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1. Abstract 
The city of Stockton, California, located within the San Joaquin Valley (SJV), is a major hub for agricultural 
production and has endured the continuous threat to community health from nitrogen dioxide (NO2) and 
increasing temperatures. The convergence of these issues occurs within historically segregated communities 
that are disproportionately facing health risks related to heat and air quality. Little Manila Rising (LMR), a 
social and environmental justice (EJ) advocacy non-profit, partnered with NASA DEVELOP for a second 
term project to evaluate county wide urban heat islands, sociodemographic vulnerability, landcover 
classification, and the convergence of these variables. We utilized Landsat 8 Thermal Infrared Sensor (TIRS) 
and Operational Land Imager (OLI) data to produce a land surface temperature (LST) and Normalized 
Difference Vegetation Index (NDVI) map. They added Centers for Disease Control (CDC) socioeconomic 
data from 2020 to identify which communities in Stockton were more susceptible to these environmental 
factors. Additionally, we used imagery from National Agriculture Imagery Program (NAIP) to create a 
landcover map differentiating developed infrastructure from tree canopy cover. We discovered that south 
Stockton, where LMR resides, had the worst convergence of urban heat, air pollution, low canopy coverage 
and sociodemographic vulnerability compared to northern and rural parts of the city. This was further 
substantiated by statistical analysis showing a strong positive relationship between areas of high LST and low 
vegetation. The results provided LMR with compelling evidence to support in their EJ advocacy, and in their 
efforts to inform state officials of the discriminatory issues they face. 
 

Key Terms 
Urban heat islands, environmental justice, air pollution, sociodemographic vulnerability, land surface 
temperature, nitrogen dioxide 
 

2. Introduction 
2.1 Background Information 
The city of Stockton lies within the greater San Joaquin Valley (SJV) of California and is a community of over 
320,000 inhabitants with a culturally and economically diverse population of residents (US Census Bureau, 
2022). In 2018, Stockton was named the most culturally diverse city in the United States, with a population of 
11.6% identifying as Black or African American, 45.2% Hispanic or Latino, 20.9% Asian, and 17.6% white, 
not including Hispanic or Latino (Galvin, 2020, U.S. Census Bureau, n.d.). The city also includes a total 
population of 54,000 unauthorized individuals, 71% of which traveled from Mexico and 11% from the 
Philippines within SJV (Profile of the Unauthorized Population - County Data, n.d.).  
 
Increased urban development has resulted in extensive impervious surfaces and limited vegetation throughout 
Stockton, which causes the city to experience abnormal temperatures and climate anomalies (Jumari et al., 
2023). Impervious surfaces are artificial surfaces that do not allow water infiltration and contribute to heat by 
modifying the surface albedo (Ma and Peng, 2021). They alter the absorption and retention of heat in cities 
and contribute to a phenomenon known as the Urban Heat Island (UHI) effect (Jumari et al., 2023). Higher 

temperatures derived from UHIs pose risks to public health such as heatstroke, heat exhaustion, air quality 

degradation and energy consumption (Tong et al., 2021). In addition, UHIs often disproportionately affect 
communities that have historically been affected by redlining (Chakraborty et al., 2019). The combination of 
extreme heat and poor air quality has been proven to have compounding effects on health and is shown to 
increase chances of heart related mortality in women and older adults (Xu, 2023). 
 
2.2 Scientific Basis 
We utilized remote sensing tools and techniques to examine differences in heat, air quality, vegetation, and 
land cover  to calculate trends and relationships between environmental factors. Calculating land surface 
temperature (LST) works best as an indicator of overall heat in an area (Plott et al., 2023). Previous studies 
have used remote sensing from space-borne satellites to demonstrate UHI analysis and its relationship to LST 
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(Jumari et al., 2023). LST as a measure of heat does not include ambient heat, which is the temperature felt 

within the air. Large spatial and temporal variations of UHI effects are influenced by factors such as 

