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Outline

* Introduction to CMS

3" party data ingestion (HORUS datasets)

« Functional analysis on ingested datasets

« Subsurface feature visualization capability

« Al enhanced data ingestion pipeline and analytics
« Al assisted geo-referencing and rendering

« Al assisted subsurface data ingestion, geo-referencing and
rendering in CMS
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« CMS is a multiplatform application to generate user-interactive virtual
3D globes for celestial bodies within our solar system.

 Various layers are built on top of the virtual globe to provide visualization
of high-resolution imagery, enable precise measurements, build
extensive analytical capabilities and a broad range of functionalities

« CMS website - https://celestial.arc.nasa.qov/

Key Features

3rd party Maps and data ingestion, rendering and visualization

3D Measurement tool kit

Line of sight analysis

Equipment placement & Planning

Data import-export

3D COLLADA Models

Sun angle calculations

Subsurface visualization (in development)



https://celestial.arc.nasa.gov/
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Example of 3 party data Ingestlon lllumination
of PSR by HORUS

Ingestion of super enhanced images in CMS created by Hyper-effective nOise
Removal U-net Software [HORUS] * near Nobili Crater - VIPER landing site

[£] Celestial Mapping System Rectangular - o X

File Place Names View File Place Names View

PSR site shown in LROC NAC layer of CMS llluminated site by using ingested and merged
HORUS images within CMS

* Ref: Bickel V.T, et al., 2021 “Peering into lunar permanently shadowed regions with deep learning”, Nature Comm 12, 5607



https://www.nature.com/articles/s41467-021-25882-z
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Celestial Mapping System

Nasa Ames Research Center
Video Demonstration Part 4

et

https://celestial.arc.nasa.gov
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Functional Analysis on llluminated PSR

Once the 3" party data is ingested and rendered in CMS, it can be
utilized for various analyses. *

Visibility Analysis Measurements Equipment Placement and
Coverage

0000
00@0@

. . . Equipment placement
Viewshed Analysis with Measurement of a crater inside gHip 'p

. and analysis of coverage
observer location shown by the PSR by 3D measurement tool
yellow pin

*Reference: Agrawal P. et. al. “ GLOBAL 3D DATA VISUALIZATION AND ANALYSIS PLATFORM WITH ADVANCED
MACHINE LEARNING CAPABILITIES IN SUPPORT OF LUNAR EXPLORATION”, 55t LPSC 2024
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Subsurface Capabilities
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Area of Interest Subsurface 3D object
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Eye 571 m

Overview of region Water Pipes (red) and Manhole Covers
(green)
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Potential Lunar Subsurface Features in CMS

« Seismic data rendering
« LIDAR data rendering and visualization of Lunar lava tubes
« 3D representation of Lunar lava tube cave entrance
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Al ENHANCED DATA PIPELINE and ANALYTICS

Use Al to amplify the CMS differentiators:

1. Local-to-global: Al enhancements that span all scales of geography and datasets.
|:> 2. “Data Open” : Rapid data import pipeline, robust layer management.

3. Digging into subsurface: there is a whole new Moon waiting for us!

4. Intelligent Analytics: Assisting in the hunt for subsurface resources

Raw Data Augmentation: (\/ Accelerated data pipeline: (@I Al Analytics: ] '

- Super resolution - Automated georectification and mosa - Sub-surface layers

- Signal-noise enhancement - Intelligent overlap mer, - Multi-layer similarity search

Ing
gD R

" -
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Al Data Pipeline Process

* Immediate Goal: Validate a process capable of rapid and
automated ingest of 1000s of south pole images enhanced
by HORUS

* Future Goal: Extend this capability to automate the ingest
of many datasets, including subsurface.

Raw image Rank & Group & Mask, Fompqsite
data stack Georectify Merge & image into
Mosaic CMS

11
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Step 1) Rank and stack using statistical measures of information density.

score = int(np.average(std_dev) * np.sum{mask) / 10008)
return score, mask

Score: 211

12
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Worse

00010_A01b 00016_A01a 00017_A01a 00018_AQ' 00019_A01b

00034_A01a 00037_A01b

00060_A01a

00061_A01b

00078_A01a 00080_A0Ta 00087_A01b 00089_A01b 00090_A01b 00091_A0Ta 00091_AO1b

Better

v

00099_A01b 00104_A0Tb 00116_A01b 00118_A01b 00120_A01b 13
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Worst image

Best image

Stack images for merging
based on their image
density score.

Highest score becomes the
background, lower scores
are merged onto the
aggregate image that has
been generated below.

