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ELENA:  Emitted Low-Energy Neutral Atoms

Strofio:  Rotating Fielding Spectrometer

MIPA:  Miniature Ion
            Precipitation Analyzer

PICAM:  Planetary Ion CAMera

The SERENA Suite

SERENA Scientific Objectives

Mercury's Exosphere

Stefano A. Livi, Southwest Research Institute®, George Ho, Dennis Haggerty, Johns Hopkins University Applied Physics Laboratory
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ELENA images the neutral gas escaping    
             from the surface of Mercury

MIPA determines the plasma precipitation 
          toward the surface

PICAM investigates the exo-ionosphere 
            extension and composition. 

Strofio analyzes the exospheric gas 
             composition

• Chemical, elemental, and isotopic composition of the exosphere 
• Exo-ionosphereGas density profile as a function of altitude
• Particle loss rate from Mercury environment
• Surface emission rate and release processes
• Plasma precipitation rate

Together,  these six elements account for only 20% of the observed total pressure
inferred from radio occultation measurements.

• Difficult to study as Mercury is very
  Near the Sun

• Mariner 10 Ultraviolet Spectrometer:

Figure D-3, Mercury Na images taken Nov. 13-20, 1997, showing that the exo-
sphere varies dramatically on a daily basis (Killen et al., 2001).

http://messenger.jhuapl.edu/gallery/sciencePhotos.search.php?form_keywords=3

January 14, 2008

• Known to exist in other bodies of the Solar System:  Encedalus, Io

Observations of exospheric sodium around Mercury.

A) Absorption of Na line observed during
    the transit of Mercury across the Sun
    (Schleicher et al., 2004)

B) Mercury Na map observed at the dusk
     terminator (Killen et al., 2001)

C) Extended Na tail observed by Potter
     et al., 2002.

*Units are given in terms of the equivalent absorption line width (Schielcher et al., 2004)

• Large escape velocity
• Reflect composition at larger depths

• Ground optical measurements

– H, He:  cold and hot components

– Na, K:  daily variations

– O:  much less abundant then expected

– Ca:  higher energy

• Only elements with strong doublet
  lines (Na, Ca, K) can be identified from
  Earth

Other Scientific Objectives:

Fig. 3, Same as Fig. 2, but H in its resonance line, Lyman a.  Data from 
Encounters I and III are include, and a fit to an arbitrary 2-temperature 
distribution is shown.  Information from another scan to higher 
altitudes contributed to this fit (Shemansky and Broadfoot 1977).  
Again, planetary albedo appears at the lowest altitudes.
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• Remote sensing of the surface composition
• Magnetosphere structure and dynamics
• Solar wind at Mercury’s heliocentric distance
• ENA imaging applications for comparative solar-planetary relationship studies
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• Thermal evaporation (day/night asymmetry)

• Photo-desorption: (day/night asymmetry)

• Impact Vaporization (episodic)

• Venting, volcanism (spatially locked)

• Ion-sputter: (Solar wind activity related)

– H, He, Na (subsolar), K (subsolar), S, Ar, H O2

– Important for volatiles 

– Important for refractories 
 – Ca and others

– Everything? (more volatiles than refractories)
 – Important for creation of glass
 – Important for loss of water deposits and volatiles

– Everything? (more volatiles than refractories)

– H, He, Na, K, S

Strofio is a scientific investigation of the Hermean exosphere based on a novel 
mass spectrograph that determines particle mass-per-charge (m/q) by a time-of-
flight (TOF) technique.
The name comes from the Greek word Strofi, which means “to rotate”: the phase of 
a rotating electric field “stamps” a start time on the particles’ trajectory. The 
detector records the exit position (hence the start time) and the stop time.

Strofio accomplishes its high-sensitivity (0.14 counts/s when the density is 
1 particle/cm3) within very limited resources (1.9 kg).  The mass resolution (m/Dm 
≥ 60) is achieved by fast electronics and does not require tight mechanical 
tolerances. 

• The Hermean exosphere is a fascinating environment, very difficult to study
   from earth.

• Non-critical element

• Full scale Strofio reflectron with MCPs, anode,
   input,  optic, and dispersion elements.

• Reduced size detector covers ~1/3 of the
  Strofio detection area.

• System fully integrated with position processor
  board and RF supply.

• The Strofio mass spectrometer is based on a novel, effective design and has
   the required characteristics.

• Strofio is an exciting investigation that will open up a window on a new world.

• The six measured elements and an extensive body of computer simulations are
   guiding our understanding.  Direct measurements of neutrals and ions are
   needed to advance our understanding of Mercury and its exosphere.

• The suite SERENA onboard BepiColombo MPO has been tailored to study in-
   depth the neutral and ionic environment of Mercury.

• Characterization of the Hermean exosphere requires a mass spectrometer of
3   high sensitivity (n=1/cm ) and moderate mass resolution (m/dm > 60).
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Two dimensional spectra of test gas and rest gas in the chamber (top left).

Mass spectrum of test gas and rest gas (top right).

Expanded view around Nitrogen peak (bottom right).
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