impervious surface area, vegetation cover, landscape structure, and climate (Zhou et al., 2019). Vegetation 
indices, such as the normalized difference vegetation index (NDVI), produced on 16-day intervals and at 
multiple spatial resolutions, provide consistent spatial and temporal monitoring of vegetation canopy 
greenness, a composite property of leaf area, and chlorophyll (MODIS Web, n.d.). Land cover classification 
data from National Agriculture Imagery Program (NAIP) are available for the continental US and include 
multi-decadal imagery collected at high spatial resolution with very low cloud coverage (Maxwell et al., 2017). 
Analyzing NDVI data, along with land cover classification of landscape structure, proved to be essential 
techniques when understanding the broader representation of UHIs in the San Joaquin County. By also 
including sociodemographic data such as level of education, race, and income, we identified locations with a 
compounding effect of both social and environmental vulnerability. 
 
2.3 Study Area and Period 
The study area encompassed all of San Joaquin County (SJC), which includes the cities of Stockton, Lodi, 
Tracy, and Manteca (Figure 1). Much of the study focused on Stockton, specifically south Stockton where our 
partners Little Manila Rising (LMR) are located. The study period spanned from 2012 to 2023 and focused on 
summertime months when extreme heat waves were more prevalent and air pollution congregated within the 
SJV. Investigating this decadal stretch of time allowed us to analyze patterns of abnormal heat experiences. 
 

 
 

Figure 1. Study Area of the San Joaquin County border (black lines) and the Stockton city limits (blue lines). 
Inset: Location of study area within the state of California. 

 
2.4 Term I Results 
In the summer of 2023, DEVELOP participants analyzed the relationship between air quality and social 
disparities across the SJV (Szeto et al., 2023). In partnership with LMR, they found that air pollution is not 
equitably distributed throughout the SJV, with NO2 specifically concentrated around urban areas and 
particulate matter (PM) enhanced  in locations with high agricultural burning. This contributed to the 
accumulation of fine particulate matter 2.5 (PM 2.5), which is a mixture of solids and aerosols and is defined 
as particles that are 2.5 microns in diameter or less (California Air Resources Board, n.d.). Long term 
exposure to PM 2.5 can severely impact a person’s lungs and heart (US EPA, n.d.). 
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2.5 Project Partners & Objectives 
LMR is a social and EJ advocacy non-profit located in southern Stockton that emerged from the mass 
migration of Filipinos after the Philippine-American war in 1902 (Milestones: 1899–1913 - Office of the 
Historian, n.d.). LMR supports marginalized communities by developing solutions to harmful public policy 
and institutionalized racism through focusing its initiatives on programs such as urban tree planting, air 
quality control, and community outreach. Our project will provide LMR with a detailed understanding of 
urban heat and its convergences with air quality concerns. The results will be shared within LMR and its 
Urban Forestry program, community members, and stakeholders to incorporate into their mission to achieve 
multifaceted equity in Stockton. 
 
Our objectives were to produce a social vulnerability index (SVI) based on sociodemographic variables and 
identify areas experiencing extreme heat and poor air quality within SJC. We also aimed to map socially 
vulnerable regions against neighborhoods experiencing high concentrations of NO2 and increased LST, 
noting any overlap between the converging layers. 
 

3. Methodology3.1 Data Acquisition  

 
3.1.1 Earth Observations Datasets for Land Surface Temperature, Vegetation, and Landcover Classification  
We collected open-source data for each variable that we examined, listed in Table 1. This included raster 
images from Landsat 8 Thermal Infrared Sensor (TIRS), Landsat 8 Operational Land Imager (OLI), Sentinel 
5 TROPOMI, and NAIP. We acquired Landsat 8 TIRS from Google Earth Engine (GEE) for our analysis of 
LST within the date range of 2012 – 2023 overlooking San Joaquin County. The TIRS sensor provided high 
resolution imagery of the thermal radiation reflecting off land surfaces such as asphalt and rooftops. 
 
