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The performance of new acoustic liner concepts are, in general, characterized and assessed
in grazing flow rigs early in the development cycle. These test rigs expose an acoustic liner
sample, installed on the side wall of the duct, to a grazing flow and incident acoustic field.
The process to characterize these liners involves educing the impedance on the wall where the
sample is installed and examining the acoustic power attenuation. Standard approaches to
computing impedance or power attenuation generally consider only the effects of a 2D shear
flow or uniform flow, on the acoustic field. In this study, the objective is to incorporate 3D
shear flow effects in the analysis of acoustic mode attenuation in a rectangular duct flow rig. A
modal analysis of microphone measurements obtained on the side walls of the duct upstream
and downstream of the test section of the rig is developed. A Galerkin projection of the
Pridmore-Brown equation is performed with Chebyshev basis functions in order to incorporate
the effects of the Mach number profile on the computation of the axial wavenumber of each
mode. Measurements of the Mach number profile are obtained in the test rig and used as input
to compute the modes. Comparisons made between the sound field computed with traditional
convective Helmholtz modes and the new procedure using Pridmore-Brown modes indicate
that the computed acoustic field using Pridmore-Brown modes more accurately reconstructs
the acoustic signal at each microphone in the array. The mode structure of the lowest-order
mode is shown to be significantly impacted by shear flow refraction effects, and higher-order
mode structures are also affected at higher frequencies and centerline Mach number. An
assessment of the acoustic mode attenuation for two acoustic liner samples demonstrates that
the computed mode amplitudes for both the traditional and new approach are in agreement
for the lowest-order mode, but discrepancies arise when higher-order modes are the dominant
component of the acoustic field.

Nomenclature

𝑎𝑚𝑛 = eigenvectors of Pridmore-Brown modes; amplitude coefficients of convective Helmholtz modes
a = 𝑎𝑚𝑛 in vector form
𝑐 = speed of sound
𝑑 = diameter of liner facesheet holes
𝑑𝑦 = dimension of duct in y-coordinate
𝑑𝑧 = dimension of duct in z-coordinate
𝐸phase = reconstruction error of microphone phases
𝐸SPL = reconstruction error of microphone sound pressure levels
𝑓 = frequency
ℎ = cavity depth of liner samples
𝑖 =

√
−1

𝑗 = index of Pridmore-Brown mode
𝑘 = free-space wavenumber
𝐿 = number of microphone measurements used in mode decomposition
𝑚 = order of basis function in 𝑦-coordinate
𝑀 = Mach number
𝑀𝑐 = centerline Mach number
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�̃� = maximum order of basis function used in 𝑦-coordinate
M𝑚𝑛,𝑚′𝑛′ = components of Galerkin matrix
M = Galerkin projection matrix
𝑛 = order of basis function in 𝑧-coordinate
n = wall-normal vector
�̃� = maximum order of basis function in 𝑧-coordinate
𝑝 = acoustic pressure
𝑃 = acoustic pressure phasor, 𝑃 = 𝑃(𝑥, 𝑦, 𝑧, 𝜔)
𝑝 = acoustic pressure shape function, 𝑝 = 𝑝(𝑥, 𝑦; 𝜅, 𝜔)
𝑠 = arc length between two phasors along the unit circle
𝑠𝑐 = complement of s, 𝑠𝑐 = 2𝜋 − 𝑠

SPL = sound pressure level
𝑇𝑚 = Chebyshev polynomial of the first kind of order 𝑚
T = transfer matrix for acoustic mode decomposition
𝑈𝑚 = Chebyshev polynomial of the second kind of order 𝑚
(𝑥, 𝑦, 𝑧) = three-dimensional Cartesian coordinates
x = eigenvector of the generalized eigenvalue problem
𝑍 = specific acoustic impedance
𝜁 = normalized specific acoustic impedance
𝜃 = phase of acoustic signal
𝜅 = axial wavenumber
𝜆 = eigenvalue of the generalized eigenvalue problem
𝜇 = current guess of 𝜅 in the method of successive linear problems
𝜇0 = initial guess of 𝜅
𝜌 = fluid density
𝜙 = test function
𝜒 𝑗 = amplitude coefficients of Pridmore-Brown modes
𝜓𝑚𝑛 = basis function of rectangular duct normal modes
𝜔 = radial frequency

I. Introduction
Increasingly stringent noise regulations and rising air traffic demands have fueled a continually growing interest

in aircraft noise reduction technology. In subsonic aircraft, a significant component of the overall aircraft noise is
fan noise from the turbofan engine. Acoustic liners have traditionally been installed in the walls of the inlet and aft
duct to mitigate fan noise. These liners are designed to achieve a target specific acoustic impedance, or impedance for
short, that most effectively attenuates the fan noise propagating out of the duct. Achieving a target impedance for new
engine designs that meets or exceeds noise reduction expectations requires (1) novel acoustic liner designs, (2) improved
impedance optimization technology, and (3) improved experimental analysis methods. This investigation is focused on
the third topic, improving experimental analysis techniques, by incorporating shear flow effects into an acoustic mode
decomposition approach for analyzing mode attenuation caused by acoustic liners in rectangular duct flow rigs.

The effect of mean flow on the propagation of sound in a duct is commonly considered in the case of constant Mach
number plug flow, where a simple dispersion relation may be obtained for the axial wavenumbers of each mode. In this
situation, the Ingard-Myers boundary condition [1, 2] is prescribed at an impedance surface. The Ingard-Myers boundary
condition assumes a boundary layer of infinitesimal thickness, but instabilities occur when this boundary condition is
used in time-domain simulations [3]. A regularized form of this boundary condition may be used by incorporating
a small but finite boundary layer thickness [4]. This boundary condition has been successfully implemented in a
2D impedance eduction technique [5]. Other impedance eduction techniques have incorporated shear flow effects in
2D [6–8]. However, the boundary layer thickness will vary with the spanwise coordinate in a 3D duct, particularly near
the corners. The inability of boundary conditions to account for 3D shear flow effects is a significant reason for the
desire to develop 3D analysis techniques that account for shear flow effects on acoustic propagation. Recent studies have
also shown different educed impedances for the same liner sample when the direction of acoustic propagation relative to
the flow direction is altered [8, 9]. Accounting for 3D flow effects may provide further insight on this phenomenon, as
2D shear flow impedance eduction methods ignore the effect of corners, which likely cannot be neglected for the small
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duct cross-sections in flow rigs used for impedance eduction.
Impedance eduction at the NASA Langley Research Center is performed in the Grazing Flow Impedance Tube

