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Abstract— As robots become increasingly present in human
environments, we need robots to be intuitively commanded by
and effectively communicate with humans. In particular, non-
expert users should be able to communicate task goals with
robots. Language emerges as a logical mode of interaction
due to its ubiquity in human environments and, more impor-
tantly, as the way humans naturally express tasks. Natural
language commands present challenges in that robots must
reason over ambiguous language probabilistically and reason
over commands they may not be able to execute. We present
hierarchical semantic frames, which ground commands in robot
control primitives through hierarchies that construct high-
level commands from lower-level commands. We demonstrate
that hierarchical semantic frames allow robots to understand
and execute a variety of commands, such as those involving
multiple verb meanings, command variations, and compound
nouns. The robot quickly processes hierarchical semantic frames
and accurately grounds and executes the commanded tasks,
demonstrating the power of hierarchical semantic frames for
allowing users to intuitively interact with robots.

I. INTRODUCTION

Enabling intuitive communication between human users
and autonomous robots is a crucial capability to enable
seamless collaboration with robot assistants. Previous work
has investigated intuitive ways to interact with and program
robots, such as gestures or facial expressions [6], [54], eye-
tracking [4], [36], and learning from demonstration [3], [27],
[34], [35]. We see language as an intuitive interface that can
provide a wide variety of rich input signals for commanding
robots [52], especially for non-expert users who do not have
programming or robotics experience. A scalable restricted
language will allow robots to unambiguously understand
and execute commands from non-expert users. Our previous
work, RoboFrameNet [53], demonstrates the power of se-
mantic frames [55] to bridge the gap between language and
goal-directed robot actions. However, RoboFrameNet does
not scale well to new actions and focuses more on frame
instantiation than command execution.

Scaling robot systems to understand all possible mappings
of natural language commands to actions remains challeng-
ing due to the ambiguity of language. For example, natural
language commands present challenges such as difficulty
differentiating verbs with multiple meanings (“set the table”
or “set down the object”), grounding command variations
(such as “go to Alice’s desk” or “go to Charlie’s desk”), or
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Fig. 1: Hierarchical semantic frames provide a scalable
restricted language that ground commands in robot action.

recognizing compound nouns (such as “Alice’s desk” or “left
hand”). Systems such as Amazon’s Alexa and Apple’s Siri
indicate that restricted language could be a more scalable
solution to providing an intuitive interface for commanding
robots [43], [11], [28]. Even when using restricted language,
previous implementations require distinct semantic frames
to represent small changes in commands (for example, “pick
up the red cup” and “pick up the blue cup”), which is not
scalable for new actions or objects. We posit that adding
flexibility to semantic frames will address the challenge
of creating a scalable restricted language for commanding
robots.

We take insight from hierarchical robot control schemes
and the hierarchical structure of language to address the
challenges of creating a scalable restricted language for
robot commands. In robot control, notions of hierarchy and
composition allow simple primitives to be combined to create
more complex behaviors [2], [18], [41]. Combining these
simple primitives in different ways offers much flexibility
and variation in the resulting behaviors. Similarly, we ar-
gue that by building high-level commands from lower-level
semantic frames grounded in action, robots can scalably
recognize and execute complex commands.

In this paper, we propose hierarchical semantic frames
(HSFs) as a method for: (1) grounded task execution through
hierarchies of a limited number of low-level manipulation
policies, and (2) creating a restricted language for com-
manding robots to perform tasks that is scalable in the
number of semantic frames needed to express actions. HSFs
allow robots to understand commands without the need
to instantiate distinct frames for each command variation.
HSFs also guarantee frame actions grounded in robot control
primitives, effectively mapping language to robot action. We
test our approach on two robot platforms and multiple tasks



and compare the scalability of HSFs to RoboFrameNet. Our
experimental results demonstrate that our proposed HSFs can
be used for successful task execution on a real robot, and
effectively ground a variety of commands in robot action.
Our proposed hierarchical semantic frames allow robots to
recognize and execute commands, abstracting the details of
action execution and allowing robots to interact with non-
expert users through language.