We replicated this process in GEE to collect Landsat 8 OLI satellite imagery within the date range of 2012 – 
2022. The OLI sensor provided us with a vegetation coverage map of San Joaquin County. We collected term 
I’s Sentinel-5 TROPOMI imagery that supplied the NO2 measurements to calculate our index for air 
pollution exposure. Lastly, we obtained National Agricultural Imagery Program (NAIP) data from the USGS 
EarthExplorer online program to observe different land cover types with a resolution of one-by-one meter 
squared, filtering for cloud free images from 2022.      
 
Table 1. List of Sensors and Data Products  

Platform & 

Sensor 
Parameter(s) 

Date 

Ranges 
Purpose Source  

Landsat 8 

OLI  

Surface reflectance   

(albedo)  
2012 - 2022 

OLI provided thermal 

analysis data for vegetation 

greenness. 

GEE 

Landsat 8 

TIRS  

Land surface temperature   

(temperature anomaly)  
2012 - 2023 

TIRS provided thermal 

analysis data for daytime land 

temperatures.  

GEE 

Sentinel 5 

TROPOMI 
Average NO2 

2019, 2021, 

2022 
TROPOMI provided NO2 

data for the study area. 
GEE 
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NAIP Aerial Imagery  2022 

NAIP provided high 

resolution raster images 

utilized for landcover 

classification  

USGS 

EarthExplorer 

 

 
 
3.1.2 Ancillary Data  
In addition to the satellite data, we acquired demographic datasets from term I of the San Joaquin Health and 
Air Quality Project. This included datasets from EPA’s Environmental Justice Screening and Mapping tool, 
and U.S. Census Bureau California 2020 census tracts (Table 2). Next, we isolated the variables that aligned 
with our partners' biggest concerns which included: percent low income, percent people of color, population 
in poverty, percent less than high school education, percent under age 5, and percent over age 64. 
 
Table 2. Social, Environmental, and Validation Datasets 

Data Source Data Name Data Type Year(s) 

EPA 
Environmental Justice Screening 

Tool (EJScreen) 

CSV text file of community 

vulnerability 
2016–2020 

U.S. Census Bureau California Census Tracts 2020 
California census tract 

shapefile 
2020 

 
 
3.2 Data Processing 
 
3.2.1 Land Surface Temperature Processing  
Once we imported the Landsat 8 TIRS data, we set filter dates for the image collection to July 1 through 
August 31, during the 2012 – 2023 timeframe, to potentially capture the hottest days and avoid cloud 
coverage. To obtain accurate surface temperature data, we also filtered the image collection with a cloud mask 
so that each image contained < 20%  cloud cover. Finally, we clipped the satellite image to only cover San 
Joaquin County and applied the Landsat 8 TIRS to portray the average LST of our study area. We also used a 
scale factor so that the image could be interpreted in terms of degrees Celsius. After we finalized the average 
LST map within GEE, we exported the map to ArcGIS Pro as a TIFF file. We used the zonal statistics tool 
to combine the LST map with the county census tract shapefile to create average LST values per San Joaquin 
County census tract. 
 
 
3.2.2 Processing for Normalized Difference Vegetation Index 
We used GEE to extract vegetation within the San Joaquin County from Landsat 8 OLIdata. We began by 
filtering images that correlated to our study period of 2012 to 2022 from July 1 to August 31 Next, images 
with cloud coverage > 1% were removed using GEE. We then clipped the raster image to our study bounds 
of San Joaquin County using a shapefile from the Stockton GIS data catalogue. Once these steps were 
completed, we used Equation 1 to extract band values associated with vegetation. The final output produced a 
raster image with values ranging from –1, little to no vegetation, to 1, dense vegetation. 
 

                              𝑁𝐷𝑉𝐼 = 𝑅𝐸𝐷−𝑁𝐼𝑅

𝑅𝐸𝐷+𝑁𝐼𝑅
                                           Equation 1 
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Equation 1. NDVI equation using red and near infrared bands. 

 
 

 
 
Figure 2. This is a cloud-masked mean LST (left) and NDVI (right) image clipped to the San Joaquin County 

study boundary for the period July 1 – August 31. 
 

