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Abstract: Meteor showers are transient phenomena; a limited duration is what dis-
tinguishes a shower from a sporadic source. They do not, however, have clear start
and end times; instead, shower activity gradually (or rapidly) increases over time,
reaches a peak, and then decays. In this report, we examine the activity profiles of
38 meteor showers using 20 years of single-station shower fluxes from the Cana-
dian Meteor Orbit Radar (CMOR). We find that a number of showers, such as the
Southern delta Aquariids (SDAs), exhibit a broad maximum in activity rather than
a sharp peak. We also find that approximately one-third of showers exhibit asym-
metric activity profiles in which the rate in which activity rises prior to the peak
differs from the rate at which it decays after the peak. We provide a functional
form for meteor shower activity profiles that incorporates these features and use
these profile fits to estimate each shower’s peak flux.

This report also includes an uncertainty analysis for CMOR fluxes. This includes
the first (to our knowledge) characterization of systematic uncertainty in radar me-
teor fluxes.
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THE ACTIVITY PROFILES AND PEAK FLUX OF
RADAR METEOR SHOWERS

1 Introduction

The most basic observable properties of a meteor shower are the radiant, speed, and time at which
activity peaks: these quantities define the stream’s trajectory as it intersects the Earth and there-
fore also its orbit. However, these four quantities describe only the mean shower trajectory at
the time of the peak. The meteors belonging to a given shower will possess a distribution of ra-
diants, speeds, and solar longitudes; for instance, meteor radiants appear to follow a Rayleigh
distribution (Moorhead et al., 2021), and solar longitudes tend to follow an asymmetric Laplace
distribution (Jenniskens, 1994).

The duration or pattern of a shower’s activity is – like radiant, speed, or timing – a useful
point of comparison for additional observations or studies. For instance, one can test whether a
shower’s activity in subsequent years follows the same pattern. When activity differs, having a
model for the typical solar longitude distribution can lead to a better characterization of outbursts.
The temporal distribution itself can also place an important constraint on dynamical models (see,
e.g., Egal et al., 2020). Our own motivation is to carefully measure the peak flux in order to assess
shower relevance compared to the sporadic background.

Meteor shower durations are often described qualitatively, especially for newly discovered
and typically “brief” showers. Quantitative measures of duration are much less common, and
typically take one of two forms. In the first, the observer describes the “start” and “end” of de-
tectable activity (examples include Cook, 1973; Brown et al., 2008; SonotaCo, 2009; Molau and
Rendtel, 2009; Jenniskens et al., 2016). A second, less common measure of meteor shower du-
ration is the full width at half maximum (FWHM; examples include Cook, 1973; Younger et al.,
2015; Ogawa and Steyaert, 2017; Molau et al., 2019; Jenniskens et al., 2020). Both measures have
have limitations. Meteoroid streams typically contain a larger proportion of large meteoroids than
the sporadic complex, and appear more significant when observed at larger sizes/brighter mag-
nitudes. As a result, the shower may be detectable over the sporadic background for a shorter
period of time when viewed by a network sensitive to small meteoroids. Indeed, the Brown et al.
(2008) survey, which is based on radar observations of meteors with magnitudes between +5 and
+9, reports significantly shorter durations for many showers than the SonotaCo (2009) and Jen-
niskens et al. (2016) video surveys, which detect meteors with magnitudes between -2 and +4.
The FWHM is a more useful quantity to compare with meteoroid stream models. On the other
hand, it is less useful for predicting when a shower is detectable by observers or hazardous to
spacecraft.

A complete description of the activity profile, on the other hand, can be used to predict the
interval within which a shower exceeds any desired observability threshold. Jenniskens (1994)
demonstrated that the activity profiles of many showers are well-represented by a double expo-
nential (or Laplace distribution; see section 4.1). Some showers, such as the Geminids (GEMs),
showed strong signs of asymmetry. A handful of showers – including the GEMs, Leonids (LEOs),
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Perseids (PERs), and Ursids (URSs) – required a superposition of two different double exponential
profiles to recreate their activity profile. These profiles and their parameters have now been used
to predict the meteor shower activity encountered by spacecraft for over 25 years (McBride, 1997;
Moorhead et al., 2017; Moorhead et al., 2019).

While many of the Jenniskens (1994) profiles continue to be a good match for observed activ-
ity, others were based on data with a low signal-to-noise ratio. The Daytime Arietids (ARIs), for
instance, have a fairly noisy profile. Additionally, these profiles are based on visual meteor counts
and thus radar and daytime showers are not represented (the “Daytime” Arietids are an excep-
tion, as they occur around dawn and produce a few nighttime meteors). Furthermore, years of
meteoroid flux data have been collected in the intervening decades. The time is ripe to reexamine
the form of meteor shower activity profiles, refine fits to existing showers, and expand our fitting
procedures to new showers.

In this paper, we fit activity profiles using 20 years of meteor flux data from the Canadian
Meteor Orbit Radar (CMOR; Jones et al., 2005; Campbell-Brown, 2004). We obtained profile
shape parameters for 38 meteor showers, many of which are only visible via radar. We find that
about half of these showers are better fit by a generalized logistic distribution with a more rounded
peak, described in section 4.2. In all cases, we incorporate sporadic contamination into our fitting
algorithm; if sporadic contamination is neglected, the peak flux may be severely overestimated.

2 Meteor flux measurements

Three radar transmitters are located at CMOR’s central site and emit at different frequencies:
17.45, 29.85, and 38.15 MHz. The main site has a set of receivers corresponding to each frequency.
29 MHz receivers are also located at five remote sites (Webster et al., 2004; Jones et al., 2005; Brown
and Weryk, 2020). If the reflection of the radar pulse off a meteor trail is detected by receivers at
multiple sites, it is possible to derive a trajectory and obtain the meteor’s radiant and speed. These
multi-station data are used to survey shower activity (e.g., Brown et al., 2008, 2010), among other
applications.

CMOR also collects single-station observations using all three frequencies. Single-station data
are preferred for meteor flux calculations because accounting for observing biases is simpler
(Campbell-Brown, 2004). On the other hand, single-station data lack radiant and speed infor-
mation, making it difficult to discriminate between shower members and non-shower members.1

The only shower membership diagnostic, other than timing, is the angular distance between the
shower radiant, radar station, and meteor at the time of detection (Jones and Morton, 1977). As
a result, the shower fluxes will be more contaminated by sporadics than the multi-station shower
survey data. Accounting for this contamination will be an important component of our activity
characterization (see section 4.5).

CMOR also has two different flux pipelines; an “operational” pipeline that has been in place,
unchanged, since 2002, and an “experimental” pipeline. The experimental pipeline offers addi-
tional options, such as the ability to exclude competing showers, and incorporates improvements,

1While speed estimates can be generated for single-station observations of meteors using the “pre-t0 method”
(Cervera et al., 1997), this method does not work well for the small meteoroids that dominate our flux measurements.
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Figure 1: Two sample showers which we excluded from our analysis. In the case of the xi
Draconid (XDR) shower (left), we were unable to detect a central peak in the data. In the
case of the alpha Hydrid (AHY) shower (right), the apparent strength of the shower was
comparable to the noise in the data.

such as an updated treatment of meteor trail length. The experimental pipeline can be used to
generate fluxes from both the 29 MHz and 38 MHz observations. The limiting magnitude varies
with transmitter frequency and power, but all fluxes are scaled to a constant limiting magnitude
of +6.5.

2.1 Shower selection

Fluxes were measured for 80 showers that are apparent in the multi-station wavelet data. Flux
values were calculated for each shower within the interval [𝜆min, 𝜆0], where these minimum and
maximum values were determined by adding a 5◦ buffer to the starting and ending solar longi-
tudes published in Brown et al. (2010) for each shower. The Brown et al. (2010) interval is the pe-
riod within which the shower produced a detectable wavelet enhancement over the background.
One shower – the Quadrantids (QUAs) – has a manually adjusted interval, as the Brown et al.
(2010) interval lasted far longer than the period over which the shower produced an apparent
flux.