II. RELATED WORK
A. Language as a Robot Percept

Researchers have long investigated different ways for
users to intuitively interact with robots, due to the rich
input signals different modalities can provide. In particular,
researchers have explored how to use language to intuitively
communicate task goals to robots. In the 1970s, the system
SHRDLU [57], [58] was developed, which carried out natural
language commands in a virtual environment. Since then,
researchers have aimed to expand the use of natural language
to command intelligent agents and robots [52].

Many works demonstrate the power of using natural
language to command robots. Dzifcak et al. [13] explore how
to translate natural language instructions into descriptions
of task goals and actions. Chernova et al. [9] use data-
mining for robots to ground action-oriented natural language.
Tellex et al. [51] present Generalized Grounding Graphs for
probabilistically inferring the sequence of actions required
to execute a command. Matuszek et al. [32] investigate
how robots can learn what objects are being referred to in
deictic gestures and language (gestures and language that
draw attention to objects without naming them directly).
Several works explore how robots can ground abstract spatial
concepts (such as relative relationships between objects)
to execute natural language commands [37], [46], [50].
Many works explore understanding natural language in route
navigation tasks [29], [26], [30], [31], including commands
involving verbs that imply motion [25], commands that imply
navigation constraints [21], and commands that imply envi-
ronment information [19], [12]. Google’s SayCan [1] com-
bines a large language model with affordance knowledge to
allow robots to reason over natural language in long-horizon
tasks. These works demonstrate widespread interest in using
natural language to command robots and the challenges of
grounding natural language in robot understanding. However,
scaling to new commands or domains and reliably grounding
ambiguous natural language in robot action remains an open
question.

Due to the challenges of scaling to natural language,
commanding robots using restricted language is a useful ap-
proach. Voice interfaces—such as Amazon’s Alexa, Apple’s
Siri, Google’s Assistant, and Microsoft’s Cortana [43], [11],
[28]—are part of everyday life. These systems demonstrate
the power of restricted language for commanding intelligent
agents. Some research indicates that restricted language
allows users to achieve similar or better task performance
than natural (unrestricted) language without detracting from
overall user experience [33]. These works demonstrate the

power of using restricted language to communicate task goals
intuitively to robots.

B. Semantic Frames

Semantic frames are used in natural language processing
(NLP) to represent a scene being acted out [48], [55], [56],
[20]. FrameNet [48] emphasizes that a verb alone is not
sufficient to describe a scene or action, and frame elements
are necessary to describe agents and direct and indirect
objects involved in the action. For example, the verb “give”
cannot be acted out until we know what object is being
given and to whom. FrameNet uses hand-annotated lexical
units to map language into the appropriate semantic frame
by expressing how frame elements relate to a command.

RoboFrameNet [53] extends FrameNet [48] and uses
semantic frames as a middle-ground between spoken com-
mands and robot action. RoboFrameNet interprets spoken
commands as text, then parses the text to instantiate a seman-
tic frame. Representations of object affordances for robotics
generally do not explicitly note the direct and indirect objects
being acted on, which limits the complexity of robot action
that can be performed [59]. In contrast, semantic frames
augment robot understanding of the action being performed
by describing the objects being acted on.

RoboFrameNet demonstrates the power of semantic
frames in allowing robots to comprehend spoken commands.
We extend RoboFrameNet by advancing the capabilities
and scalability of semantic frames, so that fewer frames
are required to express actions. Rather than focusing on
semantic frame instantiation, we place greater emphasis on
the execution of the actions represented by semantic frames.

C. Hierarchical Robot Control

Many works control robots using hierarchical control [2]
or subsumption architectures [18]. Robots can execute object
affordances [14] using a control basis of object-centric [5]
controllers. A control basis builds up complex actions from
simple behavioral building blocks such as grasping [41],
[40], [42] or conditioning behaviors [16] such as avoiding
joint limits and singularities. Executing complex tasks re-
quires composition of the low-level building blocks [47] and
sequencing these behaviors [7] to achieve a task goal.

