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1. Abstract  
Urban environments face hotter temperatures than suburban and rural areas due to higher concentrations of 
impervious surfaces, heat-retaining buildings, and lack of green space. Bridgeport, Connecticut, which was 
formerly a national manufacturing hub, is now the densest and most populous city in the state. Bridgeport 
experiences hotter temperatures, exposing its residents to more extreme temperatures than the surrounding 
affluent suburbs. Extreme heat affects the health of those exposed to it and intensifies energy demands. 
Understanding temperature differences is the first step in effectively directing mitigation efforts. Our partner, 
Groundwork Bridgeport, along with the Yale Urban Design Workshop, are planning a “cool corridors” 
project, implementing cooling infrastructure to combat urban heat. We used Landsat 8 Thermal Infrared 
Sensor and Landsat 9 Thermal Infrared Sensor-2 data to conduct a Land Surface Temperature analysis in 
Google Earth Engine for the county of Fairfield. A Principal Component Analysis was performed to identify 
indicators of social vulnerability in Bridgeport. We used the SOlar and LongWave Environmental Irradiance 
Geometry model to identify felt heat on the block level to inform where the partner should locate their 
cooling interventions to ensure they are most effective and equitable. We focused on the East Side of 
Bridgeport, which we found was 10 degrees hotter than other areas of Bridgeport and the neighboring town 
of Fairfield. We integrated our findings using Earth observations and additional sociodemographic and 
climate data into final communication products for our partners which will facilitate their selection of 
candidate locations for their Cool Corridors project.  
 
Key Terms 
Urban Heat, Land Surface Temperature, Remote Sensing, Social Vulnerability Index, Principal Component 
Analysis, SOLWEIG Modeling, ArcGIS Pro 
 

2. Introduction 
2.1 Study Area 

Bridgeport, Connecticut (Figure 1) is situated at the intersection of the Pequannock River and the Long 
Island Sound (Figure 1), where the Paugussett people originally occupied the area (Rinn, 2020). In the state of 
Connecticut, Bridgeport is both the most populous city with 148,654 residents and the most densely 
populated city (U.S. Census Bureau, 2023; Abraham et al., 2023). Bridgeport is in Fairfield County, which has 
a generally high socioeconomic status: in a study that combined economic, health-related, and educational 
data to create a “community well-being index”, Fairfield County had the 12th highest score among 100 U.S. 
metropolitan areas. While Fairfield County is home to some of the nation’s wealthiest neighborhoods, it is 
home to some of the poorest as well. For example, 22.9% of people in Bridgeport live under the poverty 
threshold compared to 9.8% overall for the broader Fairfield County (U.S. Census Bureau, 2023). Bridgeport 
is also contending with housing and supporting the state’s densest population with aging infrastructure 
systems and housing stocks created in a century-old manufacturing boom (Buchin et al., 2016; U.S. Census 
Bureau, 2023). Due largely to this extreme density, Bridgeport faces warmer temperatures from its high 
concentration of impervious surfaces, exposing residents to health hazards related to heat.  
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Figure 1. Study area map of Bridgeport inset with a map of its location within Connecticut.  

  
The contemporary problem of urban heat is rooted in the historic industrial development of Bridgeport. By 
1915, Bridgeport became the “foremost producer of war materials” in the US, and its booming industry drew 
job seekers (Bucki, 1980). By 1930, the population of Bridgeport was up to 146,716 people and 70 percent 
white; in 1950, the total population peaked at 158,709 (Gazillo, 2017). While being over 70 percent white 
during this time, Bridgeport was a notable stop during the Great Migration as Black Americans moved out of 
the Southern US in the twentieth century; in the same era, Bridgeport’s Black population went from 3,767 
people to 6,748 (Gazillo, 2017).   

  
After World War II many people, predominantly white residents, began moving to the suburbs (Rose, 2016). 
Meanwhile, minority communities were often excluded from these new suburbs through “restrictive 
covenants,” and the Home Owners’ Loan Corporation “redlined” the remaining minority, low-income 
households in cities (Dougherty, 2024). In effect, these central city neighborhoods, which were already the 
oldest in regions, faced disinvestment and deterioration; by the 1970s, the manufacturing industry in 
Bridgeport was largely eliminated (Gazillo, 2017).  
  