A default interval of one day is used for CMOR flux measurements. Finer time resolution
is possible for the strongest showers under good observing conditions, but this is not possible
for most of the showers considered here. Nevertheless, by combining many years of data, we
can in some cases measure the peak time with less than 1-day resolution. We are unable to take
this approach with infrequent or outbursting showers, and therefore exclude showers such as the
October Draconids (DRAs) and Andromedids (ANDs) from this analysis.

Not all showers showed a clear central peak, and our initial parameter estimation (see sec-
tion 5.1) failed for 32 showers. Visual inspection of the data confirmed that these cases showed no
signs of a peak, and could not be improved by a manual initial parameter estimation. We present
one such example in the left-hand panel of figure 1.

Out of the remaining 48 showers, 10 had signal amplitudes that were comparable to the scatter
in the data. We again present an example in figure 1. Our confidence in the fits for these showers
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would have been low, so we excluded them as well. That left us with the list of 38 showers for
which we present fits in section 6.

2.2 Shower masking

The single-station shower identification method increases the probability of cross-contamination
by other showers as well as by sporadic meteors. The detectable echoes originating from a given
radiant are confined to a plane containing the radar station. Any two planes will have a line of
intersection; echoes that lie along that line could arise from either shower. If the measured shower
is weak and the competing shower is strong, this contamination may be significant.

CMOR’s experimental flux pipeline addresses this issue by checking whether any major show-
ers are active at the time of observation and, if so, excluding echoes that lie near the intersection
of the two echo planes. We have opted to exclude this intersection region throughout the observa-
tion window. In one case, two major showers are active during the observation period for a minor
shower; this minor shower is the sigma Serpentids (SSEs). Rather than further reduce the collec-
tion area with multiple masks, we mask the more clearly problematic shower (the QUAs). We then
accept the possibility of contamination by the GEMs, although we see no signs of contamination
at the nominal GEM peak.

3 Measurement uncertainty

CMOR’s meteor flux algorithm is broadly described in Campbell-Brown (2004), but the algorithm
is still being refined and there are discrepancies between the two pipelines (operational and ex-
perimental) and frequencies (29 and 38 MHz) that are not fully understood. Rather than wait an
unknown amount of time for these discrepancies to be resolved, we instead use them to charac-
terize the systematic uncertainty associated with the flux measurements. To our knowledge, no
other attempt has been made to assess systematic uncertainty in radar meteor flux measurements.

3.1 Yearly variations

CMOR’s flux measurements tend to run high in some years and low in others (see the top panel
of figure 2 for an example). These variations have been ascribed to imperfectly accounted-for
changes in observing conditions caused by equipment upgrades over the years (Campbell-Brown,
2019).

The yearly variations increase the degree of vertical scatter in the data and reduce the apparent
significance of a peak in activity. Therefore, we decided to control for yearly variations in an
empirical manner. Our approach is extremely simple: we calculated the geometric mean of every
flux value for every recorded shower in a given year, and divided this by the geometric mean of
all flux values over all years. These values are presented in the middle panel of figure 2. We then
divide each year’s shower fluxes by this quantity. This reduces the amount of scatter in the data
that is caused by changes in observing conditions rather than by random noise in the data (see
bottom panel of figure 2).
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Figure 2: CMOR daily flux measurements for the November iota Draconid (NID) meteor
shower, color-coded by year. We show the NID raw flux measurements (top), the yearly
relative flux corrections for all showers (middle), and NID daily flux measurements with
these corrections applied (bottom).

We have excluded the year 2009 from all analyses because we found that the fluxes from that
year were poorly behaved compared to other years.

3.2 Systematic uncertainty

In this section, we compare meteor fluxes obtained using two different sets of observations (those
from the 29 MHz receiver and those from the 38 MHz receiver) and two different versions of
the CMOR flux pipeline (operational and experimental). 38 MHz fluxes are not available from the
operational pipeline, and therefore any fluxes labeled “operational” are 29 MHz. Furthermore, the
option to mask competing showers (see section 2.2) is only available in the experimental pipeline.
We therefore turned off this option in the experimental pipeline in order to better compare the
results with the operational pipeline. Finally, we derived and applied yearly correction factors
(see section 3.1) for all three sets of flux data prior to comparing them. The top row of figure 3
shows the results. Before performing any further analysis, we excluded data points lying more
than two standard deviations from the mean of each set. These outliers are identified in figure 3
using gray x’s.

We supposed that the shower fluxes would likely differ between data sets by a multiplicative
factor. However, it is possible for the background level to vary independently of this multiplicative
factor if the 29 MHz and 38 MHz data have different limiting meteor magnitudes. We therefore
fitted a linear relationship between the operational pipeline data and the 29 MHz, experimen-
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Figure 3: eta Aquariid (ETA) meteor flux measured using two different sets of observations
(29 and 38 MHz) and two different versions of the flux pipeline (operational and experi-
mental). Outliers are marked with gray x’s and are excluded from the linear fits. The units
of flux throughout this paper are km−2 hr−1. Data are color-coded by year in the same
manner as figure 2.

tal pipeline data and also between the 38 MHz and 29 MHz experimental pipeline data (bottom
row of figure 3). The multiplicative factor will be the slope of this linear relationship, while any
difference in background noise will be subsumed into the intercept.

Figure 3 illustrates this process for the ETA meteor shower; we then repeated this process for
every meteor shower. Some showers have a very weak signal, as discussed in section 2.1; we
excluded these showers by requiring that the variation in both the operational or 38 MHz data
“explain” the majority of the variation the 29 MHz data (that is, we required that 𝑅2 > 0.5 for both
linear fits).

In general, we found that both the operational and 38 MHz fluxes were systematically lower
than the 29 MHz fluxes. However, we do not assume that the average of the three fluxes is the
best estimate of the true flux. Instead, we will assume that the flux ratios probe the scale of the
systematic uncertainty. If we let

𝑦 = ln
(
𝑓op/ 𝑓29

)
(1)

𝑧 = ln( 𝑓38/ 𝑓29) (2)

then we can estimate the systematic uncertainty as follows

𝜎̂ln 𝑓 =
2√
𝜋

√
𝑦2 + 𝑧2

2
(3)
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Figure 4: Estimated systematic uncertainty in the log of the flux as a function of the in-
atmosphere velocity of a meteor shower. The red line represents equation 4.

where 2/√𝜋 is the bias correction for very small number statistics (Bolch, 1968). We are thus
measuring the mean error about an assumed center at 0.

We find that the uncertainty is larger for slower showers (see figure 4). The overall trend
appears to be:

𝜎̂ln 𝑓 ≃ 0.4
(

𝑣atm

40 km s−1

)−2.5

+ 0.64 (4)

where 𝑣atm is the in-atmosphere speed of the shower. Thus, the uncertainty in the flux is at least a
factor of 𝑒0.64 ≃ 1.9, and rises to a factor of 𝑒3 ≃ 20 for 𝑣atm = 20 km s−1. We will adopt this equation
as our estimate of the systematic uncertainty in the CMOR fluxes.

3.3 Random error

The CMOR flux pipeline does not include flux uncertainty estimates. It does include a tally of the
number of meteors on which each flux measurement is based, 𝑛; we therefore initially tried an
approach in which we assumed that flux ( 𝑓 ) was proportional to 𝑛 and uncertainty to

√
𝑛, giving

us 𝑓 /√𝑛 as an uncertainty estimate. However, this tends to produce smaller uncertainties on
low flux measurements, which did not match the observed distribution. Instead, we noticed that
the flux measurements for a particular shower tended to have a heavy left tail, with low values
deviating more from the median than high values (see the top panel of figure 5).

So long as we have non-normal residuals, any fitting technique based on chi-square minimiza-
tion will be invalid. We therefore decided to take an empirical approach towards estimating the
flux uncertainties. We started by binning the data in 1-day (360◦/365.25) increments: because
fluxes are measured daily, each year contributes one measurement per bin (unless there was a
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compare the distribution of values (gray histogram) with a normal distribution that has the
same mean and standard deviation (black line).

lapse in observations). We then measured the sample mean and standard deviation of the flux per
shower and bin (i.e., 𝑓𝑗 and 𝑠 𝑗 for bin 𝑗).

