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As urban air mobility (UAM) vehicles begin to enter service, consideration must be given 
to vertiport siting and flight routing to help reduce community noise impact and promote 
adoption by the community.  Notwithstanding environmental justice concerns, a possible early 
strategy is to operate out of existing heliports and fly along established helicopter routes, many 
of which follow uninhabited waterways and/or roadways (with the thought for the latter that 
an already noisy ambient environment will mask the sound of the aircraft).  However, no prior 
annoyance model has been fielded that both takes audibility into account and that may be 
applied to such a real-world strategy.  This paper reviews a recently developed annoyance 
model that includes audibility as a factor and applies it to two flight operations.  A simple 
overflight case is first undertaken to demonstrate the approach.  A point-to-point operation 
in the New York City area is then considered to demonstrate how annoyance varies across an 
urban soundscape.  The cases considered use modeled UAM vehicle noise propagated to a set 
of ground observers as the signals and either recorded or modeled ambient acoustic data as 
the maskers. 

I. Introduction 
URRENT aircraft noise regulations in the United States, whether for aircraft type certification [1] or for 
community noise [2], do not take into account the other environmental noise (“background” or “ambient”) that 

may be present in their operational environments.  This is perhaps sufficient when the aircraft noise is the prominent 
source, for example, in the vicinity of airports, but may be insufficient when the aircraft noise blends into the existing 
soundscape. Such could be the case for some urban air mobility (UAM) vehicles that are intended to operate across 
cities transporting people and goods.  In these situations, the noise of the vehicle (the signal) may be “masked” by the 
preexisting background sounds (the masker).  Past psychoacoustic testing has shown that sounds are less annoying 
when they are masked.  Christian [3] provides a review of contemporary knowledge of this effect.   

The purpose of this paper is to assess annoyance to UAM vehicle operations over a representative community 
using a recently developed annoyance model in which the effect of masking is taken into account.  No prior research 
has fielded a model of annoyance to aircraft noise that includes audibility as a factor and that is extensible to real-
world conditions.  A brief review of the annoyance model is first provided.  It is possible to exercise the annoyance 
model entirely with recordings of the signal and the masker.  It is not practical, however, to make recordings over a 
wide area to produce annoyance maps.  Instead, signal data are generated by acoustic analyses consisting first of 
prediction of source noise hemispheres that are subsequently flown in simulation to produce noise estimates over a 
large grid of ground observers. Next, two types of ambient noise data are introduced.  Recordings are used to 
demonstrate how temporal variations in the masker affect audibility and annoyance for a straight and level flyover.  
Modeled ambient acoustic data are subsequently used to demonstrate the effect of spatial variations in the masker over 
a fictitious point-to-point route from lower Manhattan, New York City, to nearby Newark Liberty International 
Airport.  This work is aligned with a recommendation of a recent white paper [4] that “Validated models for audibility, 
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noticeability, and annoyance to UAM aircraft noise be developed to assess their utility for assessing community noise 
impact,” and further that “such models be developed and validated over a wide range of operating conditions and 
demand scenarios, taking into account a representative range of ambient/background conditions.” 

II. Annoyance Model in the Presence of Masking 
When developing a model for annoyance in the presence of masking, it is helpful to consider the edge cases of the 

response function.  When the signal is prominent over an ambient, i.e., it is clearly audible, there is not a strong effect 
of the ambient noise on annoyance.  This finding is supported by the meta-analysis of Fields [5].  Conversely, when a 
signal is at a low enough level that it is at least partially masked by ambient sounds, a reduction in annoyance to the 
signal has been observed in both laboratory [6,7] and community [8] studies. 

These observations form the basis for a model developed by Christian [9] that uses unweighted one-third octave 
band (OTOB) sound pressure level (L) data to estimate detectability index ( d ′  or d-prime) and annoyance.  The 
“discounted” annoyance model is based on a combination of those estimates.  d ′  is a measure of the detectability of 
a signal that is useful because it can apply to many different scenarios, i.e., it treats data from laboratory and real-
world tests equally. As a rough guide, a d ′  value of about 1 indicates a signal level that is so close to a masker level 
that it is only (confidently) heard about 50% of the time. A doubling of d ′  corresponds to roughly a 3 dB increase in 
the signal level.  The discounted sound pressure level, that is, the reduced level due to the presence of the masker, is 
computed at each OTOB and time step according to the relation: 
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in which Li,t is the unweighted sound pressure level and  ,i td ′  is the detectability index of the ith one-third octave band 
at time step t, respectively.  The parameters α , δ , and ρ  of the discount function are determined through human 
subject testing [7] and govern how the discount impacts the prediction of annoyance as d ′  gets smaller and approaches 
zero.  For convenience, α  is set to 3 dB, a level at which the discount defines a halving of the power of the target 
sound (similar to the definition of the bandwidth of a filter). The value δ  then defines the d ′  value where this 3 dB 
“knee” will be encountered.  The parameter ρ  defines the discount “rate,” or the manner in which the function rolls 
off as d ′  gets smaller. δ  and ρ  can therefore be manipulated to produce nearly any possible roll-off of the discount 
function in line with the two edge cases described above.  In this work, values of δ  = 14 and ρ  = 1 are used and 
represent the median values of model parameters determined on a subject-by-subject basis from a recent test using a 
novel test data analysis method [10].  The discount function using these model parameters is represented by the blue 
trace in Figure 1. 

 
Figure 1: Relationship of original and discounted signal levels  

with model parameters determined through human subject testing. 
 