Because Bridgeport, Connecticut is formed by 1910s worker-housing design, it now features little green space 
and tree canopy (Eide, 2017). Natural spaces such as trees, vegetation, and soil help regulate temperature by 
absorbing heat, whereas the built environment typically reflects and retains heat (Corburn, 2009). Rising 
global temperatures due to anthropogenic climate change have intensified the disproportionate heating of 
urban areas (Paulina et al., 2015; Buchin et al., 2016). Extreme heat exposure can have dangerous 
consequences including heat-related illness, human discomfort, and increased energy consumption (Phelan et 
al., 2015; Filho et al., 2018). Within the existing literature, cooling strategies such as reflective roofing and 
green infrastructure have been identified to mitigate urban heat; however, access to strategies to cope with 
urban heat are not always equitable (Chow et al., 2012; Phelan et al., 2015). 

  
Due to decades of disinvestment, Bridgeport has limited municipal resources to address these infrastructure 
concerns (Eide, 2017). Groundwork Bridgeport, our partner for this project, is a community-based nonprofit 
organization focused on the sustainable regeneration of neglected urban areas into spaces that empower the 
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community. Groundwork Bridgeport has been supporting Bridgeport community members since 1998 as 
they seek to make their neighborhoods greener, healthier, and more livable (Groundwork Bridgeport, n.d.). In 
partnership with the Yale Urban Design Workshop, Groundwork Bridgeport is planning a “Cool Corridors” 
project, which aims to redress the adverse impacts of urban heat in the East Side neighborhood by locating 
and adding green space and trees where their cooling effects are most needed.   

  
2.2 Earth Observation Objectives   
The Cool Corridors project is an essential intervention in a community facing extreme heat and harmful 
infrastructure. For Groundwork Bridgeport to best serve the East Side neighborhood, having complete data 
on temperature within the neighborhood would be essential to ultimately understanding where residents are 
most vulnerable to heat and which area is best suited for the cooling intervention. Heat is an increasingly 
impactful danger in Bridgeport and the issue is timely and necessitates a regional analysis. Through this 
project, we assessed the feasibility of using NASA Earth observations to support Groundwork Bridgeport’s 
Cool Corridors project and identify the specific blocks in Bridgeport’s East Side neighborhood that were 
most vulnerable to urban heat. 
 
We began by conducting an analysis of land surface temperature using data from Landsat 8 Thermal Infrared 
Sensor (TIRS) and Landsat 9 TIRS-2, a practice that has been adopted by several past researchers (Rajasekar 
& Weng, 2009; Fu et al., 2019; Yang et al., 2020; Duan et al., 2021). For assessing heat vulnerability, previous 
studies have created social vulnerability indices; instead of reproducing an existing index, we created our own 
social vulnerability index to ensure it met our partner’s needs and could effectively be integrated with our land 
surface temperature data products (Schmidtlein et al., 2008; Conlon et al., 2020; Xie & Meng, 2023). We used 
additional Earth observation products as inputs for a 3D modeling tool called SOlar and LongWave 
Environmental Irradiance Geometry (SOLWEIG) to assess felt heat in the East Side. While there is 
precedent for using this model to analyze the felt heat in complex outdoor urban environments (Lindberg et 
al., 2008), its integration with the previous steps is relatively novel. In this final step, we assessed the feasibility 
of using SOLWEIG in conjunction with these other methods and whether it would produce practicable 
results for our partner to locate their cooling interventions. 
 