We found that the following expression provides a residual distribution that is normal:

𝑠𝑖 = 0.32 𝑠 𝑗(𝑖)
(
𝑛 𝑗(𝑖)
𝑛𝑖

)0.4

(5)

When we normalize by these estimated uncertainties, the distributions of both our flux measure-
ment dispersion (see figure 5) and fit residuals (see section 6) are normal.

3.4 Outliers

The flux data also include occasional outliers, some of which are wildly disparate from the rest of
the data (see figure 6 for an example). To identify these, we once again make use of our binned
data. We calculate the 𝑡-value corresponding to the difference between the average and an indi-
vidual measurement:

𝑡∗ =
𝑓𝑖 − 𝑓𝑗(𝑖)

𝑠𝑖
(6)

We then use the modified Thompson tau test (Thompson, 1935; Pope, 1976) to compute the cut-off
value for internally studentized residuals:

𝑡crit =
𝑚 𝑗 − 1√

𝑚 𝑗

𝑡𝑚𝑗−2, 1−𝛼/2√
𝑚 𝑗 − 2 + 𝑡2

𝑚𝑗−2, 1−𝛼/2

(7)

where 𝑚 𝑗 is the number of flux measurements in bin 𝑗 and 𝛼 is our chosen confidence level. We
have opted to set 𝛼 = 0.5/𝑖max; if there are no true outliers present, this choice should result in the
exclusion of one non-outlier per shower approximately half the time.
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Figure 6: Flux measurements for the alpha Antliid (AAN) meteor shower. The average flux
per day-length bin appears as larger black squares, with error bars that span ±1 standard
deviation (not the standard deviation of the mean). The smaller points are individual flux
measurements; the small gray points will be used to fit the activity profile, while the small
red x marks indicate outliers.

If |𝑡∗ | > 𝑡crit, we mark the point as an outlier and exclude it from our analysis. If there are
multiple outliers in a bin, we discard the most extreme outlier and recalculate the 𝑡 values before
discarding any additional outliers. Figure 6 provides an example of this outlier identification as
applied to the alpha Antliid (AAN) meteor shower.

4 Theoretical profile

The timing of non-variable meteor showers tends to remain the same year-to-year when measured
in terms of solar longitude. Thus, solar longitude will be our predictor variable throughout this
analysis, and the time of the peak, 𝜆pk, one of our fit parameters.

The Jenniskens (1994) profile is consistent with about half of the showers we examined. The
remaining showers – including several stronger showers with a high signal-to-noise ratio – did
not exhibit a sharp peak, and were better fit by an alternate profile that we describe in section 4.2.

In theory, one could obtain shape parameter estimates by performing a maximum likelihood
estimation using this probability distribution function (PDF) and the solar longitudes of observed
meteors belonging to a particular shower. In practice, raw meteor data are typically biased in a
number of ways and observations do not carry equal “weight” in any calculation of flux or activity
level. If the data are binned or averaged over some interval, it is useful to have a functional form
for the cumulative distribution function (CDF) of our proposed distribution. We will therefore
present the CDF for each proposed distribution; we will regress the 1-day difference in the CDF
against the data (see section 5.2).
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4.1 Asymmetric Laplace distribution

The profile used by Jenniskens (1994) and later adopted by McBride (1997), Moorhead et al. (2017),
and Moorhead et al. (2019) takes the form of a double-exponential function:

ZHR = ZHR0 ×
{

10−𝐵+ |𝜆⊙−𝜆0 | 𝜆⊙ < 𝜆0

10−𝐵− |𝜆⊙−𝜆0 | 𝜆⊙ ≥ 𝜆0
(8)

We find that the base-10 form leads to awkward factors of ln 10 in the normalization, and opt to
use the following equivalent function for an asymmetric Laplace distribution:

𝑔(𝑥) = 𝑎𝑏
𝑎 + 𝑏

×
{
𝑒+𝑎(𝜆⊙−𝜆0) 𝜆⊙ < 𝜆0

𝑒−𝑏(𝜆⊙−𝜆0) 𝜆⊙ ≥ 𝜆0
(9)

The corresponding cumulative distribution function (CDF) is:

𝐺(𝑥) =


𝑏
𝑎 + 𝑏

𝑒+𝑎(𝜆⊙−𝜆0) 𝜆⊙ < 𝜆0

1 − 𝑎
𝑎 + 𝑏

𝑒−𝑏(𝜆⊙−𝜆0) 𝜆⊙ ≥ 𝜆0

(10)

4.2 Type IV generalized logistic distribution

When examining the data, we noticed that some showers exhibited a sharp peak while others
had a much more rounded profile. We decided to construct a distribution that resembled the
asymmetric Laplace distribution far from the peak, but had a “tunable” sharpness near the peak.
We accomplished this by taking the power mean of two exponential functions:

𝑔(𝑥) ∝
(
𝑒−𝑎 𝑥/𝑐 + 𝑒+𝑏 𝑥/𝑐

)−𝑐
(11)

where 𝑥 = 𝜆⊙ − 𝜆0 and the shape parameters 𝑎, 𝑏, and 𝑐 are all positive. Note that when 𝑥 is
large and positive, 𝑔(𝑥) ∼ exp(−𝑏𝑥), and when 𝑥 is large in magnitude and negative, 𝑔(𝑥) ∼
exp(+𝑎𝑥). Thus, the asymptotic behavior of equation (11) resembles that of an asymmetric Laplace
distribution, but the shape of 𝑔(𝑥) near 𝑥 = 0 is governed by the parameter 𝑐. Small values of 𝑐
result in sharper peaks, while large values produce broad peaks; see figure 7 for an illustration.

This distribution can be re-arranged into the typical form of a Type IV generalized logistic
distribution (GLD4; Prentice, 1976; Nassar and Elmasry, 2012):

𝑔(𝑦) = 1
𝐵(𝑐𝑎 , 𝑐𝑏)

𝑒−𝑐𝑏 𝑦

(1 + 𝑒−𝑦)𝑐𝑎+𝑐𝑏 (12)

where 𝑐𝑎 = 𝑐 𝑎/(𝑎 + 𝑏), 𝑐𝑏 = 𝑐 𝑏/(𝑎 + 𝑏), and 𝐵 is the complete beta function.
The CDF of type IV generalized logistic distribution (GLD4) is:

𝐺(𝑦) = 1
𝑐𝑎 𝐵(𝑐𝑎 , 𝑐𝑏)

𝑒−𝑐𝑏 𝑦

(1 + 𝑒−𝑦)𝑐𝑎+𝑐𝑏 𝑒
−𝑐𝑏 𝑦 (13)

× 2𝐹1(1, 1 − 𝑐𝑏 ; 1 + 𝑐𝑎 ;−𝑒𝑦) (14)
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Figure 7: Non-normalized PDF of our custom distribution (eq. 11) for 𝑎 = 1, 𝑏 = 1.5, and
four choices of 𝑐. The limiting case 𝑐 → 0 is equivalent to equation (9).

where 2𝐹1 is the ordinary or Gauss hypergeometric function.
It can be shown, using identity 15.10.E11 from the NIST Digital Library of Mathematical Func-

tions,2 that this expression is equivalent to:

𝐺(𝑧) = 1
𝑐𝑎 𝐵(𝑐𝑎 , 𝑐𝑏) 𝑧

𝑐𝑎
2𝐹1(𝑐𝑎 , 1 − 𝑐𝑏 ; 1 + 𝑐𝑎 ; 𝑧), where (15)

𝑧 =
1

1 + 𝑒−𝑦
= expit(𝑦) (16)

This maps the interval 𝑥 ∈ (−∞,∞) to 𝑧 ∈ (0, 1). Note that we refer to the standard logistic function
as “expit.”

