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The Ingard-Myers impedance boundary condition is widely recognized to be prone to
hydrodynamic Kelvin-Helmholtz-type instability, primarily due to its use of a vortex sheet to
model the flow at the boundary. Previously, a stabilized approximation of the Ingard-Myers
condition, called the Truncated Ingard-Myers Impedance Boundary Condition (TIMIBC),
has been introduced. This approximation offers a good representation of the Ingard-Myers
condition for grazing flows characterized by low to mid subsonic Mach numbers. This paper
explores an extension of the TIMIBC, referred to as TIMIBC-ext, designed for liners in grazing
flows with high subsonic Mach numbers. The TIMIBC-ext introduces a tunable parameter and
demonstrates that by judiciously selecting the parameter value, the accuracy of the TIMIBC can
be improved for either upstream or downstream propagating waves in grazing flows with high
subsonic Mach numbers. Consequently, the TIMIBC-ext represents an enhancement to the
TIMIBC when the location of the source relative to the liner (upstream or downstream) is known.
Time domain implementations of the TIMIBC-ext are also provided, employing a multipole
expansion model for the impedance function. A numerical example is provided to assess the
performance of the TIMIBC-ext, comparing computational results with measurements from a
recent set of measurements in the NASA Langley Grazing Flow Impedance Tube.

I. Introduction

The Ingard-Myers impedance boundary condition has often been employed as the limiting case of the boundary layer
thickness approaching zero[1, 2]. Nevertheless, it is widely acknowledged that the Ingard-Myers condition is subject

to the hydrodynamic Kelvin-Helmholtz-type instability due to its use of a vortex sheet in modeling the flow at the
boundary[3, 4]. This instability becomes particularly problematic in numerical simulations of liners conducted in the
time domain.

Recently, a stabilized approximation of the Ingard-Myers condition, called the Truncated Ingard-Myers Impedance
Boundary Condition (TIMIBC), has been proposed[5, 6]. The TIMIBC formulation involves truncating the second
derivative term present in the Ingard-Myers condition when expressed in terms of acoustic pressure and its normal
derivative on the liner surface. Analytically, it was shown that the TIMIBC effectively eliminates the instability inherent
in the original Ingard-Myers formulation. Additionally, for grazing flows characterized by low to mid subsonic Mach
numbers, the TIMIBC was shown to provide a good approximation to the Ingard-Myers condition.

In the context of acoustic liners integrated within an engine nacelle, the grazing flows encountered at the liner
surface may exceed the low Mach number regime. This paper aims to consider an extension of the TIMIBC to liners
subjected to grazing flows characterized by high subsonic Mach numbers. To achieve this, a generalization of the
TIMIBC is formulated with a tunable parameter, of which the TIMIBC is a special case. For convenience of discussion,
this generalized condition will be referred to as the TIMIBC-ext. It will be demonstrated that by judiciously selecting
the parameter value, the accuracy of the TIMIBC can be enhanced for either upstream or downstream propagating waves
in grazing flows characterized by high Mach numbers.

Furthermore, a numerical simulation of a liner in a grazing flow is presented. The experimental setup used is the
NASA Langley Grazing Flow Impedance Tube (GFIT)[7]. The inherently internal duct acoustic propagation problem is
reformulated as an external scattering problem, which is then solved using the time domain boundary element method[5].
In the experiment, the centerline setpoint Mach number inside the duct is moderately high at 0.6, and the incident
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plane wave is positioned downstream of the liner. In the simulation, the TIMIBC-ext, tuned for downstream sources, is
applied as the boundary condition on the liner surface. Comparisons between computational results and experimental
measurements are carried out to demonstrate the validity of the TIMIBC-ext.

The rest of the paper is organized as follows: In Section II, formulation of the TIMIBC-ext is given as a generalization
of the TIMIBC and a stability condition is shown for the tunable parameter in the TIMIBC-ext. Section III assesses the
potential benefits of the TIMIBC-ext formulation. Time domain implementation of the impedance boundary condition is
discussed in Section IV. A numerical example is presented in Section V and concluding remarks are given in Section VI.

II. Formulation of TIMIBC-ext
The Ingard-Myers condition written in terms of the acoustic pressure and its normal derivative is

𝜌0

(
−𝑖𝜔 +𝑈

𝜕

𝜕𝑥

)2
𝑝(𝒓, 𝜔) = 𝑖𝜔𝑍

𝜕𝑝(𝒓, 𝜔)
𝜕𝑛

(1)

where 𝑝(𝒓, 𝜔) is the acoustic pressure, 𝑈 and 𝜌0 are the velocity and density of the mean flow respectively, and 𝑍 is the
surface impedance. Here, a time dependency of 𝑒−𝑖𝜔𝑡 is assumed for the frequency domain solutions and 𝒓 = (𝑥, 𝑦, 𝑧)
denotes the position vector. The impedance boundary condition, Eq. (1), is applied at the surface of the liner which is
assumed to be at 𝑧 = 0. The normal derivative for 𝑝(𝒓, 𝜔) is in the direction out of the fluid and into the liner. For
convenience of discussion, it is assumed the mean flow is in the same direction as the 𝑥 axis and 𝑈 ≥ 0.