We take inspiration from the hierarchies of manipulation
policies seen in robot control to ground our hierarchical
semantic frames in robot action. Similar to how complex
robot actions are comprised of simple, low-level behaviors,
our hierarchical semantic frames are constructed from sim-
ple, low-level grounded commands. Hierarchies allow our
pipeline to scalably ground high-level commands.

III. METHODS

A. Problem Formulation

A command Λ in a restricted language ΣR is a sequence
of words λ1, . . . , λN . Given a command Λ ∈ ΣR and a set of
robot control primitives Φ, the robot needs to determine the
sequence of grounded robot control primitives φ1, . . . , φM ∈
Φ needed to execute the command.



B. Hierarchical Semantic Frames

Consider a command Λ ∈ ΣR that uses verb v ∈ VR,
where VR is the set of all verbs recognized in ΣR. Each
of the N words λ1, . . . , λN in the command Λ can be
parsed into a corresponding grammatical relation (part of
speech), ψ1, . . . , ψN ∈ Ψ. For robots to understand a
command, we need to specify a lexical unit that defines a
command. Lexical units contain important information such
as synonymous verbs (v1, . . . , vi ≡ v) and grammatical
relations (ψ1, . . . , ψj) that may be used in the command
involving that verb. Semantic frames are evoked by a verb
in a lexical unit and describe an action being taken in a
scene, essentially mapping grammatical relations ψ to words
λ in the verbal command Λ. Semantic frames can also have
children semantic frames, which are more specific versions of
a command. For example, a turn semantic frame is evoked
by verbs “turn” or “twist” (as defined by the lexical unit),
and may have more specific children frames turn left
and turn right.

Our proposed hierarchical semantic frames (HSFs) are a
data structure that allow robots to scalably map from re-
stricted language commands Λ ∈ ΣR to grounded robot con-
trol primitives φ1, . . . , φM ∈ Φ. Let Ψreq = {(ψreq, ψhead)}
and Ψopt = {(ψopt, ψhead)} be sets of frame elements (ordered
pairs of grammatical relations and their head dependency
relations), where each frame element is required or optional,
respectively. Formally, we define a HSF evoked by the
command Λ as:

HSF =

{
(Λ,Ψreq,Ψopt, {HSFchild}) parent HSF
(Λ,Ψreq,Ψopt, (a1, . . . , aS)) grounded HSF

where a parent HSF has a set of more specific children
HSFs and a grounded HSF contains a sequence of frame
actions, a1, . . . , aS ∈ A. Frame actions can either be robot
control primitives or other HSF commands in the restricted
language, so A = Φ∪ΣR. HSFs offer several improvements
upon previous implementations of semantic frames, specif-
ically RoboFrameNet [53]. The following sections detail
the improvements in our HSFs, including required Ψreq and
optional Ψopt frame elements, head dependency relations
ψhead, and frame actions A.

1) Optional Frame Elements: Frame elements are gram-
matical relations ψ1, . . . , ψj involved in a verbal command.
RoboFrameNet [53] requires all frame elements to be parsed
to evoke the lexical unit. This requirement is not robust to
variations in command structure. HSFs differentiate between
required frame elements Ψreq and optional frame elements
Ψopt, which allows more variation in commands, since com-
mand variations may not use all frame elements.

For example, the commands “give me the block” and
“give me the red block” both evoke the give object
semantic frame. Defining an optional adjective modifier in
Ψopt allows both commands to be recognized by telling
the HSF to not always expect a modifier. “Red” provides
optional information to differentiate one block from another
but is not required to understand the command. Optional

frame elements take advantage of the fact that within a
restricted language, we expect some limited number of
possible grammatical relations within a command. HSFs can
be instantiated as long as each of the required elements Ψreq
are identified during parsing and can be mapped to words
λ in the command Λ; the optional elements Ψopt provide
helpful information, but do not prevent the HSF from being
instantiated.