4.2.1 Alternate form and limiting behavior of CDF

While equation (15) fully specifies our CDF, we find that this formulation is not always adequate
for numerical calculations. For instance, SciPy’s special.hyp2f1 function is implemented only for
64-bit floating point numbers, and, when 𝑧 ∼ 1, can produce large errors for some combinations
of shower profile shape parameters. We therefore use equation 15 only for values of 𝜆 < 𝜆0, for
which 𝑥 < 0 and 𝑧 < 1

2 .
For 𝑧 > 1

2 , we follow the recommendation of Johansson (2019) and find an equivalent expres-
sion that takes 1 − 𝑧 as its argument. To do so, we use identity 15.10.E213 to derive the following
alternate form:

𝐺(𝑧) = 1 − 𝑧𝑐𝑎 (1 − 𝑧)𝑐𝑏
𝑐𝑏 𝐵(𝑐𝑎 , 𝑐𝑏) 2𝐹1(1, 𝑐, 1 + 𝑐𝑏 ; 1 − 𝑧) (17)

2https://dlmf.nist.gov/15.10#E11
3https://dlmf.nist.gov/15.10#E21
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Testing confirmed that this version was more reliable for 𝑧 > 1
2 .

We found that, even armed with two formulations of our CDF, we were not quite able to pro-
ceed with our distribution fitting. In cases where the peak is sharp and 𝑐 is small, exponentiating
𝑦 often resulted in underflow or overflow errors within our data range. To minimize this effect,
we substitute the limiting behavior of 𝐺(𝑧) for the CDF itself:

lim
𝑧→0

2𝐹1(𝑐𝑎 , 1 − 𝑐𝑏 , 1 + 𝑐𝑎 ; 𝑧) = 1 + 𝑐𝑎
1 − 𝑐𝑏
1 + 𝑐𝑎

𝑧 (18)

lim
𝑧→1

2𝐹1(1, 𝑐, 1 + 𝑐𝑏 ; 1 − 𝑧) = 1 + 𝑐
1 + 𝑐𝑏

(1 − 𝑧) (19)

4.2.2 Mode and curvature

Unlike the asymmetric Laplace distribution, our custom distribution does not necessarily peak at
𝑥 = 0. Instead, the mode is located at:

𝑥pk = 𝜆pk − 𝜆0 − 𝑐
𝑎 + 𝑏

ln
(
𝑏
𝑎

)
(20)

The peak is only located at 𝑥 = 0 when 𝑎 = 𝑏, as our PDF is undefined when 𝑐 = 0. When
interpreting our fit, we will need to recall that the time of peak activity is offset from 𝜆0 by this
distance.

The curvature of the PDF at the mode quantifies the sharpness of the peak. If we differentiate
equation 11 twice and set the location to 𝑥pk, we obtain the following curvature:

𝑔′′(𝑥pk) = 𝑎1+𝑐𝑎 𝑏1+𝑐𝑏
𝑐 (𝑎 + 𝑏)𝑐 (21)

Thus, as 𝑐 → 0, the curvature 𝑔′′(𝑥pk) → −∞ and 𝑥pk → 0, and the shape of our profile approaches
that of an asymmetric Laplace distribution.

4.3 Asymmetry

Jenniskens (1994) found that most showers could be fit with a symmetric activity profile: that is,
one in which the rise in activity prior to the peak takes place at the same rate as the decay after the
peak. Both the Laplace and GLD4 PDFs are symmetric when 𝑎 = 𝑏.

In order to make the degree of asymmetry clearer, we will fit for the following combinations
of shape parameters:

𝑘 =
1
2
(𝑏 + 𝑎) (22)

ℓ =
𝑏 − 𝑎
𝑏 + 𝑎

(23)

Thus, 𝑘 ∈ (0,∞) is the average of 𝑎 and 𝑏 and describes the overall steepness of the activity profile,
and ℓ ∈ (−1, 1) describes the asymmetry of the distribution.
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4.4 Distribution truncation

The normalization of both distributions – asymmetric Laplace and GLD4 – assumes that the pos-
sible values of 𝜆⊙ range from −∞ to +∞. However, solar longitude is in fact limited to the range
[0, 360◦] and, for a given shower, observations are usually limited to a far shorter interval.

Fortunately, having a closed form for the CDF of both distributions makes it simple to adjust
the normalization for truncation. The truncated PDF and CDF can be calculated as:

𝑔trunc(𝑥) = 𝑔(𝑥)
𝐺(𝑥max) − 𝐺(𝑥min) (24)

𝐺trunc(𝑥) = 𝐺(𝑥) − 𝐺(𝑥min)
𝐺(𝑥max) − 𝐺(𝑥min) (25)

where 𝑔(𝑥) and 𝐺(𝑥) are the non-truncated PDF and CDF and the observations are limited to the
interval (𝑥min ≤ 𝑥 ≤ 𝑥max).

4.5 Sporadic contamination

As discussed in section 2, our single-station meteor flux measurements are contaminated to a
significant degree by the sporadic background. This contamination varies with both time (due to
seasonal variations in the sporadic complex) and location in the sky (sporadic meteor radiants are
concentrated into “sources”). Instead of attempting to subtract this background contamination
from the data prior to analysis, we incorporate the background contribution into our model.

We adopt a fairly simple distribution for the background: we assume that the level of contam-
ination varies linearly within the observation window. This corresponds to the following PDF:

𝑔bg(𝑥) = 1
𝑥max − 𝑥min

[
1 + 𝑚

(
𝑥 − 𝑥min

𝑥max − 𝑥min
− 1

2

)]
(26)

The quantity (𝑥 − 𝑥min)/(𝑥max − 𝑥min) lies in the interval [0, 1] and therefore 𝑚 ∈ [−2, 2]. The
corresponding CDF is:

𝐺bg(𝑥) =
(
1 − 𝑚

2

) ( 𝑥 − 𝑥min

𝑥max − 𝑥min

)
+ 𝑚

2

(
𝑥 − 𝑥min

𝑥max − 𝑥min

)2

(27)

Our observed flux distribution will be proportional to a linear combination of 𝑔bg with that of
our shower signal, 𝑔. We use 𝛾 to denote the fraction of the PDF that is associated with sporadic
contamination:

𝑔tot(𝑥) = (1 − 𝛾) 𝑔(𝑥) + 𝛾 𝑔bg(𝑥) (28)

We therefore must fit for 𝑚 and 𝛾 in addition to 𝑥0, 𝑘, ℓ (if allowing asymmetry), and 𝑐 (if using
the GLD4 distribution).
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5 Fitting method

Before starting our fitting process, we transform all of our flux data, individual or binned, to a
scale that is consistent with a PDF:

𝑦𝑖 = 𝑓𝑖/𝜌, 𝑦̄ 𝑗 = 𝑓𝑗/𝜌 (29)

𝜌 = (𝜆max − 𝜆min)∑𝑗 𝑓𝑗 (30)

where 𝜆min is the lower bound of our first solar longitude bin and 𝜆max is the upper bound of
the last bin. This removes the amplitude from our fitting process; when complete, we can simply
multiply our best fit by the denominator of equation (30) to convert back to flux.

5.1 Initial parameter estimate

We are fitting for a large number of parameters (up to six) simultaneously, and, possibly as a result,
we find that many fitting algorithms struggle to converge on a solution unless provided with a
good initial estimate. Through trial and error, we have devised a multi-step, iterative process for
constructing this starting point.

Step 0: We construct our parameter estimate using the averaged data (i.e., 𝑦̄ 𝑗). This will some-
what blunt the peak, but it greatly reduces noise.

We estimate 𝜆0 as the mid-point of the bin containing the maximum 𝑦̄ 𝑗 value. This works as a
starting point for the vast majority of cases, but we found we needed to provide manual estimates
for a few showers with strong background trends: the alpha Capricornid (CAP), lambda Boötid
(LBO), and Northern June Aquilid (NZC) meteor showers.

Step 1: We next estimate the quantity and slope of sporadic background contamination by per-
forming linear regression on the data, using a weighting factor that emphasizes points that lie far
from the peak:

𝑤 𝑗 =
(

𝜆 𝑗 − 𝜆0

𝜆max − 𝜆min

)2

(31)

where 𝜆 𝑗 is the midpoint of bin 𝑗. This obtains a reasonable estimate for the slope, but will overes-
timate the magnitude of the contamination (characterized via the intercept) because we have not
yet separated the sporadic background from the shower signal (see the top panel of figure 8 for an
example).

Before proceeding to the next step, we subtract the predicted values from the observed values
to obtain the residuals, and adjust the location of our estimated peak to match that of the maximum
residual rather than the maximum flux.

