May, 2024
NASA/Other/Academic Paper—2024-05-03
	
[image: BALLONLY]
Final Technical Report for CMSC 838L
[bookmark: Text2]University of Maryland, College Park (UMCP)

Author Name: Rahul, Vishnoi
[bookmark: Text1]NASA GSFC/Code 583

Technical Reviewer: Paul Swenson
NASA GSFC/Code 583/SES-III Contract/Vantage Systems, Inc.
[image:]

Abstract: This paper describes Rahul Vishnoi’s final project supporting in his Graduate School curriculum CMSC 838L, Advanced Topics in Programming Languages and Computer Architecture. This project was selected to intersect with his work as a Pathways Intern supporting Code 583, the Ground Software Systems Branch, at NASA’s Goddard Space Flight Center (GSFC). In this project, Field Programmable Gate Array (FPGA) hardware from Xilinx is used to replace and offload processor and memory-intensive computations from a microcontroller/Processing System (PS) to the FPGA Programmable Logic (PL). An interface between the PL and PS in the form of a C library allows for this bridging of capability.

	The final iteration of my project utilizes the Digilent Zybo Z7[footnoteRef:2] FPGA-based evaluation board. The Zybo Z7 is based on the Zynq 7000-series Xilinx chipset, which consists of a dual-core Arm Cortex v8 PS and an Artix7-series PL fabric. The Zybo Z7 is unique in that it combines the PL FPGA fabric with a PS Arm microprocessor. This enables creation of PL on the fabric that can be interacted with directly by the processor, providing countless acceleration operations to the processor by adding custom logic on the fabric. In this project, I leveraged this technology to accelerate data processing operations for a Flight Software (FSW) system. My main objective was to offload a data processing operation from the flight processor and onto the FPGA fabric making it possible to easily interface my flight software implementation with an optimized hardware-backed data processing engine. [2: Zybo Z7 Reference Manual - Digilent Reference]

	My implementation consists of three major layers:
1. The FPGA hardware layer, which consists of any circuits defined on the fabric to embed all algorithms and communication channels required.
2. The operating system (OS) layer, which consists of a PetaLinux OS embedded with a specific custom kernel driver that acts as an entry point onto the fabric.
3. The application layer, which consists of an instance of NASA's Open Source core Flight System (cFS) embedded with a custom library that lets other components communicate with the fabric.

	For the hardware layer, I implemented a set of Xilinx’s open-source Advanced eXtensible Interface (AXI) Streams as the primary data bus to transit data bytes in and out of my Intellectual Property (IP) cores hosted on the fabric. I also used Xilinx’s Block Random Access Memory (BRAM) IP cores to manage aspects of the FPGA fabric. I developed a custom IP core for performing a data processing algorithm to act as a representative example for data processing algorithms implemented in FSW. This design by leveraging standard interfaces, allows IP cores to be swapped trivially without interacting with other components of the fabric, resulting in an extremely modular hardware approach and solution.

	On the OS layer, I built a custom PetaLinux OS that contained all the features and configurations needed to load onto the Arm processor. Additionally, I integrated a custom Linux kernel that embedded the AXI First In First Out (FIFO) driver to enable communication with the AXI streams on the FPGA fabric. This driver lets the OS generate a device handle that can be used to send data to the FPGA fabric and receive data from the FPGA fabric.

	For the application layer, I configured, compiled and integrated an instance of NASA’s core Flight System (cFS) that would run on the Arm processor of the Zybo Z7. This included a custom tool chain and cross compiler Docker container that can be used to generate a complete image of the system which is then loaded on a Secure Digitial (SD) card. I then created a custom Accelerated Processing Unit Library (APU_Lib) which provides several function calls that use the device handle to interact with the FPGA fabric. Through this library, other components are able to send data into the fabric and receive data from the fabric, effectively and efficiently offloading heavy-duty or RAM-intensive computations away from the Processing System.
	
	For future work, I have been investigating porting this working implementation of my software/hardware stack to the RTEMS 5.1 OS to demonstrate support for real time operating systems (RTOS) that are not Linux-based. During this project I was able to develop a number of new skills bridging the gap between digital hardware design, embedded software engineering and flight software development.

2

image1.wmf

image2.png