2) Argument Substitution through Head Dependency Re-
lations: Head dependency relations tie a frame element to
other elements it depends on. For example, the command
“pick up the blue block” includes an adjectival modifier
element “blue” and a direct object element “block.” The head
dependency relation ψhead for “blue” would be the “block”
since the adjectival modifier describes the direct object. HSFs
make more use of the descriptors in a command by taking
head dependency relations from the parser as arguments
during instantiation. Note that any dependency parser will
output these required dependency relations.

RoboFrameNet [53] and our HSF pipeline use the Stanford
parser [24], which parses the head dependencies of each
word in a command. However, whereas RoboFrameNet does
not make use of these head dependency relations, our HSF
pipeline does. Specifying the head dependency relations
allows HSFs to differentiate between frame elements with
the same grammatical relation type, and therefore recog-
nize more complex commands. For example, consider the
command “stack the red block on the blue block.” When
parsed, this command involves a direct object ψdobj (the block
being stacked) and an indirect object ψiobj (the block being
stacked on top of). Each of these objects have adjectival
modifiers ψadj to differentiate the two objects. Previous
implementations of semantic frames would not be able to
differentiate between the two blocks or determine which
block to act on, since ψadj → “red” and ψadj → “blue”
but “red” 6= “blue”. In contrast, the stack HSF uses head
dependency relations to differentiate between the adjectival
modifiers; the head dependency relation for “red” is the
direct object while the head dependency relation for “blue”
is the indirect object. The grammatical relations and head
dependency relations (ψi, ψhead) of the words λi in the
command are passed as arguments from the parser to the
HSF to evoke the frame. Passing grammatical and head
dependency relations as arguments from the parser allows
HSFs to differentiate between words with the same gram-
matical relation type, make use of additional information in
commands by substituting arguments within the frame, and
understand more complex commands.

3) Frame Actions: The most important feature of HSFs is
that they are grounded in robot action. Each HSF contains a
sequence of frame actions a1, . . . , aS ∈ A required to carry
out the commanded task. For commands to be grounded
in robot action, the actions ak listed within the HSF must
be either: (a) a robot motion control primitive, ak ∈ Φ
(described further in Section III-C), or (b) a HSF command,
ak ∈ ΣR. Note that the actions within a HSF come from
action space A = Φ ∪ ΣR. By allowing actions within a



HSF to be other HSF commands, we can create semantic
frames that are hierarchies of other semantic frames. The
hierarchical nature of HSFs results in a recursive expansion
of actions to obtain a complete sequence of grounded actions
for a command.

Hierarchy makes our HSF pipeline modular and scalable.
Hierarchies of HSFs mean that high-level commands can
be created from lower-level commands. For example, the
grasp HSF is useful when defining higher-level frames
such as pick, place, put, and give object to. With
a basis of HSFs grounded in robot control primitives, we
guarantee that high-level commands comprised of these
basis elements can also be grounded in robot action. Users
can communicate high-level commands to robots without
thinking about the low-level action execution.

C. Robot Control Primitives

As discussed previously, the most important feature of
HSFs is that each command Λ is grounded in robot actions
φ1, . . . , φM ∈ Φ. Depending on the robot, the robot control
primitives can take various forms. HSFs do not depend on
the form of the robot control primitives, just that some basis
of primitives exists. For example, robot control primitives
can be affordance templates [17], affordance primitives [38],
[39], or a control basis [41]. One work defines an example
control basis—a set of controller building blocks—as 6D
pose, 3D position, alignment (relative rotation), and screw
controllers [49].

In our experiments, we use the following robot control
primitives Φ: open/close hand, move end-effector to tar-
get 6D pose, plan footstep trajectory, and execute footstep
trajectory. For the robots we tested on (Fetch robot and
NASA Johnson Space Center’s Valkyrie robot [45], [22]),
we determined that these primitives were sufficient for a
wide variety of tasks and correspond directly to ROS actions
within the motion control libraries running on these robots
(MoveIt [10] for Fetch and IHMC Open Robotics Software
[44] for Valkyrie).

