been targeted to spaceflight concerns or integrated into the medical system. Ultimately, 
development of an all-purpose CDSS will require consideration of mission goals, mission segments (i.e., launch, spaceflight 
extravehicular activities [EVAs], Lunar landing, etc.), associated medical risks, and the logistical software and hardware constraints.  
 
Informing Mission Planning via Analysis of Complex Tradespaces (IMPACT) is a probabilistic risk assessment (PRA) and trade space 
model developed by the NASA Exploration Medical Capability (ExMC) Element. As an evolution of the previous Integrated Medical 
Model (IMM)36, 37, this mission planning tool can propose a medical system (with adjustable mass and volume thresholds), hypothesize 
which medical conditions are most likely to occur for a given design reference mission (DRM), and provide risk assessments for 
outcome metrics such as loss of crew life (LOCL), need for return to definitive care (RTDC), and crew task time lost (TTL). IMPACT, at 
present, contains 119 prioritized medical conditions that may arise in spaceflight in its evidence library38. These preliminary conditions 
were selected based on either their frequency or acuity in spaceflight, and physician subject matter expert (SME)-led teams performed 
exhaustive literature searches to compile the most robust and relevant incidence data available for populating the model. In addition 
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to incidence, further data was used to drive a best- vs. worst-case probability, the risk of LOCL, RTDC, and TTL, and the diagnostic and 
therapeutic resourcing, knowledge, skills, and abilities required for management of every condition. 
 
To test the first version of IMPACT, the ExMC Clinical and Science Team (CST) introduced an extended duration late-Artemis design 
reference mission (DRM)39 totally nine months and six-days in length. This DRM captures three days transit to Lunar orbit, three 
months on the Gateway space station, three months on the Lunar surface with both time in habitat and 36 extravehicular activities 
(EVAs), a subsequent three months on Gateway, and three days travel in return to Earth. The four-member (two male and two female) 
crew modeled are representative of the NASA astronaut population with no pre-existing medical conditions. One hundred thousand 
Monte Carlo simulated missions were run to characterize a proposed medical system for optimal medical risk mitigation for this DRM40. 
The conditions most likely to arise and the notional outcome metrics from these example datasets are shown in Figure 141, 42, 43. 
 
As NASA continues to iterate and update the IMPACT model, the purpose of this review is to survey existing AI tools that could 
potentially assist a future CMO with the diagnosis and management of the medical conditions identified by IMPACT during this late-
Artemis DRM. Given that space exploration missions will not have the luxury of rapid communication with terrestrially based medical 
specialists, CDSS will be increasingly necessary to support Earth-independent, near-autonomous medical care in spaceflight. However, 
to forecast the use of AI and CDSS in future lunar and Martian exploration missions, we must first determine the current capability of 
AI frameworks to improve crew health and performance statistics. This comprehensive review serves to explore whether the current 
state of AI can be leveraged to facilitate creation of the CDSS that will inevitably be required to support astronaut crew. 
 
B. METHODS 
 
Using PubMed and Google Scholar, we performed a literature survey of those AI tools applicable to the prediction, triage, diagnosis, 
and management of the medical conditions highlighted by IMPACT. The search included the following keywords and phrases: 
“Chatbot” “Healthcare” “Diagnosis”, “Artificial intelligence” “natural language processing” “medicine” “ChatGPT”, "large language 
model" "healthcare" "diagnosis", "generative" "ai" "healthcare" "diagnosis" "chat", “Artificial intelligence” “natural language 
processing” “medicine” "differential diagnosis", “natural language processing” "differential diagnosis", "explainable" "artificial 
intelligence" "differential diagnosis" "medicine", "Natural language processing" "diagnosis" "[medical condition]", "natural language 
processing" "chatbot" "[medical condition]", “Artificial intelligence” “diagnosis” “[medical condition]”, and “Artificial intelligence” 
“[medical condition]”. Each [medical condition] and additional keyword/phrases included within the reference search are outlined in 
Figure 1. Included articles were published between the January 2017 and May 2023, as the sentinel paper discussing “selective 
attention” inherent to generative pre-trained transformer models titled “Attention Is All You Need” was published in June 201718. 
Where applicable, we reviewed the top 1000 research articles (based on relevance) for each of the keywords/phrases. For exclusion 
criteria, we omitted tools with training sets exclusive to images or text from a pediatric patient population. We also excluded any 
medical diagnostic tools (CT, MRI) or procedures (endoscopy, surgery) likely unavailable due to size and systems constraints, CMO 
skillset, and/or inherent procedural risks. This reference search yielded over 100,000 original articles and reviews. After primary 
assessment of titles and abstracts, 929 original research articles were deemed pertinent. A secondary full review of those manuscripts 
and removal of duplicates identified 567 original research articles and reviews. After final assessment, including the removal of articles 
not relevant to the space exploration and the addition of original research manuscripts uncovered within review articles, 455 original 
research articles (and associated reviews) were included in this literature survey (Figure 2). 
 
C. AI TOOLS FOR SPACE EXPLORATION 
 
Our survey highlighted several AI tools for the triage, diagnosis, and management of those medical conditions highlighted for the 
proposed DRM including: Lunar Dust Exposure (20), Insomnia (33), Suit Contact Injury (24), Paresthesia (6), Headache (25), Ear/Sinus 
Barotrauma (67), Skin Rash/Abrasion (75), Eye Irritation/Corneal Abrasion/Ulcer (53), Shoulder Injury/UE Sprain (65), LE Sprain (25), 
Back Sprain (20), Neck Sprain (28), Acute Diarrhea (12), Wrist Fracture (35), Decompression Sickness (5), Chemical Eye Burn (1), 
Bacterial Skin and Soft Tissue Infection (60), Respiratory Failure (50), Urinary Tract Infection (42), Trauma-Related Hypovolemic Shock 
(45), Abnormal Uterine Bleeding (28), Ebullism (4), Obstructed Airway (25), Toxic Inhalation of Combustion Products (1), and Dental 
Abscess (44), with the number of pre-screened articles for each medical condition indicated within parenthesis. These AI tools were 
then rescreened and grouped within ten systems-based categories including general diagnostic tools, tools to diagnose and manage 
respiratory, dermatologic, neurologic, auditory and vestibular, ophthalmic, musculoskeletal, infection-associated, and gynecologic 
conditions, as well as tools that could be deployed in the setting of trauma and emergency situations (Figure 3). 
 
1. GENERAL DIAGNOSTIC TOOLS 
 
The foundation of a next-generation spaceflight CDSS will be an agent capable of producing a real time differential diagnosis while 
conversing with CMOs or crewmembers and guiding them through nuanced relevant information retrieval of the patient’s symptoms 
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and medical history. This CDSS would then also suggest the most appropriate diagnostic work-up for helping the CMO arrive at a likely 
diagnosis before implementing care. The system would be able to receive numerous data inputs, including but not limited to text, 
voice, visual images (camera or X-ray), video (camera or ultrasound) as well as biometric (sensors), continuous monitoring [LifePak 
(Stryker, Kalamazoo, Michigan) or other basic vital sign device], and laboratory diagnostic data collected onboard the spacecraft. AI-
based general diagnostic systems for the identification and management of numerous diseases are explored in this survey (Table 2). 
We open by discussing many of the foundational AI tools developed. 
 
The earliest AI tool identified dates to 2017, when Ni et al. developed a chatbot known as Mandy for automated patient interviews 
using NLP alongside knowledge-driven diagnostics. Using a diagnostic module, symptom-to-cause mapping, and question generator 
to facilitate patient interview, Mandy can help diagnose over 1000 diseases. To improve diagnostic accuracy, the authors proposed 
the integration of reinforcement and case-based incremental learning algorithms44. Later, a study evaluating the IBM Watson NLP and 
alternative decision tree ML model for problem list generation was performed. Here, physicians completed 27 assessments and 
compared their own problem lists to those generated by IBM Watson. While physicians preferred their own problem lists, Watson 
was able to detect at least one missed problem in 90% of cases45. 
 
In 2018, Quro was developed for patient triage and initial symptom assessment using NLP and medical entity detection. When triaging 
based on urgency, Quro accurately assessed those symptoms in 25 of 30 cases for an overall accuracy of 83.3%46. Additionally, deep 
reinforcement learning through the REFUEL algorithm, consisting of both reward shaping and feature rebuilding techniques, was 
proposed to increase diagnostic accuracy of reinforcement learning models. While these models already outperform tree-based 
methods for large disease datasets, the large search and small feature space increased time-to-diagnosis. Through the identification 
of key symptoms, REFUEL achieved a top-5 differential diagnosis accuracy of 91.71% amongst 73 diseases and 75.04% amongst 255 
diseases47. Furthermore, Greg, ML is a ML model for disease diagnosis consisting of a natural language module and diagnostic 
suggestion module using the DAIMO instance labeler. Preliminary investigation using over 22,000 medical records for approximately 
50 diseases reported promising diagnostic accuracy results with an F1-score (indicative of predictive performance) over 95% for each 
diagnosis48. More recently, the dataset was expanded to over 700,000 records and 1712 differential diagnoses49. 
 
Furthermore, Wei et al. designed a dialogue system consisting of natural language understanding, a dialogue manager, and natural 
language generation modules for symptom detection, extraction, and disease diagnosis using a deep Q-network, which combines deep 
neural networks and reinforcement learning to allow systems to function in complex environments. The model outperformed both 
random and rule-based support vector machines (SVMs), which are early models of supervised learning, for diagnostic accuracy50. 
More recently, the group implemented a two-level hierarchy into the dialogue policy learning module. Here, a master is responsible 
for triggering a lower-level worker (based on the symptom set) which then feeds into a disease classifier consisting of a two-layer 
Multi-Layered Perceptron (MLP) framework for more accurate disease diagnosis. Further expansion of the disease dataset is required, 
however, for the generation of a more robust general diagnostic agent51.  
 
In 2019, Tootooni et al. also developed CCMapper, a chief complaint symptom mapping tool, using NLP of free-text chief complaint 
data. When compared to symptom mapping and chief complaint categorization by two board-certified physicians, CCMapper achieved 
a high level of agreement (κ = 0.958). The system also achieved robust predictive accuracy when mapping multiple chief complaints 
(F1-score of 82.3%)52. An automated history-taking device known as DIAANA AMHTD was developed for the diagnosis and 
management of 126 medical conditions using 269 curated multiple-choice questions and artificial reasoning. A randomized trial where 
the report generated by the DIAANNA AMHTD was or was not analyzed by a resident physician prior to differential diagnosis list 
generation was conducted. Results suggested that prior review of the generated list increased the percentage of correct differential 
diagnoses (75% vs 59%)53. Furthermore, Mathew et al. developed an Android application for assistive diagnosis of medical conditions 
using NLP of user inputs for convergence on a pre-trained dataset using k-nearest neighbors (KNN) ML54. These are systems that could 
help a CMO more accurately generate robust differential diagnostic lists, and as they only require the compute of a mobile phone, are 
feasible for use aboard spacecraft. 
 
Xie et al. next proposed an expandable EHR-based knowledge network (MKN) for more accurate clinical diagnosis using both external 
knowledge (medical website Yimaitong) and text mining of the available EHR. In comparison to four ML models, the expandable MKN 
outperformed with a recall, precision, and F1-score of 0.719, 0.837, and 0.774, respectively. The expandable MKN was equipped with 
a vastly increased knowledge (1753), symptom (645), and disease (258) database for this improved performance55. Furthermore, a 
generalized adversarial regularized mutual information policy gradient (GAMP)-based dialogue system was deployed to improve 
patient-physician dialogue analysis. In comparison to other models, the GAMP outperformed on both overall accuracy and speed, 
requiring fewer interactions with the user for accurate diagnosis56. Future systems that can mimic physician-patient dialogue during 
history gathering with the affected astronaut would improve both user satisfaction and confidence in AI-generated responses.  
Relatedly, the commercially available Babylon Triage and Diagnostic System (Babylon Health, London, United Kingdom), which can 
provide both triage recommendations and differential diagnoses using Bayesian Networks, was compared to recommendations from 
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general practitioners for 100 clinical vignettes. The Babylon system achieved a recall (80.0%) comparable to the doctor average (83.9%) 
while outperforming in both average precision (44.4% vs 43.6%) and F1-score (57.1% versus 57.0%) for differential diagnosis 
generation. When assessing triage recommendations, the Babylon system provided a safer recommendation than doctors with similar 
urgency appropriateness57. Accurately triaging care aboard spacecraft, particularly in an event requiring clinical intervention for 
numerous crewmembers, will be critical for medical resource distribution during LDEMs. 
 
