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Determining optimal runway configurations at airports, a 

responsibility assigned to air traffic controllers, is a challenging 

task. The decision-making process is intricate and involves 

consideration of many factors such as prevailing wind condition, 

convective weather, visibility, cloud ceilings, departure and 

arrival demand, traffic flow, equipment status, and other airport 

constraints. In a previous work, we developed a Runway 

Configuration Assistance tool using an offline reinforcement 

learning method called conservative Q-learning. In this paper, we 

evaluate and validate our Runway Configuration Assistance tool 

as a decision support for air traffic controllers. We validated our 

tool using three airports with differing levels of complexity: 

Charlotte Douglas International Airport, Denver International 

Airport, and Dallas Fort Worth International Airport. We 

quantified the performance of the Runway Configuration 

Assistance tool based on (1) agreement with historical air traffic 

controller decisions and (2) violation of decisions that would be 

obvious to subject-matter experts. Our tool showed promising 

results in both performance metrics for the three airports, despite 

the complexities in the runway configuration decision-making 

process. We also discuss challenges in using machine learning in 

general to aid air traffic management and identify deployment 

considerations for the Runway Configuration Assistance tool. 

I. INTRODUCTION   

The runway configuration at an airport determines the active 

runways in use for arrival and departure of aircraft at any given 

time. Air traffic controllers (ATCOs) are responsible for 

determining the runway configuration of an airport and thus 

designate which runways are active. Runway configuration 

decision-making is challenging because many factors are 

involved in determining the optimal runway configuration for 

current traffic, prevailing winds and future (forecast) weather 

conditions. 

Weather is a primary factor that affects runway 
configuration decisions. Current weather and forecast weather, 
including but not limited to wind direction, wind speed, 
visibility, ceiling, thunderstorms, icing, turbulence, and 
windshear must be considered. For example, runways are 
constructed to align with known wind patterns at an airport to 
allow aircraft to arrive and depart into the wind. Landing into 
the wind aids the aircraft in achieving slower speeds, whereas 
landing with tailwinds can lead to dangerous landing conditions. 
Thus, when wind direction changes, runway configurations and 
flight paths typically are adjusted accordingly. Severe weather 
such as thunderstorms, icing, lightning, and turbulence near an 
airport may require a change in runway configuration to enable 
flight paths that avoid adverse weather conditions. Visibility and 
cloud ceiling conditions also influence runway configuration 
selection. Runways may be selected based on visual flight rules 
(VFR) or instrument flight rules (IFR). For example, under 
VFR, simultaneous arrivals and parallel arrival runways may be 
feasible, but under IFR, a single runway may be required for air 
traffic control separation standards. 

Traffic flow also influences the runway configuration 
decision. Traffic flow includes both the arrival and departure 
demand at the airport and surrounding airports. Airports may 
have different configurations that are optimal at higher and 
lower capabilities. Furthermore, the traffic mix may also be a 
factor. For example, larger international aircraft may require 
longer runways and thus a different configuration. Finally, 
surrounding airport traffic and airspace flows may affect runway 
configuration decisions, especially in major metroplexes where 
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multiple airports need to coordinate the effects of changes in 
runway configuration. 

Additionally, runway conditions, runway availability, 
approach availability and airport constraints factor into the 
configuration. Approach and runway availability may be 
dictated by weather, equipment status, ceilings, visibility, and 
runway visual range values. Airport constraints may include 
construction, repairs, gate status, parking, noise abatement and 
impact on neighboring airports. For example, to comply with 
noise abatement requirements, airports may require a predefined 
configuration at certain time periods. Ad hoc constraints such as 
Notices to Airmen (NOTAMs) or Traffic Management 
Initiatives (TMIs) also factor into configuration decisions. 
NOTAMs may report equipment outages (e.g., navigational 
aids) that require changes to flight plans, and TMIs may impose 
delays to aircraft arriving at an airport. 