The discounting function is (ideally) independent of the method used to compute d ′ .  In this work, d ′  is predicted 
using a model that is based on OTOB data and those data are specified at 0.5 s intervals.  This allows standardized 
time-integrated aircraft noise metrics [1] (in particular, the A-weighted sound exposure level LAE) to serve as baseline 
predictors of annoyance in the absence of masking.  The use of OTOB data is probably the simplest approach able to 
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yield a reasonable prediction of detectability.  Many more-accurate detection algorithms need at least a narrowband 
spectrum as input, if not a complete time history of the signal and masker.  Thus, only a simple “power spectrum 
model of masking” can be brought to bear on such OTOB data.  The approach is meant to produce a computationally 
reasonable audibility prediction program.  This model is effectively a signal-to-noise ratio that is augmented with 
several empirical factors based on human hearing characteristics.  For an OTOB of index i, and time step of index t, 

,i td ′  is computed as: 
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in which ,i ts  is the unweighted OTOB sound power of the signal (in mean-squared pressure), ,i tn  is the OTOB masker 
power, ie  is the derived “equivalent auditory system noise” sound power that encodes the auditory threshold, and   
is a frequency-dependent detection efficiency factor that contains corrections for OTOB and auditory filter 
bandwidths.  The derivation and origin of the components of Eq. (2) are given in the Appendix. 

In practice, the discounted annoyance model starts with an OTOB spectrogram of the signal and the masker at 
each observer point. In this way, both the signal and the masker may vary in time, e.g., an aircraft flyover under a 
steady or changing operating condition with a time-varying ambient.  Next ,i td ′  is computed using Eq. (2) to generate 
a d ′  spectrogram and discounted sound pressure levels are calculated using Eq. (1).  Finally, A-weighting is applied 
and the discounted data are summed over frequency to obtain the overall discounted A-weighted levels at each time 
step, LA, and summed over time to obtain discounted LAE.  A dose-response relation between annoyance and LAE may 
then be used to estimate mean annoyance to the masked and unmasked signals (see Section V.A).   

Referring again to the edge cases, at high signal levels, the signal is very prominent over the masker and hence 
the annoyance estimated by the model is independent of the masker.  As the level of the signal decreases, there is a 
corresponding reduction in estimated annoyance.  If the signal is lowered so far that it becomes at least partially 
masked, the estimated annoyance to the signal will be reduced relative to the no-masker condition.  Eventually, when 
the signal is entirely masked, the estimated annoyance to it is negligible.  The discounted annoyance is expected to be 
a more effective predictor of annoyance in the presence of a masker than annoyance based on the original LAE generated 
from the signal alone.  It should be noted that although this work is motivated by, and directed at, annoyance to UAM 
aircraft noise in the presence of a masker, it is applicable in principle to any other transportation noise source. 

III. Aircraft Signal Generation 
The quadrotor reference vehicle developed under the NASA Revolutionary Vertical Lift Technology (RVLT) 

Project is chosen as the UAM vehicle in this investigation, see Figure 2.  It is sized for a 1200 lb. (544 kg) payload 
(up to six passengers) executing a representative mission profile [11].  The quadrotor is an all-electric variant with a 
gross weight of 6469 lb. (2934 kg) and a maximum airspeed Vmax of 109 knots true airspeed (KTAS) (202 km/h).  Its 
four three-bladed rotors operate under collective pitch control at a 20 Hz blade passage frequency (BPF).  Additional 
details on this configuration can be found in Silva et al. [12]. 

 
Figure 2: NASA quadrotor RVLT reference vehicle configuration considered in this study. 

The processes for predicting flyover noise data were discussed in detail by Rizzi et al. [13] and are briefly 
summarized here.  The periodic loading and thickness noise and broadband self-noise components were computed for 
42 operational states defined by pairs of airspeed (knots) and climb angle (degrees), using the process depicted in 
Figure 3.  The resulting source noise hemispheres were ‘flown’ in simulation using the NASA second generation 
Aircraft Noise Prediction Program (ANOPP2) Mission Analysis Tool (AMAT) [14].  The AMAT can simulate a 
flyover using one or more source noise hemispheres along a user-defined trajectory.  At each observer location, the 
AMAT generates an OTOB spectrogram at 0.5 s intervals.  In this work, a new capability in the AMAT found in 
ANOPP2 v1.5, referred to as explicit observer time, was used to synchronize the reception time across a set of ground 
observers.  The simulations were performed to represent the signal at a dense grid of 4 ft. (1.2 m) observer locations 
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spaced 98.4 ft. (30 m) apart.  The resulting OTOB spectral time histories, in the OTOB center frequency range from 
31.5 Hz to 4 kHz, serve as the signal inputs in Eq. (2). 

 
Figure 3: NASA process for generating source noise data for each operating state. 

 

It should be noted that although the area of interest is a very large metropolitan area with many high-rise buildings 
and other geographical features, a flat ground plane with uniform impedance is modeled herein. More complicated 
modeling of atmospheric propagation in urban environments is beyond the scope of this paper.  Additional simulation 
details may be found in Letica and Rizzi [15]. 

IV. Masking Noise 
Both recordings and modeled ambient noise data are used in this work.  Recordings are used for assessing audibility 

and annoyance for masking noise that varies over short time scales, i.e., seconds or minutes.  Modeled acoustic data 
corresponding to daytime and nighttime were used for assessment over a wide area of observers that would not be 
practical using recordings. 

A. Recorded Masker Noise 
The recordings were made in New York City in September 2018. One recording was made in City Hall Park in 

lower Manhattan and the other was made in the Sheep Meadow in Central Park.  The recording sites are shown in 
Figure 4.  The recordings were made using a Zoom H4n field recorder with an Earthworks M23 microphone vertically 
oriented 4 ft. (1.2 m) above the ground.  Time-averaged narrowband spectra for both locations at a resolution of 1 Hz 
are shown in Figure 5.  The levels are higher at City Hall than at Central Park, with the difference increasing with 
increasing frequency. 
 
 

 
 

Figure 4: Photographs of recording sites in Central Park 
(left) and near City Hall (right) [Source: NASA]. 