It can be shown (see, e.g., Ref. [6]), that the Ingard-Myers impedance boundary condition, Eq. (1), leads to the
following dispersion relation for the intrinsic linear waves of the form 𝑝(𝒓, 𝜔) = 𝐴𝑒𝑖𝑘𝑥 𝑥+𝑖𝑘𝑦 𝑦+𝑖𝛾𝑧−𝑖𝜔𝑡 :

(𝜔/𝑐)𝛾𝑍 + 𝜌0𝑐 (𝜔/𝑐 − 𝑀𝑘𝑥)2 = 0 (2)

where

𝛾 =

√︃
(𝜔/𝑐 − 𝑀𝑘𝑥)2 −

(
𝑘2
𝑥 + 𝑘2

𝑦

)
(3)

and 𝑘𝑥 and 𝑘𝑦 are the wave numbers in 𝑥 and 𝑦 directions respectively, 𝑀 = 𝑈/𝑐 is the mean flow Mach number, and 𝑐

denotes the speed of sound. The branch-cut in the complex 𝜔 plane for the square-root function in Eq. (3) is such that

𝐼𝑚

{√︃
(𝜔 −𝑈𝑘𝑥)2 − 𝑐2 (𝑘2

𝑥 + 𝑘2
𝑦

)}
≥ 0. (4)

It is well documented in the literature that the dispersion relation given in Eq. (2) can support instability waves (e.g.,
Ref. [3, 4]). That is, given real values of 𝑘𝑥 and 𝑘𝑦 , Eq. (2) entails roots for 𝜔 with a positive imaginary part, i.e.,
𝐼𝑚{𝜔} > 0.

As an approximation to the Ingard-Myers condition, the TIMIBC proposed in Ref. [6] is formulated by truncating

the second derivative term 𝜌0𝑈
2 𝜕2 𝑝
𝜕𝑥2 when the operator

(
−𝑖𝜔 +𝑈 𝜕

𝜕𝑥

)2
in Eq. (1) is expanded, yielding

𝜌0

(
𝑖𝜔𝑝 − 2𝑈

𝜕𝑝

𝜕𝑥

)
= 𝑍

𝜕𝑝

𝜕𝑛
. (5)

The truncation is not expected to cause large errors when 𝑈 is small. More importantly, it eliminates the instability
wave inherent in the Ingard-Myers condition. The TIMIBC (Eq. 5) leads to a new dispersion relation:

𝛾𝑍 + 𝜌0𝑐 (𝜔/𝑐 − 2𝑀𝑘𝑥) = 0. (6)

It was shown in [6] that Eq. (6) contained no unstable roots for 𝜔. That is, given real values of 𝑘𝑥 and 𝑘𝑦 , Eq. (6) has no
roots for 𝜔 where 𝐼𝑚{𝜔} > 0.

The proposed extended formulation presented in this paper is a generalization of the TIMIBC (Eq. 5) as follows:

𝜌0

(
𝑖𝜔𝑝 − (1 + 𝑠)𝑈 𝜕𝑝

𝜕𝑥

)
= 𝑍

𝜕𝑝

𝜕𝑛
(7)

where 𝑠 is a tunable parameter. This impedance condition will be denoted as the TIMIBC-ext. The generalization is
based on the mathematical properties of the dispersion relations, as will be detailed below. Clearly, the TIMIBC-ext (Eq.
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7) recovers the TIMIBC (Eq. 5) when 𝑠 = 1. It is straightforward to find that the dispersion relation for the TIMIBC-ext
is

𝛾𝑍 + 𝜌0𝑐 (𝜔/𝑐 − (1 + 𝑠)𝑀𝑘𝑥) = 0. (8)

It will be shown below that the TIMIBC-ext is stable for any choice of 𝑠 under the condition

|𝑠𝑀 | < 1. (9)

To demonstrate stability, let the dispersion relation (Eq. 8) be rewritten as

𝛾

(𝜔/𝑐 − (1 + 𝑠)𝑀𝑘𝑥)
= − 𝜌0𝑐

𝑍
. (10)

We note that the numerator of Eq. (10), where 𝛾 is as defined in Eqs. (3) and (4), has branch points at 𝜔/𝑐 = (𝑀 − 1)𝑘𝑥
and 𝜔/𝑐 = (𝑀 + 1)𝑘𝑥 , shown as points A and C in Fig. 1 (assuming 𝑘𝑦 = 0 and 𝑘𝑥 > 0). The denominator of Eq. (10)
is a linear function of 𝜔/𝑐 and has a zero at 𝜔/𝑐 = (1 + 𝑠)𝑀𝑘𝑥 , noted as point B in Fig. 1. Under condition (9), we have

𝑀 − 1 < (1 + 𝑠)𝑀 < 𝑀 + 1.

That is, point B will be located between the two branch points A and C in Fig. 1 when parameter 𝑠 satisfies Eq. (9). It is
easy to show that this is true for 𝑘𝑥 < 0 as well. Then, for any 𝜔 on the upper half plane, denoted by point D in Fig. 1,
we have

𝑎𝑟𝑔

{
𝛾

(𝜔/𝑐 − (1 + 𝑠)𝑀𝑘𝑥)

}
=
𝛼1 + 𝛼2

2
− 𝛽 =

𝛼2 − 𝛽

2
− 𝛽 − 𝛼1

2
=

𝜃2
2

− 𝜃1
2
, (11)

for any real value of 𝑘𝑥 and a subsonic Mach number 𝑀 . Here, the angles for the arguments are as shown in Fig. 1.
Now considering triangles Δ𝐴𝐷𝐵 and Δ𝐵𝐷𝐶, we obviously have

0 < 𝜃1 < 𝜋, 0 < 𝜃2 < 𝜋. (12)

Then, it follows immediately that

−𝜋

2
<

𝜃2
2

− 𝜃1
2

<
𝜋

2
. (13)

Hence,

−𝜋

2
< 𝑎𝑟𝑔

{
𝛾

(𝜔/𝑐 − (1 + 𝑠)𝑀𝑘𝑥)

}
<

𝜋

2
,

and

𝑅𝑒

{
𝛾

(𝜔/𝑐 − (1 + 𝑠)𝑀𝑘𝑥)

}
> 0. (14)

That is, for the left hand side of Eq. (10), it maps any value of 𝜔 in the upper half of the complex 𝜔 plane to a complex
number whose real part is positive.