In 2022, a self-diagnosis agent known as Avey, consisting of a diagnostic algorithm, recommendation algorithm, and ranking 
mechanism powered by Bayesian models, was developed. Avey was tested on 400 clinical vignettes covering numerous body systems. 
Avey outperformed other symptom checkers while performing similarly to 3 board-certified physicians on 7 standard statistical 
measurements for differential diagnosis list accuracy58. Karup and Shetty also proposed a chatbot for primary healthcare diagnosis 
using patient reported symptoms through NLP, NNs, and decision tree classifiers, however, limited performance data was reported59. 
Additionally, the INTEGRA differential diagnosis system consisting of a web-based interface, multiple diagnosis sub-systems, and 
knowledge base was developed. In a preliminary evaluation, INTEGRA achieved a 60% diagnostic accuracy rate when combining two 
sub-systems for integrated diagnostic decision making60. 
 
Later, a virtual assistant known as Associated Guide Symptom Investigation and Diagnosis Assistant (A-SIDA) was developed for disease 
diagnosis using patient reported symptoms. Through diagnosis policy learning, association and relevance modules, and an internal 
critic for reinforcement learning, the model achieved overall better diagnostic accuracy while reporting an increase in user-satisfaction 
due to enhanced symptom investigation61. Furthermore, an AI-based diagnostic and clinical recommendation system known as 
DocOnTap was developed using data from the Ada (Berlin, Germany) Health Care Website and Infermedica (Wroclaw, Poland) API 
followed by word2vec disease vector construction and ML. When comparing various models, the random forest (RF) model achieved 
a robust accuracy of 87.23% in early validation testing62. Rustam et al. also proposed an automated diagnosis system powered by both 
pre-training of ML algorithms on disease databases and active Google (Mountain View, CA, USA) speech recognition algorithms for 
direct patient voice descriptions of their illness63, highlighting how future CDSSs could interpret auditory, visual, and text-based inputs 
during these missions. Further, Sridhar et al. developed a self-assessment ML algorithm capable of predicting a differential diagnosis 
list from patient-reported symptoms utilizing SVM, RF, naive bayes, ANNs, among other classifiers with a Bagging technique. The group 
outperformed other ML-based models achieving a diagnostic accuracy of over 98% for 40 diseases64, which is an attractive 
performance for assistive diagnosis for spaceflight crew. 
 
With the recent shift towards LLMs, Hirosawa et al. examined ChatGPT-3 (OpenAI, San Francisco, CA, USA) as a tool for differential 
diagnosis list generation by prompting with clinical vignettes consisting of an associated clinical case, determined five differential 
diagnoses and correct diagnosis for ten common chief complaints. Physicians outperformed ChatGPT-3 for correct diagnosis overall 
(93.3% versus 53.3%) and for correct diagnosis inclusion within a top-5 differential diagnosis list (98.3% versus 83.3%)65. These data 
triggered researchers to use generative transformer models specifically pre-trained on large medical databases to improve model 
performance. In this regard, Almanac, a large-language model (LLM) for treatment recommendations and care guidelines, was 
evaluated by board-certified physicians on over 100 clinical scenarios. Almanac reported an 18% increase in factuality alongside safer 
overall recommendations when compared to ChatGPT66.  
 
Additionally, a specialized LLM for delivery of medical advice based on meta-AI (LlaMA, Meta, Menlo Park, CA, USA) and known as 
ChatDoctor was created through training on over 100,000 patient-physician dialogues. ChatDoctor includes a self-directed information 
retrieval system capable of using both real-time online and offline medical databases. In comparison to ChatGPT, ChatDoctor achieved 
a more robust precision with similar recall and F1 score. Further development will require more robust reinforcement learning for 
delivery of accurate responses while preventing unwanted LLM “hallucinations''67. Finally, the Clinical Decision Support System based 
on Learning-to-Rank (LTR) algorithm was developed by Miyachi et al. through analysis of physician-inputted patient symptoms, 
physical exam findings, lab results, and imaging test results for generation of a ranked differential diagnosis list. In preliminary testing, 
the approximate normalized discounted cumulative gain approach for learning-to-rank modeling outperformed the previously 
deployed mean squared error loss function approach when analyzing 26,000 cases68. 
 
Overall, the current state of general diagnostic AI tools suggests they may be able to assist with spaceflight CDDS to help improve 
astronaut safety and mission success for future deep space exploration missions. Any future CDSS that is deployed will have to consider 
numerous limiting hardware and computational factors and may only include tailored knowledge bases (such as Almanac66 or 
ChatDoctor67) for the medical conditions predicted to occur. However, a robust CDSS capable of diagnosing a wide range of medical 
conditions would ideally be developed for all missions and their segments. 
 
2. RESPIRATORY 
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Several respiratory disorders were predicted to be most frequent (lunar dust exposure69, 70) or cause LOCL (respiratory failure71, 
ebullism72, obstructed airway73, toxic inhalation of combustion products74, 75) for the previously outlined DRM. Of utmost importance, 
respiratory failure is associated with several pathologies including acute respiratory distress syndrome (ARDS) and pneumothorax, 
among others76. Advanced airway management in microgravity, as needed in the event of acute respiratory failure onboard the 
spacecraft, is a well-researched topic due to the difficulty of intubation in this setting77. While microgravity poses physiological 
challenges to normal lung function, EVAs provide further complication due to lower pressure exposures in modern day spacesuits. 
Current de-nitrogenation (i.e. pre-oxygenation) protocols deployed on the ISS, however, have proven effective in preventing EVA-
related lung injury78. Additionally, development of Lunar lung disease following toxic celestial dust exposure concerns researchers for 
LDEMs on the Moon or Mars surface79, 80. Fortunately, while protocols for adequate airway management during spaceflight have been 
developed81, 82, major airway complications have not been observed in human spaceflight to date. This survey ultimately highlights 
relevant respiratory AI applications that could be deployed during future space exploration missions (Table 3). Unsurprisingly, tools 
addressing the major concerns of NASA HRP professionals including both Lunar dust exposure and toxic inhalation were not uncovered 
in this literature survey but will undoubtedly be the subject of future directed investigation. 
 
2.1 Speech, Lung, and Cough Sounds 
 
Analysis of recorded speech patterns may allow for continuous assessment of lung function during these missions. Models such as 
SpeechSpiro have been developed to analyze speech patterns for lung functional parameter prediction using 60 second audio 
recordings83. Lung functional parameter data acquired by an application like SpeechSpiro could be coupled with respiratory disorder 
prediction models for improved diagnostic accuracy84. AI has also been deployed to improve classification accuracy and assessment 
of respiratory sounds85, 86, 87. Lung sound anomaly detection methods have shown preclinical success88, 89, with the advent of digital 
stethoscopes and wearable technologies making point of care collection and analysis of lung sounds possible90. Additionally, over 48 
AI tools analyzing cough sounds for the diagnosis of respiratory disorders have been developed91, 92. Of note, the app Healthmode 
performs continual cough collection through a smartphone’s internal microphone using CNNs93. Apps of this type will lead to larger 
cough recording datasets for training of future AI-based applications. Ultimately, speech, lung, and cough sounds coupled with AI 
could assist CMO in respiratory disease recognition and diagnosis during space exploration missions. 
 
2.2 Acute Respiratory Distress Syndrome (ARDS) 
 
Several AI tools have been developed to predict risk of ARDS development. These include models which utilize NLP of medical notes94, 
an RF ML model using admission-detected clinical variables95, and a logistic regression (LR) model using EMR features from patients 
with moderate hypoxia96. ML models which combine clinical variables with radiographic reports for ARDS detection at onset, 12-, 24-
, and 48- hours in advance have also been developed97. Models which rely upon real-time continuous waveform data combined with 
both EMR and mechanical ventilator derived features98, while robust, have limited application in space flight. NN99 and ML100 models 
which rely upon clinical laboratory data measures for superior area under receiver operator characteristic (AUROC) also have limited 
relevance as it is unlikely that the tools and resources required to perform these diagnostic tests would be available during LDEMs. 
However, models such as FAST-PACE, which utilizes only basic vital signs (blood pressure, respiratory rate, SpO2, body temperature) 
combined with recent surgical history and health status to predict the onset of respiratory failure 6-hours before occurrence with an 
AUC of 0.869101 would be helpful assistive technologies. Numerous AI applications have been developed to discriminate ARDS 
development from disorders of similar presentation102, 103 or predict ARDS mortality104, 105. In summary, several AI tools for ARDS 
prediction, detection, and diagnosis have been explored but require further validation. Models with limited reliance on extensive 
laboratory data will be of utmost interest for LDEM CDSS. 
 
2.3 Chest Radiographs 
 
Chest X-ray is a traditional terrestrial diagnostic tool for respiratory disorders and is an essential medical capability currently awaiting 
operational validation on the ISS. Though the handheld X-ray is unlikely to be included in LDEMs given mass/volume limitations, with 
extensive chest radiograph databases available to the public, numerous models for respiratory disease diagnosis have been developed. 
These applications range from models which can stratify chest radiographs into normal and abnormal classifications106 to those 
capable of diagnosing ARDS107, 108, 109 or pneumothorax with robust110, 111, 112 or limited113 validation testing. Hybrid deep-learning 
frameworks have also been developed to improve analysis of chest radiographs captured in abnormal orientations114. Deep learning 
models such as DeepMRD, developed using large-scale datasets, have achieved robust AUCs of 0.841 for abnormality detection and 
0.866 for major respiratory disease diagnosis115. Alternatively, zero-shot chest X-ray diagnosis tools such as Xplainer have 
outperformed previously reported zero-shot methods116, 117 when combined with informative user prompts118. While Xplainer does 
not require large amounts of annotated data for function, descriptive input from a board-certified physician may not be a reality during 
space flight. Overall, assistive analysis of chest X-rays captured by hand-held radiographic instruments may prove useful during deep 
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space exploration missions. Efforts to curate extensive chest X-ray datasets of images captured by these instruments, while not 
necessary, may help improve the fidelity of deployed AI frameworks in this setting.  
 
2.4 Point-of-Care Ultrasound for Respiratory Diagnoses 
 
Bedside ultrasound will invariably be the mainstay for pulmonary imaging during LDEMs119. While the recently published literature 
within the field has focused attention to COVID-19 diagnosis120, progress has been made for the assistive diagnosis of 
pneumothorax121. Importantly, the AI software Auto B-Lines (GE Healthcare, Chicago, IL, USA) has also been extensively tested for the 
assistive detection of pulmonary edema in a clinical setting122. Overall, numerous AI tools for the assistive diagnosis of respiratory 
disorders using lung function tests, chest radiographs, and point-of-care ultrasound were surveyed. While recent literature has focused 
extensively on COVID-19 detection and management, the pandemic only accelerated the need for AI tools for respiratory care. This 
measurable progress will ultimately result in deployment of numerous assistive diagnostic models in clinical practices of the future 
and will certainly be able to assist with diagnoses of pneumothorax, pleural effusion, and pneumonia.  
 
3. DERMATOLOGIC 
 
Dermatologic manifestations are considered the most common medical conditions observed during human spaceflight123. The NASA 
evidence library has highlighted contact dermatitis, atopic dermatitis, psoriasis, acne, allergic reactions, viral reactivations, dry skin, as 
well as the development of eczematous lesions as observed manifestations both in- and post-flight124, 125. Researchers have suggested 
numerous intrinsic (skin physiological changes, lack of epidermal turn over) and extrinsic (confinement, microbial exchange with 
habitat, limited hygiene) causative factors driving these manifestations126. Considering that these conditions are experienced by 
greater than 25-fold the general population, and account for nearly 40% of all clinical findings onboard the spacecraft127, 128, numerous 
dermatologic disorders were predicted to be most frequent (EVA-related suit contact injury, spaceflight-associated skin rash, skin 
abrasion) or negatively impact task time (spaceflight-associated skin rash, EVA-related suit contact injury) during the proposed DRM. 
AI tools developed to help dermatologists assess similar clinical manifestations on Earth are surveyed here (Table 4).  
 
3.1 Suit Contact or Pressure Injuries 
 
Considering that astronaut suit contact injuries are not commonplace in terrestrial medicine, there are no documented examples of 
AI tools specifically developed for their prediction, care, or management. As an appropriate analog for this survey, tools for pressure 
ulcers and sores have ultimately undergone development considering their associated morbidity and healthcare cost129. Of these tools, 
several have been developed to help predict pressure injury development130, 131 with132 or without133 the standard Branden scale as a 
model feature. Similarly, future models could help predict the risk of suit contact or pressure injury by modeling crew anthropometry 
and biomechanics through continuous suit measurements. 
 
Additionally, AI tools have been developed to visually stage and identify pressure injuries using CNNs134, 135, ANNs136, deep learning 
models137, as well as multi-modal wound classifier networks138. Frameworks trained on pressure ulcer photos labeled for 
erythematous or necrotic features proved highly accurate in validation testing139. Similarly, a CNN proved useful in classifying wound 
injury features, with greatest accuracy for detection of necrosis140. Importantly, real world deployment of a faster region-based CNN 
(Faster R-CNN) trained to classify category I-IV pressure ulcer images over an 8-month trial reported a promising F1-score of 0.6786141. 
Researcher have also suggested that HELIOS LiDAR technology can improve vision-based ML classification of wound dimension 
measurements and presence of infection from diabetic foot ulcer images142. The ability to classify pressure injuries through digital 
image analysis, particularly monitoring wound healing, could prove useful during LDEMs. 
 