Determining the best runway configuration for a given set of 
conditions in a timely manner is important for both safety and 
efficiency reasons. If the runway configuration is not ideal for 
current conditions, arriving aircraft may experience delays and 
increased safety risks. Aircraft unable to land safely (e.g., 
because of tailwinds) may be forced to engage in airborne 
holding or diversion until conditions change. Aircraft may also 
have to perform “go-arounds” if landing conditions are below 
approach minimums. In addition, changes in configuration 
require coordination and time to implement. Changes must be 
planned with affected facilities, including Terminal Radar 
Approach Control facilities (TRACONs) and Air Route Traffic 
Control Centers (ARTCCs). As such, unnecessary or suboptimal 
configuration changes may cause inefficiencies through 
extraneous coordination efforts and time spent. These 
inefficiencies may also cause compounding impacts to aircraft 
through additional delays. 

A. Current Runway Configuration Management 

Decision-Making Process  

In current practice, runway configuration decisions are made by 

air traffic controllers (ATCOs) based on acquired knowledge. 

The decision to change the configuration relies on the 

experience of the controllers on duty at any given point in time. 

Experienced controllers can successfully manage runway 

configurations, but there is a steep learning curve, and each 

airport is different. The controller must consider all factors 

described previously to make informed decisions. Less 

common or more complex situations may pose a challenge for 

the controller. For example, rapidly shifting winds may require 

multiple configuration changes, and determining the optimal 

time to initiate changes is nontrivial. Anticipating and 

predicting changes in advance is key to a smooth configuration 

change to allow coordination between the tower, TRACON and 

ARTCC to occur as soon as possible. Because the process 

considers past human decisions and quantifiable data, machine 

learning (ML) models can be used to provide insights that 

enhance the runway configuration decision-making process. 

These models can suggest changes for the ATCOs to 

supplement their airport-specific experience and provide 

parallel recommendations based on historical data as 

supporting evidence for ATCO decisions. 

B. Existing Machine Learning Literature for Runway 

Configuration Management 

In recent years, there has been an increase in the use of ML to 

evaluate the runway configuration decision process. Generally, 

the literature in this area can be grouped into two main 

categories: model-based and model-free, where the word model 

describes the underlying system dynamics.  

In model-based approaches, once a model of dynamics is 
learned, the optimal policy for runway configuration decisions 
can be found by solving an optimization problem using the 
learned model. Different techniques have been used to identify 
the optimal policy, such as heuristic search [1, 2], discrete-
choice modeling [3], mixed-integer programming [4], dynamic 
programming [5], and queuing theory [6-8]. Model-based 
approaches are interpretable and provide guarantees on the near-
optimality of obtained policy for the runway configuration. 
However, the performance of model-based approaches and the 
associated guarantees depend on the accuracy of the learned 
model, which can be a challenge in real-world scenarios given 
the limitations in data availability. 

In contrast, model-free approaches directly learn the optimal 
policy from data without relying on learning a model for the 
underlying dynamics. These approaches can be categorized into 
two distinct groups: model-free control methods and data-driven 
supervised learning techniques. Model-free control approaches 
mainly rely on reinforcement learning (RL) techniques [9]. They 
have been widely adopted and deployed in the aviation domain 
[10], with Monte Carlo tree search [11] and Q-learning [12-14] 
being the most popular methods. These approaches usually learn 
a good policy by making decisions (i.e., acting) in a simulated 
or operational environment, and they learn near-optimal policies 
based on the feedback received in response to the actions. 
Model-free approaches are generally easy to implement and 
efficient to scale. However, they rely on a significant number of 
interactions in either a simulation environment or an operational 
setting to learn a good policy (called online RL). These 
interactions can be costly, especially when applied to real-world 
systems such as air traffic management, because the algorithm 
tends to explore poor decisions when the interactions are 
limited. Data-driven supervised learning techniques use vast 
amounts of available historical data and learn to imitate ATCO 
with the least amount of error [15-19]. They are easy to 
generalize from airport to airport and scale to the National 
Airspace System (NAS). However, they have one fundamental 
drawback: the optimization formulation of these techniques is 
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designed to mimic ATCO with the least amount of error, so they 
cannot identify and correct mistakes or inefficiencies in the 
historical decisions. Moreover, their predictions are not 
supported by any evidence of better outcomes. Simply put, they 
learn to mimic historical decisions, both good and bad. 

