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AMSR?2 Brightness temperature (June 11, 2023)

showing the sea ice concentration contrast (from dark blue to
green) in the primary sampling region.
Below are the primary platforms to be deployed.

- Project: Arctic Radiation-Cloud-aerosol-Surface Interaction Experiment
(ARCSIX)

- Program Mgrs: Hal Maring, Radiation Sciences and Thorsten Markus,
Cryospheric Sciences

- Principal Investigators: Sebastian Schmidt (Univ. Colorado) and Patrick
Taylor (Langley)

- Description: The overarching goal is to quantify the contributions of
surface properties, clouds, aerosols, and precipitation to the Arctic
summer surface radiation budget and sea ice melt during the early
melt season to advance understanding of rapid Arctic climate change
and improve satellite retrievals.

- Center Participants: LaRC, GSFC, JPL, AFRC

- Partners: US academic researchers, NOAA, NCAR, NRL, NPS, SPEC
- Deployment Dates: May 24-June 17 and July 22-August 16, 2024

> Deployment Location: Pituffik Space Base, Greenland

Learjet
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Airborne Assets:

* Low-flying, in situ platform
(P-3), ~175 Flight hours

* High-flying, remote sensing
platform (G-IIl), ~150 Flight
hours
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Satellite Assets:
» Available passive

instruments (e.qg.,
MODIS/VIIRS, CERES)
* Available active instruments
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Ptuffik Space Base

(e.g., EarthCARE, ICESat-2)
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hat iIs ARCSIX: Deployment Concept

Modeling Assets:

» Real-time atmosphere and
sea ice forecasts and
trajectories

Multi-scale modeling for

post-campaign analysis
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_SIX Sea ice parcel sampling strategy Atmospheric radiative closure

Tracking Sea ice Parcel Evolution CERES CRS Oututs
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HQ: Hal Maring and Thorsten Markus
Co-Pls: Sebastian Schmidt (radiation) and Patrick Taylor (clouds and surface
interactions)
Project Management: Dan Chirica (ESPO)
Flight Planning: Samual LeBlanc (AFRC/BAERI)
Weather Forecasting: Amy Solomon (NOAA), Rei Ueyama (AFRC)
» G-lll: Brian Baxley (RSD/LaRC)
* HALO: Amin Nehrir (Pl:LaRC), Ewan Crosbie (AMA/LaRC)
* AVIRIS-NG: David Thompson (JPL), Steven Platnick (GSFC)
* Winds and Dropsondes: Lee Thornhill (Pl: LaRC)
* P-3: Brian Bernth (WFF)
* SSFR: Sebastian Schmidt (Pl: CU)
* BBR: Anthony Bucholtz (PIl: NPS)
* LARGE: Luke Ziemba (PI: LaRC)
* DASH-SP: Armin Sorooshian (PI: U. Arizona)
« ATOFMS: Kerri Pratt (PI: U Mich)
* LVIS: Bryan Blair (Pl: GSFC)
« MARLI/GVR: Z. Wang (PI: CU, Boulder) P. Zuidema (U. Miami)
« CFDC: Paul DeMott (PIl: CSU)
* RSP: Brian Cairns (PI: GISS)
* FIMS: Jian Wang (PI: WUSTL)
* DLH: Glenn Diskin and Josh DiGangi (co-Pl: LaRC)
» Aerosol and Cloud optical probes: Paul Lawson (Pl: SPEC)
« AERONET: A. Smirnov (GSFC/SSAI)
« Data management: Gao Chen and Michael Shook (LaRC)

Who is ARCSIX: Project Team

External Partners/Collaborators:

Villium Research Station
* Henrik Skov

Alfred Wegener Institute (Ice Bird):
* T. Krumpen

Oden, Swedish Ice Breaker
 Asa Lindgren, Martin
Jakobsson,Michael Tjernstrom

GoNorth, Norwegian Ice Breaker
« Jan Inge Faleide

Univ. Dartmouth:
* Chris Polashenski

International Arctic Buoy Programme:
* Ignatius Igor

University of Leipzig, (AC)3:
* Manfred Wendisch
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Deployments

5/24/24

6/17/24

26.00 | 7/22/24 | 8/16/24 I Deployments 1 I Deployments 1
G4 3;) 1st. Cargo Run (WFF-THU- 2.00 | 5/21/24 | 5/22/24 & C-130 1st. Cargo Ryn (WFF-THU-WFF)
WFF
C-130 2nd, Cargo Run (WFF-THU) 1.00 | 5/24/24 | 5/24/24 &(-130 2nd, Cargd Run (WFF-THU
G-3 & P-3 Transit -> THU 1.00 | 5/24/24 | 5/24/24 o
G-3 & P-3 Transit -> USA 1.00 | 6/17/24 | 6/17/24 Py
C-130 3rd, Cargo Run (THU-WFF) 1.00 | 6/17/24 | 6/17/24 305, G P THIEALE)
C-130 4th, Cargo Run (WFF-THU) L el | L &C-130 4th, Cargo Run (WFF-THU)
G-3 & P-3 Transit -> THU 1.00 | 7/22/24 | 7/22/24 *
G-3 & P-3 Transit -> USA 1.00 | 8/16/24 | 8/16/24 *
C-130 5th, Cargo Run (THU-WFF) 1.00 | 8/16/24 | 8/16/24 ok

