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* NASA’s Hi-Rate Composite Aircraft Manufacturing (HiCAM) project is focused on addressing
an aviation industry need for more rapid production of composite aircraft to meet increasing

global demand for lightweight transport aircraft.

VERICUT
Utilities Help

* Much of the technology being
considered in HICAM uses

Automated Fiber Placement
(AFP)

* The Desigh For Manufacturing
(DFM) HiCAM task is focused
on development of software to
optimize AFP structures for
weight and manufacturability
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Overview of DFM Software

HyperX performs stress analysis and
composite optimization for thousands of load
cases and a variety of failure criteria.
Generates optimized ply shapes, stacking
sequences, and ply counts.
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CAPP

The Computer Aided Process Planning (CAPP)
software automates process planning
functions within AFP. Combining the
automation with optimization schemes
reduces the occurrence of geometry related
fiber defects throughout a laminate.
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Vericut Composites Programming (VCP)
provides a suite of path planning tools to
generate machine motion for multiple

composites processes. VCP also contains tools

to analyze these processes as well as pass
data for analysis to other software.
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£ Software Integration

* |Integration with the three
software accomplished via
Python scripting

* A native integration
platform was developed on
top of HyperX — the “Script
Runner”

* Allows custom Ul
development and process
automation for HyperX as
well as external tools

Integration Approach

@CAPP

Python Codebase

C# Codebase

Runner”

Python “Headless’
Interface

Custom Ul
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Overall Optimization Approach

* Objective: develop laminate design that satisfies both stress and manufacturing regs.

* Bi-level strategy selected due to complexity and runtime of software involved

* Lower level: HyperX and CAPP iterate with VCP to optimize for stress and manufacturing

respectively

 Upper level: global iterations to converge the solution

Input

* Model
* Material
*Loads

[

HYPER )

VERICUT

V,

Sub-iterations for ]—)
laminate design l

[

Global
Ilterations

@ 4-»

:

Sub-iterations for

VERICUT

V,

manufacturability

Automation

Output

*Laminates
*Ply shapes
*Tool paths
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5% Overall Optimization Approach: HyperX-VCP

* Objective: get HyperX analysis sync’d up with as-

manufactured fiber directions

* Initially, HyperX assumes fiber directions based on

FEM material axis
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HYPER X

VERICUT
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[ Sub-iterations for |
laminate design

 VCP provides accurate fiber directions for each ply

and HyperX re-optimizes the laminate
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* The Computer Aided Process Planning (CAPP) >
software matchmakes the design and (HYPER - <I
manufacturing parameters. | e e - NG

Iterations

* Material
*Loads

* The goal is to minimize the deviation between the
as-manufactured and the as-designed structure..

CAPP Software Interface

* *Ply shapes
VERICUT® \J *Tool paths

V
Cp

J

[ Sub-iterations for |
manufacturability J

Autorotion

Search documentation...

* The principal functions are starting point,
layup strategy and laminate-level

optimizations.
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CAPP Integration with HyperX
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VCP CAPP

HyperX
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"1? Overall Optimization Approach: Global Iterations

* HyperX or CAPP can make changes to the plies
that the other software does not know about

* Global level iterations needed to converge the
HyperX-VCP and CAPP-VCP sub-iterations

e After each sub-iteration, the global optimizer can
insert new manufacturing-optimized plies to
resolve negative stress margins, as needed

Iteration N Plies
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n

Global |
Iterations *Laminates

Material *Ply shapes
*Loads I *Tool paths
( aa

lteration N+1 Plies

Ply 3 duplicated

(preserving
> manufacturability)
and inserted

between 1 and 2
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 Example demonstrates the HyperX-VCP iteration (CAPP-HyperX iteration still in work)
* 3m wind blade

* 1 load case (pressure distribution)

* High contour region selected as a good challenge problem

© Copyright 2023 Collier Aerospace Corporation.
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Wind Turbine Blade Laminate

* Plies generated in HyperX
e 20 Plies in total
* Symmetrical Plies

e The internal stresses of the wind turbine
blade

* Stress concentrations at bottom right

e Results on a thicker laminate in the stress
concentrations

 Margin of safety, delta, and % differences
was measured in the full plies.

& sampe

North America

Design Loads, Ny ot

[Ea===4x|
+~— Ply 11-20

— Ply 10
Ply 9

— Ply 8

Ply 7

Ply 6
Ply 5

Ply 4
Ply 3
Ply 2
Ply 1
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{z Angle Deviation
* Angle deviation in the complete plies
shows a deviation between 0° to 7°.
* Average deviation-1.0°—-1.6° in the 45
and -45 deg
* Large Deviations in:
* Left hand side of the model
w minor deviation in the bottom right
-
A 5:0
Rosette * VCP Paths Natural

Parallel
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Tow Average Maximum

path Angle Ply Number Deviation Deviation
45 2,19 1.52 6.28
Natural -45 5,16 1.03 7.14
90 3,18 0.52 3.3
0 1,20 1.04 7.18
45 2,19 1.67 6.47
parallel -45 5,16 1.25 7.75
90 3,18 0.98 5.9
0 1,20 0.68 4.61

45° Ply -45° Ply 78

7.3125
6.825
©.3375
5.85
5.3625
4875
4.3875
39
3.4125
2.925
24375
1.95
1.4625
0.975
0.4875
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"’1? Margin of safety

* The baseline of the wind turbine blade shows no negative margins of safety

 Negative margins are produced by both the natural and parallel tow path strategies

* The natural paths produced negative margins at the center right
* The parallel tow paths produced negative margins at the center left and right of the wind blade

Margin of Safety
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 For the “as-manufactured” fiber directions, the delta for some elements does not show a
large decrease or increase in MS.

* The % difference shows that the change of MS was significant in certain places but did not
significantly impact the resulting MS.

* The negative MS experienced relatively small changes in MS.
* Small changes in misalighment can affect the overall safety of the composite laminate.

Delta % Difference

135

11.914
10.328
8.7415
7.1554
5.5692

Natural

Parallel

© Copyright 2023 Collier Aerospace Corporation.



£>

5 | Outline & sampe

North America

Background and Introduction

Software Integration

Optimization Approaches

Verification Example with Wind Blade Section

Copyright 2023 Collier Aerospace Corporation.

Conclusions

CQLLIE HYPERX

A ERO

| g
i~




Cde
o

Conclusions & sampe

North America

* Presented approach for integration of stress analysis/optimization (HyperX) with AFP
manufacturing process planning (CAPP), including iteration with AFP path generation

(CGTech)

* Optimization results in laminates that are weight-optimum and also optimized for
manufacturability

* Demonstrated the approach on a section of a 3m wind blade. Automated iterations used to:

* Generate AFP paths on structure
* Automatically update stress analysis
* Add plies to structure to alleviate negative margins caused by fiber deviations

© Copyright 2023 Collier Aerospace Corporation.
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