 
Figure 5: Time-averaged narrowband spectra of 

masker noise near City Hall & Central Park. 
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The difference in levels is also apparent in the OTOB spectrograms shown in Figure 6.  The City Hall masker 
ranges from about 75 dB at the lower frequency limit to about 45 dB at the upper frequency limit.  In contrast, the 
Central Park masker ranges from about 60 dB at the lower frequency limit to about 20 dB at the upper frequency limit. 
Segments of each recording are available for download [16]. 

 
Figure 6: Spectrograms of masker sound pressure level at City Hall (left) and Central Park (right).  

B. Modeled Masker Noise 
The modeled ambient sound levels were generated by the Blue Ridge Research and Consulting (BRRC) AMBIENT 

model, a physics-informed machine learning model of ambient soundscapes [17].  The ambient soundscape, or 
acoustic environment, is composed of anthropogenic, biological, and geophysical sounds. The AMBIENT model 
generates spatially, temporally, and spectrally varying maps of the ambient sound levels produced by all 
anthropogenic, biological, and geophysical sources across various environments.  Here, the model was applied to 
predict average ambient sound levels across a selected region of the New York City metropolitan area between lower 
Manhattan and Newark, NJ. 

1. Mapping Ambient Sound Levels Using Physics-Informed Machine Learning 

The BRRC AMBIENT model combines the strengths of machine learning with the strengths of physics-based 
models.  Physics-based models are appropriate for sound sources with known locations and characteristics, such as 
traffic noise, whereas machine learning models are appropriate for sound sources that cannot be modeled physically, 
such as chirping birds.  The AMBIENT model builds upon the geospatial modeling approach developed by Mennitt, et 
al. [18], who applied machine learning regression algorithms to model the statistical relationship between ambient 
sound levels and geospatial variables, and extends their approach by incorporating physics-based traffic noise 
predictions as a geospatial feature. 

In the AMBIENT model, the ambient sound level at any location is modeled as a function of the geospatial features 
and the predicted traffic noise at that location, 

 ambient sound level = (geospatial features, physics-based noise)f  (3) 

in which the function, f, is unknown.  The unknown function f is determined by fitting an ensemble of machine learning 
regression models to the data at locations where the geospatial features, predicted traffic noise, and ambient sound 
levels are known.  Once the ensemble of regression models is fitted, it is applied to predict ambient sound levels at 
any locations where the geospatial features and predicted traffic noise are known. 

The AMBIENT model uses a training dataset of measured ambient sound levels to fit the regression models.  As 
shown in Figure 7, the database of ambient acoustic measurements includes 962 unique sites across North America 
measured by the National Park Service (NPS), the Environmental Protection Agency (EPA), and a team led by BRRC.  
At each measurement site, the measuring organization deployed a research-grade microphone and a Class 1 sound 
level meter to sample ambient acoustic spectra at 1-second intervals for days, weeks, or months at a time.  Together, 
these measurements reveal the spatially, temporally, and spectrally varying ambient sound levels in many different 
acoustic environments. 
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Figure 7: Acoustic measurement sites in the contiguous United States used to train the AMBIENT model. 

 
The AMBIENT model also uses a database of geospatial features to fit the regression models at acoustic 

measurement sites and to apply the fitted models to predict ambient sound levels at other locations.  The geospatial 
database includes 23 features at 30 m resolution across the contiguous United States.  The resolution and spatial extents 
of the geospatial features determine the resolution and spatial extents of the ambient sound level predictions.  At 30 m 
resolution, the predictions describe spatial variability at finer resolution than a typical city block.  The geospatial 
features include population density, land cover, topography, climate, and physics-based transportation noise.  Figure 
8 shows the physics-based predictions of the average A-weighted L50, or median sound level, of road traffic noise, 
computed using the BRRC AMBIENT|TRAFFIC model, in an area between lower Manhattan and Newark, NJ. 
 

 
Figure 8: Physics-based traffic noise prediction in the area between lower Manhattan and Newark, NJ. 

 
The BRRC AMBIENT|TRAFFIC model incorporates physics-based source models and simplified acoustic 

propagation into the machine learning models for a single transportation noise source.  Aviation noise can be another 
important transportation noise source at locations near airports, but physics-based aviation noise is not yet included 
as a geospatial feature in the AMBIENT model.  For this reason, the ambient noise is likely underestimated in the vicinity 
of airports.  However, aviation noise typically does not affect the L50, or median sound level, except at locations 
immediately surrounding busy airports. 

The AMBIENT model uses an ensemble of four machine learning regression algorithms—gradient-boosting 
regression, kernel ridge regression, multi-layer perceptron, and support vector regression—to predict the ambient 
sound level as a function of the geospatial features.  The predicted ambient sound level is given by the median of the 
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four machine learning algorithms.  Different ensemble models are trained to predict ambient sound levels at different 
times of day and for different OTOBs. 

The AMBIENT model scales and combines the physics-based traffic noise predictions with other geospatial features 
to predict the overall ambient sound levels.  At locations far from roads, the predicted ambient sound level is greater 
than the predicted traffic noise due to contributions from other anthropogenic, biological, and geophysical sound 
sources.  At locations immediately adjacent to roads, where the ambient sound level is dominated by traffic noise, the 
AMBIENT model sometimes predicts ambient sound levels that are lower than the predicted traffic noise level.  One 
cause of this apparent contradiction is that the AMBIENT model is anchored to the range of ambient acoustic 
measurements, and few measurement sites are immediately adjacent to busy roads.  Additional ambient acoustic 
measurements along busy roads are required to validate the physics-based traffic noise and ambient soundscape model 
predictions in these locations. 

