

Electroluminescence Imaging: A Quantitative Characterization Technique to Measure Dust Occlusion of Solar Cells

Meghan Bush, Timothy J. Peshek – *NASA Glenn Research Center* Roselin Campos, Harry Yates, and Bran Tranter – *Maxar Space Systems*

Dust vs Solar Arrays

Image courtesy of NASA/JPL-Caltech

Mars Insight Lander

Image courtesy of NASA/JPL-Caltech/Cornell

Image courtesy of David McKay, NASA/JSC

Image courtesy of NASA

- lunar dust sticks to exposed surfaces
- dust adherence dominated by electrostatic forces
- dust accumulation on arrays limits power
- no cleaning events like Martian arrays

Dust mitigation is crucial for arrays on the lunar surface.

Space Power Workshop 2024

Dust Mitigation

Electrodynamic Dust Shield

C.I. Calle, et al, (2013, June 11-13). *Space Environmental Testing of the Electrodynamic Dust Shield Technology*. Annual Meeting of the Electrostatics Society of America, Cocoa Beach, FL, US.

Large-Area Antidust Surfaces

Samuel S. Lee, et al., *Engineering Large-Area Antidust Surfaces by Harnessing Interparticle Forces, ACS Applied Materials* & *Interfaces*, 2023, *15* (10) ISSN 13678-13688 DOI: 10.1021/acsami.2c19211

GOAL: investigate vibromechanical dust removal for flexible arrays

- Flexible arrays present the opportunity for a unique, simple dust mitigation strategy: vibration
- Piezoelectric motor converts electricity into a bending movement
- Frequencies being tested:
 - Small piezo resonant frequency: 150Hz
 - Large piezo resonant frequency: 433Hz
 - Frequency sweep: 1Hz 500Hz

Space Power Workshop 2024

Image courtesy of Maxar

Electroluminescence Imaging

forward bias solar cell

solar cell emits light

Space Power Workshop 2024

Electroluminescence Imaging

Dust Deposition System

- vibration motor excites a simulantloaded mechanical sieve
- designed to raster and deposit
 dust over full test article area

Test Articles

Coupon 1 – ROSA (ZTJ)

- Rocket Lab ZTJ cells
- bonded to flexible mesh
- 4 piezos on back

Coupon 2 – MicroLink IMM

- MicroLink IMM cells
- bonded to black Kapton-coated glass fiber composite
- 4 piezos on back

Coupon 3 – mPower Si

- mPower Silicon cells
- bonded to black Kapton-coated glass fiber composite
- 4 piezos on back

Test Articles - EL

Coupon 1 – ROSA (ZTJ)

- Sol Aero ZTJ cells
- bonded to flexible mesh
- 4 piezos on back

Coupon 2 – MicroLink IMM

- MicroLink IMM cells
- bonded to black Kapton-coated glass fiber composite
- 4 piezos on back

Coupon 3 – mPower Si

- mPower Silicon cells
- bonded to black Kapton-coated glass fiber composite
- 4 piezos on back

Test Facilities: VF-20

- Spacecraft charging investigations
- Derive surface charging range for testing in VF-13
- Testing done for GEO conditions (worst-case scenario for the lunar surface)

Slow motion capture, 0.25x speed

Test Facilities: VF-13

- VF-13 houses the dust deposition system, solar array test coupon, and EL imaging hardware for testing in vacuum
- System has a slow roughing pump to minimize simulant pluming in the e-1/-2 torr range
- HV supply simulates surface charge buildup on array

Test Overview

Coupon 1 Result

Coupon 2 Result

Coupon 3 Result

Lessons Learned

Sieve Size Matters

smaller mesh sizes not compatible with vacuum deposition

EL Imaging Scalability

- EL is highly sensitive on the cell level
- array architecture differences and camera limitations hinder EL scalability (for now)

Adhesion Depends on Charge

- at ambient, water drives adhesion
- in vacuum, limited dust sticking to array under zero bias
- tribocharging insufficient

Simulant Preparation

- un-baked simulant experiences major clumping in vacuum
- hot plate bakeout is not suitable

Potential Forward Work

- Expand upon testing with additional variables:
 - temperature
 - array tilt
 - simulant charging mechanism
 - simulant type
- Test additional coupons and vary:
 - cell technology
 - substrate
 - ♦ dust mitigation technology → linear actuators
- Test compatible technologies (i.e., radiator with thermal imaging)
- Investigate impact of dust grain size/type on cell performance

Acknowledgements

- NASA STMD: Game Changing Development Program
 - ◆ *DMFlex ACO 20 20 ACO Final 0020*
- GRC Project Managers: Erica Montbach and Jenna Fothergill
- Solar cell providers:

Questions?

backup slides

Silicon's Brief Recovery

Silicon's Brief Recovery

Space Power Workshop 2024

21

Dust Deposition

