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Previous Studies on Sharp-Edge Diffraction

*Semi-infinite plate

= Wiener-Hopf factorization

= Straight edge, rigid surface, and static medium
*Infinite wedge

= Image source synthesis

= Straight edge, rigid surface, and static medium
 Kirchhoff integration method

= Kirchhoff approximation (underprediction)

= Rigid surface and static medium




Features in Aircraft Noise Scattering

* Noncanonical geometry
* Mean flow
* Potential acoustic treatment

Boeing Photo (AIAA Paper 2007-3457)

Curved Pylon Edge Curved Nozzle Exit Curved Trailing Edge Curved Nozzle Exit



Objective @

*Develop new solution for sharp-edge diffraction, accounting
for features important for aircraft noise applications



Formulation

* Governing equation and boundary condition in local region
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* Integral representation by Green’s theorem

0= | [n-VGJrG 2% (—ik, +M-V)2j(1+CR +C,) p, (y)ds,ds,

55 k,Z

Curved Edge

* All three features included (noncanonical geometry S, mean flow M, and surface
impedance Z)

* Integral equation with unknowns on right-hand side (not likely to have exact analytical
solution or numerical solution)

 All wave quantities in integrand (amplitude and phase)

« Asymptotic analysis to reduce integral equation to algebraic equation



Asymptotic Analysis

* Integral equation Source

Reflection
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* Suitable for the method of stationary phase
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* Summation over n for N edge segments
« Summation over k for stationary point and two ends of each segment

* Successive analysis applicable to any higher order



Singularity Treatment @

* Singularities in first-order solution not physical but entirely due to first-
order approximation

* Possible causes

= First-order solution not leading-order solution at and/or near singularity
locations

= Certain mathematical steps not applicable at and/or near singularity locations

* Possible corrections
= Carry out asymptotic analysis to the next order (or any higher order as needed)
= Use Fresnel function to model diffraction near singularities

* Examples in paper with mathematical details



Test Setup for Validation Case @

* Test facility: NASA LaRC Quiet Flow Facility (QFF)
e Test model: NACA 0012 airfoil with 0.2 m chord

* Extensive test matrix, but only one case presented here

* Source (blue circle): Laser spark at 75% chord from leading edge

e Measurement: S
ource

o
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= Opposite side of source

= One chord below airfoil in flow direction
= Black dots for spectral comparison

= Gray dots for spatial pattern comparison — Mean Flow M =0.16

Hutcheson, F.V., Bahr, C.J., Thomas, R.H., and Stead, D.J., .
“Experimental Study of Noise Shielding by a NACA 0012 Measurement Location
Airfoil,” ATAA Paper 2018-2821, June 2018. . J



Spectrum Comparison
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Spatial Pattern Comparison
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Parametric Study

* QFF test model as baseline with source at 75% chord from leading edge and at 10 kHz
* Three wavy trailing edge shapes in different positions in flow direction

* Mach number variations

* Rigid and treated edges

* Extra measurement line above airfoil
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Edge-Shape Effect on Diffraction
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Edge-Shape Effect on Total Scattering

M=0 and =10 kHz
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Flow Effect on Mean Wavy Edge
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Effect of Edge Treatment

M=0 and =10 kHz
Nondimensional impedance (2,-0.5)

Measurement Line

Or  ——— Baseline Rigid
— Mean Wavy Rigid

—————— Baseline Treated

—————— Mean Wavy Treated

ASPL (dB)
S =
|

o)
S
T

Incoherent Source

_40 L | I I | .

-2 -1 0 1 2
Nondimensional Coordinate in Flow Direction

3

ASPL (dB)

0 —— Baseline Rigid
- ——  Mean Wavy Rigid
—————— Baseline Treated
S — — — - Mean Wavy Treated
JoF N\
I WA /
| -\ |/
= ‘-\*/
20 \\ /
I \ /
I /
30 |
I |
| Coherent Source
| |
‘ L T S T -
-40_2 _1 0 1 2 3

Nondimensional Coordinate in Flow Direction




Summary @

*Derived sharp-edge diffraction solution for aircraft noise
applications, including important features

= Noncanonical edge shape
= Mean flow

= Surface impedance

* Validated solution with test data for NACA 0012 airfoil with
mean flow as first step 1n planned systematic validation with
curved edges and edges with acoustic treatment

* Demonstrated the effects of edge features and the potential for
diffraction control by edge shaping and liner treatment






