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ABSTRACT: Particulate matter air pollution is a leading cause of
global mortality, particularly in Asia and Africa. Addressing the
high and wide-ranging air pollution levels requires ambient
monitoring, but many low- and middle-income countries
(LMICs) remain scarcely monitored. To address these data gaps,
recent studies have utilized low-cost sensors. These sensors have
varied performance, and little literature exists about sensor
intercomparison in Africa. By colocating 2 QuantAQ Modulair-
PM, 2 PurpleAir PA-II SD, and 16 Clarity Node-S Generation II
monitors with a reference-grade Teledyne monitor in Accra,
Ghana, we present the first intercomparisons of different brands of
low-cost sensors in Africa, demonstrating that each type of low-cost sensor PM2.5 is strongly correlated with reference PM2.5, but
biased high for ambient mixture of sources found in Accra. When compared to a reference monitor, the QuantAQ Modulair-PM has
the lowest mean absolute error at 3.04 μg/m3, followed by PurpleAir PA-II (4.54 μg/m3) and Clarity Node-S (13.68 μg/m3). We
also compare the usage of 4 statistical or machine learning models (Multiple Linear Regression, Random Forest, Gaussian Mixture
Regression, and XGBoost) to correct low-cost sensors data, and find that XGBoost performs the best in testing (R2: 0.97, 0.94, 0.96;
mean absolute error: 0.56, 0.80, and 0.68 μg/m3 for PurpleAir PA-II, Clarity Node-S, and Modulair-PM, respectively), but tree-based
models do not perform well when correcting data outside the range of the colocation training. Therefore, we used Gaussian Mixture
Regression to correct data from the network of 17 Clarity Node-S monitors deployed around Accra, Ghana, from 2018 to 2021. We
find that the network daily average PM2.5 concentration in Accra is 23.4 μg/m3, which is 1.6 times the World Health Organization
Daily PM2.5 guideline of 15 μg/m3. While this level is lower than those seen in some larger African cities (such as Kinshasa,
Democratic Republic of the Congo), mitigation strategies should be developed soon to prevent further impairment to air quality as
Accra, and Ghana as a whole, rapidly grow.
KEYWORDS: air quality, low-cost sensors, PurpleAir, clarity, Modulair-PM, statistical methods, machine learning, urban air,
sensor network, Ghana

1. INTRODUCTION
In 2019, over 1 million deaths in Africa were attributable to
exposure to ambient particulate matter with an aerodynamic
diameter less than 2.5 μm (PM2.5).

1 Ambient PM2.5 pollution,
from sources including agricultural and waste burning, trans-
portation, and residential cooking, is linked to adverse health
impacts such as stroke, cardiovascular and respiratory diseases
such as lung cancer, obstructive pulmonary disease, and
myocardial infarction.2−6 High levels of PM2.5 exposure during
pregnancy can lead to preterm birth, low birth weight, and
reduced cognitive function in infants.7−9 While cities in the
United States, Europe, and parts of China have observed much

improvement in terms of PM2.5 levels, many cities in Africa have
seen PM2.5 levels worsen over time (though lack of data makes
this challenging to ascertain).10−12 The Ghana Environmental
Protection Agency estimates that about 2800 deaths annually in
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the Greater AccraMetropolitan Area (GAMA) can be attributed
to PM2.5 pollution.

13 Anthropogenic activities such as open solid
(household and agricultural) waste burning and emissions from
vehicles have skyrocketed in recent decades, making low-income
communities, children, pregnant women, and older adults
increasingly at risk to higher outdoor PM2.5 levels.

14−21 This is
especially concerning during the dry dusty Harmattan season
(December to February), which is marked by dust from the
Sahara Desert blowing into Accra due to large-scale circulation
patterns including the movement of the Intertropical Con-
vergence Zone (ITCZ).22−24 For example, Alli et al. observed
that PM2.5 concentrations during the Harmattan period raised
PM2.5 levels by 56 to 71 μg/m3 during a city-wide measurement
campaign in the GAMA.25 Additionally, during the Harmattan,
aerosol composition changes can also be expected in addition to
mass concentration changes.26

Ambient PM2.5 measurements enable governmental agencies
to formulate policies and control strategies for PM2.5.

27−30

Current estimates in Africa, however, are limited due to a severe
lack of both ground-based air quality observations and
corresponding health outcome data. Globally, the population-
weighted mean distance to the nearest air quality monitor is 220
km; monitors are especially sparse in Africa.3,4,31 A recent study
has shown that only two out of 15 countries under the economic
community of West African States (ECOWAS) monitor PM2.5
pollution.32 The dearth of PM2.5 monitoring sensors across
African countries has been attributed to the high capital cost of
the instruments, as well as the high installation and maintenance
cost.33−35 PM2.5 monitors such as Teledyne T640 and MetOne
BAM-1020 (β Attenuation Monitor), which have US EPA
Federal Equivalent Method status, require high installation,
operational and maintenance costs, and are thus not practical to
install in the large numbers34,36 that would be necessary to
capture the strong spatial and temporal variation in cities. This
poses challenges for air quality practitioners in Africa to monitor
PM2.5 levels and subsequently develop policies to control and
regulate PM2.5 pollution.
Therefore, more PM2.5 ambient concentration measurement

has become imperative in Africa to estimate environmental and
health impacts to inform policies to protect vulnerable groups
from the harmful effects of PM2.5 pollution. Sub-Saharan Africa,
in particular, is going through transitions in energy usage,
urbanization, and population growth, causing economic
activities such as infrastructure, industrialization, and motoriza-
tion to surge.3,31,32,37

