
NASA/TM—20240006136

Freddie Software Security Patching

Chok Fung Lai

Ames Research Center, Moffett Field, California

June 2024

NASA STI Program ... in Profile

Since its founding, NASA has been dedicated

to the advancement of aeronautics and space

science. The NASA scientific and technical

information (STI) program plays a key part in

helping NASA maintain this important role.

The NASA STI program operates under the

auspices of the Agency Chief Information Officer.

It collects, organizes, provides for archiving, and

disseminates NASA’s STI. The NASA STI

program provides access to the NTRS Registered

and its public interface, the NASA Technical

Reports Server, thus providing one of the largest

collections of aeronautical and space science STI

in the world. Results are published in both non-

NASA channels and by NASA in the NASA STI

Report Series, which includes the following report

types:

• TECHNICAL PUBLICATION. Reports of

completed research or a major significant

phase of research that present the results of

NASA Programs and include extensive data

or theoretical analysis. Includes compila-

tions of significant scientific and technical

data and information deemed to be of

continuing reference value. NASA counter-

part of peer-reviewed formal professional

papers but has less stringent limitations on

manuscript length and extent of graphic

presentations.

• TECHNICAL MEMORANDUM.

Scientific and technical findings that are

preliminary or of specialized interest,

e.g., quick release reports, working

papers, and bibliographies that contain

minimal annotation. Does not contain

extensive analysis.

• CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored

contractors and grantees.

• CONFERENCE PUBLICATION.

Collected papers from scientific and

technical conferences, symposia, seminars,

or other meetings sponsored or

co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientific,

technical, or historical information from

NASA programs, projects, and missions,

often concerned with subjects having

substantial public interest.

• TECHNICAL TRANSLATION.

English-language translations of foreign

scientific and technical material pertinent to

NASA’s mission.

Specialized services also include organizing

and publishing research results, distributing

specialized research announcements and

feeds, providing information desk and personal

search support, and enabling data exchange

services.

For more information about the NASA STI

program, see the following:

• Access the NASA STI program home page

at http://www.sti.nasa.gov

• E-mail your question to help@sti.nasa.gov

• Phone the NASA STI Information Desk at

757-864-9658

• Write to:

NASA STI Information Desk

Mail Stop 148

NASA Langley Research Center

Hampton, VA 23681-2199

This page is required and contains approved text that cannot be changed.

NASA/TM—20240006136

Freddie Software Security Patching

Chok Fung Lai

Ames Research Center, Moffett Field, California

National Aeronautics and

Space Administration

Ames Research Center

Moffett Field, CA 94035-1000

June 2024

Acknowledgments

The author would like to thank Jinn-hwei Cheng and Weston Mathews for setting up the
build, scan, and deployment infrastructures, as well as the Freddie Platform Services team
members for their coding reviews and technical feedback. In addition, the author would also like
to thank Fu-tai Shih, Leonard Bagasol, Dr. Aditya Das, and Dr. William Chan for reviewing this
technical memorandum.

This report is available in electronic form at

http://ntrs.nasa.gov

iii

Abstract

Software applications become more complicated over time as they depend on many third-
party, open-source libraries. The Freddie Platform Services team actively improves software
security by addressing software bugs and vulnerabilities that negatively impact software
applications, especially those providing real-time operations and services for the federal
partners and industries. In order to detect bugs and patch vulnerabilities in software
development and maintenance cycles, an automated and systematic approach is needed. This
document describes what bugs and vulnerabilities are, and how they can be detected by using
static code analyzers and software composition analysis tools. Once vulnerabilities are
detected, the patching approaches, such as upgrading direct and transitive dependencies and
loading custom classes first, are presented together with their strengths and weaknesses. In
addition, patching walkthrough, example code, lessons learned throughout the vulnerability
patching process and the recommended practices are discussed.

Practitioner Notes

What is already know about this topic

• Java-based projects leverage third-party, open-source libraries to save development
time and effort.

• Software bugs and library vulnerabilities must be detected and addressed throughout the
software development and maintenance cycles.

• Though automation tools are used to scan and report software bugs and library
vulnerabilities, addressing the issues for development and release branches are time
consuming and error prone.

What this document adds

• Lessons learned from the vulnerability patching process.

• Security patching techniques for software development teams to improve software code
quality and security.

• A script to help query all the dependency libraries and their versions for projects using
Gradle build tool to verify the security patching.

Implications for practice and/or policy

• Avoid using libraries that are constantly having vulnerability issues.

• Enforce coding practices to ease the maintenance effort and improve productivity due to
fewer software bugs and conflict-free code merges.

• Libraries with vulnerabilities need to be patched weekly or monthly. Those with critical
vulnerabilities need to be patched instantly.

 iv

This page intentionally left blank.

 v

Table of Contents

1. Introduction ... 7

2. Software Bugs and Vulnerabilities .. 7

2.1. Software Bugs .. 7

2.2. Vulnerabilities ... 8

3. Patching Approaches.. 9

3.1. Upgrading Direct Dependencies .. 11

3.2. Upgrading Transitive Dependencies.. 11

3.3. Loading Custom Classes First ... 13

4. Lessons Learned ... 16

4.1. Library Upgrade .. 17

4.2. Finding Alternate Library .. 17

4.3. Workaround .. 17

5. Concluding Remarks .. 17

6. References ... 18

7. Appendix ... 19

7.1. list-dependencies.sh .. 19

List of Figures

Figure 2.1 A potential Null Pointer Exception bug reported by IntelliJ IDEA 8
Figure 2.2 Library Dependencies and Vulnerabilities .. 9

List of Listings

Listing 3.1 Running Gradle dependencies command .. 10
Listing 3.2 Snippet of “gradlew dependencies” output ... 10
Listing 3.3 Snippet of build.gradle file content using upgraded direct library 11
Listing 3.4 Snippet of “gradlew dependencies” output after upgrading direct library 11
Listing 3.5 Snippet of build.gradle file content using upgraded transitive libraries 12
Listing 3.6 Snippet of “gradlew dependencies” output after upgrading transitive libraries 12
Listing 3.7 Running list-dependencies.sh script to check for jackson-databind versions............ 13
Listing 3.8 Canned vulnerable method in a third-party library ... 14
Listing 3.9 Custom class that fixes the canned vulnerability.. 14
Listing 3.10 Loading custom class first with -classpath environment .. 14
Listing 3.11 Custom spring-web classes .. 15

 List of Tables

Table 4.1 Duration to Patch Vulnerable Libraries .. 16

 vi

This page intentionally left blank.

