# SLEEP 2024

HOUSTON,TX
JUNE 1-5

A JOINT MEETING





# The Impact of Controlled Rest On Neurobehavioral Outcomes At Top-Of-Descent

Cassie J. Hilditch, PhD
San José State University
NASA Ames Research Center





# To review this speaker's disclosure information, please visit sleepmeeting.org.



#### **SLEEP 2024 Photography Policy**



- Photography **IS** permitted during this lecture.
- Photography of slides featuring the icon on the left **is not permitted.**
- Photographs from this lecture are only allowed for personal, social, or non-commercial use.
- Attendees may not use flash photography or otherwise distract the presenters and/or attendees.



#### **Learning Objectives**

Upon completion of this activity, participants should be able to:

- 1. Understand how controlled rest may impact neurobehavioral outcomes at a critical phase of flight.
- 2. Appreciate the need for further research on controlled rest to understand how the policy is implemented in practice and its impact on objective performance measures.



#### ORIGINAL RESEARCH article

Front. Environ. Health

Sec. Occupational Safety and Health

**Interventions** 

Volume 3 - 2024 | doi: 10.3389/fenvh.2024.1368628

This article is part of the Research Topic

Maintaining Health, Safety and Cognitive Function Under Challenging Environmental and Working Conditions

View all 5 Articles >

# Investigating the causes and consequences of controlled rest on the flight deck Provisionally Accepted



Cassie J. Hilditch<sup>1\*</sup> Lucia Arsintescu<sup>1</sup>



Sean Pradhan<sup>2</sup> Kevin Gregory<sup>3</sup>



Erin E. Flynn-Evans<sup>3</sup>

Two pilots fall asleep mid-flight with more than 150 on board 36,000 feet in the air

'More than half' of pilots have slept while flying

Background

NTSB: Both Pilots Asleep on Hawaii Flight

ITA pilots fall asleep on transatlantic flight

Survey Reveals 60% Of Commercial Pilots Guilty Of Scary, Hazardous Habit

# Background

#### Controlled rest (CR)

- A short sleep opportunity on the <u>flight deck</u>
- An effective mitigation strategy to be used as needed in response to <u>unanticipated</u> fatigue experienced during flight operations
- Not to be used as a scheduling tool or in lieu of other fatigue management strategies
- Taken within a clearly defined policy

# Background

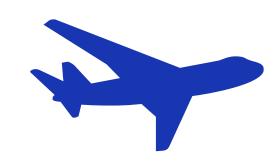
#### But...

- Unintentional sleep still occurs even when CR is legal
- Non-compliance with SOP has led to realworld accidents



# Objectives

#### Aim to determine:

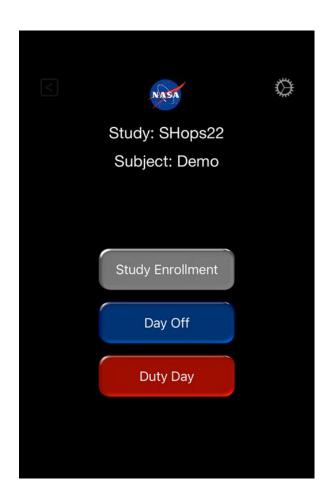

- 1) The relative influence of pre-flight sleepwake history and time of day on the likelihood to take CR
- 2) Whether neurobehavioral measures taken pre-flight are predictive of CR use inflight
- 3) The impact of CR on neurobehavioral measures at top-of-descent (TOD)

Participants

- n = 120 long-haul flights
  - non-augmented
  - >6.5 h



- n = 31 pilots
  - Could do multiple flights
  - 46 y mean age
  - 90% Male
  - 48% Captains






Data collection

- 14-day data collection period
- Collected KSS/PVT (5-min)
  - Pre-flight
  - In-flight (TOD)
  - Post-flight
- Actigraphy





Analysis

- Model 1: Sleep/wake predictors
  - Sleep in prior 24 h
  - Sleep in prior 48 h
  - Hours of cont. wakefulness
  - Timing of the flight (night\* vs. day)
- Model 2: Pre-flight test predictors
  - o KSS
  - PVT speed
  - PVT lapses
  - Covariates from Model 1

<sup>\*</sup>Night = flight touched 0200-0459, relative to home base time.

Analysis

- Model 3: <u>Impact</u> of *CR* at TOD
  - o KSS
  - PVT speed
  - PVT lapses
  - Covariates + pre-flight scores

- Model 4: <u>Impact</u> of *TST* at TOD
  - o KSS
  - PVT speed
  - PVT lapses
  - Covariates (as above)

# Results

Flights



Flight duration

8.3 h (0.8; 6.8-10.4)

Mean (SD; range)



Night flights

55%



CR flights

Attempted: 70%

Successful: 63%

**Twice: 20%** 

Hilditch et al., 2024 Front Environ Health



CR duration
44 min (12; 15-104)



Sleep per CR attempt 28 min (15; 0-81)



Total sleep per flight 36 min (22; 0-94)

# Results

Controlled rest

#### Model 1: Sleep/wake predictors

| Model                               | Variable                    | b     | SE   | p    | $\eta^2_p$ | OR    | 95% CI <sub>OR</sub> |
|-------------------------------------|-----------------------------|-------|------|------|------------|-------|----------------------|
| Model 1:                            | Sleep Duration (Prior 24 h) | 0.37  | 0.33 | .27  | .07        | 1.44  | 0.76, 2.75           |
| Sleep and Flight<br>Characteristics | Sleep Duration (Prior 48 h) | -0.43 | 0.22 | .05  | .07        | 0.65  | 0.42, 1.00           |
| . 2                                 | Hours of Wakefulness        | -0.01 | 0.12 | .95  | .03        | 0.99  | 0.79, 1.25           |
| $(R^2_M = .23;$<br>$R^2_C = .56)$   | Flight Timing               | 2.63  | 0.99 | .01* | .13        | 13.81 | 1.99, 95.80          |