Within the last 10 years, there has been a dramatic rise in the
use of real-time, off-the-shelf low-cost sensors (LCS), such as
those manufactured by PurpleAir, Inc., Clarity Movement Co.,
and QuantAQ, Inc. for PM2.5 monitoring. Many LCS are optical
particle counters using Plantower PMS5003 nephelometers for
laser light scattering-based estimates of ambient PM2.5.

38 With
substantial validation and careful calibration to correct for
inherent biases, these LCS have been demonstrated to be viable
alternatives to the more expensive reference-grade mon-
itors.2,39−43 Further, the high spatial density of LCS networks
can offer a more detailed view of a city than a single reference

monitor of the same cost, supporting continuous long-term
monitoring of PM2.5 exposures and potentially identifying
hotspots. The performance and accuracy of LCS are greatly
influenced by particle physicochemical properties including size
distribution which vary by source, meteorological conditions
such as temperature, and hygroscopic growth affected by
humidity.44−47 Hygroscopic growth occurs when particulates
absorb water as a function of relative humidity (which increases
as relative humidity increases), thus altering their size and
structure affecting the amount of scattered light and therefore
optically estimated PM2.5 concentrations.
Comparing reference monitors and LCS can help develop

calibration models to correct for LCS sensitivities like
hygroscopic growth. While some literature exists on corrections
derived from filter-based instruments, very little of the real-time
sensor comparison or calibration work has been done in Africa,
where environmental conditions and emissions sources are very
different from the United States and Europe. Adong et al.
colocated eight devices of a single LCS manufacturer (AirQo)
and twoMetOne BAM-1020 devices.48 McFarlane et al. applied
Gaussian Mixture Regression (GMR) to calibrate a PurpleAir
colocated with a MetOne BAM-1020 at the US Embassy in
Accra, Ghana, for one year.49 The results revealed that the
manufacturer-reported data from PurpleAir was biased slightly
high compared to the BAM and only moderately correlated (r2 =
0.53, MAE = 6.2 μg/m3). However, using a GMR-based
correction factor reduced the bias (MAE = 2.2 μg/m3) and
greatly improved the correlation (r2 = 0.88).

2. METHODS
Here, we seek to conduct, to our knowledge, the first large-scale
LCS intercomparison study in Africa, by colocating 22 LCS from
three different sensor brands (PurpleAir, Inc., ClarityMovement
Co., and QuantAQ, Inc.) with a reference monitor (Teledyne
T640). We then compare the performance of four types of
statistical and machine learning models (Multiple Linear
Regression, Gaussian Mixture Regression, XGBoost, and
Random Forest) for calibrating and correcting data from each
type of LCS. Finally, we apply the GMR correction factor to the
network of 17 Clarity devices deployed around various
neighborhoods and major roadways in Accra, Ghana, from
2018 to 2021, resulting in, to our knowledge, the longest and
most spatially and temporally detailed survey of PM2.5 in Accra
to date.

2.1. University of Ghana (UG) Collocation. Low-cost
sensors (LCS) manufactured by three different brands�Clarity
Node-S Generation II, PurpleAir PA-II SD, and QuantAQ
Modulair-PM�were colocated at the University of Ghana
(UG), Department of Physics, Legon, Accra, Ghana. The
monitors were mounted on metal poles and fastened with cable
ties at a height of five meters. Data were inspected between
individual sensor units for any possible defective units and none
were found.
All of the low-cost air quality monitoring devices in this study

have in-built Plantower PMS5003 nephelometers that estimate
the concentration of fine particulate matter dispersed in ambient

Table 1. Summary of Low-Cost Monitoring Device Attributes

Company Monitor Name (version) Time Resolution (min) Purchase Cost (USD) Cost per year (USD)

Purpleair, Inc. PurpleAir (PA-II SD) 2 $269 (note: product discontinued) $0
Clarity Movement Co. Clarity (Node-S Generation II) 20 $1000 $1400
Quant-AQ, Inc. Modulair-PM (Modulair-PM) 1 $1500 $300
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air based on laser light scattering technology.50−52 The low-cost
monitoring devices also contain BOSCH BME280 sensors to
measure internal meteorological parameters including temper-
ature and relative humidity.50,51 In addition to the Plantower
nephelometer, Modulair-PMs include an Alphasense OPC-N3
(optical particle counter), which provides more realistic
estimates of supermicron aerosol not captured by Plantower
nephelometers, with a measurement range of 0.35−40
μm.43,53−56 Modulair-PM-reported PM2.5 includes a manufac-
turer-applied correction accounting for particle density,
aspiration efficiency, and hygroscopic growth. Summary
information about the different types of monitors is given in
Table 1. Detailed information on the different types of low-cost

air quality monitors (Clarity Node-S, PurpleAir PA-II, and
QuantAQ Modulair-PM) used in this research can be found at
their respective websites, https://www.clarity.io/, https://
www2.purpleair.com/, and https://www.quant-aq.com/. The
PM2.5 (μg/m3) columns were extracted from each dataset; for
the PurpleAir, the Sensor A PM2.5 (cf = atm) and Sensor B PM2.5
(cf = atm) columns were averaged.
The LCS were collocated with a Teledyne T640 (reference-

grademonitor) placed on a two-story building rooftop located at
5.65136°N, 0.18566°W, and elevation of 108 meters above sea
level for a period of 4 months (11th May to 25th September,
August 2021), recording data with a 1 min resolution. The
Teledyne T640 contains an aerosol sample conditioner, a