C. Runway Configuration Assistance Tool 

To address the limitations of the abovementioned techniques in 

runway configuration decision-making, we developed a 

solution based on a family of model-free control methods called 

offline RL. Offline RL combines the power of RL with data-

driven supervised ML and attempts to learn a good policy by 

relying only on the historical data and decisions. This feature 

addresses the major shortcoming of online RL and removes the 

need for an online interaction with the simulation or operational 

environment [20]. However, the brute force implementation of 

online RL solutions in an offline mode suffers from 

distributional shift, where the policy that the RL algorithm 

learns from historical data is significantly different from the 

policy that was used (by ATCO in an operational setting) to 

collect the data (referred to as behavioral policy). The result is 

that the algorithm is overly optimistic (and likely wrong) when 

exposed to out-of-distribution (OOD) data, a setting that is not 

well represented in the historical data.  

As described in previous work, we leveraged a state-of-the-
art offline RL algorithm called conservative Q-learning (CQL) 
[21, 22] to develop a Runway Configuration Assistance (RCA) 
tool. CQL uses a simple regularization technique to alleviate the 
fundamental challenge of offline RL mentioned above. Our 
RCA tool is a decision-support tool that is intended to aid 
ATCOs in determining runway configurations. This paper 
describes developmental decisions that we made for the RCA 
tool and the validation efforts that we undertook to compare the 
RCA tool against historical ATCO decisions and subject-matter 
expert (SME) decisions. Finally, we discuss risks that need to be 
addressed and implementation issues that would need to be 
considered if the tool were to be deployed in the future. 

II. METHODOLOGY  

A. Model Development and Subject-matter expert 

Engagement 

In the presence of an accurate simulation environment, or 

access to the operational environment, the online model-free 

RL algorithms can interact with the system and learn policies 

based on the feedback that they receive from the environment 

[9]. As discussed before, in real-world challenges such as the 

runway configuration decision process, access to the 

operational environment for the purpose of learning a policy is 

not possible. To the best of our knowledge, no accurate 

simulator exists that can mimic the real-world operations and 

generate the data required for runway configuration decision-

making. As a result, we developed the RCA model using the 

offline model-free RL methodology, CQL [21]. This approach 

was chosen because it is suitable for addressing real-world 

challenges such as runway configuration decision-making. It 

removes the need for real-time interaction with the system for 

data collection, and policies are learnt based on historical data. 

CQL builds upon the popular Deep Q-Network [14] and 
addresses the main challenge of offline RL (i.e., distribution 
shift). The main goal in a Q-learning algorithm [12, 13] is to find 
the optimal Q-function, which quantifies the long-term expected 
sum of utilities given that the decision-maker follows the 
optimal policy. Once the optimal Q-function is learned, the 
optimal policy can be easily obtained. CQL addresses the 
distribution shift challenge in offline RL by regularizing the 
estimates of the values of the Q-function by the function 
approximator, which is a neural network here. This additional 
regularization technique keeps the estimates of the Q-values for 
the unlikely actions (based on historical data) low; hence, it 
lower-bounds the optimal Q-function. Because CQL learns the 
lower bound for the optimal Q-function, a policy chosen based 
on the learned function will be conservative and take less risky 
actions. CQL also prevents the over-estimation of the Q-values 
for OOD data and function approximation error.  

In designing the RCA tool, we continuously engaged with 
SMEs to incorporate their domain knowledge. The SMEs are 
former ATCOs with many years of experience. They played a 
vital role in conceptualizing the RCA problem and defining its 
different components, such as the important features to be 
included in the state space, identification of major runway 
configurations as actions, and different elements that are 
important to shape the utility function. Their involvement 
ensured that the framework accurately represented the 
complexities of runway selection decisions and considered 
external variables such as traffic and wind conditions. Their 
expertise influenced the problem formulation, data processing 
methods, choice of solution methodology, choice of airport case 
studies to create the RCA model, and validation of the chosen 
approach, ensuring that the resulting model would be well 
aligned with the complexities and safety considerations inherent 
in air traffic management. 