For the right hand side of Eq. (10), however, because of the passivity condition for the impedance function 𝑍 (𝜔),
namely, 𝑅𝑒 {𝑍 (𝜔)} ≥ 0 for 𝐼𝑚{𝜔} ≥ 0, it maps any value of 𝜔 in the upper half of the complex 𝜔 plane to a complex
number whose real part is negative. as we have

𝑅𝑒

{
− 𝜌0𝑐

𝑍

}
≤ 0. (15)

Therefore, it follows that it is not possible for Eq. (10) to have a root in the upper half 𝜔 plane, and the dispersion
relation equation (Eq. 8) for the TIMIBC-ext will contain no unstable waves for any value of parameter 𝑠 that satisfies
condition (9).

The benefits of choosing a proper value for 𝑠, particularly for a high subsonic mean flow Mach number, are discussed
next.
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Figure 1 An illustration for the mapping property shown in Eq. (14). Crossed lines indicate the branch cuts for√︃
(𝜔/𝑐 − 𝑀𝑘𝑥)2 − 𝑘2

𝑥 . Points A, B, and C have coordinates (𝑀 − 1)𝑘𝑥 , (1 + 𝑠)𝑀𝑘𝑥 , and (𝑀 + 1)𝑘𝑥 , respectively,
on the real axis. Point D represents an arbitrary point in the upper half 𝜔 plane.

III. Analysis of reflection coefficients
We will examine the potential benefits of the TIMIBC-ext for improving the accuracy of the TIMIBC by comparing

the theoretical reflection coefficients at a liner surface produced by both conditions, as well as that by the original
Ingard-Myers condition. Let a plane wave incident onto a lined surface located at 𝑧 = 0 be denoted as

𝑝𝑖𝑛𝑐 = 𝐴𝑖𝑛𝑐𝑒
𝑖𝑘𝑥 𝑥+𝑖𝑘𝑧 𝑧−𝑖𝜔𝑡 (16)

where for acoustic waves we have[8]

𝑘𝑥 =

(𝜔
𝑐

) cos 𝜃
1 + 𝑀 cos 𝜃

, 𝑘𝑧 =

(𝜔
𝑐

) sin 𝜃
1 + 𝑀 cos 𝜃

. (17)

Here, 𝜃 is the angle between the plane wave vector (𝑘𝑥 , 𝑘𝑧) and the 𝑥 axis on the 𝑥-𝑧 plane, as illustrated in Fig. 2. Note
that in the current definition 𝜃 is between −𝜋 and 0 for incident waves. With the angle 𝜃 as defined in Fig. 2, the incident
wave is in the downstream direction when −𝜋/2 < 𝜃 < 0 and this situation will be referred to as Downstream Incidence
(DI)/Upstream Source (US). The incident wave is in the upstream direction when −𝜋 < 𝜃 < −𝜋/2 and this will be
referred to as Upstream Incidence (UI)/Downstream Source (DS). At 𝜃 = −𝜋/2, the wave is at normal incidence.

Let the reflected wave be denoted by

𝑝𝑟𝑒 𝑓 = 𝑅𝐴𝑖𝑛𝑐𝑒
𝑖𝑘𝑥 𝑥−𝑖𝑘𝑧 𝑧−𝑖𝜔𝑡 , (18)

where 𝑅 stands for the reflection coefficient.
Using the Ingard-Myers condition (Eq. 1), it is straightforward to find that 𝑅, when expressed in incidence angle 𝜃,

is (see, e.g., [1, 6])

𝑅 =
𝑍 (1 + 𝑀 cos 𝜃) sin 𝜃 + 𝜌0𝑐

𝑍 (1 + 𝑀 cos 𝜃) sin 𝜃 − 𝜌0𝑐
. (19)

On the other hand, the plane wave reflection coefficient given by the TIMIBC-ext (Eq. 7), denoted by 𝑅′, is found to
be

𝑅′ =
𝑍 (1 + 𝑀 cos 𝜃) sin 𝜃 + 𝜌0𝑐

[
1 + (1 − 𝑠)𝑀 cos 𝜃 − 𝑠𝑀2 cos2 𝜃

]
𝑍 (1 + 𝑀 cos 𝜃) sin 𝜃 − 𝜌0𝑐

[
1 + (1 − 𝑠)𝑀 cos 𝜃 − 𝑠𝑀2 cos2 𝜃

] . (20)

Compared with Eq. (19), it is easy to see that the difference between 𝑅 and 𝑅′ is caused by an extra term 𝛿,

𝛿 = (1 − 𝑠)𝑀 cos 𝜃 − 𝑠𝑀2 cos2 𝜃, (21)
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z

xθ < 0

Figure 2 A schematic diagram showing a plane wave incident onto a liner surface at 𝑧 = 0.

that appears in both the numerator and denominator of Eq. (20). We observe that, while this difference term 𝛿 is always
zero for normal incident waves (i.e., 𝜃 = −𝜋/2), it can be made to vanish for an additional angle 𝜃0, called the vanishing
angle, when the tunable parameter 𝑠 is such that

(1 − 𝑠) − 𝑠𝑀 cos 𝜃0 = 0. (22)

This yields

𝑠 =
1

1 + 𝑀 cos 𝜃0
. (23)

For a subsonic flow (|𝑀 | < 1), to satisfy condition (9) for 𝑠, the vanishing angle 𝜃0 should be such that

𝑀

1 + 𝑀 cos 𝜃0
< 1. (24)