Figure 1. Locations of Clarity nodes deployed in Accra, Ghana. The inset shows Jamestown. Pie charts show the percentage of measured days that
exceededWHODaily PM2.5 Guidelines (15 μg/m3). The University of Ghana, where LCS were colocated as mentioned in Section 5.I., is denoted with
a black star.
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sample flow controller, and a 5 lpm vacuum pump with a
temporal resolution of 1 min. It uses broadband spectroscopy
using 90° white-light scattering with a polychromatic light-
emitting diode (LED), measures with a resolution of 256 sizes
over 0.18−20 μm range, combined to 64 channels for mass
calculation, and exceeds US EPA PM10 FEM and Class III FEM
PM2.5 performance requirements for additive and multiplicative
bias compared to FRM samplers.50,51 Instrument installation,
calibration, and training were held virtually on August 10−11,
2020 according to the US EPA Teledyne T640 Standard
Operating Procedure.57 Further information on the Teledyne
model T640 can be found at https://www.teledyne-api.com/.58

The colocation site is an urban area with low-density housing,
sparse trees, and low traffic flows. The distance to the nearest
road is 500 meters. There are no known major burning or other
emissions sources near the site.

2.2. Comparison of Machine Learning Models for
Correction Factors. Hourly averaged low-cost sensor data is
cleaned by only keeping measurements where PM2.5 > 0 μg/m3,
PM2.5 < 1000 μg/m3, relative humidity > 0%, and in the case of
PurpleAir, where |(Channel A-Channel B)|/(Channel B) < 20%.
The uptime (percent of data where these criteria were met)
during the University of Ghana colocation where these
conditions are true is 98.7% for Clarity, 99.2% for PurpleAir,
and 99.9% for Modulair-PM.
Four different models are tested for correcting low-cost sensor

data: Multiple Linear Regression, Gaussian Mixture Regression,
Random Forest, and XGBoost. Each model uses three
measurements from the LCS as explanatory features: PM2.5,
temperature (T, °C) and relative humidity (RH, %) (eq 1). In
the case of PurpleAir, the Channel A and Channel B PM2.5
readings are averaged. The reference value is the Teledyne T640
measurement. For all models, a 10-fold cross-validation is used
for hyperparameter training, with an 80−20% training−testing
data split via random subsampling without replacement.

T

PM LCS, calibrated

f(PM LCS reported , RH LCS reported, % ,

LCS reported, C )

2.5

2.5

[ ]

= [ ] [ ]

[ ° ] (1)

The first is multiple linear regression (MLR), which
optimizes the best fit by minimizing the distance between the
“true” y-values (in this case, the reference monitor PM2.5) and
the “predicted” y-values. MLR is beneficial because of its ease of
understanding, and because the model is easy to convey and
reuse using an equation. Linear (and higher-order polynomial)
fits are the least computationally intensive and simplest to code,
and therefore the most common correction methods in low-cost
sensor literature.33

The second is Random Forest, a supervised ensemble model
that uses a combination of decision trees. Random forest (RF) is
useful because each decision tree theoretically isolates errors.
For this study, the RandomForestRegression from sklearn.en-
semble method in Python59 is used and is optimized using grid
search (maximum features: 1,2,3 and maximum tree depth:
1,2,3,4,5). Optimal parameter results from grid search are in the
Supporting Information.
The third model is the Gaussian Mixture Regression model,

which is a multivariate nonlinear regression method that models
the probability density of the output data conditional to the
input data. It is implemented here using the sklearn.mixtur-
e.GaussianMixture60 method in Python and the gmr library

developed by AlexanderFabisch on Github.61 GMR is beneficial
because it can produce “components” which identify regimes
under which regression is classified (see McFarlane et al.49 for
more information).
The final is Extreme Gradient Boosting (XGBoost), which

uses distributed gradient-boosted decision trees for regression.
The models are optimized to maximize R2, which is the
coefficient of determination, andminimizeMean Absolute Error
(MAE), which is a measure of bias. In this study, XGBoost is
implemented using the open-source xgboost Python library.62