2. Modeled Ambient Sound Levels in the New York City Metropolitan Area 

The BRRC AMBIENT model was used to produce unweighted OTOB spectra over an extended grid of points with 
a 98.4 ft. (30 m) grid spacing.  The data correspond to median daytime and nighttime levels.  Maps of median daytime 
and nighttime A-weighted sound pressure levels are shown in Figure 9.  These maps demonstrate significant 
differences in ambient sound levels at different times of day and at different locations.  Figure 10 shows unweighted 
OTOB spectra for a high () and a low () ambient point of interest (POI) identified on the maps.  Both the 
magnitudes and spectral shapes vary with location.  These and data at other points serve as spatially varying maskers 
for the point-to-point route from JRB and EWR (see Section V.B). 
 

 
 

 
  

Figure 9: Maps of modeled daytime (top) and nighttime (bottom) ambient A-weighted sound pressure levels  
in the area between lower Manhattan and Newark, NJ. 
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Figure 10: Modeled daytime and nighttime unweighted OTOB spectra at high ambient (along Interstate I-78)  

and at low ambient (Liberty State Park) POIs. 

V. Results 
Two sets of analyses are performed.  The first case serves as a step-by-step demonstration of how the annoyance 

assessment is performed and how differences between two different temporally varying and spatially uniform ambient 
soundscapes affect annoyance.  The second case is more applied; it considers a fictitious straight-line route from the 
Downtown Manhattan Heliport (JRB), a helicopter pier in lower Manhattan, New York City to the helipad at Newark 
Liberty International Airport (EWR) located about 8.4 mi. (13.5 km) away.  This analysis serves to demonstrate how 
annoyance changes with spatially varying, temporally invariant ambient conditions. 

A. Overflight Case 
The process of estimating discounted annoyance at a single observer point is first demonstrated.  This is followed 

by mappings of intermediate quantities to ultimately show how annoyance to a single-event overflight varies from one 
observer point to another and how annoyance varies with the masker.  In the following, and for convenience, the City 
Hall and Central Park maskers were applied uniformly at all observer locations. 

A high-fidelity simulation of the RVLT quadrotor reference vehicle was performed for a steady straight and level 
overflight at 90 knots (202 km/h) and 1000 ft. (304.8 m) altitude.  The spectrogram of the signal at an observer point 
on the ground track is shown in Figure 11.  Because the overflight represents a steady condition, the spectrogram for 
any point on the ground track is the same, while points lateral to the track differ.  Asymmetry about the peak is due to 
nonuniform fore-aft (polar) directivity of the source.  On the unweighted basis, the frequency range below about 
500 Hz is dominated by tonal harmonics of the BPF and above about 500 Hz by the broadband self noise component.  
To give the reader a more natural sense of the signal characteristics, an auralization on the ground track was made 
using the NASA Auralization Framework [19] with plugins for periodic loading and thickness noise and broadband 
self noise [20].  The auralization is available for download [16]. 

 
Figure 11: Spectrogram of signal sound pressure level L at an observer on the ground track for the overflight case. 
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The detectability index, ,i td ′  at each 0.5 s interval at each OTOB is computed using Eq. (2) to generate the d ′  
spectrograms shown in Figure 12.  Values are plotted on a logarithmic scale so that values below zero ( d ′  = 1) indicate 
that the signal is functionally inaudible in the presence of the masker.  The greater duration and frequency of detection 
indicated for the Central Park masker relative to the City Hall masker is expected.  This is because its magnitude over 
the entire frequency range is lower than that of the City Hall masker and the difference increases with increasing 
frequency, see Figure 6.  The spectrograms in Figure 12 may also be used to identify the time and OTOB with the 
highest probably of detection.  These appear at an observer time of about 27 s and at the 125-160 Hz OTOB for the 
City Hall masker and at the 4 kHz OTOB for the Central Park masker.  These spectrograms clearly illustrate that the 
detectability of the signal strongly depends on the spectral characteristics of the masker. 

 
Figure 12: Detectability index spectrograms corresponding to the City Hall (left) and Central Park (right) maskers. 

Discounted sound pressure level spectrograms are calculated using Eq. (1) with detectability index spectrogram 
data from Figure 12 and the original signal spectrogram from Figure 11.  The resulting discounted spectrograms, 
shown in Figure 13, indicate what part of the signal is heard by the observer over the masker.  In these plots, areas of 
0 dB (and below) indicate the signal is fully masked, i.e., inaudible.  The effect of the discount is greater with the City 
Hall masker than for the Central Park masker. 

 
Figure 13: Discounted signal spectrogram LDisc by City Hall (left) and Central Park (right) maskers. 

Next, A-weighting is applied to the original and discounted spectrogram data.  Both are summed over frequency 
to obtain the overall A-weighted level, LA, and summed over time to obtain LAE.  The original and discounted LA and 
LAE are shown in Figure 14 for both maskers.  The discounted levels, both in terms of LAE and the maximum A-
weighted level, LAmax, are lower in magnitude for the City Hall masker relative to the Central Park masker, making the 
difference between the original and discounted levels greater for the City Hall masker than the Central Park masker.
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Figure 14: Original and discounted LA and LAE for City Hall (left) and Central Park (right) maskers. 

Having calculated a discounted value of LAE for a single flyover, a discounted day-night sound level Ldn for a 24 h 
period can be computed simply as an accumulation of multiple flyovers.  A dose-response relation [21-23] specific to 
UAM noise could then be used to estimate the percent of the population that are highly annoyed in the presence of 
masking noise.  However, such a relationship cannot be established until UAM aircraft are operational.  Further, since 
flight recordings currently remain scarce or proprietary, laboratory studies of annoyance to UAM operations also 
remain lacking.  Nevertheless, in order to demonstrate the next step relating LAE (and hence discounted LAE) to 
annoyance, laboratory test data are used. 