(GFIT) at frequencies below the first cut-on frequency. Thus, there is not only a desire to incorporate 3D shear flow
effects, but also more complicated acoustic fields with multiple modes into the impedance eduction capabilities. The
natural first step to accomplish this is to develop a technique for incorporating 3D shear flow effects on acoustic mode
decomposition. Acoustic mode decomposition is performed in the NASA Langley Curved Duct Test Rig (CDTR)
to assess the mode attenuation caused by liner samples. Modal decomposition techniques have been categorized by
Åbom [10] to fall under the purview of direct techniques and correlation techniques. Direct techniques rely on direct
measurements of an acoustic field quantity at several locations, whereas correlation techniques rely upon a space-time
correlation of an acoustic field quantity at several locations. Much of the early development of these techniques focused
on fan noise characterization, and thus were developed for circular or annular ducts. Mugridge [11] was one of the
first investigators to use modal decomposition to analyze acoustic propagation in a duct. A cross-correlation technique
was applied to hot-wire measurements of the axial acoustic particle velocity to extract the modes present in the duct at
appropriate blade passing frequencies. Several investigations followed that applied the cross-correlation approach to
microphone measurements [12, 13]. Moore [14] introduced a direct technique to extract duct modes, and subsequent
investigators [10, 15–19] performed independent investigations with a direct approach. For both approaches, the
modes may be determined by performing a spatial Fourier transform over a cross-section of the duct or by solving a
linear system relating an assumed form of the solution to microphone measurements. Pickett et al. [15] showed that a
least-squares regression solution to the linear system approach minimizes the sensitivity of the computed modes to
measurement errors. Åbom [10] generalized the modal decomposition approach to compute incident and reflected
modes, such that measurements of the reflection matrix may be performed. This is a very useful tool in the analysis
of acoustic liners, as Schultz et al. [19] have shown that the frequency range of the impedance tube problem may be
extended beyond the first cut-on frequency of the test apparatus with a modal decomposition analysis.

The previous investigations discussed here involving modal decomposition have either ignored flow effects or
assumed constant Mach number plug flow. Åbom [10] briefly discussed the possibility of errors being introduced in
measurements that ignore shear flow effects, and urged caution in the application of this simplified flow model. An
interesting point raised was the apparent discrepancy in the results of Savkar [20], which suggest that the plane wave
mode is most affected by the presence of shear layers, with the suggestion of Salikuddin and Ramakrishnan [18] that the
higher-order modes would be most affected by nonuniformity in the flow. An investigation by Boucheron et al. [21],
assuming a laminar mean flow in a circular duct, has shown that pressure profiles of all modes are affected by refraction
caused by the presence of shear flow, and that this refraction effect has increasing importance as the Mach number and
frequency are increased.

An objective of the present investigation is to establish a modal decomposition method that accounts for the effects
of shear flow, so that acoustic mode attenuation of liner samples may be more accurately computed and understanding of
liner performance may be improved. To perform such an analysis, flow profile measurements are performed in the CDTR.
The experimental setup is presented in Sec. II. The theory and approach taken to perform the modal decomposition
in the CDTR is outlined in Sec. III. In Sec. IV, results are presented for the Mach number flow profiles and modal
decomposition analysis performed in the CDTR for several acoustic liner test samples. In Sec. V, conclusions of the
work and future investigations are discussed.

II. Experimental Setup
The NASA Langley CDTR is an open loop wind tunnel with a centrifugal fan that draws in air from the atmosphere

through a 6 in × 15 in (15.24 cm × 38.10 cm) rectangular duct test section. Figure 1 shows an illustration of the CDTR.
The CDTR can reach speeds of 𝑀𝑐 = 0.5, where 𝑀𝑐 denotes the centerline Mach number. It is designed to assess
the acoustic and aerodynamic performance of acoustic liner test samples, and the test section ranges between 100%
and 25% of the scale of the aft bypass duct of a business jet or large commercial passenger aircraft turbofan engine,
respectively. Acoustic liners may be installed in both of the 15 in walls in the test section. Sound is generated using an
array of 32 loudspeakers, which can be placed either upstream (aft mode) or downstream of the test section (inlet mode).
Tonal or broadband sound may be generated by the array in the frequency range of 400 to 3000 Hz. Due to the large
cross-section of the duct, many modes are cut-on across the frequency range of interest. The exact number depends on
environmental factors, such as static temperature and relative humidity, that cannot be controlled in the CDTR and
affect the sound speed. As an example, a recent test conducted at 𝑀𝑐 = 0.45 found 22 modes cut-on at 3000 Hz [22].
The CDTR also has mode control capabilities for constant Mach number normal modes; a single mode amplitude may
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be increased relative to all other present modes by varying the amplitude and phase of each driver in the loudspeaker
array individually. This makes the CDTR an excellent candidate for the implementation of a modal decomposition
approach that incorporates shear flow effects, since we may examine the effects of shear flow on many acoustic modes.

Fig. 1 Rendering of the CDTR with key components labeled.

A. Flow Profile Measurements
Measurements of the Mach number in the transverse plane just upstream of the test section are performed with a total

pressure probe at 506 locations. A single port on the centerline of the duct lower wall, in-plane with the total pressure
probe tip, is used to measure static pressure. The centerline Mach number is set to 0.1, 0.3, and 0.5. Measurement
points are clustered near the walls and corners, as shown in Fig. 2, in order to capture the Mach number gradients in the
boundary layer and corners. The probe is not able to get closer than 0.635 cm to the upper and lower walls of the duct
due to physical constraints. Future research will examine the boundary layer in the upper and lower walls, as well as
perform flow profile measurements downstream of the test section. Unfortunately, due to a bearing seal failure in the
CDTR fan during testing, these measurements are not available for this investigation.
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Fig. 2 Measurement locations of the Mach number in the duct cross-section just upstream of the test section.
Additional zoomed in view of measurement points in lower left-hand corner provided.

B. Acoustic Mode Decomposition Study
The effect of shear flow on acoustic mode decomposition and attenuation in the CDTR is investigated by extracting

the acoustic modes in the upstream and downstream microphone arrays in the case of (1) a CDTR3 liner sample, and (2)
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a CDTR5 liner sample. The two liner samples are perforate-over-honeycomb configurations whose dimensions are
provided in Table 1. The dimensions provided are; percent open area (POA), facesheet thickness (𝑡), cavity depth (ℎ),
and hole diameter (𝑑). Both the modal attenuation of traditional normal modes (assuming constant Mach number), and
the Pridmore-Brown acoustic modes, are computed. Tonal sound from 400 Hz to 3000 Hz is generated, and a mode
control algorithm varies the phase of the signals provided to each loudspeaker in the array in order to amplify a single
normal mode in the duct. The liner samples are only installed in one wall of the test section, not both walls.

Table 1 Dimensions of two CDTR liner samples.

Sample POA 𝑡 (in) ℎ (in) 𝑑 (in)
CDTR3 15.3 0.040 1.569 0.093
CDTR5 12.8 0.040 0.732 0.036

III. Modal Analysis
The domain of interest is a rectangular duct of constant cross-section, with dimensions 𝑑𝑦 and 𝑑𝑧 , as described by

the diagram in Fig. 3. We assume that the duct contains plane parallel shear flow and the Mach number is a function of
the transverse coordinates, denoted 𝑀 = 𝑀 (𝑦, 𝑧). Although the flow in the CDTR is not fully developed, the portion of
the duct where modal decomposition is performed is small compared to the overall length. Thus, an assumption is made
that the flow may be assumed fully developed in the mode decomposition calculations. At each boundary, the wall is
prescribed a normalized specific acoustic impedance, 𝜁 .
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Fig. 3 Diagrams of (a) coordinate system for rectangular duct, and (b) wall-normal vectors along boundary.

