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Abstract

There is a desire to design autonomous systems in such a way that capabilities can be easily added or re-
combined to produce new behaviors while preserving their safety properties. ICAROUS, a prototype software
architecture for building safety-centric autonomous unmanned aircraft applications, is designed to support this
type of extensibility and re-configurability. In ICAROUS, core capabilities are implemented as individual soft-
ware services or modules, so that enabling access to new capabilities simply requires adding new modules.
To make use of these capabilities, ICAROUS includes a specialized module that provides a general framework
for configuring the relative priorities, conditions, and rules that govern how different modules should be en-
gaged and disengaged during flight. The inherent complexity of coordinating multiple modules under changing
conditions makes it difficult to determine whether a particular configuration could have erroneous behaviors
in certain circumstances. A robust set of integration tests can help discover errors, but testing can only real-
istically cover a relatively small proportion of total system behaviors. Developing good tests and interpreting
the results to pinpoint the cause of errors when they arise can also be very time-consuming. To supplement
testing, formal methods can be used to model and analyze systems, achieving better coverage and simplifying
the process of finding, understanding, and fixing errors. To demonstrate these benefits, this paper explores the
application of formal methods to ICAROUS. In particular, the Spin model checker is used to specify require-
ments for and model portions of the system, then verify whether the model satisfies the requirements and find
and fix errors when it does not.

Keywords: Formal Methods, Formal Verification, Model Checking, Unmanned Aircraft Systems, Autonomy
Stack

1. Introduction

The NASA Air Mobility Pathfinders (AMP) project aims at the development of a reference architec-
ture for safe, secure, and scalable Urban Air Mobility (UAM) operations. Toward this end, the project
is building software prototypes and simulation infrastructure to investigate key airspace integration
issues of midterm UAM operations. The Independent Configurable Architecture for Reliable Oper-
ations of Unmanned Systems (ICAROUS) is one such software prototype. ICAROUS provides a
flexible framework for integrating new capabilities that also includes a set of baseline capabilities to
monitor and enforce safety constraints such as detect and avoid (DAA) and geofencing. ICAROUS is
implemented as service-oriented architecture consisting of multiple interacting software services or
modules. This type of architecture makes it easy to add new capabilities, but it becomes more chal-
lenging to validate and verify its behavior. Since ICAROUS simulations will inform the development
of AMP’s architecture, validating that it behaves as expected is critical to producing relevant data.

Integration testing is commonly used to check for unsafe or erroneous interactions between modules,
but testing can only realistically cover a relatively small proportion of total system behaviors. Formal
methods, i.e., mathematically-based tools and approaches for software and hardware verification,
can be used to fully analyze or prove properties of system models. Formal methods can often find
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errors that are not found through testing and have been successfully applied to several aerospace
and autonomous systems [1].

This paper explores the application of formal methods to ICAROUS by modeling some of its key
modules in the Spin model checker. Spin has been used in applications such as the Mars Science
Laboratory mission [2] and Deep Space 1 mission [3] to identify and correct errors in the design of
several critical software components. It can be used both to simulate models, i.e., provide random
execution traces, and to verify whether any behaviors of a model can result in deadlock or non-
progress cycles or can violate system-level specifications written in temporal logic. If verification
finds a violation, Spin provides a counterexample that demonstrates how the violation can occur,
which is useful for identifying and fixing the underlying cause.

The rest of this paper is organized as follows. Background on model checking and Spin is provided in
Section 2. A brief description of ICAROUS is given in Section 3. Section 4 walks through the iterative
process of modeling and verifying a minimal configuration of ICAROUS to identify and propose a fix
to a known issue. Section 5 concludes with a summary and discussion of future work.

2. Background on the Spin Model Checker

This section starts by providing background on model checking. Then it provides background on the
Spin model checker specifically.

2.1 Model Checking

Model checking is a formal technique that explores all possible behaviors of a model whose state
changes over time to determine whether the model is guaranteed to satisfy a given specification. The
types of models used in model checking are generally in terms of states, what logical propositions
hold in each state, what operations are allowed in each state, and what effects those operations have
in terms of transitions to new states and changes to which propositions hold.

Specification System model

Model checking

A

v
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counterexample

Analysis
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Figure 1 — The model checking process.