The data are taken from a laboratory test comparing the annoyance of ground vehicles to small unmanned aerial 
systems (sUAS) [24].  Only the sUAS data are used here.  Figure 15 shows a fit of the test subjects’ mean annoyance 
rating with LAE.  The test was conducted using the 5-pt ICBEN scale [25] with ratings of “Not At All Annoyed”, 
“Slightly Annoyed”, “Moderately Annoyed”, “Very Annoyed”, and “Extremely Annoyed.”  These were assigned 
numerical values of 2, 4, 6, 8, and 10, respectively, on a scale of 1-11.  The equation of the best fit line is given as: 

 Annoyance  0.125 3.61AEL= − . (4) 

To the extent that this relation applies to UAM vehicles, substitution of the original and discounted LAE gives estimates 
of original and discounted annoyance, as provided in Table 1.  These data suggest that at this particular observer 
location, located directly under the ground track, the effect in terms of LAE is significant for the City Hall masker  
(> 6 dBA) and not for the Central Park masker (< 1 dBA).  The effect in terms of annoyance, however, is modest for 
both maskers, reducing the original annoyance estimate from one that is closer to being moderately annoyed (6) to 
one that is closer to being slightly annoyed (4) in the case of the City Hall masker. 

 
Figure 15: Relationship between annoyance and LAE established from a psychoacoustic test simulating single-event 

flyover noise from small UAS aircraft [24]. 
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Table 1: Comparison of estimated original and discounted LAE and annoyance ratings. 

 Original City Hall 
(Discounted) 

Central Park 
(Discounted) 

LAE (dBA) 74.04 67.82 73.15 

Annoyance Rating 5.64 4.87 5.53 
 

While the above analyses are informative about how discounted annoyance is assessed at one observer location, 
performing the same calculation over a grid of observers illustrates how the estimated response changes spatially.  
Contours of d ′  are shown in Figure 16 for both maskers.  Along the ground track (sideline distance = 0 m), the signal 
is audible in the presence of either masker.  Lateral to the track, the signal becomes inaudible at sideline distances 
greater than about 985 ft (300 m) for the City Hall masker but is audible for all or most of the domain for the Central 
Park masker.  The variation in the index with downrange distance reflects the fact that the masking noise changes over 
time as the vehicle traverses the domain. 

 
Figure 16: Detectability index contours corresponding to the City Hall (left) and Central Park (right) maskers. 

Contours of the frequency of maximum d ′  are shown in Figure 17.  As in Figure 12, detection occurs at low 
frequencies for the City Hall masker.  The lower OTOB frequencies in the signal are dominated by higher harmonics 
of the BPF of the quadrotor vehicle.  In contrast, detection occurs at the higher frequencies for the Central Park masker.  
The higher OTOB frequencies in the signal are dominated by broadband self noise.  At the greatest sideline distances, 
atmospheric absorption reduces the high-frequency content of the signal and changes the frequency of maximum d ′  
from high to low frequency. 

 
Figure 17: Frequency of maximum d ′  corresponding to the City Hall (left) and Central Park (right) maskers. 
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Original and discounted sound exposure level contours are shown in Figure 18.  The original sound exposure varies 
only transverse to the ground track because the source noise is nearly symmetric about its azimuthal centerline [13].  
Points lateral to the track differ due to increased spreading loss and atmospheric absorption, and differing ground 
reflection and Doppler shift.  As suggested by Figure 16, there is a much greater discount for the City Hall masker 
than for the Central Park masker.  Exposure levels of about 65 dBA are found at sideline distances of 1640 ft. (500 m) 
in the original and are found at sideline distances of less than 164 ft. (50 m) for the City Hall masker and at about 
820 ft. (250 m) for the Central Park masker. 

 

 

Figure 18: Original and discounted sound exposure contours for overflight case. 
 

Estimated annoyance maps based on the original and discounted sound exposure data are shown in Figure 19.  
Annoyance based on the original data spans the range of “slightly annoyed” (4) at points furthest from the ground 
track to “moderately annoyed” (6) along the ground track.  For the Central Park masker, estimated annoyance along 
the ground track is “moderately annoyed” but falls off to a little over “not at all annoyed” (2) at points furthest from 
the ground track.  In contrast, the highest estimated annoyance along the ground track for the City Hall masker is 
“slightly annoyed” and falls off to “not at all annoyed” at a sideline distance of less than 655 ft. (200 m). 

 

 

Figure 19: Original and discounted annoyance contours for overflight case. 

In summary, this case illustrates how annoyance varies with short duration temporal variations of the masker, with 
the spectral characteristics of the signal and masker, and with distance from the source (affecting the spectral 
characteristics of the signal) due to atmospheric propagation. 

B. Point-To-Point Case 
The point-to-point case is modeled as a departure from JRB, followed by an overflight segment, and ending with 

an approach at EWR.  The departure and approach profiles were derived from standard profiles for a Bell 206L 
helicopter in the AEDT Aircraft Noise and Performance database [26], as investigated by Letica and Rizzi [15].  
Modifications to the standard profiles were made to ensure that the prescribed trajectories are within the flight 
envelopes of the quadrotor vehicle.  The overflight segment was an extended version of the straight and level overflight 
considered in Section V.A.  The east-to-west route traverses lower Manhattan, then crosses the Hudson River, the 
Bayonne Peninsula, and Newark Bay before landing at EWR.  The sound exposure level map is shown in Figure 20.  
As expected, the point-to-point route shows elevated levels near the takeoff and landing areas, as observed in prior 
analyses [27].  In the following annoyance model analyses, an OTOB center frequency range of 50 Hz to 4 kHz was 
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used.  This represented the intersection of the frequency range of the signal (31.5 Hz – 4 kHz) and the modeled ambient 
masker data (50 Hz – 10 kHz). 

 
Figure 20: Sound exposure from RVLT quadrotor reference vehicle on point-to-point route from JRB to EWR. 

Referring to Figure 9 and Figure 10, the original and discounted daytime levels, both in terms of LAE and LA, are 
shown at the high ambient POI on Interstate I-78 and at the low ambient POI at Liberty State Park (LSP) in Figure 21.  
The discounted levels are lower in magnitude for the I-78 masker relative to the LSP masker, making the difference 
between the original and discounted levels greater for the I-78 masker over the LSP masker, as expected.  The LA 
traces are smoother than those in Figure 14 because the I-78 and LSP maskers do not vary in time as did the City Hall 
and Central Park maskers. 