B. Model Validation 

Based on feedback from SMEs, we chose three major US 

airports for the validation of the RCA tool. These three airports 

represent the variety of airports across the NAS on the runway 

configuration decision-making complexity spectrum. Our first 

case study is Charlotte Douglas International Airport (CLT). 

CLT is an example of a major airport with relatively few 

runway configuration options. As depicted in Fig. 1 (top panel),  

Identify applicable sponsor/s here. (sponsors) 
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CLT has three parallel runways and a short diagonal one that is 

rarely used. It has two major configurations: north flow (use of 

runways 36R/C/L) and south flow (use of runways 18R/C/L).  

On the other end of the complexity spectrum is Denver 
International Airport (DEN). DEN is an example of an airport 
with a complex array/menu of runway configurations. As 
depicted in Fig. 1 (middle panel), it has six runways, among 
which four (34L/16R, 34R/16L, 35L/17R, and 35R/17L) are 
north/south bound and two (7/25 and 8/26) are east/west bound. 
Based on our comprehensive analysis of the data for the years 
2018 and 2019 and feedback from SMEs, 11 major 
configurations were identified. For example, for the 
configuration named N/NEW, northbound runways (34R/L and 
35R/L) are used for both arrival and departure, whereas runways 
8 (eastbound) and 25 (westbound) are used only for departure. 
Fig. 2 (top panel) shows the heatmap of changes in the runway 
configurations by ATCO in a single year. The rows show the 
flow (configuration) at each time interval, and the columns show 
the flow (configuration) at the next time interval. The diagonals 

Figure 1. Runway diagrams for CLT (top), DEN (middle), and DFW (bottom), 

the three airports studied in this paper. 

Figure 2. Heatmaps of the runway configuration changes 

performed by ATC in a year at DEN (top) and DFW (bottom). 
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of this matrix represent no changes in the configuration because 
the diagonals represent most of the data; we have masked them 
in this figure to better illustrate the flow changes and the runway 
configuration decision-making complexity. Most of the flow 
changes are intuitive; for example, the configuration SE/SE 
transitions to either S/S or S/SEW most of the time, depending 
on the changes in the operational conditions. However, we also 
observe major changes in the configuration often at DEN (e.g., 
switches from NE/NE to SE/SE or N/N to S/S). 

The third airport that we chose was Dallas/Fort Worth 
International Airport (DFW), which is representative of a major 
airport with multiple runways and moderate runway 
configuration decision-making complexity. As shown in Fig. 1 
(bottom panel), DFW has five runways that are north/south 
bound (35/17 R/C/L and 36/18 R/L) and two runways that are 
northwest/southeast bound (13/31 R/L). Based on the analysis 
of data and feedback from SMEs, we identified nine major 
configurations. Fig. 2 (bottom panel) shows a heatmap of 
changes in the runway configurations by ATCO in a single year. 
As shown, runway configuration usage at DFW has a significant 
imbalance. The top four configurations are used most of the time 
(96% of the time based on data from the years 2018 and 2019), 
and the other five configurations are rarely used. Table 1 shows 
the definitions of the major runway configurations identified 
with the help of SMEs for the three airports. 

We obtained the data for 2018 and 2019 for the three airports 
for training of the RCA tool from two main sources: the Federal 
Aviation Administration (FAA) Aviation System Performance 
Metrics reports1 and National Aeronautics and Space 
Administration (NASA) Sherlock Data Warehouse2. We 
discretize time into 15-minute intervals. The state space (i.e., 
relevant features for decision-making) of the runway 
configuration problem comprises: (1) hour of the day, (2) wind 
direction and speed, and (3) meteorological conditions, which 
are categorized into two unique states of VFR and IFR 
depending on the visibility and the cloud ceiling. The utility 
function is chosen based on factors that affect the decision-
making process of ATCO as well as inputs from the SMEs. The 
function comprises (1) traffic throughput, (2) average transit 
times on the surface of the airport, (3) penalty for aircraft 
performing go-arounds, and (4) decision-making inertia to 
penalize sudden changes of the runway configurations from a 
time interval to the next one. The last term is designed to 
improve the stability of the decision-making by the RCA tool. 