3.2.3 Processing for Social Vulnerability Index 
We uploaded the social vulnerability variables from EPA’s EJScreen into Microsoft Excel. In another Excel 
sheet, we added our census data containing the GEOIDs for all the census tracts in SJC. We joined the 
demographic data with the geographic data using the GEOIDs as a common attribute field. Since some 
census tracts did not have any data and our calculation for the SVI required a complete data set, we filled all 
the empty fields with the average of each variable. 
 
3.2.4 Processing for Land Cover Classification 
To assess the dominant land cover type of south Stockton, we performed a supervised land cover 
classification in ArcGIS Pro. We sourced 7 images from 2022 by the NAIP of demogr aphically distinct areas 
within Stockton and clipped them together to create a mosaic of images within the city boundary. Before 
classifying the imagery, we grouped pixels into segments to reduce errors and inaccuracies. To distinguish 
features more clearly, we changed the band combination to assign the red band to near infrared (Band 4), the 
green band to red (Band 1), and the blue to blue (Band 3). This allowed for training data to be more 
accurately assigned to their corresponding classes when segmented. We created seven distinct classes 
representing water, wetlands, developed, canopy, agriculture, barren, and grass. Using the Training Samples 
Manager tool within ArcGIS Pro, we assigned a minimum of 10 training samples to each class before 
performing the classification. We used the K-Nearest Neighbor classification method, which uses proximity 
to other classes to determine classification (Noi and Kappas, 2017). 
 
Once Stockton was classified, we extracted both the developed and canopy classes from the land cover raster 
to assess the individual land cover types. This was done by using the Summarize Raster tool in ArcGIS Pro to 
display the pixel counts for each class within individual census tracts. We created a new column within the 
attribute table and divided the pixels of each class by the total number of pixels in each census tract to 
normalize the counts for each class. Finally, we visualized these values as a gradient of percentage of each 
land cover type within census tracts. 
   
3.3 Data Analysis 
 
3.3.1 Social Vulnerability Analysis 
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Vulnerability is defined as a population’s exposure and sensitivity plus/minus their adaptive capacity (ARSET, 
n.d.). We used EJScreen data to find indicators of vulnerability, the same sociodemographic from the ancillary 
data, and quantified them through the creation of vulnerability indices. First, we acquired data sorted by 
census tract ID for our specific vulnerability indicators, and then ranked each value within a variable from 
lowest unit to highest. Using these ranked variables, we manipulated them into percentile ranks which were 
summed to create our final social vulnerability index (SVI). The higher the final SVI value is, the more 
susceptible an area is to environmental hazards. We visualized areas of low and high exposure by joining our 
vulnerability index to the SJC census tract shapefile and re-symbolized it using a choropleth map. 
 
3.3.2 Vegetation and Temperature Correlation Analysis  
We uploaded both mean LST and NDVI raster images to ArcGIS Pro 3.2 along with the study area shapefile. 
To graph the correlation between LST and NDVI, we used the Fishnet tool to create a 100 by 100-point grid 
over the study area. All point values layered over the raster images were extracted using the Extract Multi 
Values to Point tool. We extracted the associated value for each point data to display in the attribute table of 
the previous output file. Next, we filtered out values that were associated with water to not skew the 
regression line, using the Clip tool to extract only the points within the study area. We then graphed the data 
points onto a scatter plot in ArcGIS Pro and conducted a linear regression to determine the correlation 
between these two variables. 
 
3.3.3 Air Quality Analysis 

We recycled the previous team’s raster imagery, which was taken by Sentinel-5 TROPOMI, of NO2. The 

raster displayed 95th percentile and median NO2 moles/meter2. For our purposes, we used the 95th percentile 

NO2 raster. First, we calculated the average NO2 in SJC using the Raster Calculator tool in QGIS for the 
years 2019, 2021, and 2022. This resulted in a single, consolidated raster with each pixel representing the 

average NO2 moles/meter2. Next, we used our shapefile of SJC, which contains all the census tract areas, the 

average NO2 raster, and the Zonal Statistics tool to find the average NO2 moles per square meter at the 

census tract level. With our updated shapefile with NO2 data, we visualized the census tracts in SJC that have 

the most exposure to high NO2 concentrations using a choropleth map. Furthermore, we noted the locations 

of major roads and highways to identify any spatial correlation between distance to transportation corridors 

and NO2 concentrations. 
 