 
Figure 21: Original and discounted daytime LA and LAE for Interstate I-78 (left) and LSP (right) maskers. 

 
An extended section of the overflight segment of the point-to-point route, including the I-78 () and LSP () 

POIs, is next considered.  Maps of d ′  are shown in Figure 22.  In the areas along Interstate I-78 and Route 440 
(unmarked on the west side of the Bayonne Peninsula), estimates of daytime d ′  are significantly reduced relative to 
surrounding areas.  This is less the case at nighttime.  Estimates of d ′  at LSP indicate that the signals are audible at 
all times.  Over the majority of the Bayonne Peninsula, the signal is audible over a strip of about 0.5 mi (800 m) wide, 
with that width being slightly greater during the nighttime. 

Maps of the frequency of maximum d ′  for daytime and nighttime are also revealing, see Figure 23.  For both 
daytime and nighttime, the maps indicate that detection occurs at low-frequency low-order harmonics of the BPF 
directly under the flight path primarily in the region over the Bayonne Peninsula.  Lateral to the flight path, the 
frequency of maximum d ′  alternates between high and low frequency, perhaps due to changes in the source 
directivity, e.g., see Figure 6 in [13].  At somewhat larger lateral distances from the track, the frequency of maximum 
d ′  occurs in the range of 300-400 Hz due to higher-order BPF harmonics.  This is also likely due to changes in the 
source directivity since increased atmospheric attenuation with increased lateral distance would drive detection to 
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lower frequencies, as seen in Figure 17 for the Central Park masker.  Note that at these locations, however, the 
detectability is very low (near d ′=1), see Figure 22.  Over water, the frequency of maximum d ′  is more dominated 
by high frequency close to the track and moves to lower frequency at lateral locations due to an increasing amount of 
high-frequency atmospheric absorption.  For this scenario, there is generally more high-frequency detection at 
nighttime than there is at daytime. 

 

 
Figure 22: Maps of d ′  for daytime (top) and nighttime (bottom)  

for section of overflight segment of point-to-point route. 

For brevity, maps of discounted sound exposure are not shown.  Annoyance maps for the overflight segment are 
shown in Figure 24.  Estimates of the original annoyance calculated without masking do not vary with position along 
the track and indicate moderate annoyance (6) levels directly below the flight track that uniformly reduces to less than 
not at all annoyed (2) with increasing lateral distance. 

In contrast, the daytime annoyance estimates are slightly reduced below the flight track, are significantly reduced 
over the Bayonne Peninsula (except for the low ambient area around LSP ) and are less reduced over the two rivers 
to the east and west.  In the areas along Interstate I-78 ( east) and Route 440, the annoyance estimates are reduced 
to less than slightly annoyed (4).  Other geographic features are also apparent in the annoyance map.  The nighttime 
annoyance estimates show less of a reduction due to masking than the daytime estimates.  Nevertheless, reduced 
annoyance can be seen along Interstate I-78 and Route 440. 

VI. Summary and Future Work 
A method has been developed for estimating annoyance to UAM noise in the presence of masking noise.  The 

annoyance model uses the relationship between annoyance and LAE derived from a recent psychoacoustic study.  An 
overflight case using recordings of two different maskers in NYC demonstrated how temporal variations in the masker 
affect the detectability index d ′  and the frequency corresponding to the maximum value of d ′ .  The discounted 
annoyance was subsequently calculated from estimates of discounted sound exposure level using laboratory test data 
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relating annoyance to small unmanned aerial systems to sound exposure level.  A more applied case using a dense 
grid of ambient noise estimates from the BRRC AMBIENT model demonstrated how differences between high and low 
ambient areas affect estimated annoyance. 

 

 
Figure 23: Maps of frequency of maximum d ′  for daytime (top) and nighttime (bottom)  

for section of overflight segment of point-to-point route. 

For the cases considered, it was found that the estimated annoyance directly below the flight track was largely 
unaffected by the ambient noise except for very high ambient conditions, e.g., near major roadways.  Lateral to the 
flight track however, the estimated annoyance was almost always reduced relative to the unmasked condition, and the 
frequency at which detection occurred increasingly tended toward low-frequency high-order harmonics of the BPF 
with increasing lateral distance from the ground track.  The observed reductions in estimated annoyance near roadways 
lend some support for the proposed routing of UAM traffic over roadways.  However, this study also demonstrates 
large differences between the lateral extent of air vehicle noise relative to road traffic noise.  Additional analyses on 
the basis of day-night average sound level Ldn are still needed to determine the impact of fleet operations.  More 
complex vehicle noise contours associated with departures from, and arrivals to, a vertiport also require further 
analysis.  Higher sound levels in the vicinity of vertiports are likely to engender greater annoyance than found en route 
(see Figure 20). 

While this work constitutes a plausible first step toward development of a useful tool to aid urban route planning, 
additional work is needed.  First, the psychoacoustic data upon which the median annoyance model parameters are 
based are limited to a handful of subjects in a single laboratory study.  More work is needed to establish an estimate 
applicable to the larger population.  Given the diversity of UAM vehicle architectures and the sound signatures they 
generate, consideration of a range of aircraft must be given before making any kind of generalization about a fleet of 
aircraft.  And to that end, a relationship between annoyance and Ldn for UAM vehicles is needed so that annoyance 
estimates may be made using more relevant data.  However, that will have to wait until a number of actual flight 
vehicles are available and flying.  Given these caveats, it should be apparent that the results provided herein are meant 
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to demonstrate the utility of the approach and are not intended to make a definitive statement about how UAM aircraft 
are likely to be perceived in any particular locality. 