 7

1. Introduction

Software developed by National Aeronautics and Space Administration (NASA) must

adhere to the NASA Software Engineering Requirements [1] for class E (Design Concept,

Research, Technology, and General Purpose Software) and above regarding cybersecurity and

code quality. With an increasing complexity of the code base and number of library

dependencies, using automation to detect and fix potential software problems is a common

approach in the software industry [2, 3, 4]. Like the software industry, multiple air traffic

management projects [5, 6, 7] developed at NASA Ames Research Center use Agile software

development [8] and leverage automation to improve code quality and security.

Unmanned Aircraft System (UAS) Traffic Management (UTM) has been an ongoing

research and development effort among the Federal Aviation System, NASA, other federal

partner agencies, and industries [9]. Federated Airspace Management Framework, or Freddie,

is a NASA implementation for various projects, including the UAS Service Supplier, the Provider

of Services to Urban Air Mobility, the Upper E Traffic Management Service Supplier, and other

services for research and operations of federated airspace management. The Freddie Platform

Services project uses a microservice architecture instead of a monolithic architecture. The

project currently consists of twenty-six Java [10] microservice modules and newer modules will

be added to support additional capabilities. These modules can be built, deployed, and run

separately as needed. Since each microservice is developed using the Spring Framework [11]

that provides a rich set of supporting libraries for service-oriented applications, the team focuses

on the business-logic implementation and deployment configurations. Freddie’s source code is

hosted on GitHub with organizational access [12]. Freddie software development follows the

industry standard by having the main branch for development and release branches for

production. Like other Java-based projects, each Freddie microservice uses third-party, open-

source libraries to save time and effort. On the other hand, whenever a programming bug is

found or a third-party library has a vulnerability, the bug and vulnerability must be addressed in

the main and the release branches.

The rest of this document is structured as follows: Section 2 briefly describes what software
bugs and vulnerabilities are and how they are detected. The patching approaches used by the
Freddie Platform Services team are detailed in Section 3. After presenting the lessons learned
in Section 4, concluding remarks are provided in Section 5.

2. Software Bugs and Vulnerabilities

Software bugs and vulnerabilities must be detected and addressed throughout the software

development and maintenance cycles. The software security patching, using Freddie project as

a use case, is discussed in this document. The Freddie Platform Services team is working on

integrating GitHub and two automation tools to streamline the bug detection and vulnerability

reporting tasks:

1. SonarSource’s SonarQube helps organizations detect potential bugs via source code

static analysis [13]. The static code analyzers find coding issues based on predefined

patterns and rules.

2. Mend Software Composition Analysis (SCA) helps organizations find and fix vulnerable

open-source dependencies [14]. The SCA tool can also provide recommendations using

vulnerability databases.

2.1. Software Bugs

Common programming bugs introduced by software developers can be detected by static
code analyzers. Static code analyzers help improve the code quality by finding bugs in the early
software development stage, thereby reducing issues at a later development stage as well as

 8

after deployment. Integrated Development Environments (IDEs), such as JetBrains’ IntelliJ
IDEA [15] and open-source Eclipse IDE [16], provide a direct or a plug-in support of static code
analysis to improve code quality even before a project is built. Whenever developers write code
that would potentially introduce bugs, the IDEs will not only report the issues in real time but
also provide suggested solutions. Figure 2.1 shows a canned example code illustrating a
conversion of a Freddie’s Time instance into a Java’s Date instance. IntelliJ IDEA detects that
the utility method stringToOdt(String) (line 2) may return a null value, thus, a Null Pointer

Exception will be produced when calling the statement odt.toInstant() (line 3) whenever the

variable odt points to a null value. In addition, bugs can also be reported by SonarQube from

a Continuous Integration and Continuous Delivery (CI/CD) pipeline or from nightly builds.

1

2

3

4

Figure 2.1 A potential Null Pointer Exception bug reported by IntelliJ IDEA

In the software development lifecycle, fixing the source code created by the team requires
less effort, especially the static code analyzers usually provide suggested solutions, and the
same team has complete access and control of the source code.

2.2. Vulnerabilities

According to the National Institute of Standards and Technology (NIST), a vulnerability is a

weakness in the computational logic found in software and hardware components that can

result in a negative impact to confidentiality, integrity, or availability [17]. Vulnerabilities

introduced by third-party dependencies need to be patched to keep the application secure.

Vulnerability patching improves the code quality by addressing vulnerable libraries in the

maintenance stage, even though the process requires much effort. The Common Vulnerabilities

and Exposures (CVE) Program assigns a unique, alphanumeric identifier called CVE Identifier,

or CVE ID, to each vulnerability. CVE IDs have the following format:

CVE prefix + Year + Arbitrary Digits
where Year is the four-digit year when the vulnerability was made public, and Arbitrary
Digits is a number with four or more digits [18]. NIST maintains a database of known

vulnerabilities. For example, the following NIST web page lists the detail of a vulnerability

discovered in 2021 that, when certain criteria are met, an attacker can execute arbitrary code

via a library called log4j-core: https://nvd.nist.gov/vuln/detail/CVE-2021-44228

Projects written in Java programming language leverage artifact and dependency
repositories using the Apache Maven Project format [19]. Commonly used libraries, especially
open source, are included in the Maven repositories. MvnRepository [20] is a web site for
searching both the Maven repositories and the Java open-source libraries. As of August 1,
2023, there were 1,921 indexed repositories, 34.8 million indexed packages, and 120 terabytes
of disk space of the public repositories. Most Maven repositories [20, 21, 22] also list the known
library vulnerabilities discovered. For example, the following web page lists all the available
versions of the log4j-core library among multiple repositories:

https://mvnrepository.com/artifact/org.apache.logging.log4j/log4j-core

https://nvd.nist.gov/vuln/detail/CVE-2021-44228
https://mvnrepository.com/artifact/org.apache.logging.log4j/log4j-core

 9

and the library version 2.14.1 has four vulnerabilities. Clicking the version number on the page

will redirect the browser to the version-specific view:

https://mvnrepository.com/artifact/org.apache.logging.log4j/log4j-core/2.14.1
where the vulnerability CVE-2021-44228 is listed in the vulnerabilities section.