CDSS systems to help manage pressure injuries are likely more important than prediction tools. Unfortunately, limited progress has 
been made since the early 2000s143. Of note, pressure ulcer images were used to train a U-net CNN for tissue segmentation, with the 
tissue classification output feeding directly to a CDSS to determine referral or care recommendation144. Next generation wound 
sensing platforms for point-of-care wound monitoring are also in development145, 146, however, have undergone limited testing. 
Coupling data retrieved from next-generation bandages and vision systems with AI-based CDSSs will revolutionize wound management 
in the future. Ultimately, models trained on suit biometric data to prevent suit contact injury before it occurs is of utmost importance 
for future research. 
 
3.2 Rash, Abrasion, and Other Non-Cancerous Lesions 
 
While AI applications have been developed for the triage and diagnosis of cancerous skin lesions147, their relevance for the previously 
outlined DRM and LDEMs is minimal and thus this survey will focus on tools related to non-cancerous skin lesions. Laying the 
foundation for later AI architectures, a knowledge share telemetry service known as Hippocra148 and tools for proper annotation of 
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dermatologic lesions149 were developed. These works were followed by NN and ML models designed specifically for assistive 
dermatologic diagnosis150, 151, 152 of numerous skin disorders. Methods such as metric learning and aggregation of multiple images 
from the same patient was found to increase the diagnostic accuracy of similar models for skin diseases153. Later developments 
ultimately focused on the combination of both image analysis and feature extraction with text-based information for improved 
diagnostic accuracy154, 155, 156.  
 
Additionally, explainable AI frameworks have been developed for assistive diagnosis of various dermatologic disorders157, 158. Of note, 
ImageQX was trained on digital images archived from a mobile dermatologic database to help improve diagnostic accuracy in poorer 
quality image sets159. Models trained on images captured from mobile phones would be of utmost relevance for LDEMs. More recently, 
vision-based AI systems such as AutoDerm160 and SkinGPT161, featuring more expansive datasets including space-related dermatologic 
disorders, have been reported. Unsurprisingly, vision transformer architectures have outperformed previously published CNNs and 
other fusion techniques for dermatologic diagnoses162,163. While AI-based dermatologic systems have been developed, real world 
validation of these applications as CDSSs, with prospective analysis of their clinical fidelity, is ultimately required before deployment. 
Models which report robust sensitivity and specificity while relying on limited image sets would be of utmost interest for compute and 
storage constrained LDEMs. 
 
4. NEUROLOGIC 
 
Numerous neurologic manifestations were highlighted by the late-Artrmis DRM outputs, including those conditions most likely based 
on frequency (insomnia, EVA-related paresthesia, headache) and most likely to cause TTL (insomnia). Investigations dating back to the 
late 1960s164 have consistently highlighted significant loss of sleep alongside circadian disruption as conditions affecting crewmember 
health and performance165. Of note, sleep disturbances have been associated with detriments to astronaut physical and mental health 
including observed effects on cognition, visual alertness, and emotional wellbeing166. Both environmental factors and alterations in 
human physiology have been implicated in sleep disturbances onboard the spacecraft167, 168, 169. Resultingly, NASA has dedicated 
considerable resources to investigate both optimal sleep/wake schedules and effective countermeasures to optimize astronaut 
performance and ensure overall mission success170. Even with the initiation of work hour guidelines and countermeasures such as 
sleep medication and scheduled daytime naps, schedule creep and mis-timed light exposure are still reported171. 
 
Additionally, “space headache” is an underreported yet common complaint voiced by astronauts during space flight172. Previously 
associated with space motion sickness, headaches aboard spacecraft are correlated to increased CO2 levels173 and the general space 
adaptation syndrome174. Several AI applications surveyed below could transform preventative strategies and crewmember care for 
various neurologic conditions. Their architectures, capabilities, and relevance to the field are highlighted (Table 5). 
 
4.1 Insomnia 
 
Disrupted sleep patterns and sleep deprivation are well-documented among astronauts in orbit and NASA has deemed these 
disruptions critical to mitigate in preparation for long duration space missions175. AI-powered tools to identify risk factors for sleep 
disturbances and insomnia are reported176, 177, 178, including those powered by responses from digital sleep questionnaires179. A 
recently published review highlighted several sleep analysis tools180 including frameworks using deep learning analysis of both ECG 
and respiratory patterns for automatic sleep staging181, 182. Groups have also applied ML techniques to both circadian signals183 and 
triplet half-band filtered EEG signals184 to accurately diagnose common sleep disorders. Furthermore, wearable devices185, 186, capable 
of measuring both daily activity and sleep patterns, have shown robust correlation with traditional sleep monitoring techniques. These 
data were recently used to identify five insomnia-activity clusters through diachronic unsupervised ML with a convolutional 
autoencoder187. Continuously collected data from wearables will likely become a common information source for future CDSSs on 
these missions. 
 
Chatbots or virtual agents designed to help manage sleep disorders have also been developed. The smartphone app called KANOPEE 
was designed to help individuals with sleep concerns. Using a decision tree algorithm, the virtual agent deploys a screening interview 
to provide sleep and behavioral advice188. Similarly, conversational agents for deployment of sleep coaching programs based on 
cognitive behavioral therapy for insomnia (CBT-I)189 and engagement with patients diagnosed with insomnia190 have been explored.  
Personalized chatbot applications may help with astronaut self-management of insomnia and other sleep disorders on LDEMs where 
limited connectivity may impede regular communication with caring aerospace medical professionals. It is highly likely that AI will be 
able to help monitor sleep with improved fidelity in spaceflight to optimize circadian cycling and improve sleep hygiene. 
 
4.2 Paresthesia 
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While AI tools have been developed for the evaluation of diabetic neuropathy191, few evaluate contact paresthesias common amongst 
the astronaut population. Most AI efforts investigating peripheral neuropathies have focused on carpal tunnel syndrome (CTS) 
diagnosis. Models utilizing both hand grip data192 and ultrasound images193, 194, 195 have reported robust classification accuracy. ML 
prediction of CTS prognosis (1, 3, or 6 months) has also shown preclinical promise196. Further development of AI tools for the 
management of similar disorders will be of particular interest for deep space exploration missions given high prevalence of paresthesia 
after EVA. 
 
4.3 Headache 
 
Headache was predicted to be the 6th most common condition (based on frequency) during the proposed DRM. Models for both the 
classification of common headache disorders using self-reported data acquired via questionnaire197 and discrimination of tension 
headaches/migraines using clinical symptoms (nausea/vomiting and photo/phonophobia)198 have been reported. More robust 
frameworks with CDSS integration199, 200 have also been described. Web-based ML models for accurate headache prediction including 
the Headache Prediction Support System201 and VikMigraine chatbot202 have shown preliminary success; however, further clinical 
validation is ultimately required. Additionally, a computer-aided diagnostic agent powered by decision tree ML algorithms compared 
admirably to headache specialist interviews for diagnosis of migraine203. More recently, 17 variables collected via a questionnaire were 
modeled to classify headache symptoms, achieving the greatest diagnostic accuracy for both migraine and trigeminal autonomic 
cephalalgia when compared to physician diagnosis in validation testing204. Later, an ANN model successfully distinguished between 
seven migraine classifications with accuracy and precision greater than 97%205. The use of questionnaire or chatbot applications for 
headache classification during LDEMs will likely be crucial for prompt diagnosis. Tools for the management and care of these 
conditions, however, ultimately require further investigation. 
 
5. AUDITORY AND VESTIBULAR 
 
Ear and sinus barotrauma was predicted to be the seventh most likely condition based on frequency, fourth most likely condition to 
cause TTL, as well as the seventh most likely condition to cause RTDC. Loss of pressurization onboard the spacecraft (particularly the 
ISS) is one of three emergent scenarios that have occurred during human spaceflight206. Commonly observed in diving207, barotrauma 
is a major medical concern that results from expansion of gasses in the middle ear and sinuses208 due to inadequate pressure 
equalization to the external environment209. Rapid pressure changes onboard the spacecraft are observed when 
pressurizing/depressurizing EVA suits, rapidly moving to areas of different volume within the habitat, or during forced or unexpected 
cabin depressurization210. Treatments for ear and sinus barotrauma have been suggested including oral/nasal decongestants and nasal 
vasoconstrictors211.  
 
Common symptoms related to barotrauma include both hearing loss and vestibular-related vertigo212. Hearing deficits and loss213 are 
well-documented manifestations observed during short214 and long duration spaceflight215. While hearing loss was thought to be 
primarily associated with elevated noise levels onboard the spacecraft, current data suggests there is no correlation, concluding that 
the etiology of hearing loss is likely multifold and unfortunately unknown216. High noise levels, however, have resulted in documented 
cases of headache and tinnitus onboard the ISS217. Vestibular symptoms are also commonly observed in-218 and post- spaceflight 219 
and are related to, among other factors, the altered gravitational environment in space220. With many associated clinical 
manifestations, AI tools to access the auditory and vestibular system are of utmost importance for long duration space missions and 
are discussed here (Table 6).  
 
5.1 Tinnitus, Hyperacusis, Hearing-Loss 
 
Tinnitus and hearing loss are common symptoms of ear barotrauma221. ML models using audiometric data to first classify hearing 
loss222 and then construct CDSS for identifying symptoms associated with tinnitus and vertigo223 have been reported. For tinnitus 
retraining therapy, a CDSS consisting of ML driven predictive diagnostic models reported an average accuracy of 80% in preliminary 
testing224. Lee et al. also deployed four machine and deep learning models to predict patient recovery and prognosis from idiopathic 
sudden sensorineural hearing loss, though further testing is required225. More robust models for the clinical management of tinnitus 
ultimately require further investigation. 
 
5.2 Vertigo, Nystagmus, and Dizziness 
 
Barotrauma is often associated with the development of dizziness and vertigo-like symptoms226. ML algorithms for prediction of 
common vestibular disorders have been reported, including models using responses from a diagnostic vertigo questionnaire227. A 
multi-language platform consisting of a medical database, user interface, and CDSS ML algorithm known as EMBalance was deployed 
for diagnosis of common vestibular disorders. EMBalance alone (without primary care clinician assessment) outperformed a primary 
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care physician using the system as an assistive diagnostic agent228. Additionally, various ML algorithms have been deployed for 
classification of central and non-central dizziness229. Again, models to help manage or treat these conditions will be areas of active 
development before future LDEMs. 
 
AI-tools utilizing eye tracking technology have also been developed for nystagmus characterization230. Of note, a deep learning model 
was trained on a nystagmus video set for clinical diagnosis of torsional benign paroxysmal positional vertigo (BPPV) with an accuracy 
of 85.73%231. Nystagmus detection models powered by infrared videos232, 233 have also shown robust accuracy, with later models such 
as AnyEye additionally trained for pupil segmentation, eye tracking, and goggle slippage detection to improve classification 
accuracy234. Considering that nystagmography goggles are likely to be unavailable, traditional video monitoring systems would have 
greater applicability for deep space flight. In this regard, Look and Diagnose (LAD) is a proposed BPPV diagnosis system which utilizes 
RGB video for classification of six BPPV disorder classes. LAD achieved an average F1 score of 0.90 in preliminary testing235. 
Additionally, mobile applications such as the prototype VertiGo-App236 or an Android-based nystagmus detection app powered by the 
Android (Google) eye tracking algorithm237 have been developed for nystagmus identification from videos captured by smartphone 
cameras. 
 
5.3 Tympanic Membrane Imaging 
 
The advent of the digital otoscope allows deployment of AI-driven image processing models for automated middle ear disease 
diagnosis. Models for classification of tympanic membranes into normal and abnormal classifiers238, segmentation of tympanic 
membrane structures239, and detection of tympanic membrane size and perforation status240, 241 have shown high diagnostic accuracy 
in early validation testing. More recently, a digital otoscopy video summarization and diagnostic labeling tool242 was developed. Using 
these summarized otoscopy videos, a decision fusion mechanism was deployed to detect tympanic membrane abnormalities using 
tympanometry-derived measurements. Predictions from the ResNet-v2 (tympanic membrane images) and a RF classifier 
(tympanometry measures) underwent a majority voting-based decision fusion technique to reach a consensus diagnosis with a robust 
classification accuracy of 84.9%243. This work was then followed by Binol et al. who later published an automated tympanic membrane 
classifier known as OtoXNet. Here, OtoXNet learns features from otoscopy videos by constructing representative composite images 
to report a classification accuracy of 84.8%, outperforming both individual images and human-selected image frames244. Deployment 
of similar AI-tools alongside guided otoscope training for image acquisition would ultimately assist CMO evaluation of astronaut middle 
ears and alleviate the associated stress of often difficult-to-diagnose disorders.  
 
