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Fission Surface Power Project

Power

40 kWe at 10 years continuous power output.

Launch and Landing Loads

See attachment B of [1].

Radiation Protection

5 rem/yr above lunar background at 1 km.

Volume

4 m diameter cylinder, 6 m in length in the stowed launch configuration.

Mass

6000 Kg.

Power Cycles

Multiple commanded and autonomous on/off power cycling.

User Load

0% to 100% power at the user interface.

Fault Detection and Tolerance

Minimize, detect, and respond to single-point failures. Maintain
capability to continue providing no less than 5 kWe under faulted
conditions.

System Transportability

Capable of operating from the deck of a lunar lander or be removed
from the lander and placed on a separately provided mobile system and
transported to another lunar site for operation.

tyler.r.steiner@nasa.gov
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Fission Surface Power Project

Phase 1: three design concepts
Lockheed Martin, BWXT, Creare
Westinghouse, L3Harris
Intuitive Machines, X-Energy, Maxar, Boeing

FSP team Is processing Phase 1 and preparing for Phase 2

Project is actively studying radiation tolerance applications for FSP
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Scope of Radiation Tolerance Work

Gain knowledge to provide oversight for Phase 2

Model, plan, and execute irradiation tests to enable technology
maturation (pending annual budgets)

Define radiation tolerance requirements

tyler.r.steiner@nasa.gov @ANS



Radiation Environment

Natural and induced environment (ex-core)
GCR: protons, heavy ions
Solar: photons, protons, electrons B!
FSP: photons, neutrons
Add.: activation, bremsstrahlung, albedo, secondaries

Will require various faclilities
Gamma irradiation facilities
lon beams
Reactors

tyler.r.steiner@nasa.gov @ANS



Galactic Cosmic Rays
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Solar Energetic Particles
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Coronal mass ejections
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Induced Radiation

FSP
. [6]
At power conversion system: 10 Mrad, 5E14 n/cm? after 10 years
In-core: will be higher radiation levels
At power electronics and controllers: will be lower radiation levels

DRPS (Pu-238 shown)

At GPHS: 1 Mrad, 2E14 n/cm? after 20 years[ |
Spontaneous fission and alpha,n

tyler.r.steiner@nasa.gov @ANS



Testing (and Modeling) Candidate (Sub)Systems

Polymers®
Electronics®™

Magnetics®
SmCo: 2E18 n/cm2, 2.8E5 krad ©»

Structural?

Other
Coatings, working fluids, etc.

tyler.r.steiner@nasa.gov @ANS



Polymers

» Proton, electron, gamma irradiation
- Cross-linking: increase tensile strength
- Chain-scission: broken polymer chains

|

[5]

- Temperature, radiation, time

- Outgassing

- Examples:
- Epoxies
- Dry IUbrlcantS Figure 6. Effect of outgases on o-ring degradation, a) no degradation after exposures to 200 °C with or

without gamma radiation, but individually, i.e., o-ring alone and b) after 200 °C exposure with other ASC
organics together for 117 days.
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Electronics (1 of 2)

Total ionizing dose (TID)

Single event effects (SEE)

Displacement damage dose (DDD)

Prompt dose ~[12]

parametric shift/drift

Radiation GCR: protons, heavy ions GCR: protons, heavy ions GCR: protons, heavy ions
Solar: protons, electrons, photons [ Solar: protons Solar: protons Solar: photons
Rx/GPHS: photons, neutrons Rx/GPHS: neutrons Rx/GPHS: neutrons Rx/GPHS: photons
Effect Accumulated dose over time A single high energy strike Damage to lattice from many strikes |Large sudden
charges dielectrics causing a transient, upset, photocurrents in
latch-up, damage, or other bulk of die
effect
Impact ELDRS (bipolar devices), lasting [SEL, SET, SEU, SEFI, SEGR [PKA, vacancies, interstitials Dose rate upset,

dose rate latch-up

Test method

Gamma facility, reactor,
accelerator

Accelerator, reactor

Accelerator, reactor

Gamma facility

Mitigation
(other than rad hard IC)

Shielding

Redundancy, detection, and
reset

Shielding

Redundancy,
detection, and
reset
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Electronics (2 of 2)

- Power management and distribution
* Power conversion system controllers
* Sensing instrumentation

» Electrically driven mechanical devices
- Control drum motors, valves, etc.

tyler.r.steiner@nasa.gov
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Lightning talk this morning:
Emerging High Temperature

Future Lunar-Martian Reactors L”:



Test Facllities

Reactors Gamma Ray Irr. Fac. lon Facilities

(4G

@ Los Alamos

NATIONAL LABORATORY

This slide captures some (not all) potential collaborations; it does not imply any preference.

@ﬂﬂf]ﬂa

H BERKELEY LAB

Idaho National Laboratory

Some facilities can fit in multiple boxes — only shown once to portray breadth of options.
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Collaboration

NASA GRC is studying radiation tolerance for FSP

Seeking to engage the community
Experts of radiation effects on subsystems and relevant technology
Irradiation and post-irradiation testing
Radiation tolerance of components across technology readiness levels
Insight on practical and useful requirements
Top-down (goals) and bottom-up (vulnerabilities)

Feel free to reach out

N
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