To show the benefits of choosing a proper value for parameter 𝑠, the reflection coefficients for the TIMIBC-ext
(Eq. 20) and the TIMIBC (Eq. 20, 𝑠 = 1), and their comparisons with that by the Ingard-Myers condition (Eq. 19) are
plotted in Fig. 3, using 𝑀 = 0.8 and 𝑍/𝜌0𝑐 = 0.5 + 0.1𝑖. For the results shown in Fig. 3, the vanishing angle 𝜃0 for the
parameter 𝑠 as shown in Eq. (23) is chosen to be −𝜋/4, a downstream incident angle. It is seen that, at such a high
subsonic Mach number, the reflection coefficient by the TIMIBC differs substantially from that by the Ingard-Myers
condition, except near the angle of normal incidence, 𝜃 = − 𝜋

2 , where the two match exactly. On the other hand, the
differences between the TIMIBC-ext and the Ingard-Myers are drastically reduced for all the downstream incident
angles. In fact, it is found that the improvement in the reflection coefficient is not sensitive to the particular choice of 𝜃0
as long as it is an angle within the downstream incidence range. This demonstrates the potential of the TIMIBC-ext for
improving the performance of the TIMIBC as a stabilized impedance condition for flows with a high subsonic Mach
number.

Figure 4 shows the comparison of reflection coefficients when the vanishing angle 𝜃0 is chosen to be an upstream
incident angle. For the choice of 𝜃0 = −3𝜋/4, with 𝑀 = 0.5 and 𝑍/𝜌0𝑐 = 0.5 + 0.1𝑖, the errors in the reflection
coefficient are clearly reduced for all the upstream incident waves, −𝜋 < 𝜃 < −𝜋/2. However, the errors for the
downstream incident waves, for which −𝜋/2 < 𝜃 < 0, are seen to be increased as a result. This implies choosing an
upstream vanishing angle would be beneficial only when the incident waves are expected to be initiated downstream of
the liner.

Figure 5 shows the valid choices of vanishing angle 𝜃0 for a given mean flow Mach number 𝑀 > 0. The solid curve
in the figure indicates the limiting condition cos 𝜃0 = (𝑀 − 1)/𝑀 as given by Eq. (24). The valid values for 𝜃0 are to
the right of the curve when 𝑀 > 0.5 while no such limit is necessary when 𝑀 ≤ 0.5. The vertical dashed line denotes
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Figure 3 Comparison of reflection coefficients between 𝑅 by the Ingard-Myers condition and 𝑅′ by the TIMIBC
on the left, and between 𝑅 and 𝑅′ by the TIMIBC-ext on the right, where 𝜃 is the plane wave incident angle. The
incident wave is in the downstream direction when −𝜋/2 < 𝜃 < 0 and upstream when −𝜋 < 𝜃 < −𝜋/2. For the
TIMIBC-ext, the vanishing angle 𝜃0 = −𝜋/4.
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Figure 4 Comparison of reflection coefficients between 𝑅 by the Ingard-Myers condition and 𝑅′ by the TIMIBC
on the left, and between 𝑅 and 𝑅′ by the TIMIBC-ext on the right, where 𝜃 is the plane wave incident angle. The
incident wave is in the downstream direction when −𝜋/2 < 𝜃 < 0 and upstream when −𝜋 < 𝜃 < −𝜋/2. For the
TIMIBC-ext, the vanishing angle 𝜃0 = −3𝜋/4.
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Figure 5 Valid choices of vanishing angle 𝜃0 for a given mean flow Mach number 𝑀 > 0. The solid curve
indicates cos 𝜃0 = (𝑀 − 1)/𝑀. The valid values for 𝜃0 are to the right of the curve. The solid circles and square
symbols indicate the choices of 𝜃0 for the value of 𝑠 as defined in Eq. (23) used in generating the results shown in
Fig. (6). The vertical dashed line denotes the separation of valid upstream and downstream vanishing angles.

the separation of valid upstream and downstream vanishing angles. The vanishing angle is in the downstream direction
(Upstream Source) when −𝜋/2 < 𝜃0 < 0 and upstream direction (Downstream Source) when −𝜋 < 𝜃0 < −𝜋/2.

Figure 6 shows the effect of Mach number on the errors of the reflection coefficients for the TIMIBC-ext when the
parameter 𝑠 is determined by Eq. (23). Let 𝐸𝑈𝑆 and 𝐸𝐷𝑆 respectively denote the difference between 𝑅, Eq. (19), and
𝑅′, Eq. (20), averaged over all downstream incident (Upstream Source) and upstream incident (Downstream Source)
angles, i.e.,

𝐸𝑈𝑆 =
2
𝜋

∫ 0

−𝜋/2
|𝑅 − 𝑅′ |𝑑𝜃, (25)

𝐸𝐷𝑆 =
2
𝜋

∫ −𝜋/2

−𝜋

|𝑅 − 𝑅′ |𝑑𝜃. (26)

Plotted in Fig. 6(a) are the maximum 𝐸𝑈𝑆 over a range of all impedance values of 𝑍 = 𝑍𝑟 + 𝑖𝑍𝑖 for 0 < 𝑍𝑟/𝜌0𝑐 ≤ 10
and −10 ≤ 𝑍𝑖/𝜌0𝑐 ≤ 10, where a grid search is conducted. The parameter 𝑠 is chosen with a downstream incident angle
𝜃0 = −𝜋/4 (closed squares in Fig. 5). Significant reduction of the differences by the TIMIBC-ext over the TIMIBC is
observed for all Mach numbers.