Step 2: In this step, we first perform a simple check as to whether a peak exists in the data. We
select the largest interval that includes 𝜆1 and contains only positive residuals. We then run two
Spearman rank tests for monotonicity (Virtanen et al., 2020; Zwillinger and Kokoska, 2000), one on
the selected residuals preceding the peak and the second on the selected residuals after the peak.
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Figure 8: Our shape parameter estimation process, applied to eta Aquariid meteor shower
relative fluxes that have been averaged over 20 years.
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We require that both sets pass the test with a p-value less than 0.05, and that the rank correlation
is positive prior to the peak and negative after the peak.

If the selected residuals pass both tests, we again use linear regression to estimate the shape
parameters; see the second panel of figure 8 for an illustration. We obtain the slope and intercept
relating the log of the residuals to the offset between solar longitude and the current best estimate
of 𝜆0.

Step 3: We then average the intercept to obtain a common intercept and repeat the linear regres-
sion with the intercept fixed to refine our estimates of 𝑎 and 𝑏. See the third panel of figure 8 for
an illustration.

Step 4: Finally, we fit a double exponential function plus a vertical offset to the full set of resid-
uals (see the fourth panel of figure 8).

Step 5: The results of Step 5, combined with the linear fit from Step 2, provide us with a full set
of estimated shape parameters. The bottom panel of figure 8 compares this parameter estimate
with the averaged data.

One could attempt to refine this estimate by iterating some or all of the above steps, but we
find that the parameter estimates generated by a single pass through these steps provides a stable
starting point for our distribution fitting.

5.2 Regression

In order to obtain an accurate fit, we use the 1-day difference in the CDF as our theoretical distribu-
tion rather than the PDF. Because the radar flux is measured over 1-day increments, this produces
some natural rounding in the peak of the activity profile, which can be significant when fitting the
double exponential profile to very brief showers such as the April Lyrids (LYR; see figure 9) and
QUAs.

In an effort to minimize the covariance between fit parameters, we opted to fit for the peak
solar longitude (𝜆pk) rather than the reference solar longitude of the distribution (𝜆0). Thus, our
fit parameters were the timing of peak activity, 𝜆pk; the steepness of the distribution, 𝑘; the degree
of asymmetry, ℓ ; the smoothing parameter, 𝑐; the trend in the sporadic background contamination,
𝑚; and the fraction of background contamination, 𝛾. The asymmetry parameter is omitted if the fit
is constrained to be symmetric, and the smoothing parameter is omitted for a Laplace distribution.

We found that simple chi-square minimization worked well for both distributions. However,
we also minimized a variant of the chi-squared statistic:

𝜒2
mod = 𝜒2 + 0.1

(
𝛾 − 𝛾0

𝜎𝑦

)2

(32)

in which 𝛾0 is an estimate of the highest plausible level of sporadic background contamination and
𝜎𝑦 is a measure of the overall scatter about the best fit obtained by minimizing 𝜒2. We estimated
𝛾0 by averaging the endpoints of the distribution and adding 1

2𝜎.
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Figure 9: Flux measurements for the LYR meteor shower; red x’s indicate outliers. We
compare our best-fit curve (thick black line), in which we average the PDF over a 1-day
interval to match the observation period, to the instantaneous PDF (blue line).

minimized statistic
distribution asymmetry 𝜒2 𝜒2

mod
Laplace ℓ = 0 Ls1 Ls2

ℓ ∈ (−1, 1) La1 La2
GLD ℓ = 0 Gs1 Gs2

ℓ ∈ (−1, 1) Ga1 Ga2

Table 1: Four activity profile fitting combinations and their numbering.

For most showers, minimizing 𝜒2
mod produced fits that were very similar to those obtained by

minimizing 𝜒2. Weak showers with a lower signal-to-noise ratio behaved differently; modifying
𝜒2 substantially increased the best-fit value of 𝛾 (see figure 10 for an example).

For each shower, we perform eight fits covering all possible combinations of theoretical pro-
file (Laplace or GLD4), allowance for symmetry (symmetric or asymmetric), and minimization
statistic (𝜒2

mod or 𝜒2). We provide a numbering scheme for these eight fits in table 1.

5.3 Statistical tests

Chi-square minimization requires that our residuals be independent and normally distributed
with equal variance. We perform a set of tests to verify whether these requirements are met.
We also perform a chi-square goodness-of-fit test and verify whether the duration of detectable
activity is compatible with multi-station shower observations.
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Figure 10: Flux measurements (points) for the alpha Ursae Majorid (AUM) meteor shower,
estimated uncertainties (error bars), and best fit (black curve) and corresponding sporadic
flux (dashed line). In the top panel, we have obtained our best fit by minimizing 𝜒2; in the
bottom panel, we have minimized 𝜒2

mod (see equation 32).

5.3.1 Chi-square goodness-of-fit

The reduced chi-squared statistic is:

𝜒2
red =

𝜒2

𝜈
(33)

where the number of degrees of freedom is typically assumed to be 𝜈 = 𝑁 − 𝑛par − 1 (see, e.g.,
Bevington et al., 1992). Since the expectation value of a chi-squared distribution is equal to the
number of degrees of freedom, this value should be similar to unity. If 𝜒2

red / 1, this indicates
either a poor fit or a poor characterization of the uncertainty (Bevington et al., 1992).

Rather than qualitatively assess the fit by examining the 𝜒2
red value, we perform a quantitative

test using 𝜒2. We convert the test statistic to a right-tailed p-value by calculating the survival
function of 𝜒2, assuming that it follows a chi-squared distribution with 𝑁 − 𝑛par − 1 degrees of
freedom.

5.3.2 Signal plausibility

The flux data encompass a time interval that is wider than that over which the shower produces a
detectable enhancement over the background as measured via a radiant-speed wavelet algorithm
Brown et al. (2008, 2010). As a result, we expect the shower activity to be a small fraction of the
total flux near the ends of the interval. We choose to make this expectation a requirement.

Specifically, we require that the shower enhancement be less than the noise level outside the
window of detectability. We do not employ our flux uncertainty estimates for this comparison, as
these vary from measurement to measurement depending on the number of meteor observations.
Instead, we estimate the scatter as follows:

𝜎̂2
𝑦 =

∑𝑁−1
𝑖=1 ( 𝑓𝑖+1 − 𝑓𝑖)2

2(𝑁 − 2) (34)
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This formula is derived from the distribution of the difference of two independent and identically
distributed normally variables, which is 𝒩(0, 1

2𝜎
2). Our residuals are not normally distributed;

equation (34) is intended to serve only as a rough estimate of the noise.
We then use our fits to find the predicted shower flux at 𝜆min + 5◦ and 𝜆max − 5◦ – that is, when

activity first becomes detectable or becomes no longer detectable. If the shower-only flux at both
times is less than 𝜎̂𝑦 , we consider the shower to be have dropped to a level that is consistent with
non-detection.

We do not necessarily expect that the flux exceeds 𝜎̂𝑦 within the Brown et al. (2010) intervals.
Because the flux measurements are based on single-station data, it is more difficult to separate a
shower from the sporadic background than it is when using multi-station trajectories. We there-
fore expect a lower signal-to-noise ratio, which means that a detectable wavelet signal may not
translate to significantly elevated single-station fluxes. For the purposes of fitting, however, we
do require that the estimated peak exceed 1.5 𝜎̂𝑦 .

5.3.3 Test for independence

We check whether our residuals are independent using an autocorrelation test. For this test, we
once again bin our data; in this case, we calculate the mean residual value in one-day intervals.
This choice is motivated by the fact that a poor fit should result in day-to-day and not year-to-year
autocorrelations.

We then compute the Durbin-Watson test statistic (Durbin and Watson, 1950, 1951; Seabold and
Perktold, 2010) on the mean residuals. Data are typically considered independent if this statistic,
which can range from 0 to 4, has a value between 1 and 3. Some statisticians, however, recommend
a range of 1.5 to 2.5 for a conclusion of no autocorrelation. The actual critical range for the Durbin-
Watson statistic varies with the number of data points and the number of parameters, and is not
straightforward to calculate (Seber and Lee, 2012).