The linearized Euler equations govern the propagation of small-amplitude disturbances in a fluid when thermoviscous
and molecular relaxation effects may be ignored. Pridmore-Brown [23] showed that, in the situation when the flow
direction is aligned with the direction of acoustic propagation, these equations may be combined into a single equation
for the acoustic pressure,

(𝑘 − 𝜅𝑀)2 ∇ ·
(

1
(𝑘 − 𝜅𝑀)2 ∇𝑝

)
+

[
(𝑘 − 𝜅𝑀)2 − 𝜅2] 𝑝 = 0, (1)

where 𝑝(𝑥, 𝑦, 𝑧, 𝑡) = 𝑝(𝑦, 𝑧; 𝜅, 𝜔) exp(−𝑖𝜔𝑡 + 𝑖𝜅𝑥), 𝑘 = 2𝜋 𝑓 𝑐−1 is the temporal wavenumber, 𝑐 is the speed of sound, 𝑓
is the acoustic frequency, and 𝜅 is the axial wavenumber. Equation 1 is referred to as the Pridmore-Brown equation
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(PBE). On the duct walls, the acoustic pressure satisfies the Ingard-Myers boundary condition [1, 2]

∇𝑝 · n + (𝑘 − 𝜅𝑀)2

𝑖𝑘𝜁
𝑝 = 0, (2)

where 𝜁 = 𝑍/𝜌𝑐 is the normalized specific acoustic impedance, 𝑍 is the specific acoustic impedance, and 𝜌 is the fluid
density. We define the unit normal vector, n, to point outwards from the boundary of the duct as in Fig. 3b. To be
precise, the boundary conditions at each surface are[

𝜕𝑝

𝜕𝑦
− (𝑘 − 𝜅𝑀)2

𝑖𝑘𝜁
𝑝

]
𝑦=0

= 0, (3)[
𝜕𝑝

𝜕𝑦
+ (𝑘 − 𝜅𝑀)2

𝑖𝑘𝜁
𝑝

]
𝑦=𝑑𝑦

= 0, (4)[
𝜕𝑝

𝜕𝑧
− (𝑘 − 𝜅𝑀)2

𝑖𝑘𝜁
𝑝

]
𝑧=0

= 0, (5)

and [
𝜕𝑝

𝜕𝑧
+ (𝑘 − 𝜅𝑀)2

𝑖𝑘𝜁
𝑝

]
𝑧=𝑑𝑧

= 0. (6)

In the case of hard walls, 𝜁 → ∞, the boundary conditions reduce to the usual Neumann conditions for the acoustic
pressure. For soft walls, 𝜁 → 0, the boundary conditions are Dirichlet (i.e., 𝑝 = 0). In the general formulation of the
problem, the Ingard-Myers boundary condition provides flexibility in the sense that a vanishing thin boundary layer may
be assumed. However, in practice, a no-slip boundary condition exists at the walls of the duct. By setting 𝑀 = 0 at the
walls, Eq. 2 automatically satisfies this condition, and no change to the formulation in Sec. III.A is required.

The primary difficulty in finding solutions to Eq. 1 is the determination of 𝜅 for nonuniform flow. For constant Mach
number flow, a simple equation is obtained for the dispersion relation that relates the duct geometry, Mach number, and
frequency to the axial wavenumber. When 𝑀 is a function of the transverse coordinates, no such equation is obtained.
Rienstra [24] proposed a Galerkin approach for finding 𝜅 in a 2D duct and 3D cylindrical duct. We will extend that
approach here to obtain 𝜅 for a 3D rectangular duct.

A. Galerkin Projection
We start by expressing Eq. 1 in weak form by multiplying by 𝜙(𝑘 − 𝜅𝑀)−2 and integrating over the cross-section,

𝑑𝑦∫
0

𝜙𝑝

𝑖𝑘𝜁

����
𝑧=𝑑𝑧

+ 𝜙𝑝

𝑖𝑘𝜁

����
𝑧=0

d𝑦 +
𝑑𝑧∫

0

𝜙𝑝

𝑖𝑘𝜁

����
𝑦=𝑑𝑦

+ 𝜙𝑝

𝑖𝑘𝜁

����
𝑦=0

d𝑧 −
𝑑𝑧∫

0

𝑑𝑦∫
0

∇⊥𝜙 · ∇⊥𝑝

(𝑘 − 𝜅𝑀)2 −
[
1 − 𝜅2

(𝑘 − 𝜅𝑀)2

]
𝜙𝑝d𝑦d𝑧 = 0. (7)

The function 𝜙 is a smooth test function. It should be noted that the factor 𝜙(𝑘 − 𝜅𝑀)−2 is never equal to zero at any
location in the cross-section of the CDTR. This is because only subsonic flow is present, 0 ≤ 𝑀 < 1, and 𝜅 ≤ 𝑘 . Thus,
𝜅𝑀 < 𝑘 for all conditions examined here. We now assume a form of the solution for 𝑝,

𝑝 =

∞∑︁
𝑛=0

∞∑︁
𝑚=0

𝑎𝑚𝑛𝜓𝑚𝑛 (𝑦, 𝑧) , (8)

and prescribe 𝜓𝑚𝑛 (𝑦, 𝑧) to be a Chebyshev basis,

𝜓𝑚𝑛 (𝑦, 𝑧) = 𝑇𝑚 ( �̃�) 𝑇𝑛 (𝑧) , (9)

where �̃� = (2/𝑑𝑦)𝑦 − 1 and 𝑧 = (2/𝑑𝑧)𝑧 − 1 map the physical coordinates to the Chebyshev domain. Then, we let
𝜙 = 𝜓𝑚′𝑛′ such that the test function is orthogonal with the assumed basis. Upon substitution into Eq. 7, we obtain an
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eigenvalue problem for the eigenvalues, 𝜅, and the eigenvectors, 𝑎𝑚𝑛,

∞∑︁
𝑛=0

∞∑︁
𝑚=0

𝑎𝑚𝑛

[∫ 𝑑𝑦

0

(
(−1)𝑛′ (−1)𝑛

𝑖𝑘𝜁𝑧=𝑑𝑧

+ 1
𝑖𝑘𝜁𝑧=0

)
𝑇𝑚′ ( �̃�) 𝑇𝑚 ( �̃�) d𝑦 +

∫ 𝑑𝑧

0

(
(−1)𝑚′ (−1)𝑚

𝑖𝑘𝜁𝑦=𝑑𝑦

+ 1
𝑖𝑘𝜁𝑦=0

)
𝑇𝑛′ (𝑧) 𝑇𝑛 (𝑧) d𝑧

−
∫ 𝑑𝑧

0

∫ 𝑑𝑦

0

1
(𝑘 − 𝜅𝑀)2

(
4𝑚𝑚′

𝑑2
𝑦

𝑈𝑚′−1 ( �̃�)𝑈𝑚−1 ( �̃�) 𝑇𝑛′ (𝑧) 𝑇𝑛 (𝑧) +
4𝑛𝑛′

𝑑2
𝑧

𝑈𝑛′−1 (𝑧)𝑈𝑛−1 (𝑧) 𝑇𝑚′ ( �̃�) 𝑇𝑚 ( �̃�)
)