#### Model 2: Pre-flight test predictors

| Model                                     | Variable   | b     | SE   | p    | $\eta^2_p$ | OR   | 95% CI <sub>OR</sub> |
|-------------------------------------------|------------|-------|------|------|------------|------|----------------------|
| Model 2:                                  | KSS        | 1.42  | 0.52 | .01* | .14        | 4.14 | 1.48, 11.57          |
| Pre-Flight<br>Neurobehavioral<br>Measures | PVT Speed  | -0.62 | 1.11 | .57  | .01        | 0.60 | 0.06, 4.75           |
| $(R^2_M = .35;$<br>$R^2_C = .57)$         | PVT Lapses | -0.85 | 0.44 | .05  | .10        | 0.43 | 0.18, 1.00           |

#### Model 3: Impact of CR at TOD

|                                | Model 3a: KSS |               |             |            |       | Model 3b: PVT Speed |                   |            |                              | Model 3c: PVT Lapses |       |            |  |  |  |
|--------------------------------|---------------|---------------|-------------|------------|-------|---------------------|-------------------|------------|------------------------------|----------------------|-------|------------|--|--|--|
|                                | (,            | $R^2_M = .32$ | $R^2 = .46$ |            | (     | $(R^2_M = .6)$      | $2; R^2_C = .64)$ | )          | $(R^2_M = .11; R^2_C = .41)$ |                      |       |            |  |  |  |
| Variable                       | b             | SE            | p           | $\eta^2_p$ | b     | SE                  | p                 | $\eta^2_p$ | b                            | SE                   | p     | $\eta^2_p$ |  |  |  |
| Controlled Rest                | -0.27         | 0.36          | .45         | 0.01       | 0.19  | 0.09                | .03*              | 0.07       | -0.29                        | 0.31                 | .34   | < .001     |  |  |  |
| Covariates                     |               |               |             |            |       |                     |                   |            |                              |                      |       |            |  |  |  |
| Pre-Flight Score               | 0.33          | 0.13          | .02*        | 0.09       | 0.67  | 0.07                | <.001*            | 0.55       | 0.04                         | 0.08                 | .65   | 0.04       |  |  |  |
| Sleep Duration<br>(Prior 48 h) | 0.16          | 0.07          | .03*        | 0.07       | -0.02 | 0.02                | .22               | 0.02       | 0.12                         | 0.08                 | .14   | 0.08       |  |  |  |
| Flight Timing                  | 1.27          | 0.32          | <.001*      | 0.19       | -0.21 | 0.09                | .02*              | 0.08       | 0.89                         | 0.31                 | .004* | 0.11       |  |  |  |

#### Results

#### Model 4: Impact of TST at TOD

|                                        | N                            | Model 4a: KSS |       |            | M     | Mo             | Model 4c: PVT Lapses $(R^2_M = .13; R^2_C = .20)$ |            |       |      |      |            |
|----------------------------------------|------------------------------|---------------|-------|------------|-------|----------------|---------------------------------------------------|------------|-------|------|------|------------|
|                                        | $(R^2_M = .33; R^2_C = .33)$ |               |       |            | (1    | $R^2_M = .58;$ |                                                   |            |       |      | (R   |            |
| Variable                               | b                            | SE            | p     | $\eta^2_p$ | ь     | SE             | p                                                 | $\eta^2_p$ | b     | SE   | p    | $\eta^2_p$ |
| Sleep Amount During Controlled<br>Rest | 0.02                         | 0.01          | .11   | .06        | 0.003 | 0.003          | .24                                               | .04        | -0.01 | 0.01 | .31  | .01        |
| Covariates                             |                              |               |       |            |       |                |                                                   |            |       |      |      |            |
| Pre-Flight Score                       | 0.32                         | 0.17          | .06   | .08        | 0.66  | 0.12           | <.001*                                            | .47        | -0.07 | 0.20 | .75  | <.001      |
| Sleep Duration (Prior 48 h)            | 0.17                         | 0.09          | .07   | .07        | -0.02 | 0.02           | .43                                               | .02        | 0.18  | 0.08 | .02* | .11        |
| Flight Timing                          | 1.31                         | 0.46          | .008* | .16        | -0.29 | 0.12           | .02*                                              | .15        | 0.56  | 0.45 | .21  | .03        |

#### Results

# Discussion

Summary

#### • Predictors:

- Flying at night
- Pre-flight subjective sleepiness

#### Impacts at TOD:

- PVT speed improved w/ CR
- Not related to sleep amount

## Discussion

Limitations

- No circadian phase marker
- No direct comparison flights
- No social/cultural factors
- Only non-augmented flights

#### Discussion

Future research

- Qualitative factors: individual preference, cultural factors
- More frequent test points around the rest period, e.g., sleep inertia
- EEG measures

# Thank you

cassie.j.hilditch@nasa.gov







Lucia Arsintescu, MA
Sean Pradhan, PhD
Kevin Gregory, BSc
Erin Flynn-Evans, PhD MPH



Funded by the NASA Airspace Operations and Safety Program, System-Wide Safety