IV. EXPERIMENTS AND RESULTS

Figure 2 describes the pipeline for using hierarchical
semantic frames to ground verbal commands and execute the
commanded actions. Figure 3 further details the grounding of
verbal commands into sequences of robot control primitives.
We assume human-in-the-loop perception through interactive
object registration [15]. For the robot to execute a command,
it needs to know where the required objects are in the scene.

To demonstrate the capabilities of HSFs, we performed
several experiments on the Fetch robot and NASA Johnson
Space Center’s Valkyrie robot [45], [22], [23].

A. Verbs with Multiple Meanings

A single verb can have many different meanings depend-
ing on the context. HSFs are able to unambiguously deter-
mine what frame corresponds to the command. For example,
as seen in Figure 4, the lexical unit for “give” defines
several optional frame elements. The HSF for “give” has two

Fig. 2: Our HSF pipeline. The verbal command is parsed
and used to evoke a HSF, which contains the sequence of
actions needed to execute the command.

Fig. 3: Our pipeline for converting HSFs to the corresponding
sequence of grounded robot control primitives. Each action
in a HSF is either a grounded control primitive or another
HSF command that can be recursively grounded.

children, give high five and give object to. Each
child requires substitution of optional frame elements. Based
on parsing of the grammatical relations, the HSF pipeline
identifies which of the children is commanded.

Using the HSF pipeline, Valkyrie is able to understand and
execute the commands “give me a high five” and “give Emily
the disruptor,” as seen in Figure 5. Though both commands
use the same verb “give,” the robot understands that the
affordances required to execute these commands depend on
the direct objects (“high five” and “disruptor” respectively).
We see that HSFs allow the robot to accurately comprehend
multiple meanings associated with these verbs and execute
the commanded tasks.



Fig. 4: Graphical representation of argument passing and in-
stantiation of HSFs. Lexical units define optional frame ele-
ments and head dependency relations for each frame element,
which give HSFs flexibility to understand related commands.
A general give HSF contains two related children frames.
Each child HSF contains actions that can use argument
substitution and hierarchies of other recognizable commands
such as “raise right hand,” and “wait for confirmation.”

(a) “Give me a high five.” (b) “Give Emily the disruptor.”

Fig. 5: HSFs allow robots to understand that the same verb
(in this case, “give”) involves different actions depending on
the objects being acted on.

B. Command Variations

HSFs can scalably instantiate command variations due to
argument substitution, as seen in Figure 6. Commands “go
to Emily’s desk” and “go to Steven’s desk” only differ in
terms of the final destination. Previous implementations of
semantic frames require separate frames for each destination.
Because of argument substitution, HSFs can represent all
variations using a single frame. Both commands use a single
HSF go to desk and argument substitution to handle vari-
ations in desk destination. HSFs allow the robot to scalably
comprehend and execute command variations.

C. Compound Nouns

Previous implementations of semantic frames cannot ef-
fectively instantiate frames involving compound nouns. This
means that any distinctions between nouns such as “grey
bag” or “white bag” cannot be understood or acted on appro-
priately. Due to optional frame elements, head dependency
relations, and argument substitution, HSFs can comprehend
compound nouns and act on these objects accordingly, as

(a) “Go to Emily’s desk.” (b) “Go to Steven’s desk.”

Fig. 6: HSFs allow robots to scalably understand command
variations. A single HSF (go to desk) represents all desk
destinations by using argument substitution.

(a) “Put the disruptor in the grey
bag.”

(b) “Put the disruptor in the
white bag.”

(c) “Put the disruptor on the left
table.”

(d) “Put the disruptor on the
right table.”

Fig. 7: HSFs allow robots to understand compound nouns
and differentiate between multiple similar objects (such as
grey bag, white bag, and bag).

seen in Figure 7. Because the robot comprehends compound
nouns, it correctly differentiates between similar object types
and executes the appropriate affordances with respect to
those objects. Furthermore, these experiments demonstrate
recognition of command variations, as all of these experi-
ments use the same put object in on HSF.