−
(
1 − 𝜅2

(𝑘 − 𝜅𝑀)2

)
𝑇𝑛′ (𝑧) 𝑇𝑛 (𝑧) 𝑇𝑚′ ( �̃�) 𝑇𝑚 ( �̃�) d𝑦d𝑧

]
= 0. (10)

Assuming �̃� polynomials will be used for 𝑚 and 𝑚′, and �̃� polynomials for 𝑛 and 𝑛′, the matrix size is �̃� �̃� × �̃� �̃� .
Let the expression in brackets in Eq. 10 be a matrix with each element denoted by M𝑚𝑛,𝑚′𝑛′ (𝜅), where 𝑚𝑛 varies

along the columns and 𝑚′𝑛′ varies along the rows. Thus, we have

M00,00 M10,00 · · · M01,00 · · · M�̃� �̃� ,00

M00,10
. . .

...

...
. . .

...

M00,01
. . .

...

...
. . .

...

M00,�̃� �̃� · · · · · · · · · · · · M�̃� �̃� ,�̃� �̃�





𝑎00

𝑎10
...

𝑎01
...

𝑎𝑀𝑁


= 0, (11)

or M (𝜅) a = 0 for short. Equation 11 is a nonlinear eigenvalue problem, because M depends on 𝜅. Our objective is to
find all of the (𝜅, a) pairs that satisfy Eq. 11. Each pair represents a linearly independent solution to Eq. 1. Rienstra [24]
demonstrated the ability of the method of successive linear problems in solving Eq. 11 for 𝜅 and a.

B. Method of Successive Linear Problems
The method of successive linear problems is an approach for finding the eigenpairs, (𝜅, a), of a nonlinear eigenvalue

problem [25]. It is a Newton-like iteration method that requires an initial guess for the eigenvalue. Suppose that there
are 𝐽 eigenpairs that we would like to find. We may note that M (𝜅) may be linearized about the point 𝜇 by retaining
the first two terms of a Taylor expansion,

M (𝜅) = M (𝜇) + (𝜅 − 𝜇) M′ (𝜇) , (12)

where M′ (𝜇) denotes the derivative of M (𝜅) with respect to 𝜅 evaluated at the point 𝜇. The eigenvalue problem may
be approximated by linearization,

M (𝜅) a ≈ [M (𝜇) + (𝜅 − 𝜇) M′ (𝜇)] a = 0, (13)

and this approximation becomes more accurate as 𝜇 converges to 𝜅.
The process to obtain the eigenpair closest to our initial guess involves iterating on the generalized eigenvalue

problem,
M (𝜇) x = −𝜆M′ (𝜇) x. (14)

We start by making an initial guess, 𝜇 = 𝜇0, which should be less than the most negative eigenvalue of Eq. 11. Then, by
solving Eq. 14, we obtain a set of eigenvalues, 𝜆, and eigenvectors, x. We observe that there exists some 𝜅 that will
satisfy the relation 𝜅 = 𝜇 + 𝜆. Thus, to find the 𝜅 closest to our initial guess, we update 𝜇 by setting it equal to the
previous guess plus the absolute value of the absolutely smallest eigenvalue of the solution to Eq. 14, 𝜇 = 𝜇 + |𝜆min |.
The process of solving Eq. 14 and updating 𝜇 is repeated until ∥M (𝜇) x∥ is below some specified tolerance. Then,
the eigenpair is stored, 𝜅 ( 𝑗 ) = 𝜇 and a( 𝑗 ) = x, where 𝑗 is the index of the eigenpairs that satisfy M (𝜅) a = 0, and
the process is repeated to find the next eigenpair. The initial guess for the next eigenvalue is obtained by taking the
previously obtained 𝜅 and adding to it the absolute value of the second smallest eigenvalue obtained from the last
iteration of Eq. 14. Ruhe [26] was able to find the maximal number of eigenvalues by using this approach to update the
initial guess for the next eigenvalue.

7



Validation of the method of successive linear problems is performed by computing the eigenvalues of the 2D duct
problem outlined in Rienstra [24]. The Ingard-Myers boundary condition is applied at 𝑦 = 0 and 𝑦 = 𝑑𝑦 . The mean flow
Mach number profile is linear, 𝑀 = 0.5 + 0.3(𝑦/𝑑𝑦), and the nondimensional frequency is 20 (see Table 2 of Rienstra
[24] for more details on this example case). The number of polynomials used to resolve the y-direction is 20. Thus,
the computed wavenumbers should match the results of the 2D solver developed by Rienstra [24]. Gauss-Legendre
integration with 81 nodes is performed to compute the integrals in M (𝜅) and M′ (𝜅). Eighteen cut-on hardwall modes
are obtained from this implementation of the method of successive linear problems that agree, to 4 decimal places,
with the results presented in Table 2 of Rienstra [24]. Thus, the algorithm described here for solving M (𝜅) a = 0 is
validated for a case with previously reported results. The 3D eigenvalue solver was also validated by setting the flow
profile to the same profile as the 2D case, such that the variation in 𝑧 is constant. Then, �̃� was set to 20 and �̃� was set
to 1. The computed eigenvalues matched the 2D solver results.

C. Modal Decomposition
The acoustic field in the duct is a linear superposition of all the solutions of Eq. 1,

𝑃 (𝑥, 𝑦, 𝑧, 𝜔) =
𝐽∑︁
𝑗=1

𝜒 𝑗

∞∑︁
𝑛=0

∞∑︁
𝑚=0

𝑎
( 𝑗 )
𝑚𝑛𝜓𝑚𝑛 (𝑦, 𝑧) 𝑒𝑖𝜅

( 𝑗) 𝑥 , (15)

where 𝜒 𝑗 are the amplitude coefficients for each (𝜅, a) pair. In practice, the summations are cut-off at the number of
polynomials used in the decomposition, �̃� and �̃� . Microphone measurements obtained on the duct walls provide 𝐿

number of 𝑃(𝑥, 𝑦, 𝑧, 𝜔) values for each frequency. Thus, finding 𝜒 𝑗 is a matter of solving T 𝝌 = P, where P is a vector
of the complex pressures at each microphone, 𝝌 is the vector of amplitude coefficients for each eigenpair, and T is a
matrix of the eigenvectors and basis functions at each microphone location for each eigenpair. In more detail, the matrix
equation is

∑∞
𝑛=0

∑∞
𝑚=0 𝑎

(1)
𝑚𝑛𝜓𝑚𝑛 (𝑦1, 𝑧1) 𝑒𝑖𝜅

(1) 𝑥1 · · · ∑∞
𝑛=0

∑∞
𝑚=0 𝑎

(𝐽 )
𝑚𝑛𝜓𝑚𝑛 (𝑦1, 𝑧1) 𝑒𝑖𝜅

(𝐽 ) 𝑥1

...
. . .