For upstream incidence (Downstream Source), due to the condition given in (24), the choice for the vanishing angle
𝜃0 is restricted when |𝑀 | > 0.5. Plotted in Fig. 6(b) are the maximum 𝐸𝐷𝑆 when the parameter 𝑠 is chosen with an
upstream incident angle (closed circles in Fig. 5)

𝜃0 =

{
−3𝜋/4 0 < 𝑀 ≤ 0.5
−𝜋/4 + 𝜃𝑀/2 0.5 < 𝑀 < 1

, (27)
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Figure 6 Error of reflection coefficients as a function of Mach number 𝑀 averaged over (a) all downstream
incident angles, Eq. (25), and (b) all upstream incident angles, Eq. (26).

in which

𝜃𝑀 = − arccos
(
𝑀 − 1
𝑀

)
. (28)

The reflection error is significantly reduced up to around 𝑀 = 0.5 in Fig. 6(b). As expected, for upstream inci-
dences/downstream sources, the benefit of the TIMIBC-ext over the TIMIBC decreases as the Mach number increases
from 0.5, unlike the case for the downstream incidences/upstream sources shown in Fig. 6(a). This is due to the
limitation for the choice of the vanishing angle 𝜃0 as shown in Fig. 5.

In summary, choosing a vanishing angle 𝜃0, hence the value of 𝑠 by Eq. (23), for a downstream incidence angle
reduces the error in the reflection coefficient for waves at all downstream incidence angles. Therefore, we may simply
choose 𝜃0 = −𝜋/4 for the case of Downstream Incidence/Upstream Source, resulting in a value for 𝑠 as

Downstram 𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒/𝑈𝑝𝑠𝑡𝑟𝑒𝑎𝑚 𝑆𝑜𝑢𝑟𝑐𝑒 : 𝑠 =
1

1 + 𝑀/
√

2
. (29)

Similarly, for the case of Upstream Incidence/Downstream Source, we may simply choose 𝜃0 as given in Eq. (27),
resulting in a value for 𝑠 as

Upstram 𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒/𝐷𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 𝑆𝑜𝑢𝑟𝑐𝑒 : 𝑠 =


1

1−𝑀/
√

2
0 < 𝑀 ≤ 0.5

1
1−

√
𝑀 (1−

√
2𝑀−1)/2

0.5 < 𝑀 < 1
. (30)

These choices for the vanishing angle 𝜃0 are as shown in Fig. (5). Of course, if only incident waves of a single
angle are considered, the vanishing angle 𝜃0 can be set to that angle, and the value of 𝑠 is then determined by Eq. (23)
accordingly.

IV. Time domain impedance boundary condition for TIMIBC-ext
In this section, we discuss the implementation of the TIMIBC-ext in time domain simulations. Let the impedance,

as a function of frequency, be expressed as the following multipole expansion[9–13]:

𝑍 (𝜔) = −𝑖𝜔ℎ0 + 𝑅0 +
𝑁∑︁

𝑚=1

𝐴𝑚

𝜆𝑚 − 𝑖𝜔
+ 1

2

𝐿∑︁
ℓ=1

[
𝐵ℓ + 𝑖𝐶ℓ

𝛼ℓ + 𝑖𝛽ℓ − 𝑖𝜔
+ 𝐵ℓ − 𝑖𝐶ℓ

𝛼ℓ − 𝑖𝛽ℓ − 𝑖𝜔

]
. (31)
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This will be referred to as the broadband multipole expansion model. It contains 𝑁 + 2𝐿 poles in the complex
𝜔-plane. In Eq. (31), all parameters ℎ0, 𝑅0, 𝜆𝑚, 𝐴𝑚, 𝛼ℓ , 𝛽ℓ , 𝐵ℓ , 𝐶ℓ assume real values. The values of these parameters
are to be determined such that 𝑍 (𝜔) matches the measured impedance values as closely as possible. For such a model
to be physical, the function 𝑍 (𝜔) should satisfy the conditions for causality, reality, and passivity [4, 14, 15], or be a
positive-real function as defined in [16]:

1) (Causality) 𝑍 (𝜔) is analytic (no poles) in open upper half-plane 𝐼𝑚{𝜔} > 0;
2) (Reality) �̄� (𝜔) = 𝑍 (−𝜔) for real 𝜔 (an overbar denotes complex conjugate);
3) (Passivity) 𝑅𝑒 {𝑍 (𝜔)} ≥ 0 for 𝐼𝑚 {𝜔} ≥ 0.

These conditions lead immediately to the requirements that [16, 17]:

ℎ0, 𝑅0, 𝜆𝑚, 𝛼ℓ ≥ 0. (32)

A minimization procedure written in Python for finding the coefficients of the multipole expansion ensuring passivity
has recently been formulated in [6]. Time domain implementation of the TIMIBC-ext using the multipole expansion
(Eq. 31) is given below.

A. Time domain impedance boundary for pressure and its normal derivative
Applying Eq. (31) to the TIMIBC-ext condition (Eq. 7), it is straightforward to find the following time domain

formulation for 𝑝 and 𝜕𝑝/𝜕𝑛:

ℎ0
𝜕𝑝𝑛

𝜕𝑡
+ 𝑅0𝑝𝑛 = −𝜌0

(
𝜕𝑝

𝜕𝑡
+ (1 + 𝑠)𝑈 𝜕𝑝

𝜕𝑥

)
−

𝑁∑︁
𝑚=1

𝐴𝑚𝑝
(0)
𝑚 −

𝐿∑︁
ℓ=1

[
𝐵ℓ 𝑝

(1)
ℓ

+ 𝐶ℓ 𝑝
(2)
ℓ

]
, (33)

𝑑𝑝
(0)
𝑚

𝑑𝑡
+ 𝜆𝑚𝑝

(0)
𝑚 = 𝑝𝑛, 𝑚 = 1, ..., 𝑁, (34)

𝑑𝑝
(1)
ℓ

𝑑𝑡
+ 𝛼ℓ 𝑝

(1)
ℓ

+ 𝛽ℓ 𝑝
(2)
ℓ

= 𝑝𝑛,
𝑑𝑝

(2)
ℓ

𝑑𝑡
+ 𝛼ℓ 𝑝

(2)
ℓ

− 𝛽ℓ 𝑝
(1)
ℓ

= 0, ℓ = 1, ..., 𝐿, (35)

where 𝑝𝑛 stands for the normal pressure derivative term 𝜕𝑝/𝜕𝑛, and 𝑝
(0)
𝑚 and 𝑝

(1)
ℓ

, 𝑝 (2)
ℓ

are auxiliary variables that are
introduced for the convenience of implementation in which, 𝑚 = 1, ..., 𝑁 and ℓ = 1, ..., 𝐿.