5.4 Diagnostic Tools for Ear Diseases 
 
Finally, AI tools have been also developed for the general diagnosis of middle ear diseases from otoscopic images using both 
machine245, 246 and transfer learning techniques247. Of note, over 2400 otoendoscopy images were utilized to train the CNN DenseNet 
for diagnosis of middle ear infection, achieving an accuracy of 95% for middle ear effusion classification248. Additionally, Manju et al. 
compared numerous deep learning architectures for classification of four major middle ear diseases from RGB images, obtaining 
robust diagnostic accuracies249. Later, Chen et al. utilized 9 CNN-based models to diagnose middle ear disease from otoendoscopic 
images, with the best performing models ensembled for deployment on a mobile device250. Similarly, a CNN for Android smartphones 
was developed and trained using otoendoscopy images from 20 disease classes including barotrauma251. While further external 
validation and real-world clinical testing is required before deployment of these tools, the combination of both images/videos 
captured with a digital otoscope alongside assistive diagnostics agents will be immensely valuable during LDEMs. 
 
6. OPHTHALMIC 
 
Unsurprisingly, ophthalmic disorders were one of the most common clinical conditions predicted for this DRM. Vision loss and optic 
nerve swelling are among the most common ocular changes observed during spaceflight and have more recently been categorized 
into the multifaceted ocular condition known as spaceflight-associated neuro-ocular syndrome or SANS252. Other commonly observed 
ophthalmic abnormalities onboard the spacecraft include the development of disc edema, cotton wool spots, globe flattening, as well 
as choroidal folds 253, 254, 255. While less common, ophthalmic emergencies, including corneal abrasions, ulcers, and foreign bodies are 
anticipated to occur during space exploration missions208. These ocular emergencies are considered “red” or high-risk events due to 
near-immediate astronaut compromise with their occurrence and wide range of causative agents (Lunar dust, chemical injury) evident 
onboard256. Resulting ophthalmic manifestations were noted as being both most likely conditions based on frequency (eye irritation, 
corneal abrasion, ulcer) and most likely to cause RTDC (foreign body in eye, eye irritation, corneal abrasion, ulcer, chemical eye burn) 
for the proposed DRM. Tools to triage and diagnose these emergent and non-emergent ophthalmopathies are highlighted in this 
review (Table 7).  
 



10 
Numerous AI-based CDSSs for the diagnosis of ophthalmic conditions have been reported. ML models to predict eye disease 
classification from EHR data257, web-based CDSSs with a decision tree framework for triage of ophthalmic symptoms258, and NLP 
frameworks for ophthalmic disease diagnosis259 have been reported. General diagnostic tools and LLMs such as ChatGPT-3 and the 
Isabel Pro Differential Diagnosis Generator (Isabel Healthcare, Ann Harbor, MI, USA) have also been assessed for accuracy on 10 
ophthalmic case reports. Here, ChatGPT outperformed the Isabel system, identifying the diagnosis in 9 of 10 cases versus 1 of 10 for 
the Isabel system260. Additionally, an optimized ophthalmic disease diagnosis framework utilizing both NLP and a transformer 
architecture known as NEEDED outperformed both CNN and LSTM models in real-world validation testing261. Of utmost relevance, EE-
Explorer is a triaging system using both metadata and ocular surface images collected via smartphones for ophthalmic diagnosis. 
During external validation testing, the ophthalmic triaging model achieved a robust AUC of 0.988. Importantly, the primary diagnostic 
model displayed great performance for diagnosis of relevant ophthalmic pathologies including corneal diseases (ulcers, abrasion, 
foreign body) and ocular trauma (including chemical injury)262. Considering the training data set (smartphone images) and diagnostic 
accuracy on space-relevant ocular injuries, EE-Explorer would immediately become a candidate framework for future LDEMs. 
 
6.1 Optical Coherence Tomography (OCT) 
 
AI tools for OCT-guided analysis, a diagnostic capability aboard the ISS, were widely reported in the literature including models for the 
diagnosis of dry-eye disease263, 264, identification and grading of superficial punctate keratitis using fluorescein-stained images265, 
quantification of lower tear meniscus height266, segmentation of healthy and keratoconus cornea267, diagnosis of keratoconus268, and 
prediction of keratoconus progression269. Additionally, anterior segment OCT images were used to develop a deep learning network 
for corneal disease diagnosis with an AUC of 0.99270. More recently, novel hybrid-transformer models such as the lesion-localization 
convolution transformer (LLCT)271, Swin-poly Transformer272, Structure-Oriented Transformer (SoT)273, and TranSegNet model274 have 
outperformed both CNN and traditional vision transformer models for OCT image segmentation and retinal disease identification. 
Combining these AI-tools with the OCT imaging capability available on the ISS and possibly during LDEMs will prove valuable for the 
diagnosis of many ophthalmic disorders. 
 
6.2 Keratitis, Corneal Lesions, and Systemic Health Predictions 
 
Corneal lesions are often associated with the development of infectious keratitis. ML models for the accurate diagnosis of infectious275 
and fungal keratitis276 from corneal images have shown comparable accuracy to non-corneal specialists. Models for analysis of anterior 
segment slit-lamp images for diagnosis of infectious keratitis, including the DeepKeratitis model277 and KeratitisNet278, have 
demonstrated robust classification accuracy in preliminary testing. Additionally, a CNN was trained for classification of corneal lesions 
into active corneal ulcers (with infection) or healed scars from external corneal photographs, achieving an AUC of 0.9474 during 
external validation testing279. Retinal fundus imaging models have also been deployed for analysis of overall patient health including 
prediction of cardiovascular risk factors and major adverse cardiac events280; detection of branch retinal vein occlusion281; prediction 
of hemoglobin concentration (g/dL) and screening for anemia282; detection of renal functional impairment283, chronic kidney 
disease284, and hepatobiliary disease285; as well as prediction of over 50 other patient health parameters286.  
 
Retinal photographs have also been used to train predictive health models. Of note, Rim et al. deployed deep learning to predict a 
number of systemic biomarkers from retinal photographs. Unfortunately, 37 of 47 biomarkers failed external validation testing287. 
External photographs of the eye were even used to train deep-learning systems for diagnosis of diabetic retinal diseases288. Nusinovici 
et al. also developed deep learning models to predict both age and overall morbidity and mortality risk using retinal photographs. 
Those individuals screened and placed in the 4th quartile ultimately had a 67% greater risk for 10-year all-cause mortality in 
comparison to those in the 1st quartile289. While further validation is required, the use of ocular imaging techniques to assess multiple 
organ systems and even overall health during LDEMs could be of utmost clinical value. 
 
7. MUSCULOSKELETAL 
 
Musculoskeletal abnormalities were highlighted as medical conditions that would affect TTL (EVA-related shoulder injury and upper, 
lower, back, and neck strains) as well as cause RTDC (wrist fractures). It is well known that microgravity experienced during spaceflight 
causes severe bone and muscle loss that must be counteracted through regimented exercise prevention programs290. With more 
recent muscle deconditioning data acquired during longer duration missions on the ISS, researchers have now suggested even higher-
load resistance exercises to better counteract these changes291. Accordingly, numerous inflight musculoskeletal injuries have been 
documented to date including those to the upper (hands, elbow, shoulder) and lower extremities (feet)292. The leading causes of 
musculoskeletal injury (hands and fingers) on the ISS are related to EVAs (particularly suit components), exercise programs, and 
general movement throughout the habitat293. While ligamentous sprains of the hands, knees, and ankles have been empirically 
observed, these injuries have been considered mild and did not require surgical intervention. Injuries that are more concerning for 
LDEMs include those which cause astronauts to become non-weightbearing and therefore unable to perform necessary exercise 
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programs, such as in the case of high-grade ankle or knee sprains208. Additional countermeasures against musculoskeletal injuries have 
been explored including stretching and conditioning programs, modifications to equipment, such as improvements to spacesuit 
ergonomics, as well as training programs to prepare astronauts for management of these high likelihood occurrences294. Furthermore, 
astronauts adapting to microgravity commonly experience back pain295 resulting from spinal elongation and disc expansion296, 297. 
Additionally, while bone fracture risk is particularly elevated post-flight due to bone mineral density losses observed during 
spaceflight298, 299, inflight fractures are also concerning during LDEMs300. Ultimately, AI tools developed to assist in the diagnosis and 
management of musculoskeletal conditions in terrestrial medicine have possible applications during exploration spaceflight and are 
extensively detailed below (Table 8). 
 
7.1 Soft Tissue Injury - Upper Extremity 
 
Prediction models have been developed for musculoskeletal injuries in both occupational301 as well as sports-related settings302, 
however, lack external validation and therefore could not be recommended for clinical use. For diagnosis of shoulder injuries, 
numerous AI-driven tools have been developed. These tools range from general LLM such as ChatGPT-3.5, utilized to deliver medical 
information such as the appropriate examination and treatment for shoulder impingement syndrome (SIS)303, to more targeted 
frameworks. Of utmost relevance, numerous groups have investigated the use of ML and deep learning models for the diagnosis of 
rotator cuff injury304, 305, 306 and scapulohumeral periarthritis307 with robust accuracy. Anteroposterior radiograph images were also 
analyzed via a CNN and DSNT layer to predict landmark coordinates for critical shoulder angle (CSA) calculation and determination of 
rotator cuff tears or glenohumeral osteoarthritis within the standard error of clinical measurement308. While a deep learning model 
was successfully trained on shoulder ultrasounds images for the accurate diagnosis of rotator cuff injury309, further efforts in this 
domain are ultimately warranted310. 
 
Interestingly, a Microsoft Kinect V2 Motion Sensor device, used to capture active shoulder movements, coupled with a SVM model, 
diagnosed shoulder pain (peri-shoulder or rotator cuff muscle injury) with similar accuracy to a physician physical exam311. Video 
monitoring tools to accurately assess shoulder injuries based on critical movements could help automate diagnosis of astronaut upper 
extremity injuries. Furthermore, a mobile application with a ML model coupled with telemetry data from a smartwatch was developed 
for the accurate determination of four shoulder range of motion arcs. The group suggested that determining range of motion could 
be critical for the early detection of shoulder pathologies and help examine the efficacy of exercise programs or physical therapy312. 
Additionally, inertial sensor data from smartwatches313, 314 have been used to train shoulder range of motion ML models with great 
accuracy. The fuzzy logic approach was then used to suggest shoulder rehabilitation exercises based on shoulder range of motion and 
muscle strength315. Clinical management of upper extremity strains through directed rehabilitation programs, powered by AI models, 
will be integral for expedited injury recovery during space missions. 
 
While lateral elbow tendinopathy (LET) or tennis elbow is a common upper extremity overuse injury, few AI tools have been developed 
for its diagnosis or management. Of note, fuzzy logic analysis of elbow strength, as assessed by elbow flexion angle and torque, was 
used to predict lateral epicondylitis risk316. Droppelmann et al. also used a total of 30,007 ultrasound images from 4,324 exams of the 
common extensor tendon to train ML models for binary and multilayer classification of degenerative tendon pathology317. 
Furthermore, AI has been shown to improve the fidelity of ultrasound-guided analgesics delivery. Systems such as the ScanNav 
Anatomy PNB (Intelligent Ultrasound, Cardiff, United Kingdom) utilize AI to highlight integral structures during peripheral nerve block 
delivery318 and may help CMOs deliver injections when caring for various injuries. 
 
7.2 Soft Tissue Injury - Lower Extremity 
 
While several tools have been developed for the prediction, classification, and rehabilitation of chronic lower extremity 
musculoskeletal pathologies such as knee osteoarthritis319, 320, 321, 322, tools relevant to lower extremity musculoskeletal strains are 
lacking. Of note, ML models to predict running injuries in adult athletes323 and lower extremity injury risk in National Football League 
(hamstring, quadriceps, ACL)324 and National Basketball Association (quadriceps, groin, calf, hamstring)325 players have been 
developed. Further, a deep-learning system based upon layered CNNs was utilized to predict risk of sports injury, provide an injury 
prevention protocol, and diagnose a given injury with greater fidelity than other ML methods326. Similar models which could 
incorporate the number of EVAs, amount of time on the lunar surface, and other astronaut physical activities may prove useful in 
predicting future injury risk.  
 
Few AI-based CDSSs have been proposed for the diagnosis and management of common lower extremity injuries. Of note, an expert 
system for the diagnosis and proposed care for common knee pathologies was developed, however, performance was not reported327. 
A CDSS consisting of a multi-agent-based knee diagnostic system using patient-reported symptoms outperformed traditional fuzzy 
logic network algorithms for treatment recommendations, however, underwent limited-to-no validation testing328. Further, an expert 
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system for diagnosis of common ankle pathologies using decision tree algorithm and detailed knowledge base with the SL5 Expert 
System was also proposed, again lacking performance data329. 
 