...∑∞
𝑛=0

∑∞
𝑚=0 𝑎

(1)
𝑚𝑛𝜓𝑚𝑛 (𝑦𝐿 , 𝑧𝐿) 𝑒𝑖𝜅

(1) 𝑥𝐿 · · · ∑∞
𝑛=0

∑∞
𝑚=0 𝑎

(𝐽 )
𝑚𝑛𝜓𝑚𝑛 (𝑦𝐿 , 𝑧𝐿) 𝑒𝑖𝜅

(𝐽 ) 𝑥𝐿



𝜒1
...

𝜒𝐽

 =


𝑃(𝑥1, 𝑦1, 𝑧1)

...

𝑃(𝑥𝐿 , 𝑦𝐿 , 𝑧𝐿)

 . (16)

The solution of Eq. 16 is computed by linear least-squares regression.
Once the 𝜒 𝑗 are determined, each mode (eigenpair) may be assigned an amplitude or phase. The mode SPL refers to

the amplitude of 𝜒 𝑗 normalized by the reference pressure in air, 𝑝ref = 20 × 10−6 Pa, reported on a dB scale,

SPLmode, 𝑗 = 10 log

(
𝜒
𝑗
𝜒∗
𝑗

2𝑝2
ref

)
. (17)

The mode phase corresponds to the argument of 𝜒 𝑗 , arg
(
𝜒 𝑗

)
. As a measure of goodness of the modal decomposition, the

computed mode amplitudes may be used in conjunction with Eq. 15 to compute the SPL and phase at each microphone
location. Then, the predicted SPL and phase from the mode decomposition may be compared to the measured SPL and
phase at each microphone to compute a reconstruction error. The SPL reconstruction error is defined as,

𝐸SPL,PBE =
∥SPLPBE − SPLmeasured∥2

∥SPLmeasured∥2
, (18)

where ∥·∥2 is the Euclidean norm, SPLmeasured is the measured SPL at each microphone, and SPLPBE is the reconstructed
SPL at each microphone using PBE modes. The phase reconstruction error is computed as the average of the minimum
arc length between the phasor on a unit circle corresponding to the measured phase and the phasor corresponding to the
predicted phase, normalized by 𝜋,

𝐸phase,PBE =
1

𝑁mics

𝑁mics∑︁
𝑖=1

min (𝑠, 𝑠𝑐)
𝜋

, (19)

where 𝑠 = |𝜃measured − 𝜃PBE | and 𝑠𝑐 = 2𝜋 − 𝑠. Thus, a phase error of 1 would imply that the predicted phases are 𝜋

radians out of phase with the measured results at each microphone, on average.
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It is worth discussing briefly some results for the case of a constant Mach number profile. If 𝑀 is constant in Eq. 1,
and 𝜁 → ∞ in the case of acoustically hard walls, then the most convenient ansatz is to assume a cosine basis

𝑝 =

∞∑︁
𝑛=0

∞∑︁
𝑚=0

𝑎𝑚𝑛 cos
(
𝑚𝜋

𝑑𝑦
𝑦

)
cos

(
𝑛𝜋

𝑑𝑧
𝑧

)
. (20)

Then, 𝜅 satisfies the quadratic equation,

(𝑘 − 𝜅𝑀)2 − 𝜅2 −
(
𝑚𝜋

𝑑𝑦

)2
−

(
𝑛𝜋

𝑑𝑧

)2
= 0, (21)

and may be determined analytically for each (𝑚, 𝑛). A modal decomposition may be performed to determine the mode
coefficients, 𝑎𝑚𝑛, and the resulting solution corresponds to the solution of the convective Helmholtz equation (CHE).
The expression for the mode SPL, Eq. 17, is still valid for CHE modes if 𝜒 𝑗 is replaced by 𝑎𝑚𝑛. In Sec. IV, results for
PBE modes are compared to CHE modes to highlight differences in acoustic propagation resulting from the shear flow
in the boundary layer region.

IV. Application to the Curved Duct Test Rig

A. Flow Measurements and Validation
Measurements of the Mach number in the CDTR are performed at 𝑀𝑐 = 0.1, 0.3, and 0.5 just upstream of the test

section at the locations reported in Sec. II. A nonuniform rational basis spline (NURBS) model is then used to create a
smooth 2D surface, while assuming that the Mach number at the walls is zero. Next, the Mach number is interpolated
onto a 2D Legendre roots grid with 64 points in each direction, which is the grid used to perform Gauss-Legendre
quadrature of the integrals in Eq. 10.

Figure 4 displays three contour plots corresponding to 𝑀𝑐 = 0.1, 0.3, and 0.5. The core region (the region where 𝑀

is approximately constant and near the centerline value) comprises about half of the area of the duct. The remaining
portion is the boundary layer region. The boundary layers on the top and bottom walls experience a vortex roll-up in
the center due to the contraction after the flow conditioning section. The boundary layers on the side walls (𝑧 = 0 and
𝑧 = 0.1524 m) are relatively better behaved, with a boundary layer thickness of approximately 2.54 cm for all 𝑀𝑐. Thus,
approximately 1/3 of the 𝑧 dimension of the CDTR contains a boundary layer with sheared flow.
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Fig. 4 Contour plots of the Mach number upstream of the test section.

Once the Mach number profile is known at the Legendre grid points, the eigenpairs are determined and modal
decomposition is performed for frequencies ranging from 400 Hz to 3000 Hz. In order to validate the method, and

9



also determine the appropriate size of �̃� and �̃� required to adequately describe the acoustic field, the SPL and phase
reconstruction errors are computed and compared to results from a modal decomposition of the CHE. Figure 5 shows
the computed reconstruction errors for 𝑀𝑐 = 0.5 setpoints where the (0, 0) CHE mode is dominant (Figs. 5a and 5b)
and the (0, 1) CHE mode is dominant (Figs. 5c and 5d). As �̃� and �̃� are increased, the eigenvalue solver was able to
find more eigenpairs and eventually match the number of wavenumbers determined by the CHE dispersion relation.
When all eigenpairs were found, the SPL and phase errors for the PBE mode decomposition converge to approximately
the same values as the CHE results for the (0, 0) mode when 𝑓 ≤ 1200 Hz. For higher frequencies, the PBE modal
reconstruction displays a significant improvement in the phase error for both modes, with exception to the 𝑓 = 2200 Hz
case of the (0, 0) CHE mode. The improved phase and SPL reconstruction errors at higher frequencies would appear to
indicate a more significant impact of the shear flow on acoustic propagation as the frequency is increased.