There are two kinds of library dependencies: direct and transitive. Given three example
libraries, A, B, and C, as shown in Figure 2.2(a). Each directed link represents a “depends on”
relationship. Library A depends on library B whenever a function defined in A calls one or more
functions defined in B. Library B is a direct dependency of library A. Similarly, library C is a
direct dependency of library B. In this example, library C is a transitive dependency of library A.
Even though none of the functions defined in library C is used by library A, the omission of C in
the application will indirectly impact the functions in A. Thus, a project utilizing library A must
include both libraries B and C.

(a)

(b)

(c)

Figure 2.2 Library Dependencies and Vulnerabilities

Vulnerabilities are chained. Figure 2.2(b) depicts that if library B has a vulnerability U, library
A will have the vulnerability U too. In addition, Figure 2.2(c) depicts that if library C has a
vulnerability V, both libraries A and B will have the vulnerability V as well. Whenever a
dependent library has a vulnerability, the vulnerability must be addressed through one of the
patching approaches presented in the next section.

3. Patching Approaches

The Freddie Platform Services project uses Gradle Build Tool [23] for configuration, module
and library dependency management, as well as source code generation. In Gradle build files,
dependency libraries are commonly declared using one of the following two formats:

1. implementation group: 'xxx', name: 'yyy', version: 'zzz'
2. implementation 'xxx:yyy:zzz'

where xxx represents a group name, yyy a library name, and zzz a version string. The version

strings commonly follow the semantic versioning [24]. In this section, a use case is presented to

demonstrate the procedure to upgrade a library named avro, a data serialization system [25],

that contains a vulnerable dependency named jackson-databind, a general data-binding

package [26]. Gradle has a built-in task to show the dependencies tree of the direct and

transitive libraries. Listing 3.1 shows the Linux-based shell commands to print out the library

dependencies used by the Conformance Monitoring module in the Freddie Platform Services.

The $ symbol indicates the command prompt. Line 1 changes the current working directory to

the Conformance Monitoring module. Line 2 executes the Gradle dependencies command.

https://mvnrepository.com/artifact/org.apache.logging.log4j/log4j-core/2.14.1

 10

Listing 3.1 Running Gradle dependencies command

$ cd freddie-platform-services/modules/conformance-monitoring/ 1

$./gradlew dependencies 2

The output of the Gradle dependencies task is comprehensive and informative. The output

produced by the Gradle command has nearly 3,000 lines. Listing 3.2 shows a snippet of the
Gradle dependency tree for visualizing the hierarchy of dependencies. The snippet shows that
two direct dependency libraries are used when compiling the Conformance Monitoring module:
lambok version 1.18.24 (line 2) and avro version 1.11.0 (line 3). In addition, the avro library

has four direct dependency libraries, namely, jackson-core version 2.12.5 (line 4), jackson-
databind version 2.12.5 (line 5), commons-compress version 1.21 (line 6), and slf4j-api

version 1.7.32 (line 7). Thus, these four dependency libraries are transitive to the module.

Listing 3.2 Snippet of “gradlew dependencies” output

compileClasspath - Compile classpath for source set 'main'. 1
+--- org.projectlombok:lombok:1.18.24 2

+--- org.apache.avro:avro:1.11.0 3
| +--- com.fasterxml.jackson.core:jackson-core:2.12.5 4

| +--- com.fasterxml.jackson.core:jackson-databind:2.12.5 5
| +--- org.apache.commons:commons-compress:1.21 6

| \--- org.slf4j:slf4j-api:1.7.32 7

⋮8

Vulnerable libraries can be investigated by using the Mend SCA tool (recommended),
performing a keyword search in the NIST’s National Vulnerability Database1, or inspecting the
“vulnerabilities” column on the MvnRepository website2. According to the MvnRepository, the
jackson-databind version 2.12.5 has the following four direct vulnerabilities:

1. CVE-2022-42004
2. CVE-2022-42003
3. CVE-2021-46877
4. CVE-2022-36518

Automatically detecting and reporting the vulnerable libraries is recommended since the

scanning process can be a step in the CI/CD pipeline. The software scanning process can also

be scheduled during the nightly builds so that developers are notified whenever a vulnerability

library is detected. Manual process is useful for understanding the detail of the vulnerabilities,

especially when patching the project libraries. The following subsections present three

commonly used approaches to address vulnerable libraries including steps, strengths, and

weaknesses:

3.1. Upgrading Direct Dependencies
3.2. Upgrading Transitive Dependencies
3.3. Loading Custom Classes First

1 See https://nvd.nist.gov/vuln/search/results?query=jackson-databind
2 See https://mvnrepository.com/artifact/com.fasterxml.jackson.core/jackson-databind

https://nvd.nist.gov/vuln/search/results?query=jackson-databind
https://mvnrepository.com/artifact/com.fasterxml.jackson.core/jackson-databind

 11

3.1. Upgrading Direct Dependencies

Whenever a specific version of the library is vulnerable, the library needs to be either
upgraded to a stable, i.e., invulnerable, version or replaced with an alternate library. A stable
version, if available, can be used by specifying the version in the build file. Listing 3.3 shows a
snippet of the dependencies code block of a Gradle build file specifying the avro library to use

the exact version 1.11.2 (line 3). By specifying the library version, any older avro library

versions (e.g., 1.11.0) will be promoted to 1.11.2. Similarly, any newer avro library versions

(e.g., 1.11.3) will be demoted to 1.11.2.