With both MRI and CT being the preferred imaging modalities for detection of lower extremity injuries, both of which are unlikely to 
be utilized during LDEMs, most AI-tools developed to date have limited relevance in capability-limited LDEMs. Of note, AI frameworks 
have been trained on radiographs for the identification of ACL tears, joint effusion, and abnormal femoral notches330, detection of 
lower extremity abnormalities of the knee, ankle, hip, and feet331, as well as diagnosis of discoid lateral meniscus tears332. Long et al. 
proposed a deep learning model for accurate segmentation and classification of diseased knee ultrasound images using snake 
processing and multi-channel learning333. For diagnosis of Achilles tendon injury, a RF selection-based SVM was used to accurately 
diagnose Achilles tendinopathy from ultrasound images with a robust AUC of 0.99334. The recent development of movement-based 
segmentation models of ligaments and tendons may improve diagnostic capabilities of ultrasound for numerous musculoskeletal 
pathologies in the future335. These models, trained on ultrasound images, will be of high priority for LDEMs, as this imaging modality 
is a common component of most, if not all, proposed medical kits. 
 
Finally, gate data acquired from inertial sensors and/or computer vision has been used for both gait analysis from video336 and the 
detection of sports-related ACL injuries337, 338, 339. Use of gate-analysis from computer vision during treadmill exercises on LDEMs would 
be an effective method for early detection and prediction of lower extremity pathologies. Furthermore, AI-based tools for 
management and rehabilitation of lower extremity musculoskeletal injuries have been developed including the deployment of SVM 
algorithms on movement signals during walking or running340, computer vision layered CNNs for rectus femoris tear rehabilitation341, 
and a Bayesian linear regression and NN models to predict Achilles tendon rehabilitation outcome342. Interestingly, Qiao et al. 
determined that rehabilitation of muscle strains under AI supervision led to a reduction in muscle restrain and improved recovery in 
patients343. A review by Lloyd et al. later detailed how personalized musculoskeletal modeling through computer vision, wearable 
devices, and motion-based capture systems can be used to extrapolate internal musculoskeletal strain with instantaneous feedback344. 
Next-generation wearable sensors and computer vision could ultimately help guide rehabilitation programs during these missions, 
especially during times of connectivity and communication loss. 
 
7.3 Soft Tissue Injury - Axial Skeleton 
 
Back and neck sprain were conditions predicted to affect TTL during the proposed mission. While CDSSs are ultimately lacking in this 
space, ML models have been deployed to improve the accuracy of self-referral to primary care for patients with low back pain345 and 
improved classification accuracy of lower back pain symptoms346. Expert systems designed for both the diagnosis of low back347 and 
neck pain348 have also been reported, however, with limited-to-no validation testing. Furthermore, text-based information recorded 
from a patient questionnaire was used to train decision tree algorithms for the accurate diagnosis of spinal conditions, achieving a 
diagnostic accuracy of 72% in comparison to the physician-assigned diagnosis349.  
 
While not common practice in terrestrial medicine, several imaging diagnostic models trained on ultrasound images have also been 
developed for assessment of neck and back pain. These include a spinal volumetric reconstruction model using a deep residual U-
shaped network for the diagnosis of lumbar pathologies350 as well as shear wave velocity ML models for the accurate detection of 
neck muscle dysfunction351. AI-driven models for the assessment of spinal radiographs have also been developed352, 353, 354, including 
deep learning models for the diagnosis of lumbar spondylolisthesis355 and cervical spondylotic myelopathy356. Additionally, a hybrid 
transformer network was constructed for the accurate estimation of the Cobb angle from X-ray images for improved detection of 
cervical spondylosis357. Models for the accurate diagnosis of cervical degenerative disease358 as well as C-spine injury359 from lateral 
cervical spine radiographs were also evident in our literature search. More recently, NLP of radiologic reports using the Bidirectional 
Encoder Representations from Transformers (BERT, Google) model was used to annotate lumbar spine images for deep learning on 
the ResNet-18 architecture with relatively robust accuracy360. Large, annotated image sets will be the basis of future CDSSs for axial 
skeleton injuries. 
 
Models to predict improvement in neck pain361, change in cervical range of motion following rehabilitation362, or even treatment 
outcomes, such as in patients receiving trigger-point lidocaine injections363, have been described. Additionally, Salinas-Bueno et al. 
utilized a camera-based head tracking model, deployed on a mobile application, to successfully monitor patient neck range of 
motion364. Computer vision models capable of matching the performance of inertia sensors would be valuable for data-driven 
rehabilitation and monitoring programs aboard spacecraft. 
 
Neck and back pain self-management applications were also widely reported in the literature. To begin, patients with chronic back 
pain underwent a 5-week pilot study following exercise recommendations from MyBehaviorCBP, a ML mobile application using both 
self-reported and sensor-derived physical activity data. Interestingly, patients actualized the app recommendations more commonly 
compared to those provided by a general practitioner365. Further, the Well Health mobile application (Well Health Technologies Corp., 



13 
Vancouver, British Columbia), powered by multilayer perceptron ANNs (MLP-ANN), utilizes patient-reported symptoms to provide 
personalized neck and back rehabilitation programs. An observational study reported an overall positive response to app use with an 
increase in daily exercise time amongst participants366. The mobile application known as selfBACK is a well-reported decision support 
system for the self-management of lower back pain367. Clinical trial testing reported improvement in the Roland-Morris Disability 
Questionnaire (RMDQ) score when patients utilized selfBACK in combination with physician guidance (52%) versus those who only 
received advice from their clinician (39%)368. Recently, the selfBACK application was reported effective even in the setting of severe 
depression369. Similarly, a mobile messaging app known as Secaide was assessed in a randomized clinical trial for the management of 
chronic shoulder, neck, and back pain, with 75% of users reporting improvements in their chronic pain370. Finally, the AI-driven digital 
application known as PainDrainer (Lund, Sweden) was also developed for the self-management of chronic neck and back pain. During 
a 12-week open-label trial, patients reported an increase in physical function, reduction in depression and anxiety, alongside a 
decrease in pain catastrophizing scale (PCS) scores371. Integration of these tools into a next-generation medical system will be valuable 
for the self-management of common musculoskeletal injuries during LDEMs. Unlike most applications reported throughout this 
manuscript, the aforementioned AI tools for common neck and back pain have undergone rigorous validation testing during human 
clinical trials and thus could be immediately considered for preliminary testing aboard the ISS. 
 
7.4 Bone Fracture - Wrist 
 
Numerous AI-based tools have been developed for fracture detection and osteoporosis risk assessment372, 373, 374, 375, 376, however, 
have limited relevance to the astronaut population. For identification of common wrist fractures from radiographs, VGG-16377, a deep 
CNN378, Inception-V3379, a Faster R-CNN380, deep learning models381, 382,  a feature pyramid network383, NNs384, deep NNs385, as well 
as ensemble386 and transfer learning387 models have been developed with remarkably robust classification accuracies. Of note, a deep 
learning system, trained on only 524 wrist radiographs, performed admirably in comparison to radiologists388. Models relying on 
smaller training sets may prove useful for LDEMs with data storage constraints. Additionally, Seth et al. recently explored the use of 
ChatGPT for the delivery of medical advice for the management of scaphoid fractures using patient enquiry prompts with relative 
success389. While these data show promise, the creation of mission-specific LLMs will likely be necessary considering compute and 
connectivity constraints on LDEMs. 
 
Frameworks for the detection of scaphoid (ML390, CNN391, 392, 393, 394, deep CNNs395, 396, 397), distal radial (deep CNN398, ensemble 
models399, NNs400), and combined radial/ulnar (Faster CNN401, VGG-16402) fractures have also been extensively described. Of note, a 
deep learning pipeline for distal radius fracture detection known as DeepWrist was evaluated on a challenge set including only distal 
radial fractures that required CT for confirmatory diagnosis. The group determined that while DeepWrist displayed robust fracture 
detection accuracy in the general radiographs (99%), accuracy in the challenge set dropped to 64%403. Resultingly, more extensive 
validation testing is likely necessary before real-world deployment of similar models. Several AI-tools to assess wrist trauma, bone 
healing, and fracture rehabilitation have also been developed. Shinohara et al. performed transfer learning on pretrained vision 
models for the detection of palmer 1B triangular fibrocartilage complex injury using ultrasound images404. Models to stage distal radius 
fracture healing405 and predict bone healing after limb fracture repair surgery406 have also been described. While surgical repair of 
fractures is likely not possible, bone healing after proper reduction and splinting/casting could be monitored via a similar system. 
Furthermore, a ML model for accurate remote brace fitting for patients with wrist injury outperformed manufacturer 
recommendations407. Management of wrist fractures will require proper splinting/casting and accurate remote monitoring for overall 
mission success. Therefore, deployment of similar models within an all-encompassing CDSS are ultimately warranted, especially for 
mission segments with increased risk of wrist-related injuries such as spacewalks. 
 
8. INFECTION-ASSOCIATED MEDICAL CONDITIONS 
 
Astronaut susceptibility to microbes, microbe physiological changes, and observed antibiotic resistance are well-documented space 
flight observations408. Resultingly, several infection-associated medical conditions including bacterial skin and soft tissue infections 
(SSTIs)208 (RTDC and LOCL), acute diarrhea409 (TTL and RTDC), urinary tract infections (UTI)410 (LOCL), and dental abscess208 (LOCL) were 
suggested for the proposed DRM. Bacterial SSTIs are commonly observed onboard the ISS208. Increased risk for these infections is 
related to changes in skin microbiota which result from microbial exchange between astronauts and their environment411 alongside 
stressors unique to long duration space travel such as dry washing412. Additionally, documented cases of acute diarrhea during human 
spaceflight date back to the Apollo 17 missions413, with most cases secondary to food, medication, or infection409. Much like skin, 
changes to the gut microbiota that occur during spaceflight are also implicated here414, 415, 416. Of note, recent improvements to the 
medical kit onboard the ISS have made clinical management of gastrointestinal disorders, among other conditions, possible417. 
 
Furthermore, adaptations to the renal system during human spaceflight have been well researched since the 1970s418. Of note, 10% 
of astronauts during the shuttle program experienced some form of genitourinary complication during flight419. Both increased urinary 
retention420 and catheterization (associated with space adaptation syndrome) are documented risk factors for the development of 
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UTIs403. While renal calculi also increase the risk for UTI and other genitourinary complications, they have not been observed inflight 
to date421. Due to their associated risks, numerous mitigation strategies for urologic complications are in active development422.  
 
Additionally, reports of cosmonauts and US astronauts experiencing dental pain and lost crowns or fillings during spaceflight are 
reported; however, these are not considered true dental emergencies423. Dental emergencies on the ISS are evidently rare due to 
extensive preflight exams that occur208. Recent research, however, suggests an increased risk for periodontitis and dental carries, 
among other dental conditions, during LDEMs424. With these data, reports suggesting overall risk, optimal countermeasures, and 
mitigation strategies for those most common dental conditions in spaceflight have been published425, 426. Importantly, AI-tools have 
been developed to prevent, diagnose, and manage infection-associated medical conditions in terrestrial medicine (Table 9). 
Considering that these conditions can complicate into life-threatening sepsis427, considerable resources will likely be deployed for their 
management. 
 
8.1 Bacterial Skin and Soft Tissue Infections 
 
Bacterial skin and soft tissue infections (SSTIs) were proposed to cause RTDC or LOCL. AI frameworks for the rudimentary segmentation 
of infectious cellulitis428 have been described. These models then became the basis of expert systems for the accurate diagnosis of 
infections and recommended antibiotic treatments using patient reported symptoms429 or descriptive skin information430. Several 
vision models have also been developed for the diagnosis of various skin infections through k-means (image processing and 
segmentation) and SVM (classification) algorithms431 as well as CNN architectures432, 433. Necrotizing fasciitis image datasets, first used 
to train the YOLOv3 ANN434 architecture, were later the foundation for CDSSs with the ability to predict necrotizing soft-tissue infection 
mortality435 and individualized treatment effects436. Additionally, several AI-based tools for the analysis of Gram stains and bacterial 
cultures were assessed in the review by Smith et al.437 Of importance, the pre-trained Inception-V3 CNN was trained on over 100,000 
blood smear gram stains for the automated detection of gram positivity and shape with robust accuracy438. Furthermore, 
Radhakrishnan et al. developed a hand-held imaging device using multi-wavelength UV LEDs for multi-spectral image capture followed 
by ML classification for the rapid detection of SSTIs with greater than 85% accuracy in initial clinical testing439. Tools such as those 
described may be useful for accurate detection of infectious microbes and appropriate antibiotic stewardship aboard spacecraft. 
 