One possible reason for the larger PBE reconstruction errors at 2200 Hz may be due to the fact that the method of
successive linear problems found one less eigenvalue than the CHE results predicted. This meant that the total number
(positive and negative) of PBE modes for this case is an odd number, so one positive mode is missing its corresponding
negative mode. An attempt to find the missing eigenvalue was made by altering some parameters of the eigenvalue
solver; however, this was unsuccessful. Future investigations will attempt to improve the eigenvalue solver, and perhaps
resort to a different method, such as the contour integral method of Beyn [27].
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Fig. 5 Microphone reconstruction errors for SPL and phase.

B. Mode Structure
In general, the number of eigenvalues found by the method of successive linear problems matches the number

of cut-on modes determined by the CHE dispersion relation. In Table 2, 𝜅 is presented for PBE and CHE modes at
𝑓 = 1600 Hz for three different centerline Mach numbers. The PBE mode wavenumbers do not significantly deviate
from the CHE wavenumbers for both the postive and negative modes of the 𝑀𝑐 = 0.1 and 0.3 setpoints. For 𝑀𝑐 = 0.5,
the negative mode PBE wavenumbers deviate more significantly from the CHE wavenumbers than the results for
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the positive modes. This appears to suggest a more significant impact of the boundary layer on upstream acoustic
propagation, as opposed to downstream propagation. The negative wavenumbers for PBE modes are consistently smaller
in absolute magnitude as compared to their CHE counterparts. This results in an increase in the phase speed of the wave
in a sheared duct, which would cause the angle of incidence between the wavefront and duct walls to decrease. When
this happens, the wave “bounces” between the duct walls more frequently, and the effectiveness of an acoustic liner in
attenuating the signal may be increased. A more detailed geometrical description of the relation of phase speed and
angle of incidence may be found in Ch. 6 of Blackstock [28].

Table 2 Axial wavenumbers for 𝑓 = 1600 Hz and 𝑀𝑐 = 0.1, 0.3, and 0.5.

𝑀𝑐 = 0.1 𝑀𝑐 = 0.3 𝑀𝑐 = 0.5
PBE mode number CHE mode number PBE CHE PBE CHE PBE CHE

1 (0,0) 27.057 26.919 23.301 22.950 20.750 20.148
2 (1,0) 25.947 25.748 22.252 21.789 19.736 19.005
3 (2,0) 22.061 21.907 18.373 18.017 15.938 15.356
4 (0,1) 18.706 18.582 15.081 14.812 12.795 12.356
5 (1,1) 17.117 16.927 13.647 13.244 11.523 10.921
6 (3,0) 13.745 13.638 10.457 10.207 8.658 8.246
7 (2,1) 10.970 10.818 8.017 7.7189 6.598 6.168
8 (3,1) N.A. N.A. N.A. N.A. -5.638 -4.755
9 (4,0) N.A. N.A. N.A. N.A. -8.511 -7.173
-9 -(4,0) N.A. N.A. N.A. N.A. -25.340 -32.801
-8 -(3,1) N.A. N.A. N.A. N.A. -25.965 -35.219
-7 -(2,1) -16.490 -16.800 -25.246 -27.297 -37.798 -46.142
-6 -(3,0) -19.418 -19.620 -28.364 -29.785 -41.932 -48.220
-5 -(1,1) -22.561 -22.909 -30.718 -32.822 -42.837 -50.895
-4 -(0,1) -24.315 -24.564 -32.714 -34.390 -45.417 -52.325
-3 -(2,0) -27.623 -27.889 -35.959 -37.595 -48.780 -55.331
-2 -(1,0) -31.418 -31.730 -39.669 -41.367 -53.020 -58.980
-1 -(0,0) -32.690 -32.901 -41.334 -42.528 -55.658 -60.122

Each mode of the PBE has an associated shape function, 𝑝 𝑗 , (or structure) that determines the nulls and peaks of the
pressure contribution from that mode in the 2D plane. The structure of some modes from a select few setpoints are
presented here to identify some effects of the shear flow on acoustic propagation in the duct. The most cut-on mode
of the PBE corresponds to the plane-wave mode of the CHE. In Fig. 6, it may be observed that the shape function
corresponding to 𝜅1 is uniform across the 2D plane for the case of 𝑓 = 600 Hz and 𝑀𝑐 = 0.3. This uniformity coincides
with the structure of the plane wave CHE mode. As the frequency increases, along with the Mach number, refraction
of the sound by the shear flow in the boundary layer region causes the pressure amplitude, and correspondingly the
shape function, to become more concentrated along the walls of the duct. The most drastic case of this for the current
investigation occurs when 𝑓 = 3000 Hz and 𝑀𝑐 = 0.5, as observed in Fig. 6c. Some asymmetry is present in the mode
structure in Fig. 6c when comparing the bottom wall to the top wall. The cause of this asymmetry has yet to be explored,
but will be investigated in future research. One potential contributing factor may be asymmetry in the bottom and top
wall boundary layers, but any asymmetry, if present, has not been quantified.
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Fig. 6 Eigenfunctions corresponding to the first mode for the case of (a) 𝑓 = 600 Hz and 𝑀𝑐 = 0.3, (b) 𝑓 = 1400
Hz and 𝑀𝑐 = 0.5, and (c) 𝑓 = 3000 Hz and 𝑀𝑐 = 0.5.

The most cut-on mode, 𝜅1 (or 𝜅−1), appears to be most significantly impacted by the presence of shear flow, as
opposed to the other modes present in the duct. This may be observed in Fig. 7, where Fig. 7a and Fig. 7d vary more
considerably from the CHE result for the plane wave mode as opposed to the 𝜅2 and 𝜅3 modes, which adhere closely to
the standard cosine structure of the (1, 0) and (2, 0) CHE modes. This finding appears to be in support of the results of
the simulations of Savkar [20], which suggest that the lowest-order mode is most significantly affected by the shear
flow. Although the mode structure of the lowest-order mode is more significantly impacted across the frequency range,
the reconstruction errors presented in Fig. 5 do not appear to suggest that the accuracy of the solution is more greatly
improved for 𝜅1 dominant setpoints.

The unique characteristic of the PBE modes is that the structure of the positive and negative modes will vary due to
the effects of refraction, as opposed to the CHE modes. For instance, the 𝜅−1 mode in Fig. 7d is amplified in the center
of the duct, which is opposite of the 𝜅1 structure. This is due to the direction of propagation of the mode relative to the
propagation direction of the flow. The propagation direction of the 𝜅−1 mode opposes the direction of the flow; thus,
refraction effects in the boundary layer cause the sound to bend away from the walls. The 𝜅1 mode, however, propagates
along the direction of the flow, and the boundary layer has the effect of trapping sound near the walls. This is similar to
the phenomenon of surface ducts in the field of ocean acoustics, and may also be observed in acoustic propagation in the
atmosphere depending on the meteorological conditions.