Figure [1]illustrates the model checking process. A model checker takes as input a specification and
a system model and attempts to verify whether all behaviors of the model satisfy the specification. If
the model checker fully explores the model and finds no violations, then the model is guaranteed to
always satisfy the specification. If the model checker finds a violation, it provides a counterexample
that shows how the model can violate the specification. If the model checker is unable to fully explore
the model and does not find a counterexample, then it is unknown whether the model is guaranteed to
satisfy the specification. Errors resulting in counterexamples can come from several different sources.
They can be specification errors, i.e., the specification does not correctly capture what the specifier
intended to express and needs to be revised. They can be modeling errors, i.e., the model does
not correctly capture the system designer’s intent and needs to be revised. They can also be design
errors, i.e., the model accurately represents the system but there is a flaw in the system design.
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There are different types of model checkers that are specialized toward different types of models
and specifications. For example, there are several model checkers for modeling finite-state systems
and verifying whether they satisfy specifications written in temporal logic that describe the relative
ordering of properties that should hold over the course of execution of the model. These include
model checkers such as NuSMV [4], Spin [5], and Maude LMC [6]. Other model checkers such as
Kind 2 [7] target infinite-state systems with real-valued variables. Model checkers such as PRISM [8]
are suitable for modeling systems with behaviors that can be characterized by probability distributions
and verifying that they satisfy temporal logic specifications with a given probability. There are also
model checkers such as Uppaal [9] for modeling systems with real-time constraints.

This paper uses Spin, a finite-state model checker. Models in Spin can be represented mathemati-
cally as finite-state transition systems. A transition system TS is a tuple TS = (S, Sy, —,AP,L) where

* Sis a set of states,

* So C Sis a set of initial states,

+ — C S xS is a state transition relation,

» AP is a set of atomic propositions,

« L:S— 247 is a labeling function that indicates which propositions hold in a state.

TS is called finite if S and AP are finite.

To summarize, a transition system describes the ways in which the state of a system changes over
time, with atomic propositions corresponding to simple statements that are either true or false de-
pending on the state. For example, in a transition system that models execution of a simple single-
threaded computer program, each state would represent the values of all program variables along
with the current value of the program counter. Examples of atomic propositions are x > 0 or x < 1000
for an integer x in the program. For a given state s, L(s) C 247 (where 24 is the power set of AP) is
the set of all atomic propositions that are true in that state. Let s; indicate the state of the system
at time step i for i >=0. A transition system produces sequences of states called paths of the form
508152 ... where so € Sp and each (s;,s;1) €—. Note that the transition relation — can contain multiple
transitions out of each state, so there can be multiple valid paths starting from the same initial state
so. A trace of a path is a sequence of sets of atomic propositions of the form L(so)L(s;)L(s2)... that
hold over the path according to the labeling function L.

Specifications in Spin are written in linear temporal logic (LTL). LTL formulas are formed according to
the grammar:

pu=truelaloiA@ [0 [O¢ | @1 U g

LTL formulas include the standard propositional logic operators: A “and,” = “not,” and derived oper-
ators such as Vv “or,” — “implies,” and «> “is equivalent to.” LTL formulas also include the temporal
operators O “next” and U “until.” In the current state, formula O¢ holds if ¢ holds in the next state in
the trace, and formula ¢; U ¢, holds if there is some future state in the trace for which ¢, holds and
¢, holds in all states until then. From these, we can also derive the [ “always” and ¢ “eventually”
temporal operators. In the current state, formula O holds if ¢ holds in the current and all future

states, and formula ¢ ¢ holds if ¢ holds in some future state. Specifically, these operators are defined

as Qo ' true U ¢ and Oo def —(0—¢). Spin can verify whether all traces produced by a transition

system satisfy a set of specifications written in LTL and if not, return a corresponding violating path
as a counterexample.

2.2 The Spin Model Checker

Spin is a model checker geared toward the design and verification of systems consisting of multiple
asynchronous interacting processes. Spin models are written in Promela, a relatively small modeling
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language with an intuitive, program-like notation. Promela includes constructs for modeling variables,
processes, and channels used to communicate data between processes.

Basic variable types include bit, bool, byte, short, int, and arrays of other variable types. Message
types can be defined with keyword mtype:[name], which can also be used to define enumerations,
since an mtype definition simply associates n given symbolic names to sequences of byte values
from 1 to n. Custom struct-like data types can be defined with keyword typedef. Variables can be
local to a specific process or globally accessible to all processes, the latter enabling modeling of
concurrent threads of execution that share memory.