III. RESULTS AND DISCSUSSION  

A. Tool Validation Results 

To obtain the results, we divide the processed data randomly 

into three sets: training (60%), validation (20%), and testing 

 

1 https://aspm.faa.gov/ 

(20%). The training and validation sets are used to train the 

RCA tool and perform hyperparameter tuning, and the testing 

set is used to estimate the performance of the trained model. 

The results shown in this section are only those of the final 

trained model on the testing set (unseen data during training and 

hyperparameter tuning). We quantify the performance of the 

RCA tool according to two metrics. The first is agreement with 

historical decisions (noted as agreement). For this metric, we 

show how often RCA’s recommendation agrees with the 

historical decisions made by ATCO. We quantify agreement as 

both average agreement across the different configurations 

(Fig. 3) and the confusion matrix that shows the level of 

agreement for each configuration separately (Fig. 4). The 

second metric is violation of obvious decisions (noted as 

violation). For this metric, we identify obvious decisions as 

provided by the SMEs and estimate the percentage of time that 

RCA violates such decisions (Fig. 3). For example, in the case 

2 https://sherlock.opendata.arc.nasa.gov/sherlock_open/ 

Table 1. Definitions of the major configurations at the three airports. 

Usage 

Frequency 
[%]

Departure 

Runways
Arrival Runways

Config.

[Arr/Dep]

CLT

60.836R/C36R/C/LN/N

39.218C/L18R/C/LS/S

DEN

18.8
16R/L,17R/L,

7,8

16R/L,17R/L,

7,8
SE/SE

1516R/L,17R/L16R/L,17R/LS/S

14.5
34R/L,35R/L,

8,25
34R/L,35R/LN/NEW

12.6
16R/L,17R/L,

8,25
16R/L,17R/LS/SEW

12.334R/L, 35R/L34R/L, 35R/LN/N

11.7
34R/L,35R/L,

7,8

34R/L,35R/L,

7,8
NE/NE

8.6
34R/L,35R/L,

25,26

34R/L,35R/L,

25,26
NW/NW

3.4
16R/L,17R/L,

25,26

16R/L,17R/L,

25,26
SW/SW

1.67,87,8E/E

1.28,25
34R/L,35R/L,16R/L,

17R/L
NS/EW

0.325,2625,26W/W

DFW

61.517R,18R/L13R,17R/C/L,18RSSE/S

21.3
31L,35C/L,

36R/L
31R,35R/C/L,36 R/LNNW/NNW

7.617R,18R/L17R/C/L,18RS/S

5.131L,35L,36R35R/C/L,36 R/LN/NNW

335R/L,36R/L31R,35R/C/L,35R/LNNW/N

1.135R/L,36R/L35R/C/L, 36R/LN/N

0.231L,35L,36R13R,17C/L,18RSSE/NNW

0.117R,18L31R,35R/C,36LNNW/S

0.131R/L31R/LNW/NW

https://aspm.faa.gov/
https://sherlock.opendata.arc.nasa.gov/sherlock_open/
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study of CLT, if the wind is blowing strongly (more than 15 

knots) from the north and the tool suggests the south 

configuration, the outcome is considered a violation of the 

tailwind criteria for landing and takeoff.  