Listing 3.3 Snippet of build.gradle file content using upgraded direct library

dependencies { 1

 ... 2

 implementation 'org.apache.avro:avro:1.11.2' 3

 ... 4

}5

Listing 3.4 shows a partial output after rerunning the gradlew dependencies task. The avro

library is upgraded from the previous version 1.11.0 to the upgraded version 1.11.2 (line 3). In

addition, the upgraded avro version contains newer dependency library versions, as indicated

by lines 4 to 8: the jackson-related libraries are promoted from the version 2.12.5 to 2.14.2

(lines 4 and 5), the commons-compress library is promoted from the version 1.21 to 1.22 (line 7),

and the slf4j-api library is promoted from the version 1.7.32 to 1.7.36 (line 8).

Listing 3.4 Snippet of “gradlew dependencies” output after upgrading direct library

compileClasspath - Compile classpath for source set 'main'. 1

+--- org.projectlombok:lombok:1.18.24 2
+--- org.apache.avro:avro:1.11.2 3

| +--- com.fasterxml.jackson.core:jackson-core:2.14.2 4
| +--- com.fasterxml.jackson.core:jackson-databind:2.14.2 5

| ⋮ 6

| +--- org.apache.commons:commons-compress:1.22 7
| \--- org.slf4j:slf4j-api:1.7.36 8

⋮9

Upgrading the version of a third-party, vulnerable library to a stable one—either

recommended by the Mend SCA tool or manually investigated on a Maven repository web
site—by specifying the stable version in the dependencies block of the project’s Gradle build file
is straightforward. The upgrade can be verified by running the gradlew dependencies task,

which shows the hierarchy of the direct and transitive dependencies. The technique described in
this subsection has two limitations: (a) when a stable library is not available, the vulnerability will
not be addressed; and (b) when a stable library is not compatible with the other existing libraries
used in the project due to build or test failures, further actions described in the following
subsections will be needed.

3.2. Upgrading Transitive Dependencies

In case a direct library does not have a stable version, upgrading the library’s transitive
dependencies can be performed. For example, the version 1.11.2 of the avro library was a

 12

stable release on Monday, July 3, 20233. Thus, Listing 3.3 will not work prior to this date. To
address the vulnerabilities, instead of upgrading the direct library version, the transitive libraries
are upgraded to their stable versions. The vulnerabilities are addressed by defining the
transitive libraries with the stable versions in the dependencies code block of the Gradle build
file. Put simply, the technique described in Section 3.1 can be applied to upgrade versions of
both directed and transitive libraries. Listing 3.5 shows that the two jackson-related libraries

are upgraded to use the stable version 2.13.5 (lines 3 and 4) from the original version 2.12.5
used by the avro library version 1.11.0 (see lines 3-5 in Listing 3.2).

Listing 3.5 Snippet of build.gradle file content using upgraded transitive libraries

dependencies { 1

 ... 2

 implementation 'com.fasterxml.jackson.core:jackson-core:2.13.5' 3

 implementation 'com.fasterxml.jackson.core:jackson-databind:2.13.5' 4

 ... 5

}6

Listing 3.6 shows a snippet of the Gradle dependency tree that the two transitive libraries are
upgraded from the previous version 2.12.5 to the upgraded version 2.13.5, as indicated by the
lines ending with the “(*)” marker on both lines 4 and 5.

Listing 3.6 Snippet of “gradlew dependencies” output after upgrading transitive libraries

compileClasspath - Compile classpath for source set 'main'. 1

+--- org.projectlombok:lombok:1.18.24 2
+--- org.apache.avro:avro:1.11.0 3

| +--- com.fasterxml.jackson.core:jackson-core:2.12.5 -> 2.13.5 (*) 4

| +--- com.fasterxml.jackson.core:jackson-databind:2.12.5 -> 2.13.5 (*) 5
| +--- org.apache.commons:commons-compress:1.21 6

| \--- org.slf4j:slf4j-api:1.7.32 7

⋮8

Since the Freddie Platform Services has twenty-six microservice modules and more

modules will be added in the future, verifying that all the libraries are upgraded to stable
versions requires time-consuming and error-prone effort. The team developed a shell script file
called list-dependencies.sh (see Appendix 7.1) to aid the verification task. The script file has

been utilized for finding the versions of specific libraries used among the modules. The file
output can help developers make sure stable versions are correctly included. To illustrate the
usages of the script file, Listing 3.7 captured the commands and outputs the team relied on to
check for the versions of the library jackson-databind among the direct and transitive

dependencies, as well as their upgraded version 2.13.4.2:
1. Line 1 changes the current working directory to the project’s scripts folder.

2. Line 3 checks out the release branch named v3.13.x.

3. Line 7 generates log files for version querying from all the modules.
4. Line 10 lists all the jackson-databind library versions using the generated log files.

5. Lines 12 to 28 are the outputs.

3 See https://mvnrepository.com/artifact/org.apache.avro/avro

https://mvnrepository.com/artifact/org.apache.avro/avro

 13

Listing 3.7 Running list-dependencies.sh script to check for jackson-databind versions