Transit to Pituffik:

e ARCSIX will use the WFF C-130 for airlift, cargo and personnel.
e May 21 - 22, Max Cargo run, WFF - THU - WFF assume no pax

e May 24 - Cargo run WFF -THU w/ 50 pax

Key dates:

May 17: P-3 Instrument Check Flight
May 24: P-3 Transit to Pituffik

May 20: G-Il Instrument Check Flight
May 28: G-lll Transit to Pituffik
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These rapid changes have consequences
for human and natural systems.
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...our models are inadequate to
inform society.
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Considering a +3 K global
temperature increase the range of
Arctic warming is from 4.5 to 12K
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the first ice free Arctic summer
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| ...model uncertainty stems challenges in observing Arctic clouds
and other properties from space.
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Thin, radiatively important clouds are challenging to observed from space.




Sea ice havens, graveyards, and nurseries
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Why ARCSIX: Science Goals

ARCSIX is a mission concept motivated by a science community white paper with over 30
contributors. The ARCSIX instrument teams were competed in ROSES 2021 (NNH21ZDAO0O1N-
ARCSIX)

Project Goals
Provide an unprecedented data set of the clouds, aerosol, and surface properties in the region of
multi-year sea ice North of Greenland to quantify the contributions to summer sea ice melt:

ARCSIX is driven by the need to:

1) Understand how coupling between radiative processes = A == e
and sea ice surface properties influence summer sea ice s O
melt; . — S '

2) Understand processes controlling the predominant Arctic / ) = e

cloud regimes and their properties; and e

3) Improve our ability to monitor Arctic cloud, radiation, and
sea ice processes from space.

NASA ARCSIX 2024




ARCSIX Science Questions:

e Science Question 1 (Radiation): What is the impact of the
predominant summer Arctic cloud types on the radiative surface
energy budget?

e Science Question 2 (Cloud Life Cycle): What processes control
the evolution and maintenance of the predominant cloud regimes
in the summertime Arctic?

e Science Question 3 (Sea Ice): How do the two-way interactions
between surface properties and atmospheric forcings affect the
sea ice evolution?

e Remote Sensing and Modeling Objective: Enhance our long-
term space-based monitoring and predictive capabilities of Arctic
sea ice, cloud and aerosols by validating and improving remote
sensing algorithms and model parameterizations in the Arctic.

ARCSIX Science Questions
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' - \-Iow ARCSIX: 12 Scorecard elements

Cryosphere:
= |nfluence of precipitation on surface properties
= Surface melt evolution tracking (influence of initial surface conditions on melt)
» Surface influence on Atmosphere (gradient module)
Radiation/Remote Sensing:
» Surface BRDF and albedo

= Evaluating and improving passive remote sensing retrievals of cloud presence, phase
classification, cloud optical/microphysical properties (including mixed phase clouds)

» Thin cloud surface radiative effects
Clouds:
» |ce phase production in single-layer clouds
» Lagrangian cloud sampling/water vapor transport
Aerosol:
= Aerosol types contributing to CCN/IN budgets and INP Characterization
» Aerosol-driven freezing effects on clouds/radiation/precip
= Evolution of aerosol and BL structure during transport events
» |Improve satellite remote sensing of aerosol and aerosol transport modeling (amount and type)
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What We Are “Doing” Now

= Weekly Leadership tag-ups

= Bi-weekly Aircraft operations meetings

» Bi-weekly All-hands meetings

= Bi-weekly Flight planning sessions

* |n-person Science Team Meeting (HQ, April 16-18)

* Finalized Field Code of Conduct Document

* Finalizing Comms strategy and travel arrangements

ONGOING and UPCOMING

= Distribution of Anti-harassment Training slides
» P-3 and G-lll Integration and test flights
» Sea lce Mass Balance Buoys deployment (now)
* Deployment 1 May 24-June 17, 2024
» Deployment 2 July 19-August 17, 2024




contribution

modeling.

Future:

Lead, support, and
enhance international
Arctic science community
activities.

CONTRASTS - Objectives

ARCSIX Legacy and Future

Sea ice mass balance buoy array, contribution to the Arctic Observing System

One-of-a-kind data set to advance Arctic System understanding.
Unexpected/new samples of Arctic Atmospheric Composition.