3. Methodology 
3.1 Data Acquisition  
We downloaded remote sensing data via the Google Earth Engine (GEE) catalog and the 3D Elevation 

Program (3DEP) LiDAR Explorer Map from the US Geological Survey (USGS). We used GEE to acquire 

imagery within our study area and period from Landsat 8 TIRS and Landsat 9 TIRS-2 to analyze land surface 

temperature (Table 1). Next, we used data related to socio-demographics, economic capacity, commuting 

habits, and personal health to analyze individuals’ vulnerability to urban heat. To create an index of the 

communities’ vulnerability to urban heat using these metrics, we acquired data from the American 

Community Survey conducted by the US Census Bureau (Table 2). To perform 3D modeling of outdoor 

thermal comfort, we downloaded digital elevation models (DEM) and LiDAR point clouds from the USGS 

(Table 3).  

 

Table 1  

NASA Earth observations acquired to analyze urban heat distribution. 

Platform 

& Sensor 

Data Product Dates Acquisition 

Method 

Resolutio

n 

Use 

Landsat 8 

TIRS 

Collection 2, 

Level 2, Tier 1 

2013 – 2023, 

06/01 – 09/30 

Google Earth 

Engine 

30 meters Analyze and map daytime 

land surface temperatures. 

Landsat 9 

TIRS-2 

Collection 2, 

Level 2, Tier 1 

2013 – 2023, 

06/01 – 09/30 

Google Earth 

Engine 

30 meters Analyze and map daytime 

land surface temperatures. 
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Table 2  

Datasets and variables used to create a Social Vulnerability Index. 

Agency Data Product Dates Acquisition Method Relevant Parameters to Use 

US Census 

Bureau 

2021 

American 

Community 

Survey 

2021 Census Dataset 

Download 

Poverty Rate, Rate of Population 

without High School Diploma, 

Population over 65 years old, 

Population over 65 years old and 

living alone, Population Living 

Without a Vehicle, Percent of 

Population considered Minority, 

Percent of Population with a 

Disability.  

 

Table 3 

Datasets acquired to model outdoor thermal comfort using SOLWEIG. 

Source Data 

Product 

Dates Acquisition 

Method 

Resolution Use 

LiDAR LiDAR 

DEM 

03/11/2016 – 

04/16/2016 

USGS 3DEP 

LiDAR 

Explorer 

1 meter Input for 

SOLWEIG. 

LiDAR LiDAR 

Point Cloud 

03/11/2016 – 

04/05/2016 

USGS 3DEP 

LiDAR 

Explorer 

 < 1 meter Calculate the Digital 

Surface Model 

(DSM) & Canopy 

DSM (CDSM). 

National Solar 

Radiation 

Database 

Meteorological 

Data 

Physical 

Solar Model 

version 3 

07/30/2022 National Solar 

Radiation 

Database 

2 kilometers Input weather and 

climate data for 

SOLWEIG 

modeling. 

Connecticut 

ASOS 

METAR 

Data 

07/30/2022 ASOS-AWOS-

METAR Data 

Download 

N/A Input precipitation 

data into SOLWEIG 

modeling. 

Connecticut 

Metropolitan 

Council of 

Governments 

Building 

Footprints 

2013 MetroCOG 

OpenData 

Portal 

N/A Ancillary data used 

to create CDSM. 

 

3.2 Data Processing 

3.2.1 Urban Heat Data 

The Landsat 8 TIRS and 9 TIRS-2 images we acquired were processed and analyzed using a GEE script 

provided by Dr. Kenton Ross (NASA DEVELOP) that we adapted for our project. We first merged all 

available images within our study area and period into one collection which we then clipped using a shapefile 
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of Fairfield County. This shapefile includes the coast and inland water features but excludes the Long Island 

Sound which has a significant cooling effect that would misrepresent average land surface temperatures. We 

then converted all surface temperature bands in this collection from Kelvin to Fahrenheit. We performed a 

cloud mask on all images to limit the influence of clouds on our temperature analysis. We then mosaiced any 

adjacent images in the collection that were taken on the same day. 

