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Previous Studies on Sharp-Edge Diffraction

•Semi-infinite plate
▪ Wiener-Hopf factorization

▪ Straight edge, rigid surface, and static medium

•Infinite wedge
▪ Image source synthesis

▪ Straight edge, rigid surface, and static medium

•Kirchhoff integration method
▪ Kirchhoff approximation (underprediction)

▪ Rigid surface and static medium
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Features in Aircraft Noise Scattering

• Noncanonical geometry

• Mean flow

• Potential acoustic treatment
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Objective

•Develop new solution for sharp-edge diffraction, accounting 
for features important for aircraft noise applications
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• Governing equation and boundary condition in local region

• Integral representation by Green’s theorem

• All three features included (noncanonical geometry S, mean flow M, and surface 
impedance Z)

• Integral equation with unknowns on right-hand side (not likely to have exact analytical 
solution or numerical solution)

• All wave quantities in integrand (amplitude and phase)

• Asymptotic analysis to reduce integral equation to algebraic equation

Formulation
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Source

Diffraction 

Reflection
• Integral equation

• Suitable for the method of stationary phase

• First-order solution = Stationary point contribution + Contour integration

• Successive analysis applicable to any higher order

Asymptotic Analysis
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• Summation over n for N edge segments
• Summation over k for stationary point and two ends of each segment



Singularity Treatment

• Singularities in first-order solution not physical but entirely due to first-
order approximation

• Possible causes

▪ First-order solution not leading-order solution at and/or near singularity 
locations

▪ Certain mathematical steps not applicable at and/or near singularity locations

• Possible corrections

▪ Carry out asymptotic analysis to the next order (or any higher order as needed)

▪ Use Fresnel function to model diffraction near singularities

• Examples in paper with mathematical details
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• Test facility: NASA LaRC Quiet Flow Facility (QFF)

• Test model: NACA 0012 airfoil with 0.2 m chord

• Extensive test matrix, but only one case presented here

• Source (blue circle): Laser spark at 75% chord from leading edge

• Measurement: 
▪ Opposite side of source

▪ One chord below airfoil in flow direction

▪ Black dots for spectral comparison

▪ Gray dots for spatial pattern comparison Mean Flow M = 0.16

Test Setup for Validation Case
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Source

Measurement Location
Hutcheson, F.V., Bahr, C.J., Thomas, R.H., and Stead, D.J., 
“Experimental Study of Noise Shielding by a NACA 0012 
Airfoil,” AIAA Paper 2018-2821, June 2018.



Spectrum Comparison
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Spatial Pattern Comparison
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Measurement Line

Nondimensional Coordinate in Flow Direction
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Parametric Study
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Source

Microphone 
Below Airfoil

Mean Flow

Microphone 
Above Airfoil

• QFF test model as baseline with source at 75% chord from leading edge and at 10 kHz
• Three wavy trailing edge shapes in different positions in flow direction
• Mach number variations
• Rigid and treated edges
• Extra measurement line above airfoil

Baseline Recessed Mean Protruding



Nondimensional Coordinate in Flow Direction
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Edge-Shape Effect on Diffraction
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Measurement Line

Incoherent Source Coherent Source

M=0 and f=10 kHz



Nondimensional Coordinate in Flow Direction
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Edge-Shape Effect on Total Scattering
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Incoherent Coherent

Measurement Line

M=0 and f=10 kHz



Flow Effect on Mean Wavy Edge
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Measurement Line

Incoherent Source Coherent Source
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Effect of Edge Treatment 
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Measurement Line
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Summary
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•Derived sharp-edge diffraction solution for aircraft noise 
applications, including important features

▪ Noncanonical edge shape

▪ Mean flow

▪ Surface impedance

•Validated solution with test data for NACA 0012 airfoil with 
mean flow as first step in planned systematic validation with 
curved edges and edges with acoustic treatment

•Demonstrated the effects of edge features and the potential for 
diffraction control by edge shaping and liner treatment