$ cd freddie-platform-services/modules/scripts/ 1

 2

$ git checkout v3.13.x 3

Already on 'v3.13.x' 4

Your branch is up to date with 'origin/v3.13.x'. 5

 6

$./list-dependencies.sh -f 7

Dependencies log files are generated 8

 9

$./list-dependencies.sh jackson-databind 10

Library: jackson-databind 11

com.fasterxml.jackson.core:jackson-databind 12

com.fasterxml.jackson.core:jackson-databind -> 2.13.4.2 13

com.fasterxml.jackson.core:jackson-databind:2.10.5.1 -> 2.13.4.2 14

com.fasterxml.jackson.core:jackson-databind:2.11.0 -> 2.13.4.2 15

com.fasterxml.jackson.core:jackson-databind:2.11.1 -> 2.13.4.2 16

com.fasterxml.jackson.core:jackson-databind:2.12.2 -> 2.13.4.2 17

com.fasterxml.jackson.core:jackson-databind:2.12.5 -> 2.13.4.2 18

com.fasterxml.jackson.core:jackson-databind:2.12.6 -> 2.13.4.2 19

com.fasterxml.jackson.core:jackson-databind:2.12.6.1 -> 2.13.4.2 20

com.fasterxml.jackson.core:jackson-databind:2.13.2 -> 2.13.4.2 21

com.fasterxml.jackson.core:jackson-databind:2.13.2.1 -> 2.13.4.2 22

com.fasterxml.jackson.core:jackson-databind:2.13.3 -> 2.13.4.2 23

com.fasterxml.jackson.core:jackson-databind:2.13.4 -> 2.13.4.2 24

com.fasterxml.jackson.core:jackson-databind:2.13.4 -> 2.13.4.2 (c) 25

com.fasterxml.jackson.core:jackson-databind:2.13.4.2 26

com.fasterxml.jackson.core:jackson-databind:2.6.6 -> 2.13.4.2 27

com.fasterxml.jackson.core:jackson-databind:2.9.6 -> 2.13.4.228

The dependencies log files only need to be generated once (line 7) unless code changes have
been made after the last file generation. Once the log files are generated, command line 10 can
be reused to list the versions of additional libraries. If there is a line in the output section (lines
12 to 28) indicating a wrong version is used, a developer can find the parent libraries in the log
file located at freddie-platform-services/logs/list-dependencies.log by searching for

the specific library and version. The log file contains the output of the gradlew dependencies

command (see Listing 3.2) from all the microservice modules.
This subsection demonstrated the technique to upgrade the version of a vulnerable

transitive library to a stable one by specifying the stable version in the dependencies block. In
addition, a script file is created to help find and verify whether all the library versions are
upgraded to the stable ones among all the modules. Like Section 3.1, the technique described
in this subsection has the same two limitations: (a) a stable transitive library is not available; and
(b) a stable transitive library is not compatible with the other existing libraries used in the project
due to build or test failures. The limitations can be addressed by applying the technique
presented in the following subsection.

3.3. Loading Custom Classes First

As mentioned in the subsections above, addressing a vulnerable library, whether direct or
transitive, by upgrading its version to a stable one works if the stable version is available and

 14

the library of the stable version is compatible with the existing libraries used in the project. In
case a vulnerable library cannot be upgraded directly, it is possible to patch the library by writing
custom classes with the fully-qualified class and method names, and making sure the custom
classes are loaded before the vulnerable classes by the Java Virtual Machine. This approach
requires effort to understand the vulnerable library, its source code, and the detail of the
vulnerability.

Listing 3.8 Canned vulnerable method in a third-party library

package com.example.library; 1

 2

public class Calc { 3

 public static float divide(int numerator, int denominator) { 4

 return numerator / denominator; 5

 } 6

}7

To illustrate the technique, assume a canned third-party library class, Calc, having a vulnerable

method named divide(int numerator, int denominator) that performs an integer division

in the floating-point context (see Listing 3.8). For example, calling divide(1,2) returns 0.0

instead of 0.5 because Java returns the integer division rounds towards zero (line 5) [27], even
though the method signature indicates that the method returns a floating-point value (line 4).

Listing 3.9 Custom class that fixes the canned vulnerability

package com.example.library; 1

 2

public class Calc { 3

 public static float divide(int numerator, int denominator) { 4

 return (float) numerator / denominator; 5

 } 6

 7

 static { 8

 LoggerFactory.getLogger(Calc.class).warn("Using custom Calc class."); 9

 } 10

}11

A fix for this canned vulnerable method would be modifying the line 5 to ensure the numerator is
casted to a float data type, as shown in Listing 3.9 (line 5). To ensure the method divide(int,
int) in the custom class is used, the custom class must be loaded before the vulnerable class

in the third-party library. This can be achieved by using the Java’s -classpath environment

variable, as shown in Listing 3.10, where the Java archive (jar) file calc.jar contains the

custom class Calc and the jar file app.jar contains the third-party class Calc. In addition, a

logging statement may be added to the custom class to indicate that the custom class is actually
used (see lines 8-10).

Listing 3.10 Loading custom class first with -classpath environment

java -classpath calc.jar:app.jar gov.nasa.app.Main 1

As mentioned earlier, Freddie microservices use Spring Framework to ease development

effort. The Spring Framework has the spring-web library to provide web-related features. The

 15

Mend SCA tool suggested upgrading the library version to 6.0.0 because all the versions 5.3.x
are vulnerable4. However, the version 6 of the spring-web library requires Java Development

Kit (JDK) 17 [28] and the Freddie Platform Services project was using JDK 11 at that moment.
Thus, upgrading the spring-web library requires upgrading the Java version but this was not a

feasible option. As a result, the vulnerability in the spring-web library was patched by disabling

the features via custom classes and such features were not allowed to be used in the code
base. To achieve these objectives, the team defined a list of custom classes extending a base
class named Cve_2016_1000027 (see Listing 3.11) to prevent a Java deserialization of

untrusted data from calling in the Freddie Platform Services code base. Whenever a custom
class was accessed, an Unsupported Operation Exception would be thrown from the base class
(lines 6 and 7). To further ensure the custom classes were used, a unit test was written to assert
that the exception was thrown whenever calling the Spring remoting with Hypertext Transfer
Protocol (HTTP) invokers.

Listing 3.11 Custom spring-web classes

package org.springframework.remoting.httpinvoker; 1

 2

class Cve_2016_1000027 { 3

 static { 4

 if (true) { 5

 throw new UnsupportedOperationException(6

 "HTTP Invoker Feature should not be used due to CVE-2016-1000027!"); 7

 } 8

 } 9

} 10

 11

public class AbstractHttpInvokerRequestExecutor extends Cve_2016_1000027 { } 12

public class HttpComponentsHttpInvokerRequestExecutor extends 13

Cve_2016_1000027 { } 14

public class HttpInvokerClientConfiguration extends Cve_2016_1000027 { } 15

public class HttpInvokerClientInterceptor extends Cve_2016_1000027 { } 16

public class HttpInvokerProxyFactoryBean extends Cve_2016_1000027 { } 17

public class HttpInvokerRequestExecutor extends Cve_2016_1000027 { } 18

public class HttpInvokerServiceExporter extends Cve_2016_1000027 { } 19

public class SimpleHttpInvokerRequestExecutor extends Cve_2016_1000027 { } 20

public class SimpleHttpInvokerServiceExporter extends Cve_2016_1000027 { }21

This subsection presented a way to address a vulnerable library that does not have a stable

or compatible version. Defining custom classes and ensuring these classes are loaded first, so
that the vulnerable methods would not be called. This technique has two limitations: (a)
developers need to fully understand the feature implementation of the third-party libraries; and
(b) the custom classes need to be removed whenever a stable and compatible version is
available.