3.3.4 Heat and Air Quality Analysis 
To combine the LST and air quality maps, we created a new LST and air quality index (LSTAQI) that we 
mapped against our SVI. LSTAQI was created using the same method as the SVI but with one additional 

step. Once we converted the ranks into percentiles for NO2 and LST, we multiplied the NO2 percentiles by 
0.33 and the LST percentiles by 0.66. Since we wanted to emphasize the importance of LST in the index, we 
decided that it would take up 2/3 or 0.66 of the total index, and NO2 would take up 1/3 or 0.33 of the total 
index. We added the two weighted percentiles together to create the LSTAQI. Next, we joined the new 
LSTAQI and the SVI with the SJC shapefile to capture social vulnerability, NO2, and LST with census tract 
data. In ArcGIS Pro, we symbolized the two variables using a bivariate choropleth map. The map displays 
socially vulnerable areas as well as combined LST and NO2 hazards. Areas that overlap between these two 
variables are symbolized as a blended color. 
 
3.3.5 Principal Component Analysis 
We carried out our principal component analysis (PCA) to reduce the dimensionality of our data while 
preserving most of the variance when creating our social vulnerability index. The variables used in the PCA 
are population in poverty, percent people of color, percent low income, percent less than high school 
education, percent less than age 5, percent over age 64, and mean LST. The PCA was created in Python using 
these libraries: pandas, NumPy, matplotlib.pyplot, and PCA from sklearn.decomposition. First, we read and 
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saved our social vulnerability variables into an object called ‘data’ and normalized it. Next, we created a 
correlation matrix and plotted it so that we had a table matrix and plot matrix. Third, we computed the 
eigenvectors and eigenvalues of the covariance matrix. Since we had seven variables, we created seven 
principal components. The output data frame displayed the variance of each principal component per census 
tract. With this data frame, we visualized the variance that each principal component contains using a scree 
plot (Figure A3).  
 
3.3.6 Temperature Variation Analysis 
We calculated the urban heat intensity by finding the difference between average temperatures in an urban 
location and its rural counterpart. First, we created polygons within the different areas using the original LST 
map and produced histograms of the temperature data, showing the total average temperatures. South 
Stockton experienced an 8.4 °C (15.12 °F) higher temperature difference compared to rural locations as 
shown in Figure A7 and Figure A9. These histograms allowed us to compare the two distinct spreads of 
temperature between rural and urban locations and showed us if the data had a normal distribution. The data 
were normally distributed, and we ran a two sample Wilcoxon T-test within R 4.3.2 to confirm that there was 
a statistically significant difference. We exported the histogram data from GEE to Excel to expand the 
“count” column so that our data table could be read within R. Once the data were cleaned, we ran a 
Wilcoxon T-test comparing rural and south Stockton temperatures and received a p-value of < 0.001. This 
result meant that we could reject the null hypothesis that stated there was no difference between the 
temperatures in the rural and urban regions. Using the same procedure, we compared south and north 
Stockton and found that south Stockton had a 3 °C (5.4 °F) higher temperature difference compared to north 
Stockton, as seen in Figure A8 and Figure A9. We validated this conclusion by running the same T-test within 
R and established that the temperature difference was statistically significant because of a resulting p-value of 
< 0.001. 
 

4. Results & Discussion 
4.1 Analysis of Results 
 
4.1.1 Social Vulnerability Results 
The results of the PCA show that the strongest signs of social vulnerability are the percentage of people of 
color, percentage population of low income, and percentage of population with less than a high school 
education. Additionally, five out of seven principal components contain 90% of the total variance that our 
social vulnerability variables portray. We produced a choropleth map that displays census tracts of SJC with 
lowest to highest social vulnerability (Figure 3). 
 