8.2 Gastrointestinal - Acute Diarrhea  
 
The most common etiologies of acute diarrhea in terrestrial medicine are both infectious and non-infectious440. While acute diarrhea 
in astronauts is likely caused by non-infectious etiologies (space sickness), some of the AI tools used to characterize acute diarrhea are 
highlighted here. Both expert systems for the diagnosis of bowel disease441 and fuzzy NNs trained on blood and biochemical test 
results for accurate diagnosis of acute cholecystitis, gastroenteritis, and pancreatitis442 have been reported. Sanaeifar et al. developed 
an online CDSS tool known as DxGenerator for the accurate diagnosis of 120 diseases affecting the gastrointestinal system and causing 
the common symptom of abdominal pain (often associated with symptomatic diarrhea). DxGenerator uses both NLP and the MetaMap 
tool for convergence with the unified medical language system (UMLS) knowledge base. In preliminary validation testing, DxGenerator 
outperformed the ISABEL differential diagnosis generator on 172 clinical vignettes and, to date, is considered the most robust CDSS 
for symptomatic abdominal pain443. Models for the analysis of stool form and color444, 445 as well as hydration status446, common 
clinical measures used for diagnosis and care of acute gastrointestinal conditions, have also been developed. These tools may make 
continuous gastrointestinal monitoring over the course of LDEMs possible. 
 
8.3 Urinary Tract Infection 
 
Numerous factors of spaceflight (urinary retention, kidney stone formation) increase the risk for developing urinary tract infections 
(UTIs)208. Both ML algorithms447, 448 and ANNs449, 450 have been trained for the prediction of UTI using a variety of clinical variables. 
UTI-focused CDSS tools have also been developed including models for the preliminary diagnosis of UTI based on identifiable physical 
symptoms451 or models which simplify classification of urinary symptoms into either cystitis or pelonephritis452. Importantly, a UTI 
CDSS utilizing an interpretable decision tree ML framework underwent prospective evaluation in 36 primary care practices over a 4-
month period. For the nearly 5000 observations made, successful UTI treatments significantly increased to 83% when the CDSS was 
used by general practitioners453.  
 
Tools to assess kidney stones, a top risk factor for developing UTIs, have also been developed. A model of early kidney stone detection 
achieved an AUC of 0.996 for kidney stone presence with an accuracy of 97.1% when predicting stone type454. Additionally, ANNs have 
been developed to predict spontaneous ureteral calculus passage with robust accuracy455, 456. Models to discriminate between 
infectious and noninfectious urethral stones, while present457, are lacking in published literature. Further, both ML and ANN models 
have been examined for the prediction of urosepsis development in patients with UTI using blood biomarkers and patient demographic 
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data458. Predictive frameworks trained specifically on data derived from patients with upper renal calculi459 and obstructive 
pyelonephritis460 were also evident in literature. 
 
Urinalysis is a mainstay clinical evaluation used to diagnose UTI and other urinary complications. Algorithms for the automated 
detection of UTIs461 including those that predict the risk of urinary tract infection based on urine turbidity and blood cell counts462 or 
microscopic and chemical analyses463 have been developed. Furthermore, the APAS® Independence automated urine culture tool was 
recently evaluated for automated interpretation of urinary cultures, achieving robust sensitivity and specificity of 0.919 and 0.877, 
respectively, in clinical testing464. Interestingly, a smartphone application with an image recognition framework coupled with a lab-in-
a-Cup hybrid urine analyzer was recently developed to accurately measure urine chemistries465. Next-generation, point-of-care 
urinalysis devices would help triage and diagnose numerous urinary disorders during LDEMs. AI tools have also been developed to 
improve antibiotic selection for treatment of UTIs and promote antibiotic stewardship466, 467, 468, even in the setting of complicated 
UTIs469. Further investigation of CDSSs that utilize measurable clinical data to help guide antibiotic therapy are warranted. 
 
8.4 Dental Abscess 
 
Dental abscesses are frequently the result of dental caries, trauma, or failed root canal treatment470. CDSSs for diagnosis and 
management of dental caries and abscesses have been proposed, such as a fuzzy logic expert system471, a diagnostic agent based on 
NLP of dentist notes472, and a SVM model with a self-attention network473. Frameworks for the identification and analysis of dental 
caries from radiographs have been developed, including both CNNs474, 475, 476 and an ANN477. A faster R-CNN for the automated 
detection of periodontal disease478 and CNN for the classification of teeth as decayed, root-canaled, restored, or healthy479 have also 
been examined. More recently, an attention-based vision transformer model480 and modified U-shaped network481 have been 
proposed for the improved dental carie classification from tooth radiographs. Of utmost relevance for deep space missions, a vision 
transformer model for detection of dental caries using only 300 images captured from a smartphone was developed. This model, 
known as CaViT, achieved sensitivities of 100%, 91%, and 95% for prediction of advanced caries, early caries, or no caries, 
respectively482. Additionally, over 5600 RBG oral images were used to train an image classifier model with a multispectral and position 
attention mechanism. The model, known as CariesFg, achieved an accuracy of 68.36% in validation testing483. Models capable of 
analyzing images captured with a basic smartphone and not reliant on common terrestrial diagnostic imaging techniques could be 
easily integrated into future CDSSs on LDEMs and help with dental diagnoses. 
 
Apical radiolucencies and lesions manifest secondarily to infection-associated oral lesions. A deep CNN484, AlexNet/SVM 
architecture485, and deep learning model486 were validated for detection of periapical and apical lesions from radiographs. CNNs, 
including DenseNet121487 and InceptionV3488, also achieved robust clinical accuracies for the detection of common oral lesions. 
Furthermore, tooth fractures can lead to the development of dental abscess at the dental root489. An adaptive CNN490 and deep 
learning model based on the DetectNet CNN architecture491 were deployed for the detection of third molar complications and vertical 
root fractures, respectively. These AI-tools would provide invaluable diagnostic insight for early identification of oral manifestations 
and dental abscess prevention in this setting. 
 
8.5 Bacteremia and Sepsis 
 
Numerous conditions predicted for the DRM could ultimately progress to bacteremia or sepsis without proper clinical intervention. 
Extensive work has ultimately been conducted to develop both predictive and diagnostic sepsis frameworks. To begin, several ML 
frameworks have been developed for more accurate triage of sepsis patients492, 493 visiting emergency care centers. Considering that 
the early identification of sepsis is critical for timely care in terrestrial medicine, numerous AI algorithms have been developed to 
predict early onset of sepsis494, 495, 496, 497, 498, 499, severe sepsis500, septic shock 501, 502, and sepsis severity503, even without culture 
results504. Of note, gradient boosted trees were designed to predict sepsis onset using only six vital signs, achieving a predictive AUROC 
of 0.84 and 0.83 for 24 and 48-hours before sepsis onset, respectively505. Further, Kijpaisalratana et al. compared RF and gradient 
boosting ML models to LR for the early detection of sepsis using only basic vital sign and demographic data from over 133,000 ED 
visits. The RF algorithm reported the greatest AUROC of 0.931, outperforming traditional reference models506. Interestingly, in a 
prospective open-label cohort study, 106 pre-selected features and an XGBoost ML algorithm could predict an early sepsis diagnosis 
with an accuracy of 82% ± 1%, outperforming the common Sequential Organ Failure Assessment (SOFA) score507. 
 
Several models have also been developed to improve sepsis critical care including models to suggest optimal treatment508,  delivery 
of both vasopressors509 and IV-fluids510, and predict bedside fluid response from echocardiographic parameters detected by 
ultrasound511. Interestingly, use of the Epic Sepsis Prediction Model, a sepsis alert system powered by proprietary prediction 
algorithms, ultimately was no different in time to initial antimicrobial therapy in comparison to the SIRS-based electronic alert available 
on the same platform512, however, further investigation is warranted. Models to predict sepsis-related mortality513, 514, 515, 516 as well 
as patient length of stay517 have been reported. Considering the severity and number of primary conditions which can progress to 
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sepsis, considerable compute will be dedicated to infection-associated conditions. Predictive sepsis models utilizing only basic vital 
sign data would be of critical relevance to future CDSSs. 
 
9. GYNECOLOGIC 
 
The negative impact of microgravity (as well as radiation exposure) on the female reproductive system have long been suggested518. 
Due to a lack of evidence, however, the magnitude of these effects during LDEMs is considered unknown519. To date, additional 
preflight certifications, menstruation control, and contraception are some of the unique operational considerations learned from both 
the Mir and Shuttle era for women in space520. While the risks and benefits of hormonal supplementation in spaceflight are complex, 
especially considering the hormonal impact on bone mineral density, venous thromboembolism risk, ovarian cyst production, 
vulvovaginal candidiasis, co-management by astronauts and physician/pharmacy teams helps optimize the use of this therapy521. With 
females making up 50% of the astronaut corps for the upcoming Artemis missions, we anticipate a marked expansion of our 
understanding of sex-specific spaceflight-induced gynecologic, reproductive, cardiovascular, and musculoskeletal adaptations522. 
 
Uncontrolled abnormal uterine bleeding (AUB) was highlighted as one condition capable of leading to LOCL during the proposed DRM. 
Any disruption to normal menstrual proliferation, decidualization, vasoconstriction, and repair can lead to AUB. AUB etiologies are 
divided into structural and non-structural causes. These include polyps, leiomyoma, malignancy/hyperplasia, as well as adenomyosis 
(structural) alongside ovulatory dysfunction, disorders of the endometrium, coagulopathy, iatrogenic, or other causes not yet classified 
(non-structural)523. Resultingly, acute AUB onboard requires immediate medical intervention524. Numerous pre- and in-flight 
considerations are made with respect to AUB. Of utmost importance, pre-flight transvaginal ultrasound is performed on all female 
astronauts with AUB to detect possible structural causes. Screening for polycystic ovarian syndrome (PCOS), family history of bleeding 
disorders, and iron deficiency is also performed. Menstrual suppression and induction of amenorrhea through either combined 
hormonal contraceptives or the levonorgestrel IUD are often utilized by female astronauts. Due to the lack of advanced surgical options 
in-flight, pharmacological therapy and vaginal tamponade would be the first-line interventions for AUB onboard the spacecraft525.  
 
Findings from terrestrial medicine would suggest that the most likely causes of AUB in the female astronaut population 
(perimenopausal women over 40 years of age) may still include a structural cause, oligoovulation, or pregnancy. Less likely include a 
gynecologic malignancy or precancerous lesions, polycystic ovarian syndrome, or other causes of hormonal imbalances (more common 
in the adolescent population)526. Accordingly, those AI-tools for diagnosis and management of relevant AUB-related conditions are 
outlined below (Table 10). 
 
CDSSs for the diagnosis of gynecologic disorders associated with AUB have been developed. An expert system for the diagnosis of 
uterine myomas and ovarian cysts527, ML models for the accurate diagnosis of endometriosis528, 529, as well as models for the general 
diagnosis of gynecologic diseases530, 531 have shown preliminary success in early validation testing. While not a CDSS, Irene et al. 
proposed a smart menstrual cup with chaos game optimized CNN for the automated detection of menstrual flow that exceeds a certain 
volume532. Similar tools may be critical for overall female astronaut health during future LDEMs. 
 
9.1 Assistive Transvaginal and Abdominal Ultrasound 
 
Models for the automated analysis of transvaginal and abdominal ultrasound images were also reported. Both an endometrial 
segmentation and thickness measurement model533 as well as a ML model for classification of endometrial tumors534 have undergone 
preliminary validation testing. Of note, a CNN for classification of deep pelvic endometriosis from vaginal ultrasound images 
demonstrated a robust diagnostic accuracy of 90.68%535. More recently, CNNs were trained for the detection of intrauterine adhesions 
from transvaginal and transabdominal ultrasound images536. Importantly, when assistive diagnostic models are used by junior 
ultrasonographers (a reasonable surrogate for a CMO in spaceflight) diagnostic accuracy, sensitivity, positive and negative predictive 
values of gynecologic pathology are improved537. Models for the diagnosis of uterine adenomyosis538 and detection of uterine 
fibroids539 were also evident in the literature search. Tools for the automated analysis of ultrasound images will be critical for the 
assistive diagnosis and triage of gynecologic medical conditions during these missions. Models which utilize the less invasive 
transabdominal approach will ultimately be preferred. 
 