4 See https://mvnrepository.com/artifact/org.springframework/spring-web

https://mvnrepository.com/artifact/org.springframework/spring-web

 16

4. Lessons Learned

Throughout the vulnerability patching process, the team realized that certain coding

practices would ease the maintenance effort and improve the productivity. The practices

described in this section can be used to speed up the security patching and dependency library

verification processes. The author assumed that software developers in the industry would have

already used similar techniques to help fix the vulnerable libraries.

Each microservice used to have its own Gradle build file, thereby increasing the effort to

patch vulnerabilities. In addition, some microservices used to depend on the same library but

with different versions, thereby increasing the effort to maintain the code base throughout the

software development lifecycle. To make the patching process more effective and efficient, a

base module named freddie-core is created. The base module depends on the common

dependencies used by all the microservices such as Apache Avro and Spring Framework.

Common dependencies defined in the base module are removed from the individual

microservice modules. As a result, patching the dependencies becomes less error prone as

their newer, stable versions can be specified in the base module (a single build file) rather than

in all the microservice modules (multiple build files).

When patching vulnerabilities across the main and the release branches, sorting the

libraries defined in the Gradle build files by their group names and then package names would

make diff and merge, two commonly used operations, easier among the branches. A diff

operation compares changes between two file sets, while a merge operation applies changes

from one file set to another file set. A merge conflict occurs whenever a merge operation cannot

be performed completely. When a merge conflict happens, developers need to spend time and

effort to manually resolve merge conflicts. The manual process not only is error prone but also

affects productivity.

Table 4.1 Duration to Patch Vulnerable Libraries

Freddie
Version

Supported
Branches

Vulnerable
Libraries

Supported
Branches ×
Vulnerable
Libraries

Duration to Patch
Vulnerable Libraries

Total
Average per
Library per

Branch

(a) (b) (c) (d) = (b)×(c) (e) (f) = (e)÷(d)

3.5.x 1 1 1 3 h 11 m 3 h 11 m

3.7.x A 1 1 1 2 h 17 m 2 h 17 m

3.7.x B 1 1 1 5 h 51 m 5 h 51 m

3.9.x 4 2 8 29 h 25 m 3 h 33 m

3.10.x 2 1 2 26 h 26 m 13 h 13 m

3.11.x A 3 2 6 22 h 52 m 3 h 49 m

3.11.x B 1 3 3 15 h 08 m 5 h 03 m

3.11.x C 1 3 3 4 h 33 m 1 h 11 m

3.12.x 1 10 10 8 h 06 m 0 h 49 m

3.13.x 2 8 16 5 h 18 m 0 h 20 m

4.0.x 1 13 13 14 h 53 m 1 h 09 m

4.1.x 4 11 44 49 h 36 m 1 h 08 m

4.2.x A 3 7 21 17 h 10 m 0 h 49 m

4.2.x B 3 3 9 19 h 37 m 2 h 11 m

 17

Table 4.1 lists (a) individual Freddie release versions, (b) number of supported release

branches, (c) number of vulnerable libraries to be patched, (d) total number of vulnerable

libraries among the supported branches, (e) total duration to patch the vulnerable libraries

among the supported branches, and (f) average duration to patch a vulnerable library in a

branch. The information was obtained by querying Freddie’s issue tracking system between the

release versions 3.5.x and 4.2.x. Whenever a release version (i.e., 3.7.x, 3.11.x, and 4.2.x)

required different patching due to weekly software scans, a letter suffix is appended to each

release version to differentiate the patched releases. The patching techniques documented by

this technical memorandum were applied since the release version 3.11.x C (the embolden

rows). Prior to this release version, on average, it would take about 2,217 minutes ÷ 7 releases

= 5 hours 17 minutes to patch a vulnerable library. After applying the patching techniques, the

average duration to patch a vulnerable library took 457 minutes ÷ 7 releases = 1 hour 5

minutes. This is a 4 hours 12 minutes (or 79.4%) time saving per vulnerability library patch.

When the vulnerability scanning is performed frequently such as weekly or monthly, most

updates involve increasing the library’s version patching number. A vulnerability found in an old

version of a third-party library may no longer be addressed by the library creators. Solutions,

presented in the following subsections, include upgrading the library to a newer version, finding

an alternative library with the same or similar functions, or investigating into a workaround.

4.1. Library Upgrade

Upgrading the library will address the issue most of the time. However, the upgrade may not
work when a newer version introduces software conflicts, such as requiring a newer Java
version to run. For example, the library spring-web version 5.3.19 has a vulnerability and its

version needs to be upgraded to 6.0.0. However, the version 6.0.0 requires Java 17. In this
case, the team created a release plan for the major library or Java version upgrade, meanwhile,
applied the other solutions for the current vulnerability.

4.2. Finding Alternate Library

Open-source project communities can come and go due to technology change and
volunteer availability. If a library is old or no longer maintained, consider finding an alternative,
recent, and active library to ensure any vulnerabilities found in the future will be addressed in a
timely manner. However, finding an alternative library may introduce additional workload and
sometimes an alternate library is not an option especially when the current library is a part of a
famous framework such as the Spring Framework.

4.3. Workaround

When both upgrading and finding an alternate library do not work, the last resort is to find a
workaround to ensure the vulnerability will not be accessible to the function callers or application
users. Investigate the functions used by the library and determine whether the functions can be
reimplemented or not. When reimplemented correctly, the application becomes less vulnerable,
especially as most of the unused functions will no longer be included.

