

AI based Lunar Data rendering and Visualization in Celestial Mapping System

Graham Mackintosh, Parul Agrawal and Allison Zuniga NASA Ames Research Center May 2024

CM 5

Outline

- Introduction to CMS
- 3rd party data ingestion (HORUS datasets)
- Functional analysis on ingested datasets
- Subsurface feature visualization capability
- Al enhanced data ingestion pipeline and analytics
- AI assisted geo-referencing and rendering
- AI assisted subsurface data ingestion, geo-referencing and rendering in CMS

Introduction

- CMS is a multiplatform application to generate user-interactive virtual 3D globes for celestial bodies within our solar system.
- Various layers are built on top of the virtual globe to provide visualization of high-resolution imagery, enable precise measurements, build extensive analytical capabilities and a broad range of functionalities
- CMS website <u>https://celestial.arc.nasa.gov/</u>

Key Features

- 3rd party Maps and data ingestion, rendering and visualization
- 3D Measurement tool kit
- Line of sight analysis
- Equipment placement & Planning
- Data import-export
- 3D COLLADA Models
- Sun angle calculations
- Subsurface visualization (in development)

Example of 3rd party data Ingestion - Illumination of PSR by HORUS

Ingestion of super enhanced images in CMS created by Hyper-effective nOise Removal U-net Software [HORUS] * near Nobili Crater - VIPER landing site

PSR site shown in LROC NAC layer of CMS

Illuminated site by using ingested and merged HORUS images within CMS

* Ref: <u>Bickel V.T. et al., 2021</u> "Peering into lunar permanently shadowed regions with deep learning", Nature Comm 12, 5607

Platform Demo

Functional Analysis on Illuminated PSR

Once the 3rd party data is ingested and rendered in CMS, it can be utilized for various analyses. *

Viewshed Analysis with observer location shown by yellow pin Measurement of a crater inside the PSR by 3D measurement tool

Equipment placement and analysis of coverage

*Reference: Agrawal P. et. al. " GLOBAL 3D DATA VISUALIZATION AND ANALYSIS PLATFORM WITH ADVANCED MACHINE LEARNING CAPABILITIES IN SUPPORT OF LUNAR EXPLORATION", 55th LPSC 2024

Subsurface Capabilities

15 marcon

Area of Interest

Subsurface 3D object

Subsurface feature (water pipes)

Overview of region

Water Pipes (red) and Manhole Covers (green)

Potential Lunar Subsurface Features in CMS

- Seismic data rendering
- LiDAR data rendering and visualization of Lunar lava tubes
- 3D representation of Lunar lava tube cave entrance

AI ENHANCED DATA PIPELINE and ANALYTICS

Use AI to amplify the CMS differentiators:

- 1. Local-to-global: AI enhancements that span all scales of geography and datasets.
- 2. "Data Open" : Rapid data import pipeline, robust layer management.
- 3. Digging into subsurface: there is a whole new Moon waiting for us!
- 4. Intelligent Analytics: Assisting in the hunt for subsurface resources

AMES RESEARCH CENTER

AI Data Pipeline Process

- Immediate Goal: Validate a process capable of rapid and automated ingest of 1000s of south pole images enhanced by HORUS
- Future Goal: Extend this capability to automate the ingest of many datasets, including subsurface.

Step 1) Rank and stack using statistical measures of information density.

Step 1) Rank and stack using statistical measures of information density.

00093_A01a

00093_A01b

00099_A01b

00104_A01b

00116_A01b

00118_A01b

00120_A01b

00131_A01b

13

Step 1) Rank and stack using statistical measures of information density.