 

3.2.2 Social Vulnerability Data 

In collaboration with our partners, we selected socioeconomic factors they identified as most significant when 

defining heat vulnerability. Using the Tidycensus package in the UHEAT 1.0 R program created by the 

NASA DEVELOP Fall 2020 Arizona Urban Development project (Boogaard et al., 2020), we obtained 

sociodemographic data from the 2021 5-year American Community Survey at the Block Group level for 

Fairfield County (Table 2). The Census data we used was percent of population that is elderly (over 65 years 

old), percent of population with a disability, percent of population without a high school diploma, percent of 

population over 65 and living alone, percent of population considered a minority, percent of population living 

in pre-1980 built structures, percent of population without access to a vehicle, and percent of population 

below the poverty line. Since the Block Group level is such a hyper-local scale, there was limited data 

available at this level for social factors that contribute to heat vulnerability. Relevant health and transport data 

were only available at the coarser Census Tract level, so we created our social vulnerability index solely with 

the Census data available at the Block Group level.  

 

3.2.3 SOLWEIG Inputs 

To prepare LiDAR point cloud data for the SOLWEIG model, we converted them to a DSM, a necessary 

input for the model, using QGIS’s Point Cloud Conversion Export to Raster with Triangulation function. We 

also converted the vertical height measurement of the DSM from feet to meters. We created a Canopy Digital 

Surface Model (CDSM) by subtracting the DEM from the DSM and setting all pixels within building 

footprint polygons to zero. The DEM, DSM, and CDSM were then used with the Urban Multi-scale 

Environmental Predictor pre-processor plugin for QGIS to create the following required inputs for the 

model: wall aspect, wall height, and sky view factors. Three Census Block Groups of interest in the East Side 

were determined for the modeling based on their heat and social vulnerability, and all raster inputs were 

clipped to these areas of interest using the QGIS Clip Raster by Extent function.  

 

3.3 Data Analysis 

3.3.1 Urban Heat Assessment 

With the processed Landsat 8 TIRS and 9 TIRS-2 imagery, we calculated the median temperature value at 

every pixel across the entire collection of images. This produced a raster of median daytime land surface 

temperature over the 10-year period in Fairfield County. We then performed Zonal Statistics on this raster in 

ArcGIS Pro to determine the average land surface temperature at two spatial scales – by Census Tract and by 

Block Group. The Census Tract analysis, provided at the county level, allows comparisons to be made 

between Bridgeport and other areas in the county. The Census Block Group analysis, provided for Block 

Groups within Bridgeport, reveals finer variations in the distribution of heat.  

 

Spatial comparisons of heat can also be made by creating a factor of difference between the study area and a 

reference area. Previous DEVELOP projects, such as New York City Transportation & Infrastructure 

(Schindelman et al., 2023), accomplished this by using a rural reference area. However, in collaboration with 

our partner, we decided to use the adjacent town of Fairfield as our reference area because it is more 
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suburban and affluent and has more green space and tree canopy than Bridgeport. This comparison is also 

representative of the extreme disparity in wealth in Connecticut. Highlighting these comparisons between 

wealth, heat distribution, and access to cooling infrastructure also supports the partner’s funding efforts for 

their Cool Corridors project. To obtain the median land surface temperature for our reference area, we first 

clipped the median daytime land surface temperature raster using a shapefile of the town of Fairfield. Then, 

we used a spatial reducer in GEE to calculate the median land surface temperature within the reference area, 

resulting in a single floating-point value that was subtracted from every pixel in the median daytime land 

surface temperature raster. This produced a raster image for the entire county in which every pixel represents 

the result of that difference calculation.   

 

3.3.2 Principal Component Analysis and Social Vulnerability Analysis 

The Social Vulnerability Index is a tool that considers factors that may affect an individual’s susceptibility to 

extreme heat, creating a multi-dimensional, more complete understanding of heat vulnerability when paired 

with the distribution of land surface temperature. For example, people living below the poverty level may not 

be able to afford air conditioning units. To create our Social Vulnerability Index, we used a Principal 

Component Analysis (PCA), a statistical processing method that simplifies large datasets but retains their 

ability to represent variation in the data. This process uses multi-dimensional regression to pick “principal 

components” that account for a certain proportion of cumulative variation. When conducting the PCA, we 

had to choose how many principal components to include. To do this, we controlled for variance in a scree 

plot and compared a parallel analysis of Social Vulnerability Index factors (Figures 2 & 3). We chose to use 

two principal components because they represent that cumulative variation, as evident by the representation 

of principle component 3 as a lower eigenvalue in the scree plot, as well as below the simulated mean and 

simulated 95th percentile (Figure 2). 