Improvements in polar satellite retrievals.
New case studies of Arctic cloud systems to improve understanding and climate

CAWV/

Characterize the key processes that

B8 determine the observed sea ice,

ocean, atmosphere, and ecosystem
changes in the Arctic Ocean

» Contrasting ice regimes (3 regions)
— R1) seasonally ice covered MIZ

— R2) year-round mixture of FYl and MYl in
the central basin / Transpolar drift

— R3) year-round MYI north of Greenland
 Improved understanding of causes
and future impacts

— Process understanding
— Model parameterizations

* First study of this kind

16



akeaways

https://espo.nasa.gov/ARCSIX White Paper

What is ARCSIX? A NASA airborne investigation planned for late spring/early
summer 2024 based in Pituffik, Greenland driven by the need to understand how the
coupling between the atmosphere and the surface influence energy flows and
ultimately sea ice melt.

Why ARCSIX? The Arctic is a region that is changing fast with implications for natural
and human systems within and outside of the Arctic. Collecting and analyzing data
that advances our understanding of the factors that influence sea ice loss will enable
better projections and decisions, helping humans thrive on a changing planet.

Questions?
Email: Patrick.c.taylor@nasa.gov
Website: https://espo.nasa.gov/arcsix



mailto:Patrick.c.taylor@nasa.gov
https://espo.nasa.gov/arcsix
https://espo.nasa.gov/ARCSIX_White_Paper
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Conceptual plan:

Laarangian cloud evolution flight plan

2023-05-19 2023-05-20
’O Upwind region
Thickest, coldest %
region (per MODIS)

| ’ Advection (per
(O Future motion Q reanalysis/HYSPLIT)
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Upwind region

Survey along the transport axis linking these 3 regions Revisit locations of previous wall patterns to evaluate
Dropsondes spaced along this axis changes to aerosol and cloud properties

Background aerosol characterization (no indication of Dropsondes spaced along the advected axis
significant intrusion) 2 wall patterns oriented across the wind (upwind and

2 wall patterns oriented across the wind (upwind and main) main)
Main wall: more time, more G3 coordination, Lear limited  Main wall: more time, more G3, more Lear.
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Survey: RS and trop. bkg. aerosol/gas (5-6 km)
* Long duration at constant alt for INP & MS
* Near Principal Plane

90°WALL 1: BCB, ACT, Cloud (CV1), Porp. (Micro)
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WALL 1 to WALL 2: Porpoise with pauses (flight
scientist call)

WALL 2: As Wall 1 but adding RS (2.5 km) at end

* For 2.5 km leg, Lear and P3 switch (timing
critical)

* Near Principal Plane

Low Level + ALERT spiral: Move to ALERT spiral
location at low altitude



2023-05-20

\

:{9 G-lll & Lear w0

D1

85°N

G-Ill notes:

* 4 dropsondes on leg between upwind
of WALL-1 and downwind of WALL-2

* FL250 for science legs (pt #3-11)

Lear notes:

* Radar overpass (~4 km) at WALL-2
followed by P3-Lear switch for cloud
in situ along same line

Coincidence points:

UTC Loc P3 G-lil Lear
1315 | W1 N. porp #3-#4

1410 | 122 ~60W ~60W

1440 | W2 ACT, N S (~Alert)
1500 | W2 S. End CVI N N, Rad.
1525 | W2 RS, S S S, insitu




2023-05-19
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Aqua MODIS Band 7-2-1 with cloud water path
overlay:

LWP (red/yellow), IWP (green/blue)
Cyan =seaice

Orange/Red: >150 g/m?2




 New database enables novel studies on the factors influencing on sea ice

parcel survival.

Arctic sea ice parcel database:
>1,000,000 parcels from 2002-2020

Sea Ice Characteristics:

|ce Type (Buoys/SSMI): First Year
Concentration (NSIDG/CDRY): 90%
Snow Depth (SnowModelLG): 0.06 m

Sea lce Thickness (PIOMAS): 2.10 m .

Surface Albedo (CERES): 0.50
|ce Surface Temperature:

Lifecycle:
Formation; 22 Nov. 2007

Duration: 211 days
End: 20 June 2008
Origin & End Region: Chukchi Sea

| Survived: No

Flags:

Cyclone (Melbourne U. Tracker): n/a |

Cyclone properties (ERAS): n/a

#l (Horvath et al. 2023)

Atmospheric State:

. § Air Press. (ERAS/MERRA2): 1018 hPa

Cloud Cover (CERES): 15%
Precipitable Water (ERAS/MERRA2):
19 kg m?

Liq. Water Path (CERES): 112 g m?

QW § (ce Water Path (CERES): 96 g m?
. [l Air T.(ERASIMERRA2): 0.95°C
@8 § Wind Speed & Direction
88 § (ERAS/MERRAZ): 8.4 m-s" & 39°
sl @ Spec. Humidity (ERASIMERRA2): ~0%
B¢ 8 Snowfall (ERAS/MERRA2): n/a
£ % Total Precipitation (ERAS/MERRA2): n/a

818 Surface Energy Budget:

Upwelling SW (CERES): 134 W m?2

& Downwelling SW (CERES): 267 W m2

Upwelling LW (CERES):312 W m2
Downwelling LW (CERES): 284 W m2
Sensible Heat (AIRS): -30 W m?
Latent Heat (AIRS):