2.3. Accra Deployment. Seventeen Clarity Node-S
Generation I monitors were deployed across the city of Accra
beginning in May 2018. Note that the set of monitors deployed
for this set of the project is different from the set of monitors
used for the colocation work in Section 5, Part I−University of
Ghana (UG) Collocation. Four of them were deployed along
major roadsides (Tetteh Quarshie, Amasaman, Malam Junction,
and Achimota Interchange) onmetal poles five meters above the
ground with a metal basket to securely fasten the monitors.
Another four of the monitors were mounted at already existing
permanent monitoring sites (East Legon, Odorkor, Dansoman,
and North Industrial Area) across the city and one at the Ghana
EPA Head office. The rest were deployed on electric poles in
Jamestown (Jamestown Bruce/Kofi Oku, Jamestown Clinic,
Jamestown Coast, Ga Mashie Road, and Jamestown Hansen/
Asafoatse) and Chorkor (Chorkor Residence and Chorkor
Sackey Ansah) residential areas. The locations for the monitors
can be seen in Figure 1.
The time series of manufacture-reported and GMR-corrected

PM2.5 measurements from the Accra deployment are shown in
Figure S1. The GMR-corrected values are lower than the
manufacturer-reporter values but maintain the same temporal
trends.
Figure S2 shows the timeline of all Clarity nodes deployed

across Accra. A total of 11,001 valid days of data were retrieved
for analysis from the network before the monitors were
decommissioned.

3. RESULTS
3.1. Colocation at University of Ghana. 3.1.1. Sensor

Intercomparison.Table 2 summarizes the data collected during
the University of Ghana colocation.

Figure 2 shows the hourly average time series of PM2.5
measured by the reference monitor, and the averages of
manufacture-reported PM2.5 (MR) measured by each LCS.
The gaps in the data are due to monitor malfunction or
scheduled maintenance. All intercomparison analysis is
performed using only the hours (n = 3063) where at least one
of all four types of monitors was functioning. Each low-cost
monitor is temporally correlated with the reference monitor
(black). Clarity devices (yellow line) tend to overestimate both

Table 2. Summary of University of Ghana LCS
Intercomparison (Averaged by LCS Brand)

Low-cost
Monitor

Reported PM2.5
Range (μg/m3)

Reported
Temperature
ange (°C)

Reported Relative
Humidity ange (%)

PurpleAir 2.1−57.6 23.1−41.0 29.5−87.6
Clarity 5.3−135.3 23.6−37.9 48.0−89.9
Modulair-PM 2.8−55.5 22.7−39.8 44.4−100.0
Teledyne 5.2−60.0 4.6−34.2 58.3−100.0
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the background PM2.5 levels and also the peaks, reporting
maximum values of over 100 μg/m3. PurpleAir devices (purple
line) are also biased high, but to a lesser extent, while Modulair-
PMs (green line) show little bias. There are two distinct rainy
seasons in Accra (May/June and September/October) which
keep PM2.5 levels reasonably low compared to other
seasons.41,63−65 Note that the intercomparison time does not
include measurements taken during the Harmattan (Decem-
ber−February), the effects of which are discussed later; further
data collection will hope to address this gap.
Figure 3 shows the violin plots of hourly averaged MR

measurements from each monitor. The mean of the Teledyne
T640measurements is 20.4 μg/m3. The Clarity monitors show a
broader spread than the other monitors and have means ranging
from 33.5 to 39.0 μg/m3. Clarity devices also have recorded
hourly mean concentrations that exceed 100 μg/m3, which is not
seen in any of the other devices. The PurpleAirs show similar
measurement ranges between the two channels of each monitor
and also between monitors, with a total mean of 22.6 μg/m3.
The Modulair-PM monitors are within the same range as the
PurpleAir and Teledyne but have different means due to the
skewed distribution of outlier values above 40 μg/m3, with
MOD_65 having a mean of 20.5 μg/m3 and MOD_74 having a

mean of 15.5 μg/m3. Overall, the Modulair-PM distribution
most closely matches that of Teledyne, followed by PurpleAir
and Clarity.
Figure 4A shows a scatter plot of hourly LCS PM2.5

measurements compared to hourly reference monitor measure-
ments, shaded by relative humidity. Figure 4B−D isolates each
LCS from Figure 4A, and the equation for the line of best fit for
each LCS is noted on each panel. (Figure S3 shows the scatter
plots of hourly LCS PM2.5 measurements compared to hourly
reference monitor measurements, shaded by temperature.) The
drawn line indicates the line of equality between LCS and
reference monitors. As seen in the scatter plots, the relationship
between reference PM2.5 and manufacturer-reported PM2.5 is
linear with moderate to strong correlation (R2 = 0.82 for
PurpleAir, R2 = 0.69 for Clarity, R2 = 0.84 for Modulair-PM).
The slopes in the relationship, however, vary between the three
low-cost monitoring devices. Clarity has the highest slope (1.8),
followed by PurpleAir (1.3) and Modulair-PM (0.9). Clarity
data also show the most scatter, withMAE = 13.68 μg/m3, while
PurpleAir MAE = 4.54 μg/m3, and Modulair-PM MAE = 3.04
μg/m3. Despite Clarity and PurpleAir using the same Plantower
device to measure PM2.5, Figure 4B,C shows that the reported
values can be quite different. Clarity and PurpleAir report

Figure 2. Time series of hourly averaged PM2.5 (μg/m3) LCS and reference measurements at the University of Ghana betweenMay and September of
2021. Time gaps are due to sensor maintenance and/or failure. Reference monitor in black, PurpleAir in purple, Clarity in yellow, andModulair-PM in
green.