 

  
Figure 2. Parallel Analysis of Social Vulnerability Index 

(SVI) Principal Components 

 
Figure 3. Scree Plot for Principal Components 

 

Once we selected for two principal components, we ran the PCA to create heat vulnerability scores which 

gave us unique values for each Block Group that represented the composite of each vulnerability category as 

one. These values were extracted and visualized in ArcGIS Pro 3.0.0, showing the heat vulnerability of every 

Block Group in Fairfield County. We generated a bivariate map that showed the vulnerability of each Block 

Group polygon along with the average land surface temperature for the polygon. We used a simple 
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classification from low to high vulnerability to showcase the spectrum based on the extent of vulnerability to 

heat exposure. Our cumulative variance was 0.67, meaning that principal component 1 (PC1) and principal 

component 2 (PC2) accounted for 67% of the variance within the Social Vulnerability Index. PC1 best 

describes the variation within the factors of “Elderly Households”, “No Vehicle Households”, “Pre-1980 

Built Structures” and "Population with Disability”, while PC2 best describes the variation between “Adults 

without a High School Diploma”, “Below Poverty Level” and “Minority” (Figure 4). As it relates to 

vulnerability to extreme heat, PC2 represents more variables that have a higher correlation with poor health 

outcomes when it comes to heat-related illness. PC1 shows a higher correlation of factors that may impact 

mobility, which can also be an issue in prolonged exposure to heat. Ultimately, the bivariate map showed the 

areas that were facing the most extreme heat exposure and stood to be affected negatively the most on 

account of their Social Vulnerability Index factors. Identifying areas of extreme vulnerability was the 

necessary precursor of our next analysis. 

 
Figure 4. Principal Components Gradient 

 

3.3.3 3D Outdoor Thermal Comfort Analysis 

The SOLWEIG model runs via the Urban Multi-scale Environmental Predictor plugin in QGIS. The model 

measures mean radiant temperature in six different directions (upward, downward, and the four cardinal 

directions). The mean radiant temperature is a physical construct that considers radiant heat exchange 

between a human body and its environment (Guo et al., 2020). We input the data and variables processed in 

section 3.2.4 and ran the model for each area of interest, resulting in raster files of the mean radiant 

temperature for each of the three Block Groups of interest. In addition, we ran the model for the entirety of 

the East Side (Appendix A3). These outputs depict the felt temperature for the specified areas at a fine spatial 

resolution and visualize how distinct features like shadows, vegetation, and buildings influence the 

distribution of thermal comfort. This model can be used to understand how heat is experienced at a level of 

fine precision. 
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4. Results and Discussion 
4.1 Analysis of Results 
To visualize surface temperature, we took a zonal mean of the spatial median land surface temperature to 

create a choropleth map where darker reds indicate hotter temperatures (Figure 5). Following patterns of 

urbanization, Tracts along the coast of Connecticut are shown to be warmer than the suburban interior, with 

the hottest average temperature being 90.69°F.  

 

 
Figure 5. Temperature Distribution for Fairfield County Connecticut Census Tracts 

 
At its hottest, Bridgeport is 10.41°F warmer than its neighbor, the town of Fairfield (Figure 6). The East Side 
neighborhood, our project’s focus, has some of the hottest Block Groups. This is consistent with the 
hypothesis of our partner who expected the East Side to be hotter due to the East Side’s historic industrial 
development.    

 
 

Figure 6. Temperature Difference between Fairfield City and Bridgeport Block Groups 
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We combined land surface temperature for Bridgeport Block Groups (Appendix A1) with Heat Vulnerability 
Scores (Appendix A2) to produce a bivariate map of heat vulnerability (Figure 7). Areas of high vulnerability 
and high heat are demonstrated in dark blue. There are three Block Groups of high heat vulnerability within 
the East Side. This informed us where to perform the SOLWEIG modeling.  
 