Fig. 3 shows the performance of the RCA tool based on the 
two metrics for the three airports. As can be seen, the 
performance for CLT—an airport where runway configuration 
is less complex—is outstanding; 77% of its recommendations 
agreed with historical decisions and 0% violated conventional 
norms. Note that the goal of the developed tool is not to agree 
with historical decisions 100% of the time. Ideally, the model 
should disagree with a historical decision if a better alternative 
solution could have been implemented in retrospect. In contrast, 
for DEN—an airport where runway configuration is highly 

complex—the tool achieved about 47% agreement with 
historical decisions; however, the violation metric is still low at 
around 0.4%. Note that there are significant variations in the 
historical decisions made by the ATCOs for DEN. When we 
implemented DEN’s most frequent configuration in each 
specific state, the tool reached only 54% agreement with the 
actual decisions made, which shows how complex the decision-
making process is for DEN. Finally, the RCA tool achieved an 
outstanding performance for DFW (moderately complex), with 
74% agreement with historical decisions and 0.3% for the 
violation metric.  

Looking closer at the performance of the RCA tool at each 
airport sheds light on success and failure modes of the tool. Fig. 
4 shows the confusion matrices for the performance of the RCA 
tool at each airport. Columns show the predicted configuration 
by the RCA tool, and rows depict the actual configuration that 
was used by the ATCO in each instance. The diagonal elements 
show the agreement of the RCA tool with historical decisions, 
and the off-diagonal elements are the disagreements.  

In the case of DFW, we can see that the RCA tool performs 
well for the top four configurations (96% of the training data) 
while ignoring the minority configurations. Ignoring less 
frequent outcomes is a common problem in the ML community 
when dealing with imbalanced data, and our ongoing work is to 
alleviate this drawback. From the confusion matrix of DEN, we 
can see that although the agreement of the RCA tool with 
historical decisions is 47% on average, most disagreements 
occur between similar configurations. For example, we can see 
that the RCA tool primarily disagrees with the ATCO when 
predicting the S/S configuration—the tool instead predicts 
SE/SE, which is a sister configuration to S/S. 

Note that not all disagreements are model errors. In some 
instances, the disagreement is due to the ATCO selecting an 
alternate configuration because of other operational constraints 
not captured in the training data. For example, in the case of 
CLT, through discussion with SMEs, we found out that when 
there are large fluctuations in the wind conditions, where say the 
surface wind changes from North to South and back to North 
again in a short period of time, the ATCOs typically do not 
respond to this change. However, without a mechanism to 
identify those cases, the RCA tool would respond and 
recommend a configuration change. Part of our ongoing 
research is to include forecast data so the model can learn this 
ATCO behavior and not react to short-lived changes in the wind 
conditions. We are working on improving the performance 
metrics so as not to penalize the model for minor disagreements 
compared to more obvious mistakes.  

B. Machine Learning Considerations in Runway 

Configuration Management 

Although ML has the potential to enhance the current runway 

configuration decision-making process, risks to using an ML-

based tool must be considered. In air traffic management, the 

risks associated with blind trust in ML demand careful 

consideration. The potential ramifications of suboptimal 

decisions made by ML models regarding airport configuration 

include adverse outcomes such as arrival/departure delays, 

prolonged transit times on the airport surface, and safety-related 

consequences such as go-arounds. The concern revolves around 

the prospect of ATCOs trusting the RCA tool to the extent of 

automating portions of their decision-making processes. A 

potential overreliance on ML models introduces a notable risk 

factor given the potential failure modes of these models and the 

possibility of errors. The safety implications of using an ML 

tool to aid runway configuration decision-making underscores 

the critical need for a nuanced approach to manage and mitigate 

associated risks effectively. The FAA is currently developing a 

Responsible AI framework and corresponding guidance to 

ensure that ML tools are sufficiently validated and supported 

for real-world use. The framework aims to supplement current 

software assurance guidance to account for the specific risks 

Figure 3. Performance of the RCA tool for three airports, DEN (yellow), 

DFW (purple), and CLT (green), based on the metrics of agreement with 

historical decisions and violation of obvious decisions. 
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inherent in ML. The framework will provide systematic 

approaches and checklists for ensuring ML tools are developed 

responsibly and at the assurance level appropriate for their 

functions. 