Processes consist of sequences of discrete, executable statements that determine the behavior of
the model. Statements include expressions, variable declarations, and assignments, goto jumps, if
selections, do loops, skip no-ops, and unless exception handling routines. Expressions include the
standard arithmetic, comparison, increment and decrement, bit shift, and bitwise operators for integer
types and the standard Boolean operators for Boolean types. The notation for these operators is the
same as in the C programming language, e.g., < for “less than,” ++ for “increment,” | for “bitwise
or,” and | | for “logical or” Statements can either be enabled or blocked, i.e., able to be executed
or not. Some statements are always enabled, for example assignments to variables. Other state-
ments can be blocked depending on the values of their variables, for example a Boolean expression
that evaluates to false or an attempt to read a channel that is empty. Note that some statements,
e.g., if selections and do loops, are composed of multiple constituent statements. Such statements
are enabled if at least one of their constituent statements is enabled. If more than one constituent
statement is enabled, then the choice of which one to execute is made non-deterministically. When a
statement is blocked, the corresponding process is blocked until some other process makes a change
that enables it. Each process has a process counter that tracks the next statement to be executed.
When multiple active processes have enabled statements, the choice of which process executes its
next statement is made non-deterministically. In other words, processes execute concurrently and
asynchronously.

Channels can be synchronous or asynchronous. Synchronous channels model rendezvous ports that
do not have a buffer to store messages, i.e., they require both a sending and receiving process to
simultaneously handshake over the channel, otherwise an attempt to read or write on the channel is
blocking. Asynchronous channels model non-blocking message passing over a buffer of a specified
finite size. Attempts to write to asynchronous channels are only blocking if the channel is full and
the option to drop messages on full channels has not been set. For synchronous channels, the basic
notation is [channelName]![msgType], [var1, ..., varN] to send the values of one or more variables over
a channel and [channelName]?[msgType], [vari, ..., varN] to receive those values from the channel
and store them into one or more variables. The value of msgType must be a positive constant that is
the same for both the send and receive operation, conventionally an element of an mtype definition.
For asynchronous channels, this constant is not required. There are also additional functions for
checking how many messages are stored on an asynchronous channel and whether the channel
buffer is full or empty.

3. ICAROUS

NASA’s ICAROUST] is an on-board prototype system that integrates mission specific software mod-
ules and highly assured core software modules for building safety-centric autonomous unmanned
aircraft applications [10]. Functionally, ICAROUS is an instance of a service-oriented architecture for
UAS [11] that provides services to an aircraft, called the ownship, through a communication layer
(Figure[2). These services monitor ownship and traffic states and autonomously maneuver the own-
ship to enforce constraints such as aircraft separation, geofencing, path conformance, and merging
and spacing. The core modules provided by ICAROUS include implementations of formally verified

1https ://shemesh.larc.nasa.gov/fm/ICAROUS/.
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Figure 2 — ICAROUS as a service oriented architecture.

detect and avoid (DAIDALUS)H [12] and geofencing (PonCARP)ﬁUS] algorithms.

For communication and execution, ICAROUS relies on the core Flight System (cFS)F_f], an open-source
middleware developed by NASA for critical embedded software systems. Each ICAROUS module is
implemented as a cFS application that communicates with other cFS applications through a software
bus using a publisher-subscriber protocol. In flight, ICAROUS uses the MAVLink communication pro-
tocoE]for sending commands to and receiving telemetry from the autopilot. Although ICAROUS was
originally designed as an on-board system for small UAS, it has been integrated into a fast-time simu-
lation environment for urban air mobility (UAM) operations [14]. Since cFS is not suitable for fast-time
simulation, a Python-based simulation framework called Pycarous was developed. Pycarous mimics
cFS by providing communication and synchronization capabilities, but it also generates ownship and
traffic aircraft states using different flight dynamics models and simulates ground station commands.
While real-time vehicle/hardware in the loop (HITL) executions are supported by cFS, fast-time sim-
ulation relies on Pycarous.