5. Concluding Remarks

A software application is vulnerable whenever its direct or transitive dependency library has
a vulnerability. NIST maintains a database of known vulnerabilities and the database is utilized
and referenced by many Maven repositories. Patching vulnerabilities is important but becomes
more difficult, especially when the application over time becomes more complicated and
depends on more libraries. Static code analyzers can detect common programming bugs
introduced by software developers during software development. Software composition analysis
tools help detect vulnerable open-source dependencies and suggest fixes during software

 18

maintenance. Automatic software scanning can be a part of the CI/CD pipeline and nightly build
processes to ensure any vulnerable library is reported to the developers in a timely manner.

Utilizing commonly used third-party, open-source libraries especially those developed by
software communities are recommended so that more resources would be put on maintaining
the libraries by the communities, hence reducing our software development and maintenance
effort. In addition, the patching effort can be reduced when a project standardizes the library
versions used among the modules. Creating a common build file for all the modules will also
ease the patching effort.

This document presented three approaches to patch vulnerable libraries in the Freddie
Platform Services project: 1) upgrading direct dependencies, 2) upgrading transitive
dependencies, and 3) loading custom class first. Strengths and weaknesses of each of these
three approaches were discussed. Upgrading direct and transitive dependencies is
straightforward but only works if stable and compatible libraries are available; loading custom
classes involve much effort that requires a full understanding of the implementation of the
vulnerable libraries. Whenever a library upgrade is not possible, consider finding an alternate
library or reimplementing the vulnerable functions. Finally, a shell script file is provided to aim
the verification of the patched library versions.

The patching techniques can be applied to any Java-based projects, especially using the
Gradle build tool. The author hopes that this document will help other software development
teams to apply for security patching techniques to improve their software code quality and
security in the software development and maintenance lifecycles.

6. References

1. “NASA Procedural Requirements 7150.2D” (Online),

https://nodis3.gsfc.nasa.gov/displayDir.cfm?t=NPR&c=7150&s=2B. Retrieved

2024/02/01.

2. Hovemeyer, D., and Pugh, W., “Finding bugs is easy.” Acm sigplan notices 39.12

(2004): 92-106.

3. Morgenthaler, J.D., Gridnev, M., Sauciuc, R., and Bhansali, S., “Searching for build debt:

Experiences managing technical debt at Google,” 2012 Third International Workshop on

Managing Technical Debt (MTD), Zurich, Switzerland, 2012, pp. 1-6, doi:

10.1109/MTD.2012.6225994.

4. Oyetoyan, T.D., Milosheska, B., Grini, M. and Soares Cruzes, D., “Myths and facts about

static application security testing tools: an action research at Telenor digital,” In Agile

Processes in Software Engineering and Extreme Programming: 19th International

Conference, XP 2018, Porto, Portugal, May 21–25, 2018, Proceedings 19 (pp. 86-103).

Springer International Publishing.

5. Robinson, J.E., III, Lee, A., and Lai, C.F., “Development of a High-Fidelity Simulation

Environment for Shadow-Mode Assessments of Air Traffic Concepts,” RAeS and AIAA

Modelling and Simulation in Air Traffic Management Conference, London, 14-15

November, 2017.

6. Rios, J.L., Smith, I.S., Venkatesen, P., Homola, J.R., Johnson, M.A., and Jung, J., “UAS

Service Supplier Specification,” NASA Technical Memorandum, 2020,

https://ntrs.nasa.gov/citations/20200000512

7. Verma, S.A, Monheim, S.C., Moolchandani, K.A., Pradeep, P., Cheng, A.W.,

Thipphavong, D.P., et al., “Lessons Learned: Using UTM Paradigm for Urban Air

Mobility Operations,” 2020 AIAA/IEEE 39th Digital Avionics Systems Conference

(DASC), San Antonio, TX, USA, 2020, pp. 1-10, doi:

10.1109/DASC50938.2020.9256650.

8. “Agile 101” (Online), https://www.agilealliance.org/agile101/. Retrieved 2023/07/31.

https://nodis3.gsfc.nasa.gov/displayDir.cfm?t=NPR&c=7150&s=2B
https://ntrs.nasa.gov/citations/20200000512
https://www.agilealliance.org/agile101/

 19

9. “Unmanned Aircraft System Traffic Management (UTM) | Federal Aviation

Administration” (Online),

https://www.faa.gov/uas/research_development/traffic_management. Retrieved

2023/07/24.

10. “Java SE | Oracle Technology Network | Oracle” (Online),

https://www.oracle.com/java/technologies/java-se-glance.html. Retrieved 2023/08/01.

11. “Spring Framework” (Online), https://spring.io/projects/spring-framework. Retrieved

2023/07/21.

12. “NASA GitHub External Low” (Online), https://github.com/NASA-Github-Low. Retrieved

2023/07/20.

13. “Code Quality Tool & Secure Analysis with SonarQube | Sonar” (Online),

https://www.sonarsource.com/products/sonarqube/. Retrieved 2023/07/20.

14. “Mend SCA: Open Source Software Management Made Simple” (Online),

https://www.mend.io/sca/. Retrieved 2023/07/20.

15. “IntelliJ IDEA – the Leading Java and Kotlin IDE” (Online),

https://www.jetbrains.com/idea/. Retrieved 2023/07/24.

16. “Eclipse IDE | The Eclipse Foundation” (Online), https://eclipseide.org/. Retrieved

2023/07/24.

17. “NVD - Vulnerabilities” (Online), https://nvd.nist.gov/vuln. Retrieved 2023/08/01.

18. “cve-website” (Online), https://www.cve.org/About/Process. Retrieved 2023/08/01.

19. “Maven – Welcome to Apache Maven” (Online), https://maven.apache.org/. Retrieved

2023/08/01.

20. “Maven Repository: Search/Browse/Explore” (Online), https://mvnrepository.com/ .

Retrieved 2023/07/21.

21. “Maven Central” (Online), https://central.sonatype.com/. Retrieved 2023/08/01.