The effect of boundary layer refraction on the most cut-on mode may have important consequences for the testing of
acoustic liners as well. The reduced pressure amplitude near the walls in the case of acoustic propagation opposing the
flow implies that the effectiveness of an impedance boundary in attenuating the signal may be reduced as compared to
the case of acoustic propagation in the direction of flow. Additionally, impedance eduction methods based upon the
CHE cannot account for this effect, and discrepancies may arise in the educed impedance of a liner that is exposed to
sound of the same frequency and dominant mode structure in the same flow environment, but with different acoustic
propagation directions. Methods based upon the 2D PBE will account for some of this effect; however, flows in typical
acoustic liner test rigs are highly three-dimensional as a consequence of the small cross-sectional area, and 2D methods
will suffer in accuracy from assumptions made regarding the flow profile.
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Fig. 7 Eigenfunctions corresponding to each mode for the case of 𝑓 = 1000 Hz and 𝑀𝑐 = 0.3.

As the frequency is increased, the structure of the higher-order modes may deviate quite significantly from the CHE
mode structure. This may be clearly observed in Fig. 8, which presents 6 different higher-order modes for the case
of 𝑓 = 3000 Hz and 𝑀𝑐 = 0.5. The mode 𝜅24 is the highest-order positive mode that is cut-on in the duct, while 𝜅14
represents a “middle-order” mode (for lack of a better term) and 𝜅4 is one of the lower-order modes present at this
condition (corresponding to the (0, 1) CHE mode). Each positive mode in the figure is accompanied by its corresponding
negative mode. The negative modes presented here display a drastically different structure than the positive modes,
due to refraction effects. Surprisingly, even the highest-order modes at 𝑓 = 3000 Hz and 𝑀𝑐 = 0.5 are impacted by
this phenomenon, which is in contrast to results at 𝑓 = 1000 Hz and 𝑀𝑐 = 0.3. Mode structure plots for an additional
setpoint, 𝑓 = 1600 Hz and 𝑀𝑐 = 0.5, are shown in Fig. 11 in the Appendix. It is clear in Fig. 11 that the structures of
all modes are impacted by refraction effects. Although the contour plots of every mode at each setpoint could not be
included here, a survey of all mode structures indicates that the effects of refraction are present at every setpoint to
varying degree. The magnitude to which the flow direction alters the positive and negative mode structures appears to
depend on a combination of frequency, Mach number, and mode number, but it is not clear at this time which parameter
is most sensitive.
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Fig. 8 Eigenfunctions corresponding to a few modes for the case of 𝑓 = 3000 Hz and 𝑀 = 0.5.

It should be noted that some higher-order modes at higher frequencies and centerline Mach numbers appeared out of
order with respect to their positive (or negative) counterpart. This is exemplified in Fig. 9, where the structure of the 𝜅22
mode corresponds to the structure of the 𝜅−23 mode at 𝑀𝑐 = 0.5 and 𝑓 = 3000 Hz. It is unclear at this time if this is an
error in the eigenvalue computation with the method of successive linear problems, or if this is a true physical result.
Multiple tests were conducted with the method of successive linear problems, varying the tolerance of the residual and
decreasing the step size between successive guesses of the eigenvalues, but neither parameter changed the order of the
determined eigenvalues when altered. Although the cause of this effect is not known, for the modal decomposition
performed here, the order of the eigenvalues do not affect the computations. Thus, this was not investigated further, and
will be addressed in future investigations.
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Fig. 9 Eigenfunctions corresponding to the (a) 𝜅22 mode and (b) 𝜅−23 mode for 𝑀𝑐 = 0.5 and 𝑓 = 3000 Hz.

C. Mode Amplitudes from Acoustic Liner Test Samples
Two acoustic liner samples, CDTR3 and CDTR5, are tested at 𝑀𝑐 = 0.1, 0.3, and 0.5 in the frequency range of 400

to 3000 Hz. The CDTR mode control algorithm is used to drive up CHE modes from the (0, 0) to the (1, 2) mode. The
mode control algorithm has authority over a larger range of modes; however, this subset was chosen to reduce testing
time and examine only modes present across multiple frequencies, so that frequency dependent trends could be assessed.
Modal amplitude computed using PBE modes and CHE modes is compared across the range of frequencies for the
cases when the (0, 0) and (0, 1) CHE modes are dominant in Fig. 10. For PBE modes in the downstream array, the
assumption is made that the flow profile in that region matches the flow profile upstream of the test section. In Fig. 10,
all of the results presented correspond to 𝑀𝑐 = 0.5. In Figs. 10a and 10b, the PBE and CHE results are presented
(respectively) for the lowest-order mode dominant ((0, 0) or 𝜅1). The mode amplitudes of each result agree in both the
upstream and downstream arrays to within ±0.25 dB.

Results for the (0, 1) (or 𝜅4) mode dominant are presented in Figs. 10c and 10d for the PBE and CHE, respectively. In
this case, the PBE mode amplitudes are about 1-2 dB higher in magnitude than the CHE modes. For other higher-order
modes not displayed in Fig. 10, Table 3 shows the average value across all frequencies, and for both upstream and
downstream arrays, of the difference in the mode SPL between the PBE modes and the CHE modes for each Mach
number and liner sample. A positive value indicates that the PBE modes are on average higher in amplitude than the
CHE modes, and vice-versa for a negative value. Table 3 shows that there is more disagreement in the higher-order
mode amplitudes than there are for the (0, 0) (or 𝜅1) mode amplitudes. Even though the average difference across all
frequencies in the mode SPL for the lowest-order mode is small, as the frequency increases, the discrepancy in the mode
SPL for this mode increases as well. At 3000 Hz, the upstream (0, 0) CHE mode SPL is 0.63 dB higher in amplitude
than the 𝜅1 PBE mode for the 𝑀𝑐 = 0.5 CDTR3 setpoint. Thus, as frequency increases, the PBE mode decomposition is
an improved approximation over the CHE mode decomposition, even for the lowest-order mode.

The improved microphone reconstruction errors presented in Sec. IV.A in the PBE reconstruction would imply that
the mode amplitudes obtained by the PBE decomposition are likely more accurate. Thus, the CHE mode decomposition
is less accurate for higher-order modes. The very similar results between CDTR3 and CDTR5 suggest that the differences
are insensitive to the liner sample. There also appears to be no monotonically increasing trend of the differences as the
mode number is increased, which would indicate that perhaps for certain modes the microphone placement is more
favorable for a PBE modal decomposition, as opposed to a CHE method.
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(a) PBE 𝜅1 dominant
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(c) PBE 𝜅4 dominant
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Fig. 10 Mode SPL computed in the upstream and downstream arrays for the CDTR3 sample for (a) PBE modes
and (b) CHE modes with (0, 0) CHE mode dominant, and (c) PBE modes and (d) CHE modes with (0, 1) CHE
mode dominant.

Table 3 Average mode SPL difference across frequencies between PBE and CHE modes for 𝑀𝑐 = 0.1, 0.3, and
0.5 of the CDTR3 sample tests.