The data-flow architecture of ICAROUS is shown in Figure Periodic updates of ownship and
traffic states are received by the Traffic Monitor, which predicts impending loss of well clear, and the
Trajectory Manager, which does path planning around geofences. These applications communicate
with Cognition, a decision-making application. The decision-making logic is structured based on
the flight phases of the ownship, i.e., takeoff, climb, cruise, approach, and landing. This leads to a
hierarchical set of finite state machines that are driven by the outputs of the various conflict monitors.
The finite state machines trigger the Guidance application, which in turn sends flight commands to
the vehicle.

The state machines that govern the decision-making logic in Cognition are implemented using an

2https ://shemesh.larc.nasa.gov/fm/DAIDALUS/.
3https ://shemesh.larc.nasa.gov/fm/PolyCARP/.
4https ://cfs.gsfc.nasa.gov/\.

5https ://mavlink.io/en/
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Event Manager that allows for the definition of triggers and handlers. Each handler is associated
with a Boolean trigger. The Event Manager periodically evaluates the triggers to determine which
are currently true. If more than one trigger is true, it determines which corresponding handler has
the highest priority. If a new handler has the highest priority, the old one is turned off and the new
one is run. Therefore, at any time, only one handler is active. Running a handler requires checking
the handler’s current state, running the handler function that should be executed in that state, and
depending on the outcome of the function, determining which state the handler should transition to
next.

4. Applying Spin to ICAROUS

This section describes the modeling and verification of ICAROUS as it runs with Pycarous in Spin.

4.1 Modeling ICAROUS in Spin

ICAROUS is a complex system with many components. Modeling and verifying the entire system all
at once would be a daunting task. A more reasonable approach is to model and verify the system
incrementally, in this case starting with a minimal subset of its components. This allows the modeler
to develop good modeling approaches tailored to the system and to build confidence in a base-
level model without getting bogged down in too many details. It is also makes it easier to interpret
verification results, since the model is smaller, and to focus on finding and fixing errors in targeted
areas of the system, which provides a good foundation for modeling the rest of the system later.

Toward that end, the Spin model of ICAROUS presented here includes only three components: Cog-
nition, Guidance, and Pycarous, which includes a module called the Autonomy Stack that enables
interactions between ICAROUS and the rest of Pycarous. It does not include other ICAROUS mod-
ules such as the Traffic Monitor or the Trajectory Manager. It also does not focus on low-level details
such as the exact computation of waypoint locations for flight plans, instead focusing on control flow
and higher-level decision-making. It also instantiates certain parameters of the system with specific
values, for example the length of the flight plan. While there are advanced approaches for model
checking certain classes of parameterized systems [15], standard approaches require such param-
eters to be given fixed values. Here, the module logic does not fundamentally change based on
specific values of parameters such as length of the flight plan, so a model in which they are fixed can
still be used to build significant confidence in the system design.

ICAROUS is written in C++, Pycarous in Python, and the Autonomy Stack in Cython, a program-
ming language used to interface Python code with C/C++ code. The general modeling strategy is
to model function calls and methods of classes as inline procedures in Spin, unless they are very
straightforward; for example, methods to set and get attributes of a class are simply modeled by
modifying the attributes directly. The use of inline procedures to model functions and methods makes
it easier to check conformance of the model with the code. Note that inline procedures in Spin can
take arguments but cannot return values, so for functions, the last argument of an inline procedure
is used to model the return value. Functions that are simple Boolean expressions are defined with
macros instead. Methods of classes for which there is only one object are not modeled as taking
arguments. Instead, there is a global variable of the appropriate type for each class attribute, whose
name is prefixed by the class name. Classes for which there are multiple objects of that class (or
its subclasses) are handled differently. Macros are used to associate names to each unique object,
and these are used to look up the value of that object’s attribute. This enables modeling of dynamic
dispatching to process different types of handlers in Cognition’s Event Manager. Enumerations in the
code are modeled with mfype declarations and structs with typedef declarations. Names are kept
close to those used in the code, with some exceptions for brevity or to increase readability.

Significant portions of this basic ICAROUS Spin model are shown in Listings [{] through[7] Listing
shows enumerations, type definitions, macros, and some of the global variables used in the model.
Note that there is a single global variable activePlanSize for length of the flight plan. Since it is
hard-coded to a set value of six and does not change, this variable is used across the modeled
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modules rather than each having its own version. No other details of the flight plan are considered
in this simple model. The rest of the global variables model attributes of the main Autonomy Stack,
Guidance, and Cognition classes, with each set sometimes referred to here as the “state” of the
corresponding module. Many are explicitly initialized, and those that are not default to 0. Note that
asynchronous channel cogState cognitionCommands is used for convenience to model a list.