Figure 3. Violin plot of distributions of hourly averaged PM2.5 from each monitor colocated at University of Ghana, May to September 2021. Violins
show data distribution with boxplots inside and outliers labeled with dots. Reference monitor in black, PurpleAir in purple, Clarity in yellow, and
Modulair-PM in green.
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Plantower “Beijing-calibrated” values as is,33 while Modulair-
PM combines Plantower and Alphasense OPC-N3 with
assumptions about aerosol hygroscopicity to estimate PM2.5.
Each point is shaded by the relative humidity measurement from
each LCS. PurpleAir, Clarity, andModulair-PMmean measured
relative humidity and standard deviation are 73.30 ± 10.49,
64.44± 12.27, and 84.42± 15.32%, respectively. TheModulair-
PM relative humidity readings are significantly higher than the
other LCS. This is a known issue of early Modulair-PM devices
which has since been corrected by switching to a new relative
humidity sensor manufactured by Sensirion.
3.1.2. ML Model Correction Comparison. Table 3 shows the

results of applying the four different models to each LCS. Data
from each monitor is hourly averaged. CvMAE (bias-corrected

mean normalizedMAE) is calculated as defined by Equation 4 in
Giordano, et al.33 Selection of optimal model hyperparameters
was conducted using parameter grid search (which is a process
that exhaustively tests all combinations of hyperparameters)66

and 10-fold cross-validation, scoring on minimum testing MAE.
Modulair-PM has the best manufacturer-reported (MR)
measurements, but the MAE is still improved by applying all
four correction factor techniques. Clarity has the lowest R2 and
MAE of raw data, but the model-improved R2 and MAE are
comparable to those of other LCS. Root-mean-squared error
(RMSE) is also shown, for comparison to US EPA methods.
Since MLR is the easiest to transfer to more use cases, the

parameters for MLR correction for each monitor are given in

Figure 4. LCS PM2.5 measurements compared to Teledyne T640 measurements. (A) Hourly average PM2.5 measurements from all three low-cost
monitors, averaged by type, compared to the respective Teledyne hourly average PM2.5 measurements. The one-to-one line is shown for comparison.
The coefficients of the line of best fit are denoted for each LCS type (B−D).

Table 3. Comparison of R2 and MAE of Test Sets of Machine Learning Models to Correct LCS with Reference Measurements
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Table S1. To use the parameters to apply MLR, for PurpleAir,
apply eq 2, and likewise for other LCS

MLR Corrected PM 17.51 0.69PA
0.12 PA 0.15 PA

2.5 PM

temperature, C humidity,%

2.5
= +

(2)

where PAPM2.5 is PurpleAir manufacturer-reported PM2.5,
PATemperature°C is PurpleAir manufacturer-reported temperature
in degree Celsius, and PAHumidity% is PurpleAir manufacturer-
reported relative humidity.

Standard errors and test set predictions forMLR for each LCS
type are shown in Figures S4−S6. Figures S7−S9 show the range
and combinations of hyperparameters, and training and testing
results, for XGBoost for each type of LCS. Figures S10−S12
show the Random Forest training and optimal hyperparameters.
Figures S13−S15 show the Gaussian Mixture Regression
training.
In Table 3, XGBoost shows the best performance, with

highest R2 and lowest MAE, in all three LCS cases. While it
would be intuitive to use the best-performing model, it is not

Figure 5. (A) Rawmeasurements (yellow line) andGMR-corrected average Clarity values (red), and Teledyne T640 referencemeasurements (black),
from the UG colocation. (B) Raw measurements (purple line) and GMR-corrected average PurpleAir values (red), and Teledyne T640 reference
measurements (black), from the UG colocation. (C) Raw measurements (green line) and GMR-corrected average Modulair-PM values (red), and
Teledyne T640 reference measurements (black), from the UG colocation.
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suited to our application. XGBoost and RF are both tree-based
algorithms, which are limited in usability when applied to data
that is outside the ranges of the testing set. Inside the University
of Ghana colocation setting, the LCS PM2.5 measurements
remain largely within the 0−60 μg/m3 range. However, PM2.5
measurements from LCS deployed around Accra show many
raw values >60 μg/m3 (Figure S16), and previous studies of
Accra have demonstrated measured values greater than 100 μg/
m3.67,68 Figure S17 shows that XGBoost performs well in the 0−
60 μg/m3 but never extrapolates PM2.5 estimates outside of that
range. Tree-based algorithms are very applicable to our study
since they result in excellent increases in R2 and decreases in
MAE and therefore create a high-performance correctionmodel,
and thus present an interesting advance in the field of LCS
correction and could definitely be used in other studies where
conditions are at least somewhat similar to this site. We note
these caveats as a word of caution to those who might consider
extrapolating this study using data from a different site.
However, the GMR and MLR corrections generally scale well

outside the bounds of the training data. GMR is used to correct
the Clarity measurements from the deployed Accra network
discussed in Figures 1 and 6−8. Note that for minimal coding
applications, MLR would be suitable to use since the R2 and
MAE are in a comparable range to the GMR. However, since
GMR is overall better, and can be implemented in just a few lines
of code as well, it is used here.
Figure 5A−C shows raw LCS measurements, reference

monitor measurements, and GMR-corrected PM2.5 values for
each LCS at the University of Ghana colocation. The GMR
correction factor is trained on an 80% split of the colocation
dataset, separately developed for each monitor, and is
subsequently applied to all of the data. The correction factor
generally decreases the raw concentrations, which is expected
given the well-known high bias in optical sensors due to relative
humidity impacts, but it maintains the trends observed by the
LCS. An exception to this is theModulair-PMwhich comes with
an existing relative humidity correction applied by the
manufacturer.
We note that the time period of the UG colocation does not

include anymeasurements during theHarmattan; it is confirmed
from other data sources25,41,69 that particle concentrations
during this season can be much higher in the Harmattan than
during the wet season. Further data collection during the
Harmattan is necessary to address this gap.