Step 2) Georectify: Find control features in each image

Step 2) Georectify: AI to find matching control points

Step 2) Georectify: AI to find matching control points

Synthetic training data to the rescue

SYNTHETIC TRAINING DATA Random number generation for list of "image #1" synthetic control point coordinates

- [(0, 35), (136, 49), (212, 0), (142, 54), (166, 69), (283, 74), (206, 78), (278, 87), (85, 108), (59, 190), (102, 198),
- Synthetic #1 (0, 210), (88, 226), (125, 316), (0, 344), (146, 365), (276, 375), (248, 391), (282, 392)]
- [(194, 0), (233, 0), (286, 4), (50, 23), (157, 38), (277, 39), Synthetic #2 (79, 44), (129, 75), (267, 79), (125, 84), (160, 88), (139, 97), (149, 102), (355, 103), (144, 111), (275, 114), (330, 121), (292, 124), (224, 125), (452, 126), (185, 130), (388, 133), (469, 178), (490, 182), (220, 188), (133, 189), (200, 195), (309, 521), (406, 530), (506, 550), (399, 552), (291, 564), (285, 570), (480, 571), (422, 619), (381, 630), (455, 639), (547, 667), (547, 685), (553, 712)]

Use simple Cartesian functions to randomly rotate, translate and dilate the first list of control points into a second list; then randomly add/remove other points and scramble the order of the points in each list.

Do this millions of times to create a massive fully labelled dataset for training and testing.

Cost function: minimize the number of incorrect match-ups.

[0, 0, 6, 0, 0, 21, 0, 0, 3, 0, 0, 0, 0, 5, 46, 0, 0, 0, 0, 0, 17, 01

This is synthetic data, so we know that this is the correct answer, which is used to train the model.

Step 3) Intelligent Mask & Merge for Optimal Information Gain

Mask the areas of the new image that are of a lower info density than the aggregate image already built up below it

Step 3) Intelligent Mask & Merge for Optimal Information Gain

Pixel Averaging vs. Masked Addition

Step 3) Intelligent Mask & Merge for Optimal Information Gain

Highest scoring image is selected as the background

Addition of 7 layers that are masked based on where each layer would add (vs. subtract) information

Digging Down: AI Assisted Pipeline for Subsurface Data

- Use local surface features (e.g. rim outline) to georectify subsurface data.
- Use large scale features to fine tune georectification

SILICON

AMES RESEARCH CENTER

00

Eye Altitude 7,015 km Latitude Longitude Terrain Elevation

00

Eye Altitude 7,015 km Latitude Longitude Terrain Elevation

Summary

- CMS is a user-interactive environment to visualize and analyze data on celestial bodies, with a current focus on the Moon to support NASA's mission priorities.
- CMS has an open architecture, allowing 3rd party integration of maps, rendering engines and specialized analytics.
- CMS is also "data open" with advanced data import/export and robust data layer management.
- AI capabilities are being integrated into CMS to automate the data ingest process for a wide range of datatypes, including future subsurface constructs.
- Support for subsurface data layers, such as lava tubes and natural resource deposits, are in development.

Questions ??

parul.agrawal-1@nasa.gov allison.f.zuniga@nasa.gov graham.mackintosh@nasa.gov

Supporting Material

5 - Star

Step 3) Georectify: AI To find matching control points

SILICON

AMES RESEARCH CENTER

Step 4) Image Transformations to Achieve Pixelperfect Overlap of All Control Points

Many potential open-source libraries (e.g. scikit)

Step 5) Intelligent Merging of Overlaps for Optimal Information Gain

Mask areas of the image being merged in that are of a lower info density than the aggregate image built up below it

7 7	<pre>def save_image_data(img_data, mask, control_points, file_name): np.save(file_name+"_DATA.npy", img_data) # save numpy array np.save(file_name+"_MASKED_DATA.npy", img_data*mask) np.save(file_name+"_CP_COORDS.npy", np.asarray(control_points)) img = Image.fromarray(img_data.astype(np.uint8)) img.save(file_name+"_ITMAGE.png") control_img_save(file_name+"_CP_IMAGE.png")</pre>	Participation of the second
	<pre>control_img.save(file_name+"_CP_IMAGE.png") img.putalpha(Image.fromarray((mask*255).astype(np.uint8))) # mask the image with alpha channel tranparencies img.save(file_name+"_MASKED_IMAGE.png")</pre>	1990 P

LROC artifacts and low information areas are masked to be transparent for image merging

SII

AMES RESEARCH CENTER