Pycarous drives execution of the whole system, so it is modeled with a do loop in the init process
shown in Listing |2} To interact with ICAROUS, Pycarous makes calls to the Autonomy Stack at every
simulation time step. In the code, the first few calls update the state of the Autonomy Stack with
the most recent states of all the UASs in the simulation. However, detailed UAS information is not
included in this model. Here, it would only be used by Guidance to determine whether the ownship
has reached a waypoint, so instead, the number of time steps needed to reach the next waypoint is
modeled non-deterministically in Guidance portions of the model. The next few calls in the Pycarous
code cause the Autonomy Stack to run ICAROUS by calling its own methods Stack RunGuidance()
and Stack_RunCognition(). If the simulation is just starting, Pycarous also calls an Autonomy Stack
method that simply sets Cognition’s missionState attribute to indicate that the system is in the pre-
mission phase. Pycarous stops simulating once the Autonomy Stack’s state indicates that the own-
ship has started to land.

Listing shows procedures that model Autonomy Stack methods Stack RunGuidance() and
Stack_RunCognition(). Procedure Stack RunGuidance() checks the Autonomy Stack’s guidance-
Mode attribute. If it corresponds to no operation, then it skips to the end of the procedure. If it
corresponds to takeoff, then it sets Cognition’s takeoffState attribute to indicate that takeoff is com-
plete and skips to the end of the procedure. Otherwise it calls RunGuidance(), the main method
of the Guidance class, which updates Guidance attribute nextWpld if the most recent waypoint was
reached. If this index is larger than the one stored in the Autonomy Stack, then the Autonomy Stack
updates its corresponding attribute and Cognition’s as well. The method Stack RunCognition() calls
the RunCognition() method of Cognition. Based on Cognition’s state afterward, the Autonomy Stack
checks whether the ownship has started to land, and if so, it updates its own state to record the land-
ing. Otherwise, it loops over and processes any commands generated by Cognition. If a command
is for a flight plan change, it updates its state to set the guidance mode accordingly and its next way-
point index to the one stored in the command, then it calls the SetGuidance() method to update the
same parts of Guidance’s state. If the command is for takeoff, the Autonomy Stack simply updates
its own guidance mode accordingly.

Listing 4| shows portions of the model that cover Guidance. Since geofences and other traffic are
not considered in the simple model developed here, its logic is relatively simple. Guidance can be in
several different modes corresponding to takeoff, following a flight plan, landing, and doing nothing.
Procedure RunGuidance() determines what Guidance does in each of these modes. Pycarous does
not do any complex modeling of takeoff, so the Guidance logic for takeoff essentially does nothing
except log that takeoff occurred. The Guidance logic for following a flight plan tracks the index of
the next waypoint the UAS should fly to and monitors the state of the ownship to determine when it
reaches it. The call to ComputePlanGuidance() in this mode checks whether the next waypoint index
has gone beyond the end of the flight plan and if not, it calls CheckWaypointArrival() to check whether
the next waypoint has been reached. It then checks whether the next waypoint index is the last in the
flight plan and if so, it changes its mode to landing. As previously mentioned, low-level details such
as the exact UAS position are not considered in this model, so this procedure non-deterministically
models that it takes between one and three time steps to reach the next waypoint. Similarly, the logic
for the landing mode models that it non-deterministically takes between one and three time steps to
land.

Before covering portions of the model that cover Cognition, it is important to understand how handlers
in the Event Manager work. In the code, each handler is a subclass of the main handler class,
which has an attribute to store the handler’s internal state. Possible values for each handler’s state
include NOOP (not yet operating), INITIALIZE, EXECUTE, TERMINATE, and DONE. The handler
class also has a RunEvent() method, and each subclass provides its own implementation of three

8
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Figure 4 — The state machine logic encoded by handler method RunEvent().

“event” methods: Initialize(), Execute(), and Terminate(). Each event method returns a value after
execution: SUCCESS, RESET, INPROGRESS, or SHUTDOWN. Procedure RunEvent() models the
state machine logic used to execute the event method that corresponds to the current state and
transition to the next state based on the event method’s return value. It is called by the Event Manager
whenever Cognition requests that it run the appropriate event handler. For brevity, its logic is not
given in any of the Listings but is shown in Figure |4 An a self-transition in a state corresponds to
the default transition when no other transition out of the state is possible. Also note that the transition
from DONE to INITIALIZE occurs immediately after DONE is reached, i.e., during the same call to
RunEvent(). Finally, note that there is no logic in RunEvent() to transition from NOOP to INIT. This is
done elsewhere in the Event Manager.