3.2. Accra Deployment�17 Clarity Nodes. Figure 1
shows the locations of Clarity nodes deployed across Accra, with
the inset showing Jamestown, a neighborhood in Accra that was
targeted for a higher network density due to interest in
understanding the impacts of a local pollution reduction
education campaign by EPA Ghana and Environment360 (a
Ghanaian nonprofit) that began after the LCS were installed.70

Data from these monitors is corrected as discussed in Section
4.a.ii. Each pie chart indicates the percentage of measured days
exceeding the daily WHO PM2.5 guideline (15 μg/m3), with
sites city-wide reporting between 37.6 and 95.7% of days above
WHO guidelines. In Jamestown, sites report 87.2 to 100% of
days above WHO guidelines. The Dansoman site reports the
least percentage of days above WHO guidelines.
Figure 6 displays the time series of GMR-corrected monthly

averages from each site in the Accra network, with the dotted red
line showing the mean of all sites. The January 2019 and January
2020 Harmattan periods show a greater rise in ambient PM2.5
concentrations than the January 2021 Harmattan period. As
shown in Figure 6, the December 2018 monthly average is 1.9×
the April 2019 monthly average; the January 2020 monthly
average is 2.5× the April 2020 monthly average. However, the
January 2021 monthly average is only 1.1× the April 2021
monthly average. Other studies have confirmed the “weaker”
effects of the January 2021 Harmattan. (The coronavirus
lockdowns were not found to be associated with significant
reductions in PM2.5 in this network; only 6 sites out of the 17 in
the network had data and showed PM2.5 reductions in March−
May 2019 compared to March−May 2020, with a monthly
average reduction of 16.2%.) The small peaks during the
summertime can be explained by precipitation seasonality in
Accra, in which the center of the northward-advancing
intertropical convergence zone (ITCZ) passes Accra in June
and July and results in slightly reduced precipitation, resulting in
less wet deposition and higher PM2.5 concentrations.

71 A similar
pattern has been observed previously in Accra49 and also in
neighboring Lome,́ Togo.39

All of the sites tend to follow similar regional trends, but some
sites are consistently measuring higher PM2.5 (Malam Junction,
Tetteh Quarshie) and some consistently lower PM2.5 (Danso-
man, Ghana EPA). For the time they were online, the
Jamestown and Jamestown Coast sites measured significantly
higher PM2.5 than the rest of the network. The Jamestown Coast
site is predominantly a commercial area characterized by thick

Figure 6.GMR-corrected monthly average time series at each site in the Clarity network deployed around Accra. The dotted red line shows the mean
of all sites. Purple boxes denote Harmattan times (December to February).
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smoke from singeing of slaughtered animals and fish smoking.
The animal hides are usually burned using used car tires.
Slaughterhouses, also known as abattoirs, have been linked to
toxic air pollution emissions.72,73

Figure 7 shows the daily-averaged, GMR-corrected PM2.5
values from each Clarity monitor in the Accra network. Most
locations show consistent daily averages surpassing the WHO
Daily Guidelines, which is shown with a dashed gray line. For
comparison, the distributions of manufacturer-reported PM2.5
from the University of Ghana colocation are shown in Figure
S18. There is a drastic difference in the variability between
colocated and deployed LCS, indicating that the variation in
distributions of PM2.5 measured across the city are not purely
factors of instrument noise.
The full network daily mean PM2.5 is 23.4 μg/m3, which is 1.6

times the WHO Daily PM2.5 guideline of 15 μg/m3. This is
slightly lower but comparable to other studies which have found
the mean daily PM2.5 in Accra to be 26−37 μg/m3.25,67,68 The
values in Figure 7 indicate unhealthy levels of ambient PM2.5;
they are higher than mean daily concentrations in neighboring
Lome,́ Togo (23.5 μg/m3)39 but not as high as other cities in
Africa such as Kinshasa (2019 average: 43.5 μg/m3),41 and other
cities around the world such as Delhi (2007−2021 mean PM2.5:

125 ± 86 μg/m3)74 or Isfahan, Iran (2014−2019 mean PM2.5:
29.9−50.9 μg/m3).75 However, rapid development in the
region, combined with evidence of Harmattan-linked decreasing
visibility over the past 30 years,76 creates a possibility that the
ambient PM2.5 will rise in Accra in the coming years.
Monitor sites around Accra show some consistent trends. For

example, at all sites outside of Jamestown, the upper quartile of
daily PM2.5 measurements is below 30 μg/m3, but outliers are as
high as 334.5 μg/m3. Some Jamestown sites show a larger spread
than the rest of the network, despite having fewer measured days
of valid data. The Jamestown Coast site is a clear outlier, and the
relatively higher mean measurement could be due to the
proximity of the site to a slaughterhouse. The Jamestown sites
are within 1 km of each other but show quite different trends,
further affirming the need for high-density LCS networks for
assessing heterogeneity in ambient PM2.5 monitoring.
Figure S19 shows the annual averages across 4 years in the

Accra network. Note that 2018 and 2021 are incomplete years,
as shown in Figure S2. Across the 17 deployed Clarity nodes, 7
show decreasing annual PM2.5 averages, and 9 show increasing
averages; 1 node only measured data in a single calendar year.
Figure 8 shows the difference in diurnal averages at each site

during and outside the Harmattan. During the Harmattan, the

Figure 7.Violin plots of daily-averaged GMR-corrected PM2.5 across the Accra, Ghana Clarity network. The dashed gray line indicates theWHODaily
PM2.5 Guideline (15 μg/m3).

Figure 8. GMR-corrected diurnal averages, by hour of day, during the (A) Harmattan (December to February) and (B) outside (March to
November). Note that the Jamestown Coast site has no data collected during the Harmattan.
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baseline PM2.5 concentrations are elevated; the mean morning
peak reaches 35.1 μg/m3 at 7 AM and the mean evening peak is
28.6 μg/m3 at 6 PM. Outside the Harmattan, the mean morning
peak is 25.4 μg/m3 at 6 AM, and themean evening peak 22.8 μg/
m3 at 6 PM. The diurnal cycle showing peaks at hours of peak
human activity indicates qualitatively that the main sources of
pollution are anthropogenic. During the Harmattan season,
there is a large background influence, possibly from dust aerosol,
though local sources of pollution still drive the daily trends. Note
that the Plantower PMS5003 sensors are limited in their ability
to measure dust and other coarse particles larger than 1−2
μm.77−80

4. DISCUSSION
By comparing measurements from the colocation of 16 Clarity
Node-S, 2 PurpleAir PA-II SD, and 2 QUANT-AQ Modulair-
PM monitors over 4 months at the University of Ghana, we find
that manufacturer-reported data from Modulair-PM monitors
most closely correlates with data from a colocated Teledyne
T640 reference monitor, followed by PurpleAir then Clarity
nodes (Modulair-PM R2 = 0.84, MAE = 3.04 μg/m3; PurpleAir:
R2 = 0.82, MAE = 4.54 μg/m3; Clarity: R2 = 0.69, MAE = 13.68
μg/m3). We then assess four machine learning models for
correcting low-cost sensor data and find that while XGBoost and
Random Forest raise the R2 and lower the mean absolute error
the most, tree-based models like these fail at predicting PM2.5
values outside the range of the training dataset, which in this case
is the University of Ghana colocation. Though suchmodels offer
exciting possibilities for accurate correction of low-cost sensor
data, they should only be used when the training dataset covers a
broader range than the assumed range of the deployment
measurements, since these models cannot extrapolate well
beyond training ranges. Multiple linear regression can also be
used for correcting low-cost sensor data; the trade-off for using
this low-coding technique is slightly reduced performance. We
recommend the usage of the Gaussian mixture regression
technique, which is adept at extrapolating correction trends
outside of the bounds of colocation training data and also
provides large reductions in mean absolute error from the
manufacturer-reported data. (Modulair-PM R2 = 0.87, MAE =
2.04 μg/m3; PurpleAir: R2 = 0.86, MAE = 1.93 μg/m3; Clarity:
R2 = 0.79, MAE = 2.27 μg/m3). We use the Gaussian Mixture
Regression technique to correct data from 17 Clarity monitors
deployed around Accra, Ghana, to find that the mean daily
average PM2.5 in the city is 23.4 μg/m3, which is 1.6 times the
WHO Daily PM2.5 guideline of 15 μg/m3. We also find that
during the Harmattan, mean morning peak concentrations can
be elevated 1.2 times the non-Harmattan levels. Anthropogenic
sources likely drive the PM2.5 concentrations especially outside
of the months of November throughMarch. Stark heterogeneity
between data from these monitors, some of which are within 1
km of each other but show vastly different measured
distributions, demonstrates that, as Accra continues to grow,
there will be a growing need for high-density ambient PM2.5
monitoring, as well as further research about the performance
(including degradation over time) of these monitors in this
region. Potential caveats lie with the fact that the Harmattan
season was not included in the colocation time period and that
the entire 18-node Clarity network could not be colocated
before deployment; however, these issues have been addressed
in other work such as in McFarlane et al. (2021a).49 The
correction factors reported in this paper will be useful in future
low-cost monitoring air quality studies in Accra, other parts of

West Africa, and other cities around the world with similar
meteorologies, allowing researchers to deploy low-cost sensors
and retrieve actionable data without performing their own
unique collocations, which can be cumbersome to carry out.
With the growing use of low-cost sensors on the African
continent, it is vital that data from these be appropriately
validated and calibrated.
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(8) Šrám, R. J.; Binkov, B.; Dejmek, J.; Bobak, M. Ambient Air
Pollution and Pregnancy Outcomes: A Review of the Literature.
Environ. Health Perspect. 2005, 113, 375−382.