We decided to bootstrap our way to a p-value. Our null hypothesis is that the residuals are
uncorrelated and follow a normal distribution. We therefore drew 10,000 random samples of
the same size as our binned mean residuals and calculated the Durbin-Watson test statistic for
each sample. We used the distribution of simulated test statistic values to estimate the p-value
corresponding to the test statistic of our residuals.

5.3.4 Test for equal variance

To test for equal variance, we used the Levene test (Virtanen et al., 2020; Levene, 1960). We decided
to sort our residuals by the corresponding predicted response value and then divide them into
groups of nearly equal size with a minimum sample size of 25.

Because our residuals should be normally distributed, we use Levene’s original formulation in
which deviations are measured relative to the group mean, rather than the alternative formulation
of Brown and Forsythe (1974) that uses the group median.

We also test for autocorrelation in the residuals binned by predicted response value. The data
should fail such a test if the value of the residuals varies with predicted value.
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Figure 11: Flux measurements for the QUA meteor shower. Red “x” marks indicate outliers
and excluded data.

5.3.5 Test for normality

Finally, we test the residuals for normality using a simple and commonly used statistical test
(Virtanen et al., 2020; D’Agostino, 1971; D’Agostino and Pearson, 1973).

5.4 Interval trimming

In three cases, we found that a failed test was driven by anomalous behavior near one or both ends
of the measurement interval. We were able to obtain better quality fits by trimming the interval
over which we fit the data. For instance, the QUAs exhibit deviations from a linear background
trend near the ends of the observation interval (see figure 11). Excluding the first and last few
degrees results in a fit that passes all tests.

The three trimmed showers are the beta Equuleids (BEQs), for which we exclude observations
after 𝜆⊙ = 120◦; the PERs, for which we exclude observations prior to 𝜆⊙ = 123◦; and the QUAs,
for which we exclude observations prior to 𝜆⊙ = 272◦ and after 𝜆⊙ = 291◦.

6 Results

6.1 Sample results

We obtained at least partially successful fits for 38 radar-observable showers. Figure 12 shows
sample results for the Southern delta Aquariids (SDAs). Similar sets of plots for all 38 showers are
available in an appendix.

In the leftmost column of plots, the data appear in gray with the exception of outliers, which
appear in red. The best fit is represented by the solid black line, while the dashed black line repre-
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Figure 12: SDA meteor shower flux (left column) and residuals (remaining columns) for
eight different fits (see table 1). Outliers appear in red. Checkmarks indicate that the
fit passed a chi-squared goodness-of-fit test and signal plausibility test (first column), a
Durbin-Watson test for independence (second column), another Durbin-Watson test for in-
dependence plus Levene’s test for equal variances (third column), and a test for normality
(last column). If the signal outside the reported shower activity period exceeded the scatter
in the data by more than a factor of 1 but less than a factor of 2, we replace the second blue
check mark in the first column of plots with a cyan “2.”
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sents the portion of the flux that is due to sporadic contamination. All plots in the left column are
annotated with a blue checkmark or red “x” to indicate that the fits either pass or fail (respectively)
a chi-squared goodness-of-fit test with a p-value greater than 0.01. A second blue checkmark in-
dicates that the shower passed a test for signal plausibility. A cyan “2” indicates that it does not
pass but is close to passing, and a red “x” indicates that it fails the signal plausibility test.

The second column of plots displays the studentized residuals vs. solar longitude:

residual =
𝑦𝑖 − 𝑦pred(𝑥𝑖)

𝑠𝑖
(35)

The individual residuals appear as small gray points, while the 1-day residual averages are shown
as larger black squares. The checkmark or “x” indicates whether the averaged residuals pass a
Durbin-Watson test for independence with a p-value greater than 0.01. In the case of the SDAs,
only the asymmetric GLD4 distribution passes this test; this result is consistent with the visible
fluctuations we see in the residuals of the Laplace and symmetric fits.

The third column of plots displays a “residuals vs. fits” plot; that is, it plots the studentized
residuals against the values predicted by our fit. The individual residuals again appear in gray,
while the prediction-binned residual averages appear as larger black squares. We depict the stan-
dard deviations of the binned residuals as error bars on the black squares. A checkmark indicates
whether the averaged residuals pass both a Durbin-Watson test for independence and a Levene
test for equal variance with a p-value greater than 0.01. If either test fails, we mark the plot with
an “x.”

Finally, the last column of plots shows the distribution of the studentized residuals. We over-
lay a standard normal distribution as a visual guide. The plots in this column all have blue check-
marks, indicating that they passed a test for normality with p-values greater than 0.01.

6.2 Fit selection

In some cases, exactly one of our eight fits satisfies all five tests described in section 5.3. In others,
more than one of our fitting approaches (see table 1) produced a good match to the data. When
choosing between multiple adequate fits, we always prioritize the simpler model: Laplace is pre-
ferred over GLD4, symmetry is preferred over asymmetry, and minimization of the chi-squared
is preferred over minimization of the modified chi-squared. Thus, our most preferred fit is “Ls1,”
followed by “Gs1,” and so on. Figure 12 and table 2 list the fits in order of decreasing preference.

Using our test results and this method ranking, we selected the best (or least bad) fit for each
shower. These fits are presented in figures 13 and 14. Table 2 summarizes the full set of 1520
test results (i.e., every combination of 38 showers, 8 fit attempts, and 5 tests) and highlights our
selected fits. There are several fit “tiers”: in the first, the best fit unambiguously satisfies all test
criteria. We highlight these cases in table 2 in green. In the second tier, highlighted in yellow,
the best fit satisfies all but one criterion, and either (i) visual examination suggests that the test
condition is not badly violated or (2) the shower flux outside the wavelet detection interval lies
within 2 𝜎̂𝑦 rather than 1 𝜎̂𝑦 . When conducting 1216 statistical tests with 𝛼 = 0.01 (we exclude
our signal plausibility tests from this total as they do not have a defined level of significance), one
would expect approximately 12 type I errors; thus, these five second-tier fits are likely to be valid,
although we cannot prove it conclusively. In the third tier, highlighted in red, we were unable to
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fit Ls1 Gs1 La1 Ga1 Ls2 Gs2 La2 Ga2
test 𝜒 s x y n 𝜒 s x y n 𝜒 s x y n 𝜒 s x y n 𝜒 s x y n 𝜒 s x y n 𝜒 s x y n 𝜒 s x y n

AAN ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

ARI ✓ ✓ ✓ ✓ ✓ ✓ ✓ 2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

AUM ✓ 2 ✓ ✓ ✓ ✓ 2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

BEQ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

BTA ✓ ✓ ✓ ✓ ✓ 2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CAP ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

DLT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

DSX ✓ 2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

EPG ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

ETA ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

GEM ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

GUM ✓ 2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

JLE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

KLE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

LBO ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

LDR ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 2
LLY ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 2 ✓ ✓ ✓ ✓ 2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

LMI ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

LYR ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

NID ✓ 2 ✓ ✓ ✓ ✓ 2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

NOC ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

NOO ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 2 ✓ ✓ ✓ ✓ 2 ✓ ✓ ✓ ✓ 2 ✓ ✓ 2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

NZC ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 2 ✓ ✓ ✓ ✓ ✓ 2 ✓ ✓ ✓ ✓

OCE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

ORI ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

PCA ✓ ✓ ✓ ✓ ✓ 2 ✓ ✓ ✓ 2 ✓ ✓ ✓ ✓ 2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

PER ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

QUA ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SDA ✓ ✓ ✓ 2 ✓ ✓ 2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 2 ✓ ✓ 2 ✓ ✓ 2 ✓ ✓ ✓ ✓ ✓ ✓

SMA ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SSE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

STA ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SZC ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

TCB ✓ 2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 2 ✓ ✓ ✓ ✓ ✓ ✓ ✓

URS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

XCB ✓ 2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

XSA ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

ZPE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 2: Statistical test results for our four fit attempts (see table 1) for each shower.
𝜒 : chi-squared goodness-of-fit
s : signal plausibility
x : residuals independent when ordered by 𝑥
y : residuals independent with equal variance when ordered by 𝑦
n : residuals are normally distributed

✓: test passed with 𝑝 > 0.01 or signal < 𝜎̂𝑦 outside active interval
i : visual inspection suggests test is not badly violated
2 : signal < 2𝜎̂𝑦 outside active interval
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find a good fit candidate, and simply identify what appears to be the least bad option. We include
these 6 third-tier fits because they may still be useful for providing a rough description of the
shower activity profile.