Listing [5| shows portions of the model that define the triggers and logic for running the top priority
active handler and stopping a lower priority handler if necessary. The global array events models the
attribute of the Event Manager class that tracks which triggers are true, indexed by the corresponding
event handler’s name. Procedure RunEventMonitors() models a loop in the code that evaluates the
trigger for each handler and stores the result in events. After each trigger is evaluated, procedure
RunEventMonitors() is called. If the corresponding handler was not already active, it sets the han-
dler’s state to NOOP. Then if there are other active handlers, it sets Cognition’s state to record that
the new handler is active and checks whether the new one has higher priority. If so, it sets the old
one’s state to TERMINATE, runs it, then sets its state to DONE. If there were no other active han-
dlers, then it simply sets Cognition’s state to record that the new handler is active. Note that the logic
for GetTopPriorityActiveHandler() is not shown; it returns a result based on the handler for landing
having the highest priority, the handler for engaging the nominal flight plan having the next highest
priority, and the handler for takeoff having the lowest priority.

Listing [6] shows portions of the model that cover the event handlers. Global array execState models
the attribute of the Event Handler class and its subclasses that holds the handler’s state, indexed
by handler name. Procedure SetGuidanceMode() models a method of Cognition used in one of the
handler methods that sends a flight plan change command. The rest of the procedures model the
non-trivial Initialize(), Execute(), and Terminate() methods of each handler. These modify Cognition’s
state to record events like takeoff, flight, and landing, and they construct commands that Cognition
sends to other modules. They also return a result that is used by the Event Manager to determine

9
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the next state of the handler. Handler methods not shown simply return SUCCESS.

Listing 1: Type definitions, macros, and global

variables for the ICAROUS model.

1 | mtype:guideMode_e =

2 {GUIDE_NOOP, FLIGHTPLAN, TAKEOFF,

3 LAND}

4 | mtype:execState_e =

5 {NOOP, INITIALIZE, EXECUTE,

6 TERMINATE, DONE}

7 | mtype:retVal_e =

8 {SUCCESS, RESET, INPROGRESS, SHUTDOWN}
9 |mtype:cmd_e =

10 {TAKEOFF_COMMAND, FP_CHANGE,

11 LAND_COMMAND}

12 | mtype:takeoffState_e =

13 {TAKEOFF_INACTIVE, TAKEOFF_INPROGRESS,
14 TAKEOFF_COMPLETE}

15 | mtype: missionStart_e =

16 {PRE_MISSION, LAUNCH, FLIGHT, LANDING}

18 | typedef command_t {

19 mtype :cmd_e commandType;
20 byte wplndex = 0;

21 | };

23 | #define TAKEOFF_PHASE_HANDLER 0
24 |#define ENGAGE_NOMINAL PLAN 1
25 |#define LAND_PHASE HANDLER 2

26

27 |#define IsEmpty_activeHandlers
28 | (!(cogState_activeHandlers
29 [TAKEOFF_PHASE_HANDLER] ||
30 cogState_activeHandlers
31 [ENGAGE_NOMINAL_PLAN] ||
32 cogState_activeHandlers
33 [LAND_PHASE_HANDLER]))

34

35 | // Flight plan length

36 | byte activePlanSize = 6;

37

38 | // AutonomyStack class variables

39 |bool stackState land = false;

40 | byte stackState_nextWP1 = 1;

41 | mtype:guideMode_e

42 stackState_guidanceMode = GUIDE_NOOP;

44 // Guidance class variables

45 | mtype:guideMode_e

46 guideState_mode = GUIDE_NOOP;

47 | byte guideState_nextWpld;

48 | bool guideState_wpReached = false;

50 | // Cognition class variables

51 | mtype: missionStart_e

52 cogState_missionStart = LAUNCH;
53 | mtype:takeoffState_e
54 cogState_takeoffState
55 TAKEOFF_INACTIVE;

56 | bool cogState_nominalPlanEngaged =
57 false;

58 | byte cogState_nextWpld = 0;