D. Command Ambiguity

Our HSF pipeline works on multiple robots that execute
grounded control primitives in different ways. Figure 8 shows
the Fetch robot executing the command “move that to the
left.” Since HSFs do not restrict the form of robot control
primitives, commands can be executed on multiple robots.
This experiment also demonstrates that the HSF pipeline can
make sense of some command ambiguity. Since the only
object present is the cup, the robot understands that the only
possible grounding for “that” is the cup. HSFs effectively
handle some ambiguity in language and can be executed by
multiple robots.



(a) Operator: “Move that to the left.”

(b) Fetch picks up the cup. (c) Fetch places the cup to its left.

Fig. 8: HSFs allow multiple robots to ground commands in
action. The robot can also understand some ambiguity in the
command, and understands that “move that to the left” can
only refer to the cup.

Task Type Total Mean SD
Commands Time (s) Time (s)

Multiple Verb Meanings 24 0.309 0.189
Command Variations 5 0.365 0.179

Compound Nouns 76 0.268 0.201
Additional Trials 32 0.324 0.163

All Tasks 137 0.292 0.192

TABLE I: Mean and standard deviation (SD) of processing
times for HSF commands. Processing times are reported
for each task type as well as aggregate data for all HSF
commands.

E. Command Processing

To evaluate the safety and responsiveness of our HSF
pipeline, we recorded the processing time for each HSF. Due
to the added capabilities of HSFs—specifically recursive def-
initions of frame actions—we need to ensure that commands
can be processed quickly, especially if command execution
needs to be interrupted for safety purposes.

Table I shows the mean and standard deviation of process-
ing times for each task type and aggregate data across all
experiments. Trials were repeated to improve the human-in-
the-loop object registration and verify command grounding.
We see that HSFs can be processed quickly, ensuring respon-
siveness and safety of robots listening for HSF commands.

F. Scalability of HSFs

To demonstrate the scalability of HSFs, we considered
taking actions on a fixed set of 16 objects from the YCB
dataset [8]. On this fixed set of objects, we consider the
actions “put” (“put the pear in the bowl” or “put the tuna
fish can on the cracker box”), “pour” (“pour the mug into the
pitcher”), and “stir” (“stir the skillet with the spoon”). To ex-
press these actions over our subset of objects, we would need
18 HSFs or almost 800 RoboFrameNet semantic frames,
as seen in Figure 9. Since RoboFrameNet requires distinct
semantic frames for every command variation, recognizing

Fig. 9: Scalability of HSFs and RoboFrameNet [53] semantic
frames based on actions taken involving objects from the
YCB dataset [8]. We consider a fixed set of 16 objects from
the YCB dataset and actions “put”, “pour”, and “stir.”

a new action requires significantly more semantic frames.
In contrast, the flexibility of HSFs means that the number
of HSFs only increases when new verbs or verb meanings
need to be recognized. Based on these findings, we conclude
that compared to RoboFrameNet, HSFs scale much better in
terms of number of semantic frames required to understand
new actions.

V. DISCUSSION AND CONCLUSION

The robot’s ability to successfully perform a variety of
tasks from verbal commands demonstrates the power of our
proposed hierarchical semantic frames as a middle-ground
between restricted language and robot action. HSFs allow
robots to scalably recognize a wide variety of commands.
Since HSFs are grounded in robot control primitives, we
demonstrate that the robot can understand spoken commands
and physically execute these commands. Through hierarchies
of HSFs, we ensure robots can execute tasks from commands
that abstract individual actions from the user.

Future work includes incorporating notions of pre- and
post-conditions, actions involving greater numbers of ob-
jects, and probabilistic reasoning [51], [1] over ambiguous
language. Our experiments require that the robot interacts
with known, labelled, and registered objects. Future work
would also involve testing the effectiveness of HSFs with
autonomous segmentation and registration. Overall, our pro-
posed HSFs demonstrate the power of commanding robots
through actions grounded in robot control primitives. Our hi-
erarchical semantic frames allow users to intuitively interact
with robots in a variety of tasks.
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