

NUCLEAR and EMERGING TECHNOLOGIES for SPACE

May 6-10, 2024 Santa Fe, NM

NASA's Interest in Radiation Tolerance and Requirements of Candidate Technologies for Fission Surface Power and Further Relevance to Dynamic Radioisotope Power Systems

Tyler R. Steiner, PhD
Robert J. Bruckner, PhD
Scott D. Wilson
NASA Glenn Research Center

Fission Surface Power Project

Phase 1 Requirements [1]			
Power 40 kWe at 10 years continuous power output.			
Launch and Landing Loads	See attachment B of [1].		
Radiation Protection	5 rem/yr above lunar background at 1 km.		

Phase 1 Goals [1]			
Volume	4 m diameter cylinder, 6 m in length in the stowed launch configuration.		
Mass	6000 kg.		
Power Cycles	Multiple commanded and autonomous on/off power cycling.		
User Load	0% to 100% power at the user interface.		
Fault Detection and Tolerance	Minimize, detect, and respond to single-point failures. Maintain capability to continue providing no less than 5 kWe under faulted conditions.		
System Transportability	Capable of operating from the deck of a lunar lander or be removed from the lander and placed on a separately provided mobile system and transported to another lunar site for operation.		

Fission Surface Power Project

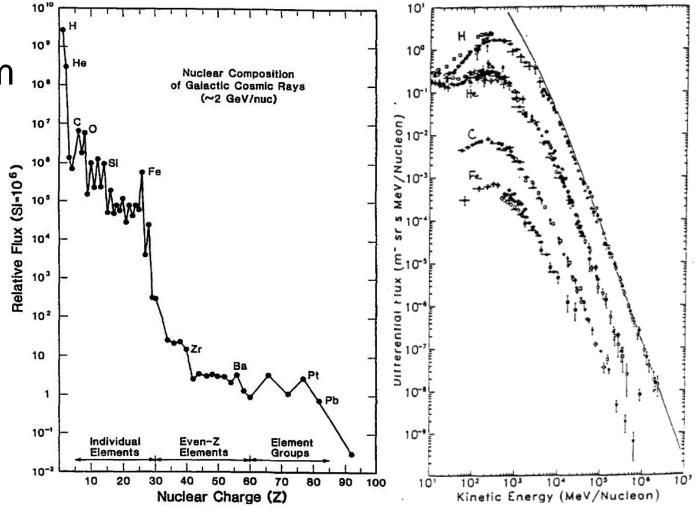
- Phase 1: three design concepts
 - Lockheed Martin, BWXT, Creare
 - Westinghouse, L3Harris
 - Intuitive Machines, X-Energy, Maxar, Boeing
- FSP team is processing Phase 1 and preparing for Phase 2
- Project is actively studying radiation tolerance applications for FSP

Scope of Radiation Tolerance Work

- Gain knowledge to provide oversight for Phase 2
- Model, plan, and execute irradiation tests to enable technology maturation (pending annual budgets)
- Define radiation tolerance requirements

Radiation Environment

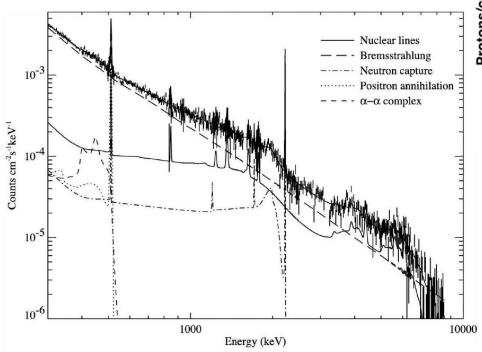
- Natural and induced environment (ex-core)
 - GCR: protons, heavy ions [2]
 - Solar: photons, protons, electrons [3], [4]
 - FSP: photons, neutrons
 - Add.: activation, bremsstrahlung, albedo, secondaries
- Will require various facilities
 - Gamma irradiation facilities
 - Ion beams
 - Reactors

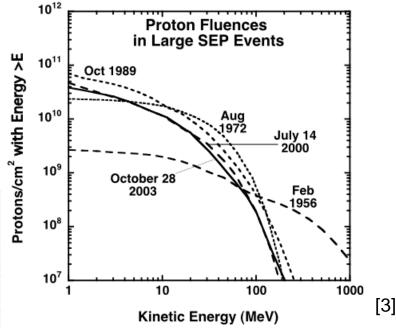


Galactic Cosmic Rays

Origins outside of solar system

Stripped of electrons





Solar Energetic Particles

- Coronal mass ejections
 - Mostly protons, electrons
- Solar flares
 - EM radiation
 - Radio to gamma
 - (Gamma shown)

Induced Radiation

- FSP
 - At power conversion system: 10 Mrad, 5E14 n/cm² after 10 years
 - In-core: will be higher radiation levels
 - At power electronics and controllers: will be lower radiation levels
- DRPS (Pu-238 shown)
 - At GPHS: 1 Mrad, 2E14 n/cm² after 20 years [7]
 - Spontaneous fission and alpha,n

Testing (and Modeling) Candidate (Sub)Systems

- Polymers^[5]
- Electronics [8]
- Magnetics^[6]
 - SmCo: 2E18 n/cm², 2.8E5 krad ^{[9], [10], [11]}
- Structural?
- Other
 - Coatings, working fluids, etc.

Polymers

- Proton, electron, gamma irradiation
 - Cross-linking: increase tensile strength
 - Chain-scission: broken polymer chains
- Temperature, radiation, time
- Outgassing
- Examples:
 - Epoxies
 - Dry lubricants
 - O-rings

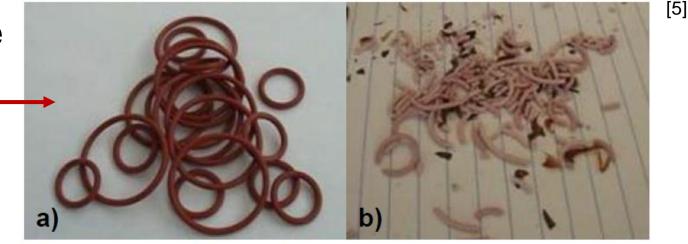


Figure 6. Effect of outgases on o-ring degradation, a) no degradation after exposures to 200 °C with or without gamma radiation, but individually, i.e., o-ring alone and b) after 200 °C exposure with other ASC organics together for 117 days.

Electronics (1 of 2)

	Total ionizing dose (TID)	Single event effects (SEE)	Displacement damage dose (DDD)	Prompt dose
Radiation	GCR: protons, heavy ions Solar: protons, electrons, photons Rx/GPHS: photons, neutrons	GCR: protons, heavy ions Solar: protons Rx/GPHS: neutrons	GCR: protons, heavy ions Solar: protons Rx/GPHS: neutrons	Solar: photons Rx/GPHS: photons
Effect	Accumulated dose over time charges dielectrics	A single high energy strike causing a transient, upset, latch-up, damage, or other effect	Damage to lattice from many strikes	Large sudden photocurrents in bulk of die
Impact	ELDRS (bipolar devices), lasting parametric shift/drift	SEL, SET, SEU, SEFI, SEGR	PKA, vacancies, interstitials	Dose rate upset, dose rate latch-up
Test method	Gamma facility, reactor, accelerator	Accelerator, reactor	Accelerator, reactor	Gamma facility
Mitigation (other than rad hard IC)	Shielding	Redundancy, detection, and reset	Shielding	Redundancy, detection, and reset

Electronics (2 of 2)

- Power management and distribution
- Power conversion system controllers
- Sensing instrumentation
- Electrically driven mechanical devices
 - Control drum motors, valves, etc.

Batch fabricated P/T sensors


Lightning talk this morning: Emerging High Temperature Sensors and Electronics for **Future Lunar-Martian Reactors**

Test Facilities

This slide captures some (not all) potential collaborations; it does not imply any preference.

Some facilities can fit in multiple boxes – only shown once to portray breadth of options.

Collaboration

- NASA GRC is studying radiation tolerance for FSP
- Seeking to engage the community
 - Experts of radiation effects on subsystems and relevant technology
 - Irradiation and post-irradiation testing
 - Radiation tolerance of components across technology readiness levels
 - Insight on practical and useful requirements
 - Top-down (goals) and bottom-up (vulnerabilities)
- Feel free to reach out

References

- 1. Fission Surface Power (FSP) Project Statement of Work (SOW) No. 18960. 2022.
- 2. R. Mewaldt, "Elemental Composition and Energy Spectra of Galactic Cosmic Rays," in Interplanetary Particle Environment. 1988.
- 3. R. Mewaldt, "Proton, helium, and electron spectra during the large solar particle events of October November 2003," Geophysical Research Atmospheres. 2005.
- 4. A. Benz, "Flare Observations," Living Reviews in Solar Physics, vol. 5, no. 1. 2008.
- 5. E. E. Shin, "Evaluation and Validation of Organic Materials for Advanced Stirling Convertors (ASCs)," in 13th International Energy Conversion Engineering Conference, 2015.
- 6. C. L. Bowman, E.E. Shin, O.R. Mireles, R.F. Radel, and A.L. Qualls, "Radiation Specifications for Fission Power Conversion Component Materials," NASA/TM-2011-216996. 2011.
- 7. M.B.R. Smith, "Appendix B: Individual Radiation Analysis Report: Sunpower," ORNL/SPR-2020/1675. 2020.
- 8. F. K. Reed, N. D. B. Ezell, M. N. Ericson, and C. L. Britton, "Radiation hardened electronics for reactor environments," No. ORNL/TM-2020/1776. Oak Ridge National Lab. 2020.
- 9. C. Chen, J. Talnagi, J. Liu, P. Vora, A. Higgins and S. Liu, "The Effect of Neutron Irradiation on Nd-Fe-B and Sm2Co17-Based High-Temperature Magnets," in IEEE transactions on magnetics. 2005
- 10. C. L. Bowman, S. M. Geng, J. M. Niedra, A. Sayir, E. E. Shin, J. K. Sutter, and L. G. Thieme, "Materials-of-Construction Radiation Sensitivity for a Fission Surface Power Convertor," in Space Nuclear Conference. 2007.
- 11. S. Okuda, K. Ohashi, and N. Kobayashi, "Effects of electron-beam and gamma-ray irradiation on the magnetic flux of NdFeB and SmCo permanent magnets," in Nuclear instruments and methods in physics research section B: Beam interactions with materials and atoms. 1994.
- 12. K. Kruckmeyer, "Cosmic radiation effects on electronics and how to pick the right part," Texas Instruments. 2023.