59 | bool cogState_activeHandlers[4];
60 |chan cogState_cognitionCommands =
61 [3] of { command_t };

62 | bool cogState_icReady = false;

Listing 2: The init process, which models Pycarous.
1 | init{

2 bool simState_missionStarted = false;

3 do

4 ;. IstackState_land —>

5 Stack_RunGuidance ();

6 Stack_RunCognition ();

7 if

8 ;. IsimState_missionStarted —>

9 cogState_missionStart = PRE_MISSION;
10 simState_missionStarted = true;

11 11 simState_missionStarted -> skip;

12 fi

13 .. else —> break;

14 od

15 |}

Listing 3: Inline procedures that model methods of
the main Autonomy Stack class.

1 |inline Stack_RunGuidance () {

2 printf ("Stack_RunGuidance ()\n");

3 if

4 ;. stackState_guidanceMode == GUIDE_NOOP ->
5 goto Retl;

6 stackState_guidanceMode == TAKEOFF ->

7 cogState_takeoffState = TAKEOFF_COMPLETE;
8 goto Retl;

9 1 else —> skip;

10 fi

12 RunGuidance () ;
13 byte nextWP = guideState_nextWpld;

15 if

20 fi

22 | Retl:

24 |inline Stack_RunCognition() {
25 printf ("Stack_RunCognition ()\n");
26 RunCognition ();

28 if

32 | fi

34 do

49 oc-l.

stackState_nextWP1 < nextWP —>
cogState_nextWpld = nextWP;
stackState_nextWP1 = nextWP;
else —> skip;

skip; }

cogState_missionStart == LANDING —>
stackState land = true;
else —> stackState_land = false;

len (cogState_cognitionCommands) > 0 —>
command_t cmd;
cogState_cognitionCommands?cmd;
if
;1 cmd.commandType == FP_CHANGE ->
stackState_guidanceMode = FLIGHTPLAN;
stackState_nextWP1 = cmd.wplindex;
SetGuidanceMode (FLIGHTPLAN,
cmd. wplndex ) ;
11 cmd.commandType == TAKEOFF COMMAND —>
stackState_guidanceMode = TAKEOFF;
1 else —> skip;
fi
else —> break;
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Listing 4: Model of Guidance methods.

Listing 5: Cognition logic for evaluating triggers.

byte wpSteps = 0;
byte landSteps = 0;

inline SetGuidanceMode (mode, nextWP)
guideState_mode = mode;
guideState_nextWpld = nextWP;

}

inline CheckWaypointArrival () {
printf ("CheckWaypointArrival ()\n");
if
;1 wpSteps < 3 —>

wpSteps = wpSteps + 1;

guideState_wpReached = false;

wpSteps > 0 —> wpSteps = 0;

guideState_wpReached = true;

guideState_nextWpld =
guideState_nextWpld + 1;

fi;

}

inline ComputePlanGuidance () {
printf ("ComputePlanGuidance ()\n");
if
:: guideState_nextWpld >=
activePlanSize ->
guideState_wpReached =
goto CWA_Ret;
else —> skip;

true;

fi
CheckWaypointArrival ();

CWA_Ret: skip;
1

inline RunGuidance () {
printf ("RunGuidance ()\n");
if
;1 guideState_mode == TAKEOFF —>
printf ("mode_TAKEOFF\n");
skip;
guideState_mode == FLIGHTPLAN ->
printf ("mode_FLIGHTPLAN\Nn");
ComputePlanGuidance () ;
if
guideState_nextWpld > 1 &&
guideState_nextWpld ==
activePlanSize - 1 —
guideState_mode = LAND;
else —> skip;
fi
guideState_mode == LAND ->
printf ("mode_LAND\n");
if

landSteps < 3 —>
landSteps = landSteps + 1;
landSteps > 1 —>

guideState_nextWpld =
activePlanSize;
fi
guideState_mode == GUIDE_NOOP ->
printf ("mode_GUIDE_NOOP\n");
skip;
fi

{
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11

bool events[3] = {false, false, false};
inline RunEventMonitor(elem) {
if

events[elem] -> bool avail = false;

if
11 cogState_activeHandlers[elem] —>
avail = true;