The choropleth map results align with the hypothesis that the social vulnerability index decreases in the 
census tracts furthest from highly populated areas such as Stockton. Our team also identified higher index 
values in south Stockton, while northern Stockton has lower index values. This observation aligns with 
LMR’s principle that south Stockton faces unequitable living situations because of redlining. 
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Figure 3. Social Vulnerability Choropleth Map - Social Vulnerability Index calculated for San Joaquin County, 

CA. Inset: The city of Stockton. 
4.1.2 Vegetation and Temperature Correlation Results  
The distribution of points plotted in our regression line graph show a strong negative correlation and an R-
squared value of 0.65, indicating that 65% of the variance in temperature is explained by vegetation. This is 
considered a strong correlation and explains why communities with low vegetation will experience higher 
temperatures compared to those that have denser surrounding vegetation. Additionally, most of the clustered 
vegetation in Figure 2 are around areas of agricultural cultivation.  
 
4.1.3 Nitrogen Dioxide Concentrations 

Further reinforcing the results of term I, we found that high NO2 levels are seen around urban areas while 

non-urban areas have less NO2. We suspect that NO2 levels are higher in urban areas because of the high 

number of vehicles driving along highways and major roads that cut through Stockton. We detected larger 

levels of NO2 in south Stockton compared to north Stockton. The higher NO2 levels may be due to densely 
industrialized urban land cover in the area. Overall, census tracts within the Stockton city limits contain 

higher concentrations of NO2, with south Stockton facing the highest in the county, which reinforces the 

trend where south Stockton experiences higher frequencies of environmental hazards. 
 
One factor that we did not account for until after creating this map was that the units of moles/meter2 are 
not good measurements for understanding experienced air quality. For example, we don’t know if 

2.64 × 10−4 moles/meter2 is considered hazardous air quality conditions. The United States Air Quality 

Index (AQI) has six categories from good to hazardous and measures NO2 by parts per billion (ppb). Making 
the conversion from mol/meter2 to ppb is doable but not trivial. If we had this idea sooner rather than later, 
it would have been feasible to make this conversion. 
 
4.1.4 Air Quality Vulnerability 
We combined the social vulnerability, air quality, and LST maps to create bivariate choropleth maps to 
determine which census tracts are experiencing high LST, poor air quality, and high levels of social 

vulnerability. Some regions may be highly susceptible to injustices but lack strong NO2 concentrations. 
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Conversely, some regions may contain excess amounts of NO2 emissions, but are not as susceptible to 

injustices. We were primarily interested in areas that are vulnerable and have excess NO2 emissions because 
these locations are where mitigation is needed the most. We first examined areas with only high social 

vulnerability. We suspect that these areas are highly vulnerable but hold low NO2 concentrations because 

those census tracts lack infrastructure such as highways, roads, and industrial development that creates NO2. 

Next, we looked at areas with only high NO2 concentrations. We believe that these regions are highly 

urbanized but lack social vulnerability due to being more wealthy, educated, or lacking diversity. Last, we 

identified communities that overlap with moderate to high social vulnerability and NO2 concentrations. We 
observed that south Stockton has the worst conditions. 
 
4.1.5 Heat Vulnerability Results 
 

 
Figure 4. Heat and Social Vulnerability Bivariate Choropleth Map 

 
After we created a new shapefile with the mean LST per county census tract as a field, we joined attribute 
tables with the SVI so that we could map both variables together (Figure 4). This map allows viewers to 
identify where there is a convergence of locations with high heat and high social vulnerability, while still 
distinguishing areas that only experience one or the other. We see in this figure that barren areas in the upper 
right (northeast) and lower left (southwest) corners face extreme heat with low social vulnerability because the 
population density is lower. However, it is apparent that south Stockton is experiencing both increased LST 
and social vulnerability. This is a significant issue because extreme heat is not being felt throughout the entire 
city and it is only severely impacting communities that have been disenfranchised and forced to live in these 
environments. 
 