C. Deployment Considerations 

Although the RCA tool is still under development, it is 

important to consider how the tool might be evaluated for future 

deployment, if appropriate. A proposed deployment plan for the 

RCA tool should include several key steps to ensure its safe 

integration into service. Initially, pre-deployment testing could 

involve human-in-the-loop (HITL) simulation testing with 

SMEs from the target airport (CLT) to validate the tool's 

configuration predictions and assess its reliability. A suitable 

simulation tool would be needed to conduct this HITL testing. 

Subsequently, the tool could be deployed in a “shadow” 
mode, where the RCA tool would run in parallel with the 
existing method ATCOs use for runway configuration decision-
making. The output of the RCA tool would not be used for 
operations. The RCA tool would be used only for analysis. Data 
analysis would involve measuring SME acceptance or rejection 
of tool suggestions, and post-operational analyses would assess 
the effect on operational efficiency. Only when the RCA tool 
has been demonstrated to be satisfactory compared to the current 
runway configuration method, ATCOs would be provided 
operational access to the tool. Once trust in the system is 
established, the tool could be deployed for use in an operational 
setting to aid the ATCO in decision-making. 

For the deployment strategy at any airport, collaboration 
with airport-specific SMEs may include HITL simulations and 
shadow deployments to test the RCA tool's functionality in 
predicting suggested configuration changes under various 
conditions. Detailed planning, coordination with facility 
managers, and adherence to facility procedures would be crucial 
for successfully deploying the RCA tool. A deployment plan 
would need to emphasize a gradual user acceptance approach, 
allowing users to adopt the tool's recommendations as trust and 
perceived benefits increase. 

The RCA tool is intended as a decision-support tool for 
ATCO. The ATCO would make the final decision on whether 
to change the runway configuration, but the outputs of the RCA 
tool could help inform the decision. Thus, the tool would serve 
in an advisory position to provide information output to the 
ATCO to augment their existing resources [23]. Because of 
rapidly changing conditions, ATCO must make decisions 
quickly without time to formally consult similar historical 
situations. The RCA tool would be able to provide 
recommendations based on historical data. 

The RCA tool is also intended to support decision-making 
for Traffic Flow Management (TFM) functions. Once the 
performance has been validated as acceptable, the tool could be 
used in conjunction with other TFM network planning 
capabilities to project expected upcoming operating states and 
support “what-if” analysis. The outcome of these TFM 
applications would be improved planning for stakeholders and 
airspace users. 

Figure 4. Confusion matrices for the RCA tool decisions with the three 

airports. Columns show predicted configuration, and rows show the actual 
configuration used. The diagonal elements represent correct predictions, 

and off-diagonal elements are the confusions/mistakes of the algorithm. 
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IV. CONCLUSION 

Our RCA tool uses offline RL solution to overcome limitations 

inherent in online RL and model-based methods. The 

development and validation of the RCA tool involved active 

collaboration with SMEs using data from three major US 

airports. We used two metrics (agreement with historical 

decisions and violation of obvious decisions) and SME 

judgment to evaluate the performance of our RCA tool for three 

sample airports with varying degrees of runway configuration 

complexity (CLT, DEN, and DFW). Our historical decision 

metrics showed mixed results because of challenges related to 

operational constraints not captured in the training data (e.g., 

rapidly changing wind conditions) or model confusion between 

similar configurations. As such, we have planned future work 

to address these shortcomings. Still, our violation metric was 

less than 0.5% for each airport, indicating that the tool output 

rarely violates decisions that would be obvious to SMEs. We 

also explored considerations that would be needed if deploying 

the RCA tool in the future. Several considerations and risks are 

linked to implementing ML in air traffic management, 

highlighting the need for a measured approach to mitigate 

potential errors and safety concerns. 

Overall, this paper captures the progress made in the 
validation of an ML tool for runway configuration decision-
making by evaluating results against ATCO historical decisions 
and SME judgment for three major US airports. Although 
additional work is needed to address model challenges and 
future deployment considerations, the RCA tool has growing 
potential to provide decision support for complex runway 
configuration problems and other system wide TFM planning 
functions. 
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