B. Time domain impedance boundary for normal acoustic velocity
The frequency domain TIMIBC-ext (Eq. 7) written in terms of pressure 𝑝 and normal velocity 𝑢𝑛 at the boundary

can be expressed as follows:

(−𝑖𝜔) 𝑝 + (1 + 𝑠)𝑈 𝜕𝑝

𝜕𝑥
= 𝑍

(
(−𝑖𝜔) �̂�𝑛 +𝑈

𝜕�̂�𝑛

𝜕𝑥

)
. (36)

Converting into the time domain, we obtain the following boundary condition written in a system of first-order differential
equations for computing 𝑢𝑛 at lined boundary points:

ℎ0
𝜕𝑢𝑛

𝜕𝑡
+ 𝑅0𝑢𝑛 = 𝑝 + 𝑠𝑈

𝜕𝑔

𝜕𝑥
−

𝑁∑︁
𝑚=1

𝐴𝑚𝑝
(0)
𝑚 −

𝐿∑︁
ℓ=1

[
𝐵ℓ 𝑝

(1)
ℓ

+ 𝐶ℓ 𝑝
(2)
ℓ

]
, (37)

𝑑𝑝
(0)
𝑚

𝑑𝑡
+ 𝜆𝑚𝑝

(0)
𝑚 = 𝑢𝑛, 𝑚 = 1, ..., 𝑁, (38)

𝑑𝑝
(1)
ℓ

𝑑𝑡
+ 𝛼ℓ 𝑝

(1)
ℓ

+ 𝛽ℓ 𝑝
(2)
ℓ

= 𝑢𝑛,
𝑑𝑝

(2)
ℓ

𝑑𝑡
+ 𝛼ℓ 𝑝

(2)
ℓ

− 𝛽ℓ 𝑝
(1)
ℓ

= 0, ℓ = 1, ..., 𝐿, (39)

𝜕𝑔

𝜕𝑡
+𝑈

𝜕𝑔

𝜕𝑥
= 𝑝, (40)

where 𝑔, 𝑝 (0)
𝑚 and 𝑝

(1)
ℓ

, 𝑝 (2)
ℓ

are auxiliary variables in which, 𝑚 = 1, ..., 𝑁 and ℓ = 1, ..., 𝐿.
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Figure 7 A schematic diagram for the geometrical modeling of an internal ducted environment as an external
scattering problem. The liner section inside the duct is noted by the darkened area. The dashed line indicates the
locations of microphone measurements in the GFIT experiment. The location of the source plane where the
incident mode is introduced is indicated by the square inside the duct.

V. A numerical example
In this section, a numerical example is presented where a recent NASA Langley Research Center Grazing Flow

Impedance Tube (GFIT) experiment[7] is simulated using the TIMIBC-ext condition. In order to formulate the numerical
simulation as an external scattering problem, the inherently internal duct propagation problem is cast in an open-ended
duct configuration. A duct geometry is constructed where part of its surfaces reproduce the ducted environment in the
GFIT experiment while external and terminating surfaces are added such that a closed scattering body surface is formed,
as shown in Figure 7.

The following convective wave equation of a uniform mean flow 𝑼 is solved by a time domain boundary element
method: (

𝜕

𝜕𝑡
+𝑼 · ∇

)2
𝑝 − 𝑐2∇2𝑝 = 𝑠(𝒓, 𝑡), (41)

where 𝒓 = (𝑥, 𝑦, 𝑧) is the position vector, 𝑡 is time, 𝑐 is the speed of sound, and 𝑠(𝒓, 𝑡) represents a prescribed acoustic
source term. Here, ∇ = (𝜕/𝜕𝑥, 𝜕/𝜕𝑦, 𝜕/𝜕𝑧). In addition, the source function 𝑠(𝒓, 𝑡) in Eq. (41) is formulated such that
an incident plane wave is generated in the ducted region. The time domain impedance boundary condition (Eqs. 33-35)
is applied on a section of the duct interior surface where the acoustic liner is installed. In this way, propagation
and scattering of the zeroth-order plane wave mode by the liner section are computed as a time domain scattering
problem. The details of the numerical method are given in [5] and are not repeated here. We note that although the
incident source is the zeroth-order plane wave mode, higher-order modes are present and observed in the numerical
solution for the acoustic field due to scattering by the liner. The acoustic field produced by the computation will be
compared to measured data from the aforementioned GFIT experiment[7]. While multiple liners were considered in the
experimental study, only the results for the liner labeled IU2 are included in this work. The IU2 liner is a 15.5”-long
perforate-over-honeycomb liner additively manufactured using stereolithography (SLA) resin, and consists of a 4×30
array of 0.4”×0.4”×2.0” chambers with an integrated facesheet. There are 22 perforations with a diameter of 0.041”
positioned over each chamber such that they do not interface with the 0.13”-thick solid partitions that separate the
chambers. As discussed further in the description of the GFIT test campaign [7], the liner was designed to be weakly
nonlinear with a facesheet thickness of 0.034”.
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A. Formulation of incident plane wave
To impose an incident plane wave (zeroth order mode) inside the duct as in the GFIT experiments, the source term

for the wave equation (Eq. 41) is specified as the following:

𝑠(𝒓, 𝑡) = Φ′
0 (𝑡)𝛿(𝑥 − 𝑥0), (𝑦, 𝑧) ∈ [0, 𝐿𝑦] × [−𝐿𝑧/2, 𝐿𝑧/2], (42)

where Φ0 (𝑡) is a prescribed function of 𝑡 and a prime denotes the derivative with respect to 𝑡, 𝑥0 is the 𝑥-coordinate for
the location of the source (referred to as the source plane, where the plane wave is to be introduced), and 𝐿𝑦 and 𝐿𝑧

denote the dimensions of the duct cross section in 𝑦 and 𝑧 directions, respectively. For the results reported in this section,
the boundary element model for the duct extends from 𝑥 = −1.5 to 𝑥 = 3.0. Throughout this example, the length unit is
meters (m) and the duct cross section is such that 𝐿𝑦 = 0.0635 and 𝐿𝑧 = 0.0508 as used in the GFIT experiment. A
liner section is installed at the upper surface of the duct from 𝑥 = 0.208 to 𝑥 = 0.615 and at 𝑦 = 𝐿𝑦 . Solving the wave
equation (Eq. 41) with a source term given in Eq. (42), it can be shown that the analytical solution for the acoustic
pressure 𝑝(𝒓, 𝑡) generated inside a duct of solid surfaces is a plane wave pulse of the form

𝑝(𝒓, 𝑡) =
{
Φ0

(
𝑡 − 𝑥−𝑥0

𝑈+𝑐
)

𝑥 > 𝑥0

Φ0
(
𝑡 − 𝑥−𝑥0

𝑈−𝑐
)

𝑥 < 𝑥0
, (𝑦, 𝑧) ∈ [0, 𝐿𝑦] × [−𝐿𝑧/2, 𝐿𝑧/2] . (43)

Equation (43) represents two independent plane waves (zeroth order mode) propagating at a speed of 𝑈 + 𝑐 and 𝑈 − 𝑐

to the right and left, respectively, of the source plane location 𝑥 = 𝑥0. Here, 𝑈 is the streamwise uniform mean flow
velocity inside the duct.

For the current computation, the source time function in Eq. (42) is taken to be the following broadband Gaussian
function:

Φ0 (𝑡) = 𝑒−𝜎𝑡2
(44)

where 𝜎 = 1.42/(6Δ𝑡)2, where Δ𝑡 is the time step used in the numerical simulation. Since the plane waves will
eventually be reflected at the ends of the duct, the time domain simulation is to be stopped before the reflected waves
reach the microphones located at the side of the duct opposite to the liner section from 𝑥 = 0 to 𝑥 = 1. For this purpose,
the source plane location is 𝑥0 = 1.1, downstream of the liner section and sufficiently away from the trailing edge of the
liner section and the microphone locations.

B. Numerical results and comparison with experimental data
In the GFIT experiment that is used in the current comparison[7], the mean flow is non-uniform with a setpoint

centerline Mach number of 0.6. However, for the computational results reported here, a uniform mean flow Mach number
of 0.433, the average velocity measured in the experiment, is assumed because a constant mean flow is required for the
boundary integral equation formulation[5]. In the experiment, microphones are mounted on the lower wall (𝑦 = 0)
opposite the liner section from 𝑥 = 0 to 𝑥 = 1 to measure the pressure field. Based on the experimental measurements,
the impedance of the liner is educed at a set of discrete frequencies from 400 Hz to 3000 Hz, with an increment of
10 Hz, resulting in a set of impedance values for 261 frequencies.

For the IU2 liner considered here, the educed resistance and reactance are plotted as discrete points in Fig. 8. The
educed impedance is numerically simulated using the multipole expansion model (Eq. 31) with a simple choice of two
paired poles, i.e., 𝑁 = 0 and 𝐿 = 2. The multipole expansion approximation is plotted as dashed lines in Fig. 8. The
coefficients for the expansion, normalized by 𝜌𝑜𝑐, are as follows:

ℎ0 = 0.029796, 𝑅0 = 0.893594,
𝛼1 = 9.571242, 𝛽1 = 32.883047, 𝐵1 = 3.133092, 𝐶1 = 0.729854,
𝛼2 = 0.838532, 𝛽2 = 5.042585, 𝐵2 = 34.902352, 𝐶2 = −5.176662.

The multipole expansion model fits the educed impedance relatively well over the full range of frequencies over which
measurements were made. This allows the liner effects at all frequencies to be simulated in a single time domain
calculation using the model.

Figure 9 shows stacked snapshots of pressure variation along the duct interior surface opposite the liner section.
As the plane wave pulse propagates to the left of the source location, the effects of the liner on the incident pressure
pulse are clearly seen and captured by the computation. Mean flow effect on the width of the upstream and downstream
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Figure 8 Multipole expansion approximation of impedance function. Symbols are the experimentally educed
values and dashed lines are values by the fitted model. (a) Resistance; (b) Reactance.

propagating pulses is evident in Fig. 9. Also visible are the reflections of the plane wave pulses by the trailing edge of
the liner section and by the terminating opening of the duct at 𝑥 = 3. The time domain simulation is stopped before the
wave reflected from the end of the duct reaches the measurement zone from 𝑥 = 0 to 𝑥 = 1.