 

 

 

 
 

Figure 24: Original (top) and discounted annoyance maps for daytime (middle) and nighttime (bottom)  
for section of overflight segment of point-to-point case. [2 = “Not At All Annoyed”, 4 = “Slightly Annoyed”,  

6 = “Moderately Annoyed”] 
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Appendix 
This appendix describes the OTOB-based detection algorithm used in this research.  It first introduces the concept 

of the power spectrum model of masking and then describes the individual components that constitute Eq. (2). 

A. The Power Spectrum Model 
The detection algorithm used here is generally known as a “power spectrum” model [28], as it is based on ratios 

of the power of the signal and masker in various frequency bands.  While there are many other aspects of sound that 
can impact detection performance – beyond banded signal-to-noise ratios – due to the coarseness of the input data, it 
is not (easily) possible to incorporate such effects (see [3]). 

This model arises from a conception of the peripheral auditory system as being a set of bandpass filters.  Roughly, 
the transduction mechanism of the ear (from external pressure fluctuations to an internal neural firing code) operates 
as a massive bank of bandpass “auditory filters” [28].  In the ear these filters overlap significantly in their frequency 
selectivity and sensitivity.  In the model, in order to avoid “double counting” incoming energy, the algorithm needs to 
use a bank of bandpass filters that sum to a flat frequency response.  The OTOB data are used to fill the role of this 
filter bank, with the benefit of then being able to use commonly available data and digital signal processing tools.  The 
signal-to-noise ratio coming through each filter forms the basis of the model.  However, OTOB bandwidths, while 
following a similar trend to auditory filter widths, are never an exact match, so a correction needs to be applied.  Note 
that any nonlinearity of the system with sensitivity (absolute level) is ignored. 

The model is based on the task of detecting a single tone signal in a locally white noise masker – that is, the masker 
is approximated to be white for the width of each OTOB.  Using this scenario allows the corrections to be formulated, 
though these clearly may not relate to many (more complex) real-world scenarios.  These scenarios include signals 
having closely spaced tones and broadband components, a masker composed of common sounds each with their own 
characteristics, spatial effects impacting detection performance, etc.  This simple approach, however, has formed the 
basis of past practical detection algorithms [6], and is likely a good first approximation.  “Tuning” the performance of 
such an algorithm using data specific to a UAM-in-city scenario may be the subject of future research (though, with 
necessary loss of generality, unless the input data were to become richer). 

There are two main effects that compete in a tone-in-noise detection scenario.  The first is that of the bandwidth-
time or “BT” product of the observation.  This is a quantity, derived from signal detection theory [29], that indicates 
that if the masker is broadband (stochastic in nature), there will be more variability between observation windows of 
the masker for shorter duration maskers or those with more limited bandwidth.  This can perhaps be thought of as the 
opposite of “regression towards the mean” (although that concept is prone to misconception as well).  If the goal is to 
detect a signal in such a masker – the signal being stationary or known, such as a tone – then higher variability in the 
masker will lead to a reduction in detection performance on a moment-to-moment basis.  The variability scales with 
the square roots of the auditory filter bandwidth wi and the length of the signal t∆ , that is, id w t′ ∝ ⋅∆ .  This indicates 
that there is a statistical advantage to using wider auditory filters (or to being patient). 

The other force in the model is that of the amount of noise coming through each auditory filter.  As an auditory 
filter widens, more masking noise is allowed to enter the band, while the tone – a single spectral line – will maintain 
the same filtered power.  The masker power will therefore scale linearly with the bandwidth, i.e., i i on w n≈ ⋅ , for a 
white masker with specific signal power on  defined in Pa2/Hz.  This will cause the signal to become harder to detect 
as the auditory filter gets wider.  Thus, these forces are in competition with each other, but one is stronger.  In the end, 
the total effect will be that the signal level needed for detection will tend to increase as the square root of the auditory 
filter bandwidth for constant signal-to-noise ratios. 

It is important to note that reading the work of previous authors on this topic can be quite confusing.  Depending 
on how the equations are written, the same bandwidth effect can seem to be described in very different ways.  For 
instance, if an author uses the specific sound power in the band ( on  in Pa2/Hz, as above), then a factor of 1 iw  may 
appear in the equation.  If they use the total power in the band (as is done here), then the increase in masker power in 
the band will be bookkept within in  and a factor of iw  will appear.  Some previous works freely go between these 
two conventions, making things even more confusing.  This extends to the way that s  and n  are defined.  For instance, 
Sneddon et al. [6] define their s  and n  in terms of RMS Pascals and then write the signal-to-noise ratio 

unambiguously as ( )4s n – an equivalent expression to that used here. 
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In the end, the important thing to remember is that the italicized statement above is empirical, backed by decades 
of human response data, and should be the correct behavior of any detection prediction system for this simple tone-
in-noise case (see, e.g., Figure 1 in [30]).  A useful approximation to this fact comes from Fastl and Zwicker [31].  
They report that a tone is detectable at the same level in a white noise masker up to 500 Hz (the bandwidth of the 
masker being arbitrarily wide).  Above that frequency, the level needed for equal detection increases at 10 dB per 
decade.  This heuristic is plotted in Figure 25 and is used as a benchmark for the detection algorithm. 

With this background, the unknown quantities from Eq. (2) can now be discussed.  There are two such elements 
in this equation: the detection efficiency factor  , and the equivalent auditory system noise ei.   must be determined 
first based upon the parameters of the simulation and input data, after which ei may be solved for. 

B. Detection Efficiency Factor 
The frequency-dependent detection efficiency factor   has several elements that are built up from various sources 

in the literature. 

1. There is an overall (frequency-independent) “efficiency factor” relative to the performance of a perfect 
detector, usually denoted in the literature as η , which defines the general capacity for human detection 
relative to the raw signal-to-noise ratio.  Sources typically give this as being between 0.25 and 0.33 (e.g., 
[32]).  A value of 0.3 is used here. 