14
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control_point_:

return (np.sum .astype(np.uintg)

def find_control_points({data, cell_size = cellsize, cut_off = max_control_point_delta):
control_point_deltas = ndimage.generic_filter(data, control_ point_delta, size=(cell size, cell size), cval=2)
control_points = np.nonzero(control point_deltas < cut_off)
control_point_coords = list(zip(control points[1],control_points[@]))
return control_point_coords

i T
highlight control_points(img, control_points):
control_img = img.copy()
control_shape = ImageDraw.Draw(control_img)

for (®,y) in contrel_points:
control_shape.ellipse((x-cellsize,y-cellsize,x+cellsize,y+cellsize), outline=2, width=2)
return control_img
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Cost function: minimize the number of
incorrect match-ups.
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Step 2) Georectify: Al to find matching control points

Synthetic training data to the rescue

SYNTHETIC TRAINING DATA
Random number generation for
list of “image #1” synthetic
control point coordinates

Synthetic #1

Synthetic #2

[(0, 35), (136, 49), (212\0), (142, 54), (166, 69), (283,
74), (206, 78), (278, 87), (85, 108), (59, 190), (102, 198),
(0, 210), (88, 226), (125, 316), (0, 344), (146, 365), (276,
375), (248, 391), (282, 392)]

Lo

[(194, 0), (233, 0), (286, 4), (50, 23), (157, 38), (277, 39);
(79, 44), (129, 75), (267, 79), (125, 84), (160, 88), (139,
97), (149, 102), (355, 103), (144, 111), (275, 114), (330,
121), (292, 124), (224, 125), (452, 126), (185, 130), (388,
133), (469, 178), (490, 182), (220, 188), (133, 189), (200,
195), (309, 521), (406, 530), (506, 550), (399, 552), (291,
564), (285, 570), (480, 571), (422, 619), (381, 630), (455,
639), (547, 667), (547, 685), (553, 712)]

Do this millions of times to create a massive
fully labelled dataset for training and testing.

Cost function: minimize the number of
incorrect match-ups.

Use simple Cartesian functions to randomly rotate, translate
and dilate the first list of control points into a second list;
then randomly add/remove other points and scramble the

order of the points in each list.

[0,0,6,0,0,21,0,0,3,0,0,0,0,5,46,0,0,0,0,0, 17,
0]

This is synthetic data, so we
know that this is the correct
answer, which is used to train the
model.

17
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Step 3) Intelligent Mask & Merge for Optimal Information Gain

Mask the areas of the new image that are of a lower info density than the
aggregate image already built up below it

LROC artifacts and low information

areas are masked to be transparent
when merging the image onto the
stack below

Worst image
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Step 3) Intelligent Mask & Merge for Optimal Information Gain

Pixel Averaging vs. Masked Addition

]
; ! LAYER1

Average
_

S e

]

BACKGROUND s MASKED MAYER 2
R
e
! |
i Masked
| " .
i Information
Gain

- 2 '
B

19



“0SILICON
o VALLEY

AMES RESEARCH CENTER

Highest scoring image is selected as the background Addition of 7 layers that are masked based on where
each layer would add (vs. subtract) information

20
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Looking ahead: Expand the CMS automated ingest pipeline
to include a wide range of surface and subsurface data

Digging Down: & AW, A% O : ca. 100 m
Al Assisted b .' O i 8, N o,
Pipeline for " AR | v )
Subsurface Data § " , ( ‘ A

e Use local surface
features (e.g. rim

outline) to georectify
subsurface data.

Use large scale
features to fine tune
georectification



Eye Altitude 7,015 km
Latizude

Longitude

Terrain Elevation
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Related research

\

Wichman, et al. "The Davy Crater Chain: Implications for tidal disruption in the Earth-Moon System
and elsewhere." Geophysical research letters 22.5 (2016): 583-586.

Preliminary Analysis of the Topography of A Seqment of Davy Catena
VR Oberbeck, R Greeley - Lunar and Planetary SciesCe ..., 1975 - adsabs.harvard.edu

theMoag: Bg

PRELIMINARY ANALYSIS OF THE TOPOGRAPHY OF A SEGMENT OF

DAVY GCATENA; V. R. Oberbeck and R. Greeley, NASA-Ames Hesearch Center,

Moffett Field, Calif., 94035 and Univ. of Santa Clara, Calif,, 95053,

. " > - S - Apollo 16 photographs of y Catena revealed ridges similar to lunar second-

Eppler, Dean B., and Grant Heiken. "Lunar crater chains of non-impact origin." Proceedings of the ary herringbone pattern components projecting from the intersections of a few

Sixth Lunar Science Conference: Houston, Texas, March 17-21, 2014. members of the crater chain. Therefore, Davy Catena may be a secondary crater
chain. The purpose of this paper is to test this hypothesis from results of prelimi-

nary topographic anal}'als of a small segment of the crater chain contoured on NASA

Melosh, H. J., and E. A. Whitaker. "Crater Chains g
Earth's Tides?." Lunar and Planetary Science Cor

Kling, C. L., et al. "Field-Based Assessment of Pit Crater Chains." Lunar and Planetary Science lunar topophotomap 77DISI(10) .
Contours (Fig. 1) show a septum (common wall) between each crater. The top
Conference. No. 2132. 2019. of the septa between craters Osman, Priscilla, Alan and Delia are lower than the

highest parts of the remainder of the craters' rims. However, tops of the septa
separating craters Susan-Osman and Delia-Harold are higher than other parts of
the rims of these craters .