4.1.6 Final Heat and Air Quality Vulnerability Results 
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Figure 5. Final Bivariate Choropleth Map of heat, air quality, and social vulnerability 

 
Through combining the three main variables of this study (LST, air quality, and social vulnerability), we 
showed that there are regions within SJC, and specifically Stockton, that experience extreme convergence of 
urban heat and poor air quality (Figure 5). Since the previous term provided our partners with a thorough air 
quality analysis, we weighed land surface temperature more heavily within this new LSTAQI. Our final air 
quality and LST vulnerability map looks like the previous maps as it portrays very comparable aspects with 
minor changes. Again, we observed that south Stockton is extremely exposed to these environmental hazards, 
posing risks for unsafe living conditions and health threats. 
 
4.1.7 Land Cover Classification Visualization 
We visualized Developed and Canopy land cover as maps along a gradient based on pixel counts for each 
land cover type by census tract, ranging from roughly 300 to 14,0000 pixels (Figure 6). 
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Figure 6. Land cover classes; developed (left) and canopy cover (right) within Stockton. 

The developed map shows that the highest pixel count for this class lies in the south Stockton area, which is 
mainly composed of industrial zones, such as the Port of Stockton and the Stockton Metropolitan Airport. 
The canopy cover class shows the census tracts with the highest pixel counts are mainly concentrated 
throughout the northwest portion of Stockton. These areas are more affluent than south Stockton and 
contain a greater density of parks and natural features, including golf courses and bodies of water. In contrast, 
south Stockton experiences some of the lowest canopy cover in the city. This confirms our partners' concerns 
that residents in these areas have less access to shade in their neighborhoods and can also help to explain the 
increase in land surface temperature when compared to other parts of Stockton. 
 
4.1.8 Principal Component Analysis Results 
The correlation matrix in Table A1 displays the degrees to which our variable pairs move in relation to each 
other. Values above zero show a positive correlation between variables where one variable increases the other 
variable increases too. Values below zero show a negative correlation between variables where one variable 
increases the other variable decreases. Values that are around 0 show that the variables have no correlation. 
Some of the variables that show high positive correlation with each other are percent people of color, percent 
less than high school education, percent low income, and average land surface temperature. The pair percent 
people of color and percent over age 64 have a strong negative correlation.  
 
Figure A3 shows the percentage of variance that each principal component contains. In this case, principal 
component 1 represents 53% of the data and principal component 2 represents 22% of the data. The sum of 
all the principal components will be equal to 100%. To maximize the most variance while using the minimum 
number of principal components, our team selected the first four principal components for our analysis 
because these four make up at least 90% of the variance for our data set. 

 
4.2 Feasibility for Partner Use and Future Recommendations 
We found remote sensing tools such as ArcGIS, QGIS, and GEE to be vital in examining the relationship 
between land use and landcover, vegetation, temperature, and air quality within our study area. Aside from 
ArcGIS, the tools and data we utilized in our research are free access and public domain data that are 
available for anyone to download. With these end products, Little Manila Rising can focus their efforts on 
strategically placing cooling centers throughout Stockton to limit exposure to extreme heat events. In 
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addition, LMR can focus their urban forestry efforts on areas that contain the lowest canopy cover 
throughout south Stockton, shown in Figure A4, to continue to provide shade to residents. Finally, LMR can 
also use the creative communication brochure to continue to inform community members of the 
environmental hazards they are subjected to.  
 
Little Manila Rising can continue to build on these end products by changing the Social Vulnerability Index to 
incorporate demographic factors they find more relevant in the future. They can also continue to monitor 
their urban forestry program objectives by assessing the change in canopy cover once trees have grown 
sufficiently enough to provide cooling effects. In addition, the air quality vulnerability map can be further 

improved by incorporating transit data to find the relationship between NO2 concentration and proximity to 

major roads and highways. The Nitrogen Dioxide Choropleth Map can be improved by standardizing the 
legend to fit with the United States Air Quality Index. That way the numbers represented can communicate 

to the viewer the severity of the concentration of NO2 from good, moderate, unhealthy, and hazardous. As 

previously recommended from Term I, TROPOMI can also measure carbon monoxide (CO), and 
formaldehyde (HCHO), which are other pollutants of concern that directly affect human health. We did not 
incorporate these other pollutants into our air quality analysis but echo this recommendation as well. 
 