9.2 Malignant Gynecologic Prediction Models 
 
Prediction models for diagnosis of cervical and endometrial cancer not reliant on histopathological image analysis540, 541, 542 have been 
developed. Of utmost relevance, Erdemoglu et al. trained several ML models for the prediction of cancerous and precancerous 
endometrial neoplasia using demographic information, menopausal status, presence of bleeding, medical comorbidities, and 
endometrial thickness543. To predict endometriosis-associated cancer, Chao et al. deployed NLP and a LR model to identify the top ten 
demographic and clinical features associated with cancer progression. Those ten features trained on a gradient-boosting ML model 
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achieved a sensitivity and specificity of 86.8% and 96.7%, respectively544. Furthermore, a CDSS powered by various ML models were 
trained on 58 clinical features from nearly 1000 patients to predict the risk of non-benign postmenopausal endometrial lesions with 
robust accuracy545. Models for triage and risk stratification for gynecologic conditions can potentially be relevant for the long-term 
management and maintenance of astronaut health post-flight.  
 
10. TRAUMA AND EMERGENCY 
 
Amongst all factors considered for space exploration, emergency care of crewmembers in the event of serious, traumatic injury will 
be of the utmost importance given that all historic crew mortality has been attributable to vehicular failure. In the 60+ years of human 
spaceflight, 21 unfortunate fatalities alongside numerous near-death catastrophes have been observed, with most related to 
spacecraft liftoff and re-entry. Additional inflight incidents including loss of environmental controls and fire have also required 
immediate emergency response by crewmembers546. 
 
Of note, the non-fatal medical emergencies observed during spaceflight include trauma in the form of second-degree burns, 
development of arrhythmias and pneumonitis, as well as urosepsis. Numerous potential emergent medical conditions have also been 
suggested for LDEMs, including those associated with environmental (severe galactic radiation exposure such as in a solar particle 
event547), traumatic (in the form of chemical and electrical burns, hemorrhage, fracture), and infectious (sepsis) etiologies. Resultingly, 
numerous pre- and inflight protocols have been constructed to mitigate in-flight emergent scenarios with relatively robust success546. 
 
While standard advanced life support protocols have been validated in microgravity, constraints of medical kits available during LDEMs 
will ultimately limit what interventions can be performed during medical emergencies548. With these inherent limitations, researchers 
have suggested the inclusion of a broadly trained, surgical specialist with the innate ability to problem solve and improvise in 
spaceflight549. Importantly, both decompression sickness550 (RTDC, LOCL) and trauma-related hypovolemic shock551 (LOCL) were 
predicted as conditions likely to occur during the proposed DRM. Resultingly, AI tools relevant to these conditions have been 
categorized under the umbrella of trauma and emergency medicine and are ultimately detailed here (Table 11). 
 
10.1 Critical Care Triage 
 
Tools for accurate patient triage in emergency departments (EDs) exist, such as the ML-based E-triage552, LR models for both blunt 
and penetrating wound patients553, or a more robust deep NN with improved prediction accuracy554. ML models were also trained to 
predict critical vital sign development 1-hour in advance using clinical data from over 40,000 intensive care unit (ICU) patients555. 
Furthermore, Kang et al. trained feedforward NNs on emergency medical service data to predict the need for future critical care, 
achieving a robust AUC for critical care prediction of 0.867556. The CatBoost Python ML framework was even trained for assistive triage 
of ED patients using EHR data, identifying features associated with increased mis-triage risk while achieving a classification AUC of 
0.875 ± 0.006557. In the unfortunate circumstance of traumatic injury to multiple crew members during a LDEM, the CMO or 
crewmember will ultimately be tasked with dividing resources appropriately. Overall mission success will be determined by the CMO’s 
ability to triage those crewmembers in need of emergent critical care quickly and accurately. AI-driven systems that can autonomously 
triage multiple crewmembers simultaneously and assist in this process would increase probability of mission success.  
 
10.2 Shock and Transfusion 
 
There are multiple tools for accurate detection of shock558, 559 and need for intervention, including massive transfusion as a therapy560, 

561, 562. Of note, the Trauma Triage, Treatment, and Training Decision Support (4TDS) supervised ML model, based on a LR framework, 
was developed for early shock detection. 4TDS achieved a sensitivity, specificity, and AUC of 78.6%, 93.1%, and 0.86, respectively, in 
prospective validation testing563. Additionally, vital signs, laboratory parameters, and non-invasive examination parameters from 1371 
trauma patients were used to train a red blood cell demand prediction model. For all prediction parameters, the XGBoost model 
achieved the greatest AUC of 0.94564. Lammers et al. also developed a massive transfusion model for the setting of military trauma by 
training supervised ML models on demographic, vital sign, and clinical measurement data including need for intubation and 
administration of tranexamic acid during resuscitation. While all models reported a greater than 90% accuracy in early validation 
testing, the RF algorithm outperformed during alternative testing565. Models that can accurately assess the need for intervention in 
the setting of cardiogenic shock may be the difference between mission success and LOCL and therefore warrant further investigation. 
 
10.3 Emergency Clinical Decision Support Systems 
 
CDSSs in the setting of medical emergencies were underrepresented in the literature search. Of note, Wang et al. developed an 
automated emergency CDSS using the knowledge-based tree decoding (K-BTD) method consisting of a knowledge encoder (CNN with 
self-attention layer), clinical notes encoder (RNN, LSTM, GRU, or BERT), judge net (GRU with an attention layer), and fusion net 
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(weighted sum with attention layer) with training on unstructured clinical notes. The K-BTD model with BERT clinical notes encoder 
framework outperformed all other models examined566. Furthermore, Lang et al. utilized ML to identify the minimal number of clinical 
guidelines required to reduce 7-day mortality in patients who experience hemorrhagic shock and traumatic brain injury, with LASSO 
ML model identifying 13 recommendation features567. An intelligent video surveillance system model for active monitoring and 
assistive diagnosis of critical care patients in EDs was proposed568. While understudied, these active surveillance models would reduce 
the need for constant attention to critical crewmembers and allow a CMO to better distribute health care resources in the setting of 
multi-member traumatic injury. 
 
10.4 Cardiogenic Ultrasound and Emergency Radiography 
 
Several AI-powered echocardiography tools were recently reviewed. Importantly, a review by Akkus et al. highlighted those tools for 
the automated analysis of echocardiograms, including commercial software packages for measurement of ejection fraction, left 
ventricular and atrial volumes, strain, and coronary heart disease569. Additionally, continuous cardiac ultrasound monitoring using GE 
HealthCare™ devices have been examined for the automated measurement of left ventricular outflow tract velocity time integral 
(LVOT-VTI), cardiac output (CO)570, and other hemodynamic measurements571. AI-powered tools for emergency radiography are 
detailed in other sections throughout this manuscript. Of critical relevance, the deep learning algorithm known as Lunit INSIGHT for 
Chest Radiography was examined for the automatic classification of emergent medical conditions using chest radiographs572. 
Furthermore, Liu et al. highlighted assistive emergency radiology tools based on ANN and CNN frameworks for the diagnosis of 
abdominopelvic pathologies including diseases of the digestive tract, trauma related pathologies, as well as abdominal aortic 
aneurysms573. 
 
10.5 Prognosis and Outcomes Prediction Models 
 
Tools to predict prognosis and outcomes following traumatic injuries were surveyed574, 575, 576, 577, 578, 579. Several models to predict 
survival580 or mortality581, 582, 583 in trauma patients have also been described. An ensemble ML framework known as SuperLearner 
was deployed to identify risk and patient-specific modifiable factors following traumatic injury. The model accurately predicted need 
for transfusion, multi-organ failure, ARDS, venous thromboembolism, and death with robust AUCs of 0.87-0.90, 0.84-0.90, 0.84-0.89, 
0.73-0.83, and 0.94-0.97, respectively584. Additionally, an interpretable AI smartphone tool known as the Trauma Outcome Predictor 
(TOP) deploys Optimal Classification Tree models to predict in-hospital mortality and complications for critical care patients. TOP 
accurately predicted mortality for both blunt and penetrating injuries with a validation c-statistic of 0.884 and 0.941, respectively585. 
Models to accurately predict prognosis in the setting of severe trauma impact astronaut care by helping estimate resources required 
for treatment. Similarly, CDSSs for emergent medical conditions are critical for LDEMs as prompt care and intervention may be the 
difference between overall mission success and risk for LOCL. 
 
D. DISCUSSION 
 
Given the projected evolution of exploration missions from the moon to Mars by both NASA and commercial entities, the use of robust 
AI-assisted or stand-alone CDSSs will be critical for the health and safety of astronauts. Numerous AI tools were examined in this 
survey, but the inventory ultimately uncovered gaps that will ideally be filled prior to projected launch of the Martian missions, with 
an opportunity for real-world validation during the crewed Artemis missions. This survey noted a dearth of tools specific to the 
management and treatment of complex or acute diseases, which will be vital to the evolution of medical primacy from terrestrial to 
space-based assets in exploration missions. Further, most of the referenced tools are intended to assist a board-certified physician for 
initial triage or clinical diagnosis, who will then deliver the proper treatment and care based on their training in terrestrial medicine. 
This will not necessarily be the case in spaceflight, as the CMO present may require significantly more support from the computerized 
medical system in diagnosis and treatment of crewmembers than the typical terrestrial clinician working within a hospital system. 
 
Computers designed for the Orion capsule as part of the Artemis Lunar missions feature speeds and memory capacity 20,000 and 
128,000 times those systems used during the 1970s Apollo missions586. For reference, a single Dell PowerEdge server put in operation 
for the Artemis missions for real-time, on-board data analysis features 16,000 times the RAM (64MB) of the entire computing power 
used in the 1970 Apollo missions (4KB)587. Similarly, Orion will reportedly have compute speeds 20,000 times that of the ISS systems588. 
Mission specific CDSS will likely be constructed based upon those medical conditions suggested by PRA tools like the IMPACT suite for 
a given DRM of interest. IMPACT applies NASA’s real world evidence library to mission- and crew-specific features to make trades 
based on diagnostic and treatment capabilities for the desired outcome metric or mass/volume constraints. Akin to the evidence-
based determination of what should be included within the onboard “medical backpack”, a similar trade-space assessment will likely 
extend to creation of pre-flight CMO curricula, and the curation of a mission-specific CDSS. Here, system compute and storage needs, 
as well as selection of pre-trained architectures and data libraries, will be weighed against overall mission risk and the medical 
conditions that are predicted to occur (Figure 4). 
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Limitations to the implementation of AI tools are far outweighed by the anticipated benefits. However, the most significant barrier 
includes lack of external and real-world validation testing of the identified AI agents, which could potentially be easily satisfied during 
lunar exploration missions in the pursuit of Earth-independent medical operations. The tools will therefore have the opportunity to 
evolve during the Moon to Mars effort of space exploration missions. Additionally, although modern computing systems are physically 
compact, there will be constraints on the interface between end-user and a CDSS on extraterrestrial missions based on mass and 
volume restrictions of the vehicle. Medical systems used for exploration class missions must also be equipped with radiation-protective 
attributes given longer projected exposure time. AI assistive tools for diagnosis and treatment will be required for successful missions 
in the future, and space medicine as a field must prioritize addressing the current gaps and limitations of existing software and 
hardware to provide optimal care for the astronaut corps. 
 
The focus of research and development of AI tools for eventual Mars exploration will need to address communication delays impeding 
terrestrial ground support, limitations in replenishing consumable or damaged physical supplies and the near impossibility of urgent 
evacuation of crewmembers. Tools used to optimize medical care in the Lunar and Martian environments will require extensive 
validation and reliability testing on Earth through prospective trials before future deployment on LDEMs. Ultimately, mission success 
is dependent, first and foremost, on crew health and performance. AI models such as those highlighted here may be the basis of future 
CDSS that will help manage the myriad medical conditions that may arise during long duration exploration spaceflight. If cultivated 
appropriately, this system would also extend to include both pre- and post-mission care, in addition to intra-mission preventive efforts, 
for the most comprehensive management of astronaut health and performance. The immense progress in the field of medical AI over 
the last decade should by no means be understated and new tools and devices will undoubtedly be available for the next generation 
of space exploration. Prioritizing the unique needs of the spaceflight environment will be critical as stakeholders create new iterations 
of existing products or develop novel resources that could be utilized by CMOs and crewmembers. It is undeniable that AI tools will 
be essential for deep space exploration missions of the future to be conducted safely and successfully. 
 
E. CONCLUSION 
 
Numerous AI-driven models relevant to the ten systems-based categories including general diagnostic tools, tools to diagnose and 
manage respiratory, dermatologic, neurologic, auditory and vestibular, ophthalmic, musculoskeletal, infection-associated, and 
gynecologic conditions, as well as tools that could be deployed in the setting of trauma and emergency, were highlighted in this 
extensive literature survey (Figure 5). Uncertainties regarding the development of a next-generation spaceflight CDSS still remain but 
the field of aerospace medicine anticipates a transformative improvement in medical care of astronauts with the incorporation of AI 
technologies. Ultimately, engineers and clinicians must work together to integrate these clinical support systems within the compute 
and connectivity constraints that will exist in the spacecraft of future exploration missions.  
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FIGURE LEGENDS 
 
Figure 1: Medical conditions highlighted by IMPACT for the proposed extended duration Artemis mission. Medical conditions 
predicted to be most likely based on frequency as well as associated with task time lost (TTL), return to definitive care (RTDC), or loss 
of crew life (LOCL) for the proposed extended duration Artemis DRM are detailed. Additional keywords, phrases, and MeSH terms 
(associated with each medical condition) utilized in the literature search are presented. 
 