:: else —> skip;
fi

lavail -> execState[elem] = NOOP;
if
:: lIsEmpty_activeHandlers ->
byte currHandler;
GetTopPriorityActiveHandler
(currHandler);
cogState_activeHandlers[elem] =
true;

byte topHandler;
GetTopPriorityActiveHandler
(topHandler);

if

currHandler == topHandler ->
skip;

else —>
execState[currHandler] =
TERMINATE ;

RunEvent(currHandler, _);
execState[currHandler] =
DONE;
fi
else —
cogState_activeHandlers[elem] =
true;
fi
else —> skip;
fi
else —> skip;
fi
}

inline RunEventMonitors () {
printf ("RunEventMonitors ()\n");

bool TakeoffTrigger =
(cogState_missionStart == PRE_MISSION);

events [TAKEOFF_PHASE HANDLER] =
TakeoffTrigger;

RunEventMonitor (TAKEOFF_PHASE_HANDLER) ;

bool NominalDepartureTrigger =
(cogState_missionStart == FLIGHT &&
IcogState_nominalPlanEngaged);
events [ENGAGE_NOMINAL_PLAN] =
NominalDepartureTrigger;
RunEventMonitor (ENGAGE_NOMINAL_PLAN) ;

bool PrimaryPlanCompletionTrigger =
(cogState_nextWpld >= activePlanSize);

events [LAND_PHASE_HANDLER] =
PrimaryPlanCompletionTrigger;

RunEventMonitor (LAND_PHASE_HANDLER) ;
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Listing 6: Handlers in Cognition and a Cognition Listing 7: Cognition method to run top priority

method used by a handler to set the flight plan. active handler and engage the EventManager.
1 | mtype:execState_e 1 |inline RunEventHandlers () {

2 execState[3] = {NOOP, NOOP, NOOP}; 2 printf ("RunEventHandlers ()\n");

3 3 if

4 | inline SetGuidanceFlightPlan(wp_index) { 4 IsEmpty_activeHandlers —>

5 command_t cmd; 5 goto Ret REH;

6 | cmd.commandType = FP_CHANGE; 6 else —> skip;

7 cmd. wplndex = wp_index; 7 fi

8 cogState_cognitionCommands !cmd; 8

9 |} 9 byte topHandler;

10 10 GetTopPriorityActiveHandler (topHandler);
11 | inline TakeoffPhaseHandler_Initialize(ret) { 11

12 printf (" TakeoffPhaseHandler_Init\n"); 12 isDone = false;

13 command_t cmd; 13

14 | cmd.commandType = TAKEOFF_COMMAND; 14 if

15 cogState_cognitionCommands !cmd; 15 :: execState[topHandler] == NOOP —>
16 cogState_missionStart = LAUNCH; 16 if

17 cogState_takeoffState = TAKEOFF_INPROGRESS; 17 ;. events[topHandler] —>

18 ret = SUCCESS; 18 execState[topHandler] =

19 |} 19 INITIALIZE ;

20 20 /! Event Manager state machine
21 | inline TakeoffPhaseHandler_Execute(ret) { 21 RunEvent(topHandler, isDone);
22 printf (" TakeoffPhaseHandler_Execute\n"); 22 11 else —>

23 if 23 cogState_activeHandlers

24 11 cogState_takeoffState == 24 [topHandler] = false;

25 TAKEOFF_COMPLETE -> ret = SUCCESS; 25 fi

26 ;. else —> ret = INPROGRESS; 26 :: else -> RunEvent(topHandler, isDone);
27 fi 27 fi

28 |} 28

29 29 if

30 |inline TakeoffPhaseHandler_Terminate(ret) { 30 :: isDone —>

31 printf (" TakeoffPhaseHandler_Terminate\n"); 31 cogState_activeHandlers[topHandler] =
32 if 32 false;

33 :: cogState_takeoffState == 33 ;1 else —> skip;

34 TAKEOFF_COMPLETE -> 34 fi

35 cogState_nextWpld = 1; 35

36 cogState_missionStart = FLIGHT; 36 |Ret REH: skip;

37 ;1 else —> skip; 37 |}

38 fi

39 ret = SUCCESS;

40 |}

41

42 | byte setGuidanceFlightPlanCounter = 0;

43 | inline EngageNominalPlan_Initialize(ret) {
44 printf ("EngageNominalPlan_Init ()\n");

45 SetGuidanceFlightPlan (cogState_nextWpld);
46 setGuidanceFlightPlanCounter++;

47 