Avg. SPL difference (dB) CDTR3 Avg. SPL difference (dB) CDTR5
PBE mode CHE mode 𝑀𝑐 = 0.1 𝑀𝑐 = 0.3 𝑀𝑐 = 0.5 𝑀𝑐 = 0.1 𝑀𝑐 = 0.3 𝑀𝑐 = 0.5

1 (0, 0) 0.03 0.02 0.02 0.02 0.04 0.01
2 (1, 0) 1.11 1.10 1.09 1.10 1.12 1.07
3 (2, 0) -0.26 -0.25 -0.12 -0.26 -0.24 -0.13
4 (0, 1) 1.23 1.38 1.44 1.23 1.45 1.23
5 (1, 1) 2.27 2.35 2.32 2.27 2.38 1.92
6 (3, 0) -1.82 -1.83 -1.86 -1.83 -1.82 -1.87
7 (2, 1) 0.89 0.98 0.95 0.92 1.07 1.02
8 (3, 1) -0.63 -0.66 -0.61 -0.63 -0.58 -0.61
9 (4, 0) -3.80 -3.33 -3.88 -3.80 -3.32 -3.83
12 (0, 2) -0.03 0.06 0.26 -0.06 -0.07 0.36

The discrepancy between the modal amplitudes computed by the CHE and PBE methods for higher-order modes
is in support of the arguments of Salikuddin and Ramakrishnan [18], that the higher-order modes are most affected
by shear flow, apparently in contradiction to Savkar [20]. This investigation suggests that both points of view may be
correct, when discussing certain specific details of the acoustic propagation. In one instance, the mode structure of the
lowest-order mode is more significantly impacted by the boundary layer than the higher-order modes. On the other
hand, the predicted mode amplitudes more significantly vary between the CHE and PBE results for higher-order modes.
From a practical standpoint, when acoustic propagation is in the direction of the flow (downstream), the CHE mode
decomposition appears to be a sufficient tool for acoustic fields where the lowest-order mode is dominant. More caution
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is urged when using such an approximation at higher frequencies and flow speeds for acoustic fields with higher-order
modes dominant.

V. Conclusion
The present investigation incorporated shear flow effects in the modal decomposition of acoustic signals present in

the NASA Langley CDTR. When shear flow effects are accounted for, the reconstruction error between the computed
modal fields and the microphone measurements is reduced when higher-order modes are dominant in the duct, implying
an improved accuracy when using PBE modes. The structure of PBE modes are impacted by shear flow refraction
effects. The lowest-order mode (corresponding to the CHE plane wave mode) is impacted by refraction effects across a
wider range of frequencies than the higher-order modes. As frequency and Mach number are increased, the higher-order
mode structures lose symmetry between the positive and negative modes due to the effect that the flow direction has on
the bending of wavefronts in the shear layer for opposing acoustic propagation directions. Finally, modal amplitudes
computed with both the PBE and CHE approaches for two sample liners show that differences in the mode SPL appear
between the two approaches, although these differences are likely not significant for most engineering purposes.

Presently, a considerable amount of liner design and optimization is performed assuming infinitesimal boundary
layers with the Ingard-Myers boundary condition. As the bypass ratio of commercial aircraft engines increases, the
allowable area for acoustic liner installation may become more constrained. Thus, improvements to the design and
optimization process of liners may be required to maintain acoustic performance. One such improvement could be
the incorporation of shear flow effects from a predicted Reynolds averaged Navier-Stokes mean flow in propagation
codes used to optimize liner impedance in the aft or inlet duct of turbofan engines. In this situation, a no-slip boundary
condition for the mean flow would be satisfied at the impedance wall. Thus, any acoustic liner designed to match
this impedance will have to be verified by experiment with data processing techniques that account for shear flow
appropriately. The work presented here represents the beginning stages of incorporating 3D shear flow effects in liner
impedance eduction.

Future investigations will focus on further improving the methods and approach presented here for robustness and
extension to liner impedance eduction. A flow survey downstream of the test section will be the first step to improving
this process in the CDTR, and was originally planned for this investigation but could not be performed due to a fan
bearing seal failure. As discussed in Sec. IV.A, the method of successive linear problems missed a cut-on eigenvalue at
𝑀𝑐 = 0.5 and 𝑓 = 2200 Hz, and there is no guarantee that the method will find the maximal number of eigenvalues for
any setpoint. Thus, further investigation must examine ways to make the method more robust, or replace this approach
with another technique, such as the contour integral method [27], to ensure that the maximal number of eigenvalues
are computed. Development of liner impedance eduction capabilities with 3D shear flow effects would support future
flow direction impedance studies and improved impedance optimization tools. Currently, the GFIT is the main rig for
impedance eduction in grazing flow environments at NASA Langley Research Center. Testing conditions are limited
to plane-wave frequencies, which correspond to less than around 3000 Hz. Further development of the techniques
presented here may enable the GFIT to operate above the plane-wave frequency for impedance eduction.

17



Appendix

z (m)
0.00 0.05 0.10 0.15

y
(m

)

0.00

0.10

0.20

0.30

0.38
𝜅1 = 20.75

| p
̂ 1|

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a)

z (m)
0.00 0.05 0.10 0.15

y
(m

)
0.00

0.10

0.20

0.30

0.38
𝜅2 = 19.736

| p
̂ 2|

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b)

z (m)
0.00 0.05 0.10 0.15

y
(m

)

0.00

0.10

0.20

0.30

0.38
𝜅3 = 15.938

|p
̂ 3|

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(c)

z (m)
0.00 0.05 0.10 0.15

y
(m

)

0.00

0.10

0.20

0.30

0.38
𝜅4 = 12.795

| p
̂ 4|

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(d)

z (m)
0.00 0.05 0.10 0.15

y
(m

)

0.00

0.10

0.20

0.30

0.38
𝜅5 = 11.523

| p
̂ 5|

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(e)

z (m)
0.00 0.05 0.10 0.15

y
(m

)

0.00

0.10

0.20

0.30

0.38
𝜅6 = 8.658

|p
̂ 6|

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(f)

z (m)
0.00 0.05 0.10 0.15

y
(m

)

0.00

0.10

0.20

0.30

0.38
𝜅7 = 6.598

| p
̂ 7|

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(g)

z (m)
0.00 0.05 0.10 0.15

y
(m

)

0.00

0.10

0.20

0.30

0.38
𝜅8 = − 5.638

| p
̂ 8|

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(h)

z (m)
0.00 0.05 0.10 0.15

y
(m

)

0.00

0.10

0.20

0.30

0.38
𝜅9 = − 8.511

|p
̂ 9|

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(i)

Fig. 11 Eigenfunctions corresponding to each mode for the case of 𝑓 = 1600 Hz and 𝑀𝑐 = 0.5.
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Fig. 11 (Cont.) Eigenfunctions corresponding to each mode for the case of 𝑓 = 1600 Hz and 𝑀𝑐 = 0.5.
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