Figure 2: Schematic representation of literature survey search results and screening methods. Reference search yielded over 100,000 
original articles and reviews. After primary assessment of titles and abstracts, 929 original research articles were identified. Secondary 
full review of those manuscripts and removal of duplicates identified 567 original research articles and reviews. Removal of articles 
deemed unsuitable for survey inclusion and addition of original research manuscripts uncovered within review articles identified 469 
original research articles (and associated reviews) for final inclusion. 
 
Figure 3: Graphical representation of the ten systems-based categories used to group the DRM-associated medical conditions. 
Images from the following URLs were modified for the creation of this figure using Adobe Illustrator, Photoshop: 
https://www.freepik.com/premium-psd/space-suits-isolated-white-background-ai-
generated_41111886,https://www.clipartmax.com/download/m2i8i8N4b1A0b1b1_medical-logo-medical-cross-symbol-
png/,https://www.nasa.gov/sites/default/files/thumbnails/image/as17-147-22526_orig_1.jpg. 
 
Figure 4: Compute and storage tradespace assessment for future CDSSs. Much like the figurative “backpack” analogy to determine 
which medical supplies (each with an associated mass, volume, and measurable “cost”) are appropriate for resource limited medical 
care, future CDSSs will balance compute and storage constraints (GPUs, CPUs, pre-trained datasets) with overall mission risk. Images 
from the following URLs were modified for creation of this figure using generative fill (Adobe Illustrator) and DALL-E of ChatGPT-4. 
 
Figure 5: Sunburst hierarchy representing the number of AI-tools applicable to the medical conditions for the proposed extended 
duration Artemis mission. Graphical representation highlighting the number of AI-tools referenced for each systems-based category 
of our survey. The number of articles included within each systems based category is as follows: general diagnostic tools (25), tools to 
diagnose and manage respiratory (40), dermatologic (34), neurologic (28), auditory and vestibular (30), ophthalmic (34), 
musculoskeletal (104), infection-associated (92), and gynecologic (19) conditions, as well as tools that could be deployed in the setting 
of trauma and emergency (34). Image from the following URL was modified for creation of this figure using Adobe Illustrator: 
https://imgbin.com/png/HjZBT5wX/robot-head-png. 
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TABLE LEGENDS 
 
Table 1: Overview of those AI models commonly deployed in terrestrial medicine and referenced throughout manuscript. 
 
Table 2: Most relevant general diagnostic AI-tools including their application descriptor, framework, and relevance to the proposed 
extended duration Artemis space exploration mission, where applicable. 
 
Table 3: Most relevant respiratory AI-tools including their application descriptor, framework, and relevance to the proposed extended 
duration Artemis space exploration mission, where applicable. 
 
Table 4: Most relevant dermatologic AI-tools including their application descriptor, framework, and relevance to the proposed 
extended duration Artemis space exploration mission, where applicable. 
 
Table 5: Most relevant neurologic AI-tools including their application descriptor, framework, and relevance to the proposed extended 
duration Artemis space exploration mission, where applicable. 
 
Table 6: Most relevant auditory and vestibular AI-tools including their application descriptor, framework, and relevance to the 
proposed extended duration Artemis space exploration mission, where applicable. 
 
Table 7: Most relevant ophthalmic AI-tools including their application descriptor, framework, and relevance to the proposed extended 
duration Artemis space exploration mission, where applicable. 
 
Table 8: Most relevant musculoskeletal AI-tools including their application descriptor, framework, and relevance to the proposed 
extended duration Artemis space exploration mission, where applicable. 
 
Table 9: Most relevant infection-associated AI-tools including their application descriptor, framework, and relevance to the proposed 
extended duration Artemis space exploration mission, where applicable. 
 
Table 10: Most relevant gynecologic AI-tools including their application descriptor, framework, and relevance to the proposed 
extended duration Artemis space exploration mission, where applicable. 
 
Table 11: Most relevant trauma and emergency AI-tools including their application descriptor, framework, and relevance to the 
proposed extended duration Artemis space exploration mission, where applicable. 
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TABLE 1 
 

MODEL DESCRIPTION USE CASE IN MEDICINE 

Machine Learning (ML)6 
Iden�fica�on of paterns or trends within 
data through learning based on sample 
datasets 

Analysis of electronic medical record 
(EMR) and expansive numeric 
datasets 

Convolu�on Neural Network (CNN)7 
Deep learning model to iden�fy spa�al 
features from datasets (such as images) 
containing a grid patern 

Medical image analysis 

Recurrent Neural Network (RNN)8, 9, 10 

Deep learning technique which u�lizes non-
linear yet interconnected, bi-direc�onal 
networks for classifica�on of sequence-
based inputs 

Medical �me series data analysis 

Ar�ficial Neural Network (ANN or NN)11, 12 
Nodes or neurons (organized in layers) 
performing a prespecified task for the 
genera�on of an output 

Predic�on within numeric or imaging 
medical datasets 

Genera�ve Adversarial Network (GAN)13 
Characterized by their inherent ability to 
extract features from images through 
distribu�on learning 

Medical image analysis 

Natural Language Processing (NLP)14, 15 Modeling human language through 
machine learning approaches 

Analysis of medical literature, pa�ent 
records, medical notes, or any form 
of natural language text 

Transformers16, 17 

Advancement in deep learning architecture 
consis�ng of deeply stacked self-aten�on 
layers which can differen�ally weigh 
inputed data, necessary for the human-like 
capabili�es of next-genera�on large 
language models (LLMs) 

NLP tasks in addi�on to medical 
image analysis 

  



29 
TABLE 2 
 

REFERENCE APPLICATION AI FRAMEWORK RELEVANCE 

Tootooni et al. 201952 CCMapper NLP Chief complaint mapping tool with high level of agreement to 
board-certified physicians  

Hammoud et al. 202258 Avey Bayesian Models General diagnostic algorithm tested on over 400 clinical 
vignettes 

Zakka et al. 202366 Almanac LLMs Pre-trained large medical language model compared to 
ChatGPT for differential diagnosis and treatment 
recommendations 

Li et al. 202367 ChatDoctor Meta-AI LLaMA Use of both online and offline medical databases alongside 
ability to assess patient needs more accurately through real-
world dialogue 
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TABLE 3 
 

REFERENCE APPLICATION AI FRAMEWORK RELEVANCE 

Vatanparvar et al. 202183 SpeechSpiro CNN-LSTM Determines lung functional parameters from 60 
second audio recordings 

Kvapilova et al. 202093 Healthmode CNNs Continual cough collection through cellular device 
internal microphone 

Kim et al 2019101 FAST-PACE RNN-LSTM Prediction of respiratory failure up to 6-hours in 
advance using only basic vital sign data 

Pellegrini et al. 2023118 Xplainer Vision-Language Models Automated chest radiograph analyzer using a zero-
shot approach highlighted importance of descriptive 
inputs for improve diagnostic accuracy 
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TABLE 4 
 

REFERENCE APPLICATION AI FRAMEWORK RELEVANCE 

Fergus et al. 2022141  Faster Region-CNN Classification of pressure ulcer using 
smartphone-captured digital images 

Dulmage et al. 2021150 VisualDx DermExpert CNNs Large image training set to produce a 
robust diagnostic accuracy, 
outperforming clinicians 

Escalé-Besa et al. 2023160 Autoderm NNs Ability to diagnose skin lesions for up to 
44 dermatologic disorders with images 
capture from a smartphone  

Zhou and Gao 2023161 SkinGPT Vision- and Q-Transformers, 
LLMs 

Interactive dialogue machine provides 
better user experience when providing 
dermatologic diagnosis 

  



32 
TABLE 5 
 

REFERENCE APPLICATION AI FRAMEWORK RELEVANCE 

Sharma et al. 2021184  Supervised ML Accurate diagnosis of six common sleep disorders 
using EEG signals 

Philip et al. 2020188 KANOPEE Decision Tree Machine 
Learning 

Virtual screening agent that provides sleep and 
behavioral advice 

Faeghi et al. 2021193  SVM Computer-aided diagnosis of Carpal Tunnel 
Syndrome using B-mode ultrasound images 

Chaix et al. 2022202 VikMigraine Chatbot ML and NLP Prospective evaluation of headache chatbot on over 
600 patients 
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TABLE 6 
 

REFERENCE APPLICATION AI FRAMEWORK RELEVANCE 

Elbasi et al. 2018222  Pruned Tree J48, Random Forest Accurate diagnosis of hearing loss using 
audiometric data 

Reinhardt et al. 
2022236 

VertiGo-App ML Smartphone application using front and rear 
cameras for nystagmus detection 

Binol et al. 2022244 OtoXNet  ResNet-v2 and Random Forest Automated diagnosis of three tympanic 
membrane diseases using otoscopy videos 

Wijaya et al. 2023251  CNN Smartphone application for diagnosis of 20 
middle ear diseases using otoendoscopy 
images 
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TABLE 7 
 

REFERENCE APPLICATION AI FRAMEWORK RELEVANCE 

Chen et al. 2023262 EE-Explorer DenseNet201, XGBoost, 
InceptionV3 

Metadata combined with smartphone ocular surface 
images for diagnosis of corneal diseases and ocular 
trauma 

Wen et al. 2022271 LLCT CNN w/ self attention 
transformer 

OCT image classification for ophthalmic disorders 

Zhang et al. 2022278 KeratitisNet ResNext101_32x16d and 
DenseNet169 

Diagnosis of bacterial, fungal, or parasitic infectious 
keratitis from slit-lamp images 

Zhang et al. 2020286  ML TensorFlow, 
InceptionV3 

Retinal fundus images to classify patient health 
parameters such as hypertension 
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TABLE 8 
 

REFERENCE APPLICATION AI FRAMEWORK RELEVANCE 

Lee et al. 2021306 SMART-CA CNN Accurate diagnosis of rotator cuff injury using 
ultrasound imaging 

Wang et al. 2023334  Random Forest-based SVM Accurate diagnosis of achilles tendinopathy using 
ultrasound images 

Barreveld et al. 2023371 PainDrainer  AI-based digital application for the self-
management of neck and back pain 

Raisuddin et al. 2021403 DeepWrist Deep Learning Accurate wrist fracture diagnosis model deployed 
on a challenge set consisting of fracture 
radiographs that required a confirmatory CT scan 
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TABLE 9 
 

REFERENCE APPLICATION AI FRAMEWORK RELEVANCE 

Yanagisawa et al. 2023433  DeepLabv3, InceptionV3 
CNN 

Diagnosis of common skin disorders including 
bacterial skin infection using non-standard, 
original images 

Sanaeifar et al. 2022443 DxGenerator NLP, MetaMap Gastrointestinal differential diagnosis 
generator for over 120 diseases with the 
common symptom of abdominal pain 

Brenton et al. 2020464 APAS® Independence  Automated interpretation of urinary cultures 
with clinical validation testing 

Hossain et al. 2023482 CaViT Vision Transformer Model Prediction of dental caries using smartphone 
images 

Mao et al. 2018500  Gradient Boosted ML Prediction of sepsis using 6 basic vital signs 
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TABLE 10 
 

REFERENCE APPLICATION AI FRAMEWORK RELEVANCE 

Ahmad et al. 
2020531 

 MLP Accurate diagnosis of numerous gynecologic disorders 
using a 54-input questionnaire 

Huo et al. 2023536  Deep CNN Transabdominal and transvaginal ultrasound images for 
automated detection of uterine fibroids 

Lai et al. 2023545  XGBoost and Random 
Forest Ensemble 

CDSS to predict risk of non-benign postmenopausal 
endometrial lesions 
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TABLE 11 
 

REFERENCE APPLICATION AI FRAMEWORK RELEVANCE 

Levin et al. 2018552 E-triage Random Forest ML Emergency department triage tool using 
easily accessible patient data 

Pinevich et al. 2022563 4TDS Logistic Regression ML Prospective evaluation of an early shock 
detection model 

Wang et al. 2021566  K-BTD with BERT Emergency CDSS reported robust accuracy 
when evaluated on top 100 ICD codes 

Hwang et al. 2019572 Lunit INSIGHT for 
Chest Radiography 

Deep Learning Commercially available and automated 
chest radiograph analyzer for normal and 
abnormal classification 

El Hechi et al. 2022585 Trauma Outcome 
Predictor (TOP) 

Optimal Classification Tree Models Interpretable AI-smartphone application 
to predict mortality and complication risk 
for patients with penetrating and blunt 
trauma wound injuries 
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