22. “Open Source Insights” (Online), https://deps.dev/. Retrieved 2023/08/01.

23. “Gradle Build Tool” (Online), https://gradle.org/. Retrieved 2023/07/21.

24. “Semantic Versioning 2.0.0” (Online), https://semver.org/. Retrieved 2024/01/03.

25. “Apache Avro” (Online), https://avro.apache.org/. Retrieved 2023/08/04.

26. “FasterXML/jackson-databind: General data-binding package for Jackson (2.x): works on

streaming API (core) implementation(s)” (Online), https://github.com/FasterXML/jackson-

databind. Retrieved 2023/08/04.

27. “Java Language Specification Chapter 15.17.2 Division Operator /” (Online),

https://docs.oracle.com/javase/specs/jls/se11/html/jls-15.html#jls-15.17.2. Retrieved

2024/01/03.

28. “Spring Framework Versions” (Online), https://github.com/spring-projects/spring-

framework/wiki/Spring-Framework-Versions. Retrieved 2023/10/06.

7. Appendix

7.1. list-dependencies.sh

The script file lists the dependency libraries and their versions for projects using the Gradle
build tool to verify the security patching. The script uses the Bash command processor and four
commands: echo, grep, sed, and sort. The script assumes the Gradle’s Java project directory

structure is used, and the “gradlew dependencies” task is called to generate dependency

graphs.

#!/bin/bash
set -e
set -o errexit
set -o pipefail

https://www.faa.gov/uas/research_development/traffic_management
https://www.oracle.com/java/technologies/java-se-glance.html
https://spring.io/projects/spring-framework
https://github.com/NASA-Github-Low
https://www.sonarsource.com/products/sonarqube/
https://www.mend.io/sca/
https://www.jetbrains.com/idea/
https://eclipseide.org/
https://nvd.nist.gov/vuln
https://www.cve.org/About/Process
https://maven.apache.org/
https://mvnrepository.com/
https://central.sonatype.com/
https://deps.dev/
https://gradle.org/
https://semver.org/
https://avro.apache.org/
https://github.com/FasterXML/jackson-databind.%20Retrieved%202023/08/04
https://github.com/FasterXML/jackson-databind.%20Retrieved%202023/08/04
https://docs.oracle.com/javase/specs/jls/se11/html/jls-15.html#jls-15.17.2
https://github.com/spring-projects/spring-framework/wiki/Spring-Framework-Versions
https://github.com/spring-projects/spring-framework/wiki/Spring-Framework-Versions

 20

usage() {
 echo "This script will list all the dependencies used by models and
modules."
 echo "This script should be run in the freddie-platform-
services/modules/scripts/ directory."
 echo ""
 echo "In order to find dependency library versions, log files need to be
generated once by using -f parameter."
 echo "Subsequent operations do not need -f parameter. Note that if any
library version has changed in any *.gradle"
 echo "file, the log files need to be regenerated."
 echo ""
 echo "Usage: $0 [-f] [-h] [-v version] [lib1 [lib2 ...]]"
 echo " -f : Generate dependencies log files"
 echo " -h : Print help usage"
 echo " -v version : Version string to be appended to the log files;
useful for working on multiple branches"
 echo " lib1 : First library name, e.g., spring-cloud-function-
context"
 echo " lib2 : Second library name, e.g., spring-integration-core"
 echo ""
 echo "Examples:"
 echo " # To generate log files once for the current code base"
 echo " $0 -f"
 echo ""
 echo " # To list versions of spring-cloud-function-context library"
 echo " $0 spring-cloud-function-context"
 echo ""
 exit 1
}

GENERATE_FILES=false
VERSION=

process arguments
while getopts "fhv:" options; do
 case "${options}" in
 f)
 GENERATE_FILES=true
 ;;
 h)
 usage
 ;;
 v)
 VERSION="-${OPTARG}"
 ;;
 *)
 usage
 ;;
 esac
done

 21

LOG_DIR=./logs
LOG_FILE=$LOG_DIR/list-dependencies${VERSION}.log
LOG_FILE_SORTED=$LOG_DIR/list-dependencies-sorted${VERSION}.log

if [["$GENERATE_FILES" = "true"]]; then
 mkdir -p $LOG_DIR

 echo "Generating $LOG_FILE ..."
 for file in $(find .. -name build.gradle | sort); do
 dir=$(dirname $file)
 echo $dir
 cd $dir
 ./gradlew dependencies
 cd -
 done > $LOG_FILE

 echo "Sorting $LOG_FILE ..."
 sort -u $LOG_FILE > $LOG_FILE_SORTED

 echo "Dependencies log files are generated"
fi

if [! -f "$LOG_FILE_SORTED"]; then
 echo "File $LOG_FILE_SORTED does not exist!"
 echo "Please run with -f parameter to generate one."
 echo ""
 usage
 echo ""
 exit 1
fi

shift to the first argument
shift $(expr $OPTIND - 1)

find library versions
for lib in $*; do
 echo "Library: $lib"

 # Regex explanations:
 # 1. Remove the literals (*) and (n) that appear at the end of some lines
 # 2. Remove tree connector symbols something like | , \--- , and +--- at
the beginning of some lines
 # 3. Remove spaces appear in the beginning of some lines
 # 4. Remove spaces appear in the end of some lines
 # 5. Sort the lines with duplicates removed
 #
 # 1 2 3 4 5
 sed 's/([*n])//g;s/[|\\+]-*//g;s/^ *//;s/ *$//' $LOG_FILE_SORTED | sort -u
| grep "$lib"

 22

 echo ""
done

	1. Introduction
	2. Software Bugs and Vulnerabilities
	2.1. Software Bugs
	2.2. Vulnerabilities

	3. Patching Approaches
	3.1. Upgrading Direct Dependencies
	3.2. Upgrading Transitive Dependencies
	3.3. Loading Custom Classes First

	4. Lessons Learned
	4.1. Library Upgrade
	4.2. Finding Alternate Library
	4.3. Workaround

	5. Concluding Remarks
	6. References
	7. Appendix
	7.1. list-dependencies.sh