Environmental Science & Technology pubs.acs.org/est Article

https://doi.org/10.1021/acs.est.2c09264
Environ. Sci. Technol. 2023, 57, 10708−10720

10718

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Stefani+L.+Penn"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Michael+R.+Giordano"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Zhonghua+Zheng"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-0642-650X
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Darby+Jack"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-9932-0201
https://orcid.org/0000-0002-9932-0201
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Steven+Chillrud"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Kofi+Amegah"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="R.+Subramanian"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Robert+Pinder"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ebenezer+Appah-Sampong"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Esi+Nerquaye+Tetteh"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Mathias+A.+Borketey"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Allison+Felix+Hughes"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.2c09264?ref=pdf
https://doi.org/10.1016/S2542-5196(21)00201-1
https://doi.org/10.1016/S2542-5196(21)00201-1
https://doi.org/10.1016/S2542-5196(21)00201-1
https://doi.org/10.3390/atmos11121357
https://doi.org/10.3390/atmos11121357
https://doi.org/10.3390/atmos11121357
https://doi.org/10.1016/S0140-6736(17)30505-6
https://doi.org/10.1016/S0140-6736(17)30505-6
https://doi.org/10.1016/S0140-6736(17)30505-6
https://doi.org/10.1016/j.gloenvcha.2013.05.003
https://doi.org/10.1016/j.gloenvcha.2013.05.003
https://doi.org/10.1016/S2542-5196(18)30261-4
https://doi.org/10.1016/S2542-5196(18)30261-4
https://doi.org/10.1016/S2542-5196(18)30261-4
https://doi.org/10.1080/15287390590936166
https://doi.org/10.1080/15287390590936166
https://doi.org/10.1097/EDE.0000000000001428
https://doi.org/10.1097/EDE.0000000000001428
https://doi.org/10.1097/EDE.0000000000001428
https://doi.org/10.1289/ehp.6362
https://doi.org/10.1289/ehp.6362
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.2c09264?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(9) Woodruff, T. J.; Parker, J. D.; Kyle, A. D.; Schoendorf, K. C.
Disparities in Exposure to Air Pollution during Pregnancy. Environ.
Health Perspect. 2003, 111, 942−946.
(10) Health Effects Institute. State of Global Air 2020 Special Report,
2020.
(11) WHO. Report - WHO Air Quality Database (Update) 2022
https://www.who.int/data/gho/data/themes/air-pollution/who-air-
quality-database. (accessed March 22, 2023).
(12) Singh, A.; Avis, W. R.; Pope, F. D. Visibility as a Proxy for Air
Quality in East Africa. Environ. Res. Lett. 2020, 15, No. 084002.
(13) Mudu, P. Ambient Air Pollution and Health in Accra, Ghana;
World Health Organization: Geneva, 2021.
(14) Marais, E. A.; Wiedinmyer, C. Air Quality Impact of Diffuse and
Inefficient Combustion Emissions in Africa (DICE-Africa). Environ. Sci.
Technol. 2016, 50, 10739−10745.
(15) McDuffie, E. E.; Smith, S. J.; O’Rourke, P.; Tibrewal, K.;
Venkataraman, C.; Marais, E. A.; Zheng, B.; Crippa, M.; Brauer, M.;
Martin, R. V. A Global Anthropogenic Emission Inventory of
Atmospheric Pollutants from Sector- and Fuel-Specific Sources
(1970−2017): An Application of the Community Emissions Data
System (CEDS). Earth Syst. Sci. Data 2020, 12, 3413−3442.
(16) Robust relationship between air quality and infant mortality in
Africa | Nature. https://www.nature.com/articles/s41586-018-0263-3.
(accessed November 11, 2022).
(17) Baayoun, A.; Itani, W.; El Helou, J.; Halabi, L.; Medlej, S.; El
Malki, M.; Moukhadder, A.; Aboujaoude, L. K.; Kabakian, V.;
Mounajed, H.; Mokalled, T.; Shihadeh, A.; Lakkis, I.; Saliba, N. A.
Emission Inventory of Key Sources of Air Pollution in Lebanon. Atmos.
Environ. 2019, 215, No. 116871.
(18) Magnoudéwa, B. B. Rapport Sectoriel D’ Inventaire Des Gaz A
Effet De Serre Du Togo, 2021.
(19) Anderson, C. M.; Kissel, K. A.; Field, C. B.; Mach, K. J. Climate
Change Mitigation, Air Pollution, and Environmental Justice in
California. Environ. Sci. Technol. 2018, 52, 10829−10838.
(20) UNICEF. Silent Suffocation in Africa Air Pollution Is a Growing
Menace, Affecting the Poorest Children the Most, 2019.
(21) Air Pollution From Forest and Vegetation Fires in Southeast Asia
Disproportionately Impacts the Poor - Reddington - 2021 - GeoHealth
- Wiley Online Library. https://agupubs.onlinelibrary.wiley.com/doi/
full/10.1029/2021GH000418. (accessed November 11, 2022).
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