5. Conclusions 
While exploring urban heat islands and air pollution within the San Joaquin County, we observed that 
southern Stockton, where our partners for this project reside, has a higher exposure rate to environmental 
issues compared its northern and rural counterparts. We discovered through our analysis of combining 
demographic data with our heat analysis map that southern communities disproportionately experienced 
increased urban temperatures. Additionally, through our analysis of developed landcover, we saw a large 
presence of poor air quality possibly due to major developments such as an airport, major highways, and 
shipment ports. This adds to the overall concern of increased health risks, such as high asthma rates, because 
of Stockton's history of redlining minority based low-income communities. Our vegetation and landcover 
analysis illustrated the lack of tree canopy cover in southern communities, which can intensify the effects of 
urban heat islands in these areas. Furthermore, after running statistical analysis comparing the differences in 
heat between north, south, and rural areas of Stockton we concluded that southern communities are at a 
much higher risk to increased temperatures. These results will help LMR provide crucial information to the 
nearby community members and aid them in their efforts to continue their Urban Forestry Program. They 
can also be used in urging the city to provide more funding that is directed toward providing cooling centers 
and heat mitigation strategies.  
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7. Glossary 
Aerosol Optical Depth (AOD) – A measure of aerosols distributed within a column of air from 
the measuring instrument to either the ground or top of the atmosphere. 
ArcGIS Pro – Geographic Information System (GIS) Software provided by Esri. 
Canopy Cover – The floor area covered by a tree's leaves, branches, and stems when viewed from 
above. 
Earth Observations (EOs) – satellites and sensors that collect information about the Earth’s 
physical, chemical, and biological systems over space and time. 
Geographic Information System (GIS) – computer-based tools used to store, visualize, analyze, 
and interpret geographic data. 
Google Earth Engine (GEE) –Earth observations processing software 
Land Surface Temperature (LST) – A proxy for calculating the temperature emitted of man-
made objects and materials. 
Land Surface Temperature Air Quality Index (LSTAQI) – The LSTAQI is an index made by 
weighing the land surface temperature and NO2 values and adding them together. This index is 
compared with the social vulnerability index to find converging vulnerabilities. 
National Agriculture Imagery Program (NAIP) – NAIP is aerial imagery taken aboard an 
airplane rather than a satellite.  
Nitrogen Dioxide (NO2) – Nitrogen Dioxide used as a proxy for vehicle emissions. 
Operational Land Manger (OLI) – sensor on Landsat-8 satellite.  
Principal Component Analysis (PCA) – A statistical test used when wanting to find the 
correlation between multiple related variables. 
Social Vulnerability Index (SVI) - A way of measuring the “susceptibility” within a community 
using demographic data 
Thermal Infrared Sensor (TIRS) – sensor on Landsat-8 satellite. 
Tropospheric Monitoring Instrument (TROPOMI) – sensor on the Sentinel-5P satellite that 
measures NO2 
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9. Appendices 
Appendix A.  

 

Figure A1. Nitrogen Dioxide Choropleth Map showing the distribution of NO2 throughout the county with 

major roadways 
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Figure A2. Air Quality Vulnerability Bivariate Choropleth Map 
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lst_mean -0.021 0.507 0.273 0.336 0.277 -0.464 1.000 

Table A1. Correlation matrix with values. 

 
 

 
 

Figure A3. Scree Plot of principal components variance 
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Figure A4. Canopy cover classification map with trees planted by Little Manila Rising 

 

 

 



 
   
 

 
 20  
 

Figure A5. Land cover classification Stockton Map  

 

Figure A6. Social vulnerability index variables correlation matrix 

 

Figure A7. Histogram of average LST values comparing south and rural Stockton 
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Figure A8. Histogram of average LST values comparing north and south Stockton 

 

Figure A9. Box plot comparison of average LST values for north, rural, and south Stockton 
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Figure A10. Time series of average LST values of a single pixel within a southern Stockton neighborhood 
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