VISIGRAPP (5: VISAPP). 2019. Ridges., whose bilateral axes of symmetry are perpendicular to the axis of

Wilhelm, Thorsten, et al. "Unsupervised Learning of Scene Categories on the Lunar Surface."

= & = E) ) E

symmetry Davy Catena, project from the points of crater overlap or from points
between widely separated craters. The highest elevations on these ridges are from
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Summary

« CMS is a user-interactive environment to visualize and analyze
data on celestial bodies, with a current focus on the Moon to
support NASA's mission priorities.

« CMS has an open architecture, allowing 3" party integration of
maps, rendering engines and specialized analytics.

« CMS is also “data open” with advanced data import/export and
robust data layer management.

« Al capabilities are being integrated into CMS to automate the data
Ingest process for a wide range of datatypes, including future
subsurface constructs.

« Support for subsurface data layers, such as lava tubes and natural
resource deposits, are in development.

25
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Questions 7?7

parul.agrawal-1@nasa.qov
allison.f.zuniga@nasa.gov
graham.mackintosh@nasa.gov

26
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Image #2
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Step 3) Georectify: Al To find matching control points

Don’t use the image... train the
neural net using control point
coordinates.

o9l (50, 23), (157, 38), (277, 39);
) @ (125, 84), (160, 88), (139,
97), (149, 102), (358=sesT (144, 111), (275, 114), (330,

121), (292, 124), (224 25), (452, 126), (185, 130), (388,
133), (469, 178), (490, §82), (220, 188), (133, 189), (200,
195), (148, 198), (139, X0), (128, 221), (231, 232), (175,
208), (174, 311), (445, 3%9), (575, 403), (446, 432), (488,
466), (500, 491), (282, 498\ (309, 521), (406, 530), (506,
550), (399, 552), (291, 564), g5, 570), (480, 571), (446,
572), (543, 572), (540, 582), (340, 590), (503,

Trained by minimizing the number of
incorrect match-ups.

3rd control point in image #1

598), (422, 619), (381, 630), (455, 639), (547, 667), (547,
685), (553, 712)]

is the same as
9th control point in image #2

Output is a vector of matching
control points. Zero = no match.

28
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Step 4) Image Transformations to Achieve Pixel-
perfect Overlap of All Control Points

>>» import numpy as np 1 Sclk|t-|mage

>>> import skimage as ski

>>» # estimate transformation parameters
»>» Src = np.array 18]).reshape((2, 2))
5>» dst = np.array([12, 14, 1, -28]).reshape((2, 2))

»>» tform = ski.transform.estimate_transform(’'similarity', src, dst)

>>» np.allclose(tform.inverse(tform(src)), src)
True

“Manipulate image #2 so
that the pixel at

coordinate (42,78) moves K. g3 ditay 325 inoge s duta. cameraQy et
to (56,65)”
\ »>» ski.transform.warp(image, inverse_map=tform.inverse)
[ [(56/65)/ (42178)], 33> # create transformation with explicit parameters
\\ [(17’41)’ (8’33)]’ 3 thrT% = ik—; inifcrzlf?milsri:ﬂ"snsfcm(scele=l"_, rotation=1,
[(204,178), (195,182)], e frenstation (16, 200
— [(217, 45), (197, 52)] |
»>» # unite transformations, applied in order from left to right
. . . . >>> tform3 = tform + tform2
List of matChlng control pomt pairs 55> np.allclose(tform3(src), tform2(tform(src)))
True

Many potential open-source libraries (e.g. scikit)

29
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Step 5) Intelligent Merging of Overlaps for Optimal Information Gain

Mask areas of the image being merged in that are of a lower info density than
the aggregate image built up below it

def save_image_data(img_ ca*’a mask, control_points, file_ name): <IT )
np.save(file_name+" [ ", J.mg data # save numpy array Fror 4 LROC artifacts
np.save(file_name+"_V T y", img_data*mask) & P and low

np.save(file_name+" ( y(control_points))
1|“|g = Image. fromar a,(11ﬂ dut: =.~.*’,pe(np uintd))

information
img.save(file_name+"_IMAGE.png") g areas are

control_img = highlight_ cor‘tlol pc'
control_img.save(file_names"_CP_INM
img. putalphu Il"lsge fromarray  {
img.save(file_name+"_MASKED IMAL

masked to be
)) # mask the image with alpha channel tranparencies / _"‘.’. transparent for
e [ image merging

Worst image
°
e
o
-
- )
Bestimage
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