 
Figure 7. Heat Vulnerability for Bridgeport Block Groups 

 
Figures 8 and 9 demonstrate the felt heat for our previously identified heat-vulnerable Block Groups of the 
East Side. In some areas of these vulnerable Block Groups, the mean radiant temperature is as hot as 166°F. 
The hottest surfaces are usually rooftops, shown by some of the buildings on Kossuth Street in Figure 8, or 
pavements and undeveloped bare land, shown by the large area of high heat in the west of Block Group 4 in 
Figure 9. Roof temperatures are around 164.52°F while the temperature of other surfaces ranges from 
101.38°F to 161.53°F. For our analysis, the input data available to us was collected at varying years, which 
may cause discrepancies in the accuracy of the model in areas that have seen changes in land use. 
Furthermore, there was no available CDSM and land cover classification for the East Side that was suitable 
for SOLWEIG’s input requirements. Without a proper CDSM and land cover classification, we could only 
create a CDSM that excluded pixels in the same locations as building footprints. Other impervious surfaces 
were therefore included in this CDSM, such as bridges or power lines, causing inaccuracies in how the model 
calculates shadows and temperatures around vegetation. In addition, the lack of a land cover classification 
also meant that water could not be differentiated, making the rivers and harbor surrounding the East Side 
appear much hotter than expected. Including an accurate CDSM and land cover classification would make the 
output more precise. 
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Figure 8. Tract 073500 Block Group 1 Mean Radiant Temperature at 14:30 on 30 July 2022 

 

 
Figure 9. Tract 073900 Block Groups 3 & 4 Mean Radiant Temperature at 14:30 on 30 July 2022 

 
4.2 Feasibility for Partner Use 
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We found that NASA Earth observations are feasible for informing cooling interventions in Bridgeport. 
Using Landsat-derived land surface temperature as a proxy for urban heat and its distribution is a useful first 
step for determining areas of the East Side neighborhood that are hottest and need the most attention. 
However, the spatial resolution of Landsat 8 and 9 thermal imagery is not detailed enough to locate or plan 
specific sites for cooling interventions. Thermal imagery with a higher spatial resolution would be desired to 
distinguish heat at the locations of smaller features such as sidewalks or bus stops. 
 
LST maps are limited as they do not account for felt heat and are just one way to approximate how heat is 
experienced. Additionally, due to the availability of data, the social vulnerability index did not include health-
related factors such as asthma rates, heat-related hospitalizations, or access to air conditioning. This limits the 
understanding of social vulnerability since it does not provide a comprehensive idea of heat vulnerability. 
SOLWEIG modeling, although informative, is a newer model with minor bugs and very high processing 
demands. As mentioned in the previous section, data variability and gaps in data availability may lead to 
discrepancies in the accuracy of the SOLWEIG model. Including more accurate data inputs for the model 
would make the output more precise for partner use. 
 
4.3 Future Recommendations 
With further resources, we would recommend improving the modeling output of this study by developing or 
sourcing an accurate CDSM and land cover classification that works with SOLWEIG. We also recommend 
using the TreePlanter tool which is also provided by the Urban Multi-scale Environmental Predictor plugin. 
This tool uses the outputs of the SOLWEIG model with given points for the locations of new trees to be 
planted and determines their effect on heat. This can provide more information in choosing the best places to 
implement new green spaces. Finally, our partner has expressed interest in collecting more data from 
households in the East Side about their experiences with extreme heat. This would result in the best 
possible dataset to use for determining social vulnerability to heat.   
 

5. Conclusions 
From this study, we confirm that heat is unevenly distributed in Fairfield County, Connecticut and conclude 
that Bridgeport is hotter than the town of Fairfield. Our heat assessment using Landsat Earth observations 
estimated that Bridgeport is about 10°F hotter than the town of Fairfield, which is likely due to the high 
concentration of impervious surfaces in the built environment of Bridgeport. In the East Side, Block Group 1 
in Tract 735 and Block Groups 3 and 4 in Tract 739 both face extremely high temperatures and their 
residents are highly vulnerable to the harms of heat as indicated by our Social Vulnerability Index. While 
Landsat’s spatial resolution for thermal data isn’t fine enough to locate specific sites for intervention, it is still 
feasible to use for understanding and analyzing the distribution of urban heat. We established a stable median 
temperature because of the breadth of the dataset and the timescale of available data. The methodologies and 
end products would help our partner make informed decisions in placing their cooling interventions.  
 