We would like to note that multiple good fits are not an indication that the fit is undercon-
strained. Because the asymmetric Laplace distribution corresponds to the limiting behavior of the
GLD4 distribution as 𝑐 → 0, any shower that can be fit by the former can also be fit by the latter.
Indeed, we can see from table 2 that this is the case. Similarly, any shower that can be fit by a sym-
metric distribution can also be fit by an “asymmetric” distribution in which ℓ ∼ 0. Furthermore,
our modified chi-squared (eq. 32) is designed to deviate from the actual chi-squared statistic by a
very small quantity. In most cases, it makes little difference in the final fit. This is the intended
behavior: it should modify the fit only for showers with lower signal-to-noise ratios.

6.3 Peak flux

In table 3, we provide the fit parameters as well as peak time and flux. We compute the instan-
taneous peak flux using the PDF rather than the 1-day difference in CDF that describes the data.
For broad showers, the two values do not differ much, but the peak PDF value may lie noticeably
above the maximum measurement for brief showers. The peak flux does not include the sporadic
component.

The reader may notice that four showers – the LBOs, xi Coronae Borealids (XCBs), Southern
Daytime omega Cetids (OCEs), and Daytime zeta Perseids (ZPEs) – do not have finite uncertain-
ties on at least one parameter. In most cases, this parameter is 𝑐 and the uncertainty could not be
estimated because the minimum chi-square occurred at the upper end of our allowed range in 𝑐.
Larger values of 𝑐 resulted in computational errors without visibly improving the fit.

In figure 15, we present showers in order of decreasing peak flux to illustrate which showers
produce the most significant fluxes. Unsurprisingly, the GEMs appear at the top, followed by
several other major showers: the SDAs, QUAs, ARIs, and ETAs. However, we find that a couple of
comparatively obscure showers – the Southern June Aquilids (SZCs) and theta Coronae Borealids
(TCBs) – compete with major showers such as the Orionids (ORIs), URSs, and PERs. This is partly
due to the fact that CMOR sees relatively weak ORI and PER activity, possibly because of a lack of
small particles in these streams.

Figure 15 also illustrates the impact of our estimated systematic uncertainty. In the left panel,
labeled “low,” the flux values have been reduced by one 𝜎ln 𝑓 ; that is, the flux has been multiplied
by 𝑒−𝜎ln 𝑓 . After applying this transformation, the showers no longer appear in strictly decreasing
order; this is because 𝜎ln 𝑓 is a function of shower speed. In the right panel, labeled “high,” the
flux values have been increased by one 𝜎ln 𝑓 .
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Figure 13: Flux measurements (points), estimated uncertainties (error bars), and our best
fit for the activity profile (solid black curve) for 28 out of 38 meteor showers. Outliers and
excluded data appear in red, and we display the sporadic background portion of our best
fit as a dashed line.
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Figure 14: Flux measurements (points), estimated uncertainties (error bars), and our best
fit for the activity profile (solid black curve) for the remaining 10 out of 38 meteor showers.
Outliers appear in red, and we display the sporadic background portion of our best fit as a
dashed line.
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27

SNR fit 𝜆0 (deg) 𝑘 ℓ 𝑐 𝜆pk (deg) 𝑓pk (km−2 yr−1)

AAN 2.9 Gs1 312.25 ± 0.18 1.204 ± 0.025 27.30± 0.52 312.25 ± 0.19 0.009 47± 0.000 76
ARI 15.2 Ga1 77.51 ± 0.27 0.282 ± 0.018 −0.276± 0.026 1.51± 0.24 79.026± 0.080 0.0590 ± 0.0043
AUM 1.9 Ls2 207.19 ± 0.30 0.166 ± 0.028 207.19 ± 0.30 0.006 24± 0.000 66
BEQ 2.8 Ls2 106.63 ± 0.19 0.236 ± 0.034 106.63 ± 0.19 0.0127 ± 0.0014
BTA 1.6 Gs2 95.846 ± 0.091 1.09 ± 0.26 23.3 ± 11.3 95.85 ± 0.46 0.007 77± 0.000 84
CAP 2.1 Ga1 129.61 ± 0.92 0.33 ± 0.38 0.76 ± 0.17 1.5 ± 2.9 125.25 ± 0.66 0.0127 ± 0.0022
DLT 3.7 Gs2 82.41 ± 0.24 0.696 ± 0.019 25.39± 0.78 82.41 ± 0.24 0.0151 ± 0.0012
DSX 6.3 Ga1 194.3 ± 1.3 1.4 ± 2.0 0.81 ± 0.25 7.8 ± 14.0 187.98 ± 0.13 0.0399 ± 0.0094
EPG 2.7 Gs2 106.267 ± 0.062 2.33 ± 0.17 26.9 ± 2.6 106.27 ± 0.16 0.0112 ± 0.0013
ETA 10.0 La1 45.26 ± 0.13 0.2484± 0.0092 −0.229± 0.029 45.26 ± 0.13 0.0583 ± 0.0044
GEM 39.3 La1 261.724 ± 0.044 0.644 ± 0.015 0.503± 0.013 261.724± 0.044 0.172 ± 0.013
GUM 1.8 Gs1 297.328 ± 0.056 1.45 ± 0.41 23.5 ± 12.2 297.33 ± 0.31 0.004 95± 0.000 52
JLE 4.4 Ls1 282.431 ± 0.069 0.695 ± 0.080 282.431± 0.069 0.009 35± 0.000 89
KLE 3.5 Gs2 181.29 ± 0.11 0.208 ± 0.065 2.9 ± 2.1 181.29 ± 0.25 0.0110 ± 0.0011
LBO 4.1 Ga1 306.1743± 0.0028 6.3 ± ∞ 0.97 ± 0.76 30.0 ± ∞ 295.80 ± 0.24 0.0171 ± 0.0037
LDR 1.6 Ls1 207.19 ± 0.58 0.124 ± 0.076 207.19 ± 0.58 0.0044 ± 0.0016
LLY 2.1 Ls1 44.41 ± 0.46 0.085 ± 0.046 44.41 ± 0.46 0.0083 ± 0.0025
LMI 1.4 Ls1 207.08 ± 0.36 0.30 ± 0.12 207.08 ± 0.36 0.0056 ± 0.0011
LYR 2.8 Ls1 32.484 ± 0.068 2.30 ± 0.55 32.484± 0.068 0.0136 ± 0.0027
NID 2.2 La1 251.28 ± 0.84 0.066 ± 0.028 0.36 ± 0.21 251.28 ± 0.84 0.0060 ± 0.0012
NOC 3.8 Ga1 56.7 ± 3.3 0.24 ± 0.51 0.56 ± 0.61 4.6 ± 14.7 44.68 ± 0.33 0.0160 ± 0.0039
NOO 5.2 La1 247.80 ± 0.33 0.099 ± 0.018 0.208± 0.095 247.80 ± 0.33 0.0185 ± 0.0019
NZC 3.4 Gs2 101.57 ± 0.41 0.345 ± 0.020 22.3 ± 2.4 101.57 ± 0.40 0.0168 ± 0.0013
OCE 2.5 Ga1 75.033 ± 0.015 1.3 ± 10.6 0.86 ± 1.00 30.0 ± ∞ 45.08 ± 0.37 0.0133 ± 0.0011
ORI 5.2 Ls1 208.85 ± 0.12 0.239 ± 0.016 208.85 ± 0.12 0.0270 ± 0.0022
PCA 6.0 La1 120.97 ± 0.20 0.135 ± 0.012 0.603± 0.048 120.97 ± 0.20 0.0231 ± 0.0018
PER 4.1 La1 140.13 ± 0.13 1.05 ± 0.13 0.20 ± 0.12 140.13 ± 0.13 0.0162 ± 0.0018