2. There is a factor of the square root of the time window size that arises from the BT product described above.  
This factor is only useful to predict changes in relative detection ability over a narrow range of time scales – 
it does not extend to very short sounds (less than 0.1 s, cf. [30]), or to infinity (giving infinite detection 
capacity to patient observers).  In practice, this factor is often set to 1 s, sometimes simply by way of omission 
(e.g., [6]).  In this work, the time step size of 0.5 s is used, and, in a practical sense, is just another component 
of η . 

3. The frequency dependence stemming from the BT product appears as OTOB,iw  due to the formalism adopted 
here. 

4. Human auditory filter bandwidths, while similar to OTOB bandwidths near 250 Hz, deviate significantly 
from OTOBs at high and low frequencies.  A useful equation for the bandwidth of auditory filters comes 
from Moore [28] as: 

 , ,
4.3724.7 1
1000AF i c iw f = + ⋅ 

 
. (5) 

A comparison of filter bandwidths is shown in Figure 25.  A correction between this formula, computed at 
the OTOB center frequencies fc,i, and the OTOB bandwidths is made as: 
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This correction factor is unintuitive, as it is doing the opposite of what one would expect – dividing out 

OTOB,iw  and replacing it with ,AF iw .  However, the effect it has on the performance of the algorithm is as 

intended: If ,AF iw  < OTOB,iw , d ′  should increase based upon the above discussion.  (Cf. a past similar 
correction made by Fidell and Horonjeff  [33].) 

5. The final component is one of engineering judgement.  It is a high-frequency adjustment to the detection 
efficiency that keeps the algorithm from putting too much weight on detection occurring at very high 
frequencies.  This occurs in practice due to recordings and specifications of background OTOB levels rolling 
off in the kHz range while, for instance, an auralization retains these frequencies perfectly.  This dB correction 
is referred to as “the kick” and is defined for OTOBs with fc,i ≥ 2500 Hz: 
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The kick factor is shown on a linear scale, i.e.,  1010 iκ , in Figure 25.  Other similar schemes have simply cut 
off the computation at 5 or 10 kHz (e.g., [6]).  This factor allows for a smooth transition away from the 
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algorithm reporting that detection is occurring at 16 kHz (which is unreasonable in a practical sense), while 
allowing that energy to still be computed and counted in the rest of the computation.  In the end this factor 
makes very little functional difference (i.e., on the resultant discounted LAE) because UAM sounds do not 
have significant signal energy at such high frequencies. 

 
Taken the above all together, the frequency-dependent detection efficiency factor   is given as: 

 OTOB,
OTOB,

,

i
i i i

AF i

w
t w

w
η κ= ⋅ ∆ ⋅ ⋅ ⋅ . (8) 

The total detection efficiency factor is plotted in Figure 25.  The performance of the algorithm is also shown in Figure 
25.  This is computed for each band using a white noise masker of constant no and signals that are tones located at fc.  
It is computed without the ei factor - an omission that makes the algorithm independent of absolute level - so the result 
is plotted on an arbitrary dB scale.  As can be seen, the performance closely matches that of the benchmark described 
above.  At very high frequencies, the algorithm without the kick is trending towards better (probably unreasonably 
good) detection performance, whereas the performance with the kick begins to degrade above 5 kHz. 

C. Equivalent Auditory System Noise (EASN) 
Once the factor   is established, the equivalent auditory system noise ei may be solved for.  This term is derived 

from the hypothetical situation in which there is a single tone located at an OTOB center frequency but there is no 
masking noise presented to the subject (ni,t=0).  The level at which the typical subject will just be able to hear this tone 
is called the “auditory threshold” or “minimum audible field.”  These tone levels are provided by the ISO 226 standard 
[34] and encoded as signal magnitudes for each OTOB (sMAF,i).  In order to make Eq. (2) reproduce the equivalent 
behavior of the auditory threshold, an equivalent amount of noise can be added in the denominator that, in concept, 
originates inside the auditory system (hence the name of the term). 

An assumption must be made about what the ISO data series represents in terms of detectability – that is, what 
was the value of d ′  that was sought in the experiment(s) that were used as an input to that standard.  Most 
psychoacoustic detection experiments target d ′  values around 1.5 or 2.5, with higher d ′  values being favored (e.g., 
[35,36]).  Thus, an assumption that the target d ′  =2 is used here. ei can then be solved for via an inversion of Eq. (2): 

 ,

2
MAF i

i i

s
e = ⋅  (9) 

This term is plotted in Figure 25, again with and without the addition of the kick factor.  As can be seen, ei is a very 
small amount of signal energy – on the order of 10-9 Pa2 in the middle frequencies. 

D. Summing Detectability Between Bands 
In practical detection situations, researchers often seek an overall d ′  value for a complex signal.  In a laboratory 

situation, if a psychoacoustic test were being run, only one value of d ′  would be able to be measured at a time for an 
entire signal.  If the signal spans across multiple frequency bands, there are competing theories as to how to aggregate 
d ′  to form a single representative value (see, importantly, [37]). 

In an earlier implementation of the discount concept, a single value of d ′  was computed for each time step – d ′  
was aggregated across frequency – and the entire signal was discounted based on this single value.  This research has 
used a simpler conception where each frequency band is discounted based on its own detectability, avoiding the need 
to worry about the addition of d ′  between bands.  Determining which concept is more concordant with discounting 
as observed in human subjects (i.e., via psychoacoustic test) is left for future work. 
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Figure 25: Dependency of power spectrum model parameters on OTOB center frequency.  Shown are OTOB and auditory filter bandwidths (left) per Eq. (5), 
the “kick” factor (second from left) per Eq. (7), the detection efficiency factor   (middle) per Eq. (8) , the algorithm performance (second from right), 

and the EASN (right) per Eq. (9). 
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