Our joint analysis of LST and social vulnerability confirms the community’s concerns that Bridgeport 
residents are disproportionately vulnerable to the harms of extreme heat, particularly in the East Side. Our 
end products will be used by our partners as they begin to locate their heat mitigation interventions as the 
products suggest areas with the greatest need for cooling interventions. Beyond this, the LST analysis at the 
Block Group level for the city and at the Tract level for the county can be distributed publicly to educate the 
public and inform additional heat interventions in the region, addressing where there are deficits to enhance 
equity. These maps would be used by our end users in continued advocacy efforts for infrastructure equity.  
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7. Glossary 
ArcGIS Pro – Software for creating, analyzing, and sharing maps and spatial data, widely used in geography 
and urban planning. 
 
Cool Corridors – Pathways or designated areas within cities that have been planned or preserved to maintain 
cooler temperatures compared to their surroundings. 
 
Earth observations – Satellites and sensors that collect information about the Earth’s physical, chemical, and 
biological systems over space and time. 
 
East Side – The eastern part of the city of Bridgeport, Connecticut. 
 
Google Earth Engine (GEE) – A cloud-based platform provided by Google that allows users to analyze 
and visualize geospatial datasets using satellite imagery and other Earth observation data.  
 
Green Space – Areas within urban environments that are covered with vegetation, such as parks, gardens, 
and forests. 
 
Heat Vulnerability – The susceptibility of certain populations or areas to the adverse effects of extreme 
heat, such as heat-related illnesses and mortality. 
 
Impervious Surfaces – Hard surfaces like roads, sidewalks, and buildings that do not allow water to 
penetrate into the ground. 
 
Land Surface Temperature – The temperature of the Earth’s surface as measured from a satellite or aerial 
sensor. It provides information about the thermal characteristics of the land surface and is often used in 
studies related to climate, hydrology, and urban heat island effects. 
 
Landsat – A system of NASA and USGS Earth-observing satellites providing continuous and archival open-
access imagery at medium spatial, spectral, and temporal resolution. 
 
LiDAR (Light Detection and Ranging) – A form of active remote sensing that reflects lasers off a surface 
to gain information about it, including texture and distance. 
 
Principal Component Analysis (PCA) – A statistical method for simplifying data while keeping important 
patterns intact. 
 
Redlined – Describes the areas that the Home Owners’ Loan Corporation indicated as unsafe for investment 
in their Residential Security map. In these maps, they had four classifications, A, B, C, and D, with A being 
considered the safest for investment and D indicating areas they identified as unsafe for investment, often 
based on a minority community's presence in the area. The D-rated areas were highlighted in red on the 
maps. 
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Remote sensing – Methods and technologies that enable the acquisition of information about a subject 
from a distance. 
 
Social Vulnerability Index – A measure of how susceptible communities are to disasters or climate change, 
considering factors like wealth and resources. 
 
SOLWEIG Modelling – A tool for simulating sunlight and heat distribution in cities, helping to understand 
outdoor comfort levels. 
 
Urban Heat – The phenomenon of elevated temperatures in urban areas compared to their rural 
surroundings due to human activities, such as heat absorption by buildings, roads, and infrastructure, and 
reduced vegetation cover. 
 
3DEP – 3-Dimensional Elevation Project 
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9. Appendix 
Appendix A: Supplemental Figures 

 
Figure A1. Land Surface Temperature for Bridgeport, Connecticut 

 

 
Figure A2. Social Vulnerability for Bridgeport, Connecticut 

 

 



   
 

18 

 

 
Figure A3. Entire East Side Mean Radiant Temperature, Daytime Average on 30 July 2022 