−1 0 1 2 3 4
x

−5

−4

−3

−2

−1

0 t=0.016
t=0.177
t=0.338
t=0.498
t=0.659
t=0.82
t=0.98
t=1.141
t=1.302
t=1.462
t=1.623
t=1.784
t=1.945
t=2.105
t=2.266
t=2.427
t=2.587
t=2.748
t=2.909
t=3.07
t=3.23
t=3.391
t=3.552
t=3.712
t=3.873

Figure 9 Stacked snapshots of acoustic pressure along the ducted side-wall opposite to the side of the liner at
selected times as indicated. A broadband plane wave is introduced downstream of the liner section. Vertical
dotted lines indicate the leading and trailing edges of the liner section.
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The time domain solution is converted into the frequency domain using the Fourier transform. Due to space
limitations, we cannot show the comparison for all 261 frequencies. Figure 10 presents the comparison of computed
and experimental results at a set of selected frequencies for the pressure distribution along the wall opposite the liner
section. The distribution of sound pressure level (SPL) and phase is plotted in Fig. 10(a) and Fig. 10(b), respectively.
The symbols represent the measurements, and the lines depict the computations. Very good agreement is observed at all
frequencies, both for the sound pressure level absorption and for the phase distributions. The deviations that appear
in the comparisons between predicted and measured values in cases involving large attenuation (e.g., approximately
40 dB at 𝑥 ≲ 0.25 m for frequencies from 800-1200 Hz) are largely due to the duration of the swept sine source used in
the experiment. Increasing the swept sine duration would allow for more data averaging and reduced scatter in such
situations (however, at the expense of increased measurement time). These comparisons demonstrate the validity of the
TIMIBC-ext formulation as a time domain impedance boundary condition for lined surfaces with high speed grazing
flow.

To compare the performances of the TIMIBC and the TIMIBC-ext, another simulation for the current configuration
is conducted by applying the TIMIBC condition (Eqs. 33-35, 𝑠 = 1) on the liner surface. Figure 11 shows the SPL
results for both conditions at two frequencies for which the predictions differ the most. It is evident that the solution
provided by the TIMIBC-ext is closer to the measurements. Although a setpoint centerline velocity of Mach number
0.6 is only moderately high, we expect that the improvement by the TIMIBC-ext over the TIMIBC would be more
significant for higher Mach numbers.

VI. Conclusions
An extension of the recently proposed TIMIBC to liners with a grazing flow of high subsonic Mach numbers

has been considered. While the TIMIBC effectively eliminates the Kelvin-Helmholtz-type instability inherent in the
original Ingard-Myers condition, it only approximates the Ingard-Myers condition well at low to mid Mach numbers.
The proposed TIMIBC-ext is a generalization of the TIMIBC with a tunable parameter. It has been found that the
value for this parameter can be chosen to improve the accuracy of the TIMIBC for waves of either Upstream Incidence
(UI)/Downstream Source (DS) or Downstream Incidence (DI)/Upstream Source (US). Consequently, the TIMIBC-ext
would be an effective and stable time domain impedance condition for flows with high subsonic Mach numbers when
the sound source location relative to the liner, either upstream or downstream, is known. A numerical example of the
TIMIBC-ext has been presented using the NASA GFIT configuration, where the source is placed downstream of the liner.
Comparison of computational results and experimental measurements has demonstrated the validity of the TIMIBC-ext.

13



0.0 0.2 0.4 0.6 0.8 1.0

100

120

140

SP
L 
(d
b)

400.0Hz

0.0 0.2 0.4 0.6 0.8 1.0

90

100

110

120

130

140

150

600.0Hz

0.0 0.2 0.4 0.6 0.8 1.0

90

100

110

120

130

140

150

800.0Hz

0.0 0.2 0.4 0.6 0.8 1.0

90

100

110

120

130

140

150

1000.0Hz

0.0 0.2 0.4 0.6 0.8 1.080

100

120

140

SP
L 
(d
b)

1200.0Hz

0.0 0.2 0.4 0.6 0.8 1.0

80

90

100

110

120

130

140

150

1400.0Hz

0.0 0.2 0.4 0.6 0.8 1.0

80

90

100

110

120

130

140

150

1600.0Hz

0.0 0.2 0.4 0.6 0.8 1.0

80

90

100

110

120

130

140

150

1800.0Hz

0.0 0.5 1.0
x

110

120

130

140

150

SP
L 
(d
b)

2000.0Hz

0.0 0.5 1.0
x

110

115

120

125

130

135

140

145

150

2200.0Hz

0.0 0.5 1.0
x

110

115

120

125

130

135

140

145

150

2400.0Hz

0.0 0.5 1.0
x

110

115

120

125

130

135

140

145

150

2600.0Hz

(a)

0.0 0.2 0.4 0.6 0.8 1.0

−100

0

100

Ph
as
e

400.0Hz

0.0 0.2 0.4 0.6 0.8 1.0

−150

−100

−50

0

50

100

150

600.0Hz

0.0 0.2 0.4 0.6 0.8 1.0

−150

−100

−50

0

50

100

150

800.0Hz

0.0 0.2 0.4 0.6 0.8 1.0

−150

−100

−50

0

50

100

150

1000.0Hz

0.0 0.2 0.4 0.6 0.8 1.0

−100

0

100

Ph
as
e

1200.0Hz

0.0 0.2 0.4 0.6 0.8 1.0

−150

−100

−50

0

50

100

150

1400.0Hz

0.0 0.2 0.4 0.6 0.8 1.0

−150

−100

−50

0

50

100

150

1600.0Hz

0.0 0.2 0.4 0.6 0.8 1.0

−150

−100

−50

0

50

100

150

1800.0Hz

0.0 0.5 1.0
x

−100

0

100

Ph
as
e

2000.0Hz

0.0 0.5 1.0
x

−150

−100

−50

0

50

100

150

2200.0Hz

0.0 0.5 1.0
x

−150

−100

−50

0

50

100

150

2400.0Hz

0.0 0.5 1.0
x

−150

−100

−50

0

50

100

150

2600.0Hz

(b)

Figure 10 (a): SPL vs. 𝑥 at selected frequencies as indicated; (b): Phase vs. 𝑥. Line: computation; Symbol:
experiment.
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Figure 11 Sound pressure level distributions computed by the TIMIBC and TIMIBC-ext and their comparison
with GFIT measurements.
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