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The closure problem: Given large-scale forcings, how
much convection is there?
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Convective Quasi-Equilibrium (CQE):
Convective instability is fixed.
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How well does CQE hold in a NASA GEQOS convection-
oermitting simulation? (Ax = 3 km).

DYAMOND v2 simulations: ”Large Scale”: All fields regridded to 1°
January-March 2020 horizontal resolution

Deep tropical (+15°) domain of interest:
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We calculate the large-scale forcing on CAPE.

Tendencies:

- T, g advection

- Radiation

- Sfc fluxes of Tand g
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CAPE is generally fixed regardless of large-scale forcing.
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Data are 6-hour averages.



CAPE is generally fixed regardless of large-scale forcing.
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There is a clear relationship between CAPE production and
convection.
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There is a clear relationship between CAPE production and
convection.
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There is a clear relationship between CAPE production and
convection.
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Neglecting the boundary layer leads to a better
constraint on precipitation.
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Neglecting the boundary layer leads to a better
constraint on precipitation.

. dCAPE| _dCAPE| . ‘
| = freeion. dt lis @ dt Irr BL

“Free troposphere quasi-equilibrium”
(Zhang 2002)
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Neglecting the boundary layer leads to a better
constraint on precipitation.
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Boundary-layer CAPE forcing does not matter.
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(Zhang 2002)
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Column water vapor constrains 500 hPa mass tlux,
but not precipitation.
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The variability of dCAPE/dt is dominated by a single
orocess: Vertical advection of O.
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The variability of dCAPE/dt is dominated by a single
orocess: Vertical advection of O.
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In the tropics, CQE works by predicting deep
convection at locations of mean ascent.



We perform separate simple linear regressions at different
time lags between M.,, and dCAPE|ft.
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We perform separate simple linear regressions at different
time lags between Mc,, and dCAPE | va.
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Convection occurs at the same time as the large-
scale CAPE forcing.

CAPE forcing and deep convection occur together.
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CQE holds up well in a global
convection-permitting model.
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The CAPE forcing is dominated

by large-scale ascent.
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Backups



The large-scale ascent mostly consists of convective
updrafts.
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The large-scale ascent mostly consists of convective
updrafts.
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