27



28

QUA 19.5 Ls1 283.098 ± 0.031 1.582 ± 0.069 283.098± 0.031 0.1016 ± 0.0083
SDA 15.6 Ga1 123.10 ± 0.36 0.321 ± 0.027 −0.321± 0.035 1.51± 0.29 124.673± 0.079 0.1347 ± 0.0099
SMA 1.7 Gs1 47.960 ± 0.070 0.43 ± 0.77 18.9 ± 65.5 48.0 ± 1.3 0.0108 ± 0.0039
SSE 2.9 Ls1 275.59 ± 0.28 0.081 ± 0.016 275.59 ± 0.28 0.0118 ± 0.0012
STA 1.7 Gs1 197.314 ± 0.049 0.38 ± 0.57 18.5 ± 55.5 197.31 ± 0.70 0.0128 ± 0.0024
SZC 4.2 Ls1 80.97 ± 0.10 0.549 ± 0.088 80.97 ± 0.10 0.0395 ± 0.0039
TCB 4.6 Gs1 295.6839± 0.0095 0.9 ± 1.9 13.9 ± 57.5 295.68 ± 0.12 0.023 ± 0.013
URS 5.5 Ls1 270.541 ± 0.049 3.04 ± 0.64 270.541± 0.049 0.0255 ± 0.0046
XCB 3.3 Gs1 295.3998± 0.0060 1.1 ± 3.3 17.5 ± ∞ 295.40 ± 0.16 0.0127 ± 0.0050
XSA 1.7 Ls2 291.08 ± 0.42 0.142 ± 0.025 291.08 ± 0.42 0.0172 ± 0.0020
ZPE 3.3 Ga2 100.3205± 0.0063 2.9 ± 26.9 0.97 ± 0.29 30.0 ± ∞ 79.43 ± 0.37 0.0138 ± 0.0011

Table 3: Best fit distribution parameters (𝜆0, 𝑘, and, where applicable, ℓ and 𝑐) and the corresponding peak solar longitude
and flux (𝜆pk and 𝑓pk). We have sorted the showers in order of decreasing peak flux.
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1 / 2 s a

L 10 / 2 5 / 0

G 6 / 3 5 / 1

Table 4: The number of activity profiles that fall into each category: (L)aplacian vs. (G)LD4,
(s)ymmetric vs. (a)symmetric, and minimizing the (1) unmodified vs. the (2) modified chi-
squared statistic (eq. 32).

6.4 Correlations and trends

We conducted several simple statistical tests for trends or correlations in our results. For all sta-
tistical tests, we exclude the third-tier (or “bad”) fits, leaving us with a sample size of 𝑛 = 32 first-
and second-tier fits. First, we performed a chi-square test for independence on the 2 × 2 × 2 ar-
ray of the number of showers that fall into each fit category (see table 4); we found no evidence
of any correlation. Thus, GLD4 fits are not more likely to be asymmetric, fits using a modified
chi-squared statistic (“2”) are not more likely to be consistent with a Laplace distribution, and so
forth.

Next, we measured the proportion of GLD4 and asymmetric fits. Based on our first- and
second-tier results, we find that a GLD4 distribution fits the data better than a Laplace distribution
about half the time (with a point estimate of 47% and a 95% confidence interval of 29%–65%).
Similarly, we find that an asymmetric distribution fits the data better an estimated 34% of the time
(with a 95% confidence interval of 19–53%).

We also find that biasing the fit towards a higher sporadic contamination level (i.e., minimizing
a modified chi-squared statistic) is sometimes (about ∼ 20% of the time) able to bring the shower
signal to within 1-2 𝜎 of the background level outside of the expected window of observability.

Finally, we conducted tests to determine whether our fit categories were correlated with shower
duration or amplitude. Our goal is to determine whether there are any signs of one fit type being
associated with a poorer temporal resolution or weaker signal. Rather than use the wavelet du-
rations from Brown et al. (2010), we measured the duration over which the shower component of
our best or chosen fit was at least 1 𝜎̂𝑦 in amplitude.

We tested the influence of duration and signal strength by performing a simple t-test for a dif-
ference in mean duration or mean signal strength between fit groups (see figure 16). We found no
significant difference in peak signal strength ( 𝑓pk/𝜎̂𝑦) with fit type, but we found that, when we
group Laplace and GLD4 fits together, asymmetric fits corresponded to significantly longer dura-
tions (p-value = 0.001). This indicates that finer temporal sampling may be needed to determine
whether the activity profiles of brief showers are symmetric or asymmetric in shape.

6.5 Future work

We are able to approximate the shape of the GEM and ARI activity profiles with our chosen dis-
tributions, but the residuals indicate that neither an asymmetric Laplace distribution nor a GLD4
distribution fully capture the shape of these profiles. A superposition of distributions, as pro-
posed by Jenniskens (1994), may be more successful. The GEMs are a particularly interesting case
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Figure 15: The full list of showers we fit, sorted in order of descending peak flux (center).
The peak flux is depicted by the gray bars/black points, with error bars corresponding to
the uncertainties provided in table 3. The left panel shows the results when reduced by
one 𝜎ln 𝑓 , and the right panel shows the results when increased by one 𝜎ln 𝑓 .
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Figure 16: Box plots of shower duration (left) and signal strength (right); we have divided
the showers into four groups by best fit type. The asterisk indicates that, for example, fit
types Ls1 and Ls2 have been combined into a single category. Showers that are better fit by
an asymmetric distribution (La* and Ga*) tend to have longer durations on average.

for further study because their duration is known to vary with particle size (Olsson-Steel, 1987;
Šimek and McIntosh, 1989).

The TCB, and, to a lesser extent, the XCB and LBO showers produce relatively large peak
fluxes. These three showers have similar radiants, speeds, and are active at similar times; accord-
ing to Brown et al. (2008), the XCB and TCB showers have identical active intervals. The LBO
shower occurs a little earlier but has a 10-day overlap with the XCB and TCB active period. If we
were to combine these three showers, their flux could rival the ARIs in strength. However, the
high apparent LBO flux at the end of its activity window could be due in part to TCB and XCB
contamination. We suggest a careful joint characterization of these three showers as a possible
area of future work.

7 Conclusion

We have conducted a detailed characterization of 38 meteor shower activity profiles using single-
station flux data from the the Canadian Meteor Orbit Radar (CMOR). Our profiles differ from
previously published profiles in that we allow for a blunted or rounded peak in the flux; we
accomplish this using a type IV generalized logistic distribution (GLD4). We choose the best fit
for each shower using a battery of statistical tests that ensure that all requirements of regression
fitting are met.

Overall, we find that half of showers are better fit with a GLD4 distribution than a Laplace
distribution, and that one-third of showers are better fit with an asymmetric distribution. Fur-
thermore, showers that have a longer interval of detectability are more likely to be better fit by an
asymmetric distribution, hinting that finer sampling of brief showers might result in additional
asymmetric fits.

A crucial part of our fitting process is that we fit for a sporadic contamination component.
In fact, we (weakly) bias the results in favor of a high contamination fraction if it results in a
more plausible signal-to-noise ratio. Without this sporadic contamination component, we would
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severely overestimate the flux of weaker showers. The gamma Ursae Minorids (GUMs), for in-
stance, account for only 18% of the total flux passing through its echo plane at the time of peak
activity.

Allowing for GLD4 fits also reduces the tendency to overestimate the peak flux of showers
with broad peaks. For instance, fitting the Southern delta Aquariids (SDAs) with a Laplace rather
than a GLD4 distribution results in a peak flux that is 25% higher (and is a noticeably worse fit;
see figure 12).

Our careful fitting process and subtraction of sporadic contamination allow us to better com-
pare the relative strengths of showers. Figure 15 ranks all fitted showers by their peak flux; the
ten strongest showers are the Geminids (GEMs), SDAs, Quadrantids (QUAs), Daytime Arietids
(ARIs), eta Aquariids (ETAs), Daytime Sextantids (DSXs), Southern June Aquilids (SZCs), Orion-
ids (ORIs), Ursids (URSs), theta Coronae Borealids (TCBs).

This report also estimates the algorithm uncertainty associated with CMOR flux measurements
by comparing three different sets of flux measurements. It appears that the uncertainty is a factor
of two for showers with high speeds, but can be significantly more uncertain for low-speed meteor
showers.
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