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Fission Surface Power Project
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Phase 1 Requirements [1]

Power 40 kWe at 10 years continuous power output.

Launch and Landing Loads See attachment B of [1].

Radiation Protection 5 rem/yr above lunar background at 1 km.

Phase 1 Goals [1]

Volume 4 m diameter cylinder, 6 m in length in the stowed launch configuration.

Mass 6000 kg.

Power Cycles Multiple commanded and autonomous on/off power cycling.

User Load 0% to 100% power at the user interface.

Fault Detection and Tolerance Minimize, detect, and respond to single-point failures. Maintain

capability to continue providing no less than 5 kWe under faulted

conditions.

System Transportability Capable of operating from the deck of a lunar lander or be removed 

from the lander and placed on a separately provided mobile system and

transported to another lunar site for operation.



Fission Surface Power Project

• Phase 1: three design concepts
- Lockheed Martin, BWXT, Creare

- Westinghouse, L3Harris

- Intuitive Machines, X-Energy, Maxar, Boeing

• FSP team is processing Phase 1 and preparing for Phase 2

• Project is actively studying radiation tolerance applications for FSP
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Scope of Radiation Tolerance Work

• Gain knowledge to provide oversight for Phase 2

• Model, plan, and execute irradiation tests to enable technology 
maturation (pending annual budgets)

• Define radiation tolerance requirements
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Radiation Environment

• Natural and induced environment (ex-core)
- GCR: protons, heavy ions

- Solar: photons, protons, electrons

- FSP: photons, neutrons

- Add.: activation, bremsstrahlung, albedo, secondaries

• Will require various facilities
- Gamma irradiation facilities

- Ion beams

- Reactors

[2]

[3], [4]
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Galactic Cosmic Rays

tyler.r.steiner@nasa.gov [2]

• Origins outside of solar system

• Stripped of electrons



Solar Energetic Particles

• Coronal mass ejections
- Mostly protons, electrons 

• Solar flares
- EM radiation

▪ Radio to gamma

• (Gamma shown)
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Induced Radiation

• FSP 
- At power conversion system: 10 Mrad, 5E14 n/cm2 after 10 years

- In-core: will be higher radiation levels

- At power electronics and controllers: will be lower radiation levels

• DRPS (Pu-238 shown)
- At GPHS: 1 Mrad, 2E14 n/cm2 after 20 years  

▪ Spontaneous fission and alpha,n
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• Polymers

• Electronics

• Magnetics
- SmCo: 2E18 n/cm2, 2.8E5 krad

• Structural?

• Other

- Coatings, working fluids, etc.

Testing (and Modeling) Candidate (Sub)Systems
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Polymers

• Proton, electron, gamma irradiation
- Cross-linking: increase tensile strength

- Chain-scission: broken polymer chains

• Temperature, radiation, time

• Outgassing

• Examples:
- Epoxies

- Dry lubricants

- O-rings
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Electronics (1 of 2)
Total ionizing dose (TID) Single event effects (SEE) Displacement damage dose (DDD) Prompt dose

Radiation GCR: protons, heavy ions

Solar: protons, electrons, photons

Rx/GPHS: photons, neutrons

GCR: protons, heavy ions

Solar: protons

Rx/GPHS: neutrons

GCR: protons, heavy ions

Solar: protons

Rx/GPHS: neutrons

Solar: photons

Rx/GPHS: photons

Effect Accumulated dose over time 

charges dielectrics

A single high energy strike 

causing a transient, upset, 

latch-up, damage, or other 

effect

Damage to lattice from many strikes Large sudden 

photocurrents in 

bulk of die

Impact ELDRS (bipolar devices), lasting 

parametric shift/drift

SEL, SET, SEU, SEFI, SEGR PKA, vacancies, interstitials Dose rate upset, 

dose rate latch-up

Test method Gamma facility, reactor, 

accelerator

Accelerator, reactor Accelerator, reactor Gamma facility

Mitigation 

(other than rad hard IC)

Shielding Redundancy, detection, and 

reset

Shielding Redundancy, 

detection, and 

reset
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Electronics (2 of 2)
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• Power management and distribution

• Power conversion system controllers

• Sensing instrumentation

• Electrically driven mechanical devices

- Control drum motors, valves, etc.

Batch fabricated P/T sensors

Lightning talk this morning:

Emerging High Temperature 

Sensors and Electronics for 

Future Lunar-Martian Reactors



Test Facilities
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Reactors

This slide captures some (not all) potential collaborations; it does not imply any preference.

Some facilities can fit in multiple boxes – only shown once to portray breadth of options.

Gamma Ray Irr. Fac. Ion Facilities



Collaboration

• NASA GRC is studying radiation tolerance for FSP

• Seeking to engage the community
- Experts of radiation effects on subsystems and relevant technology

- Irradiation and post-irradiation testing

- Radiation tolerance of components across technology readiness levels

- Insight on practical and useful requirements

▪ Top-down (goals) and bottom-up (vulnerabilities)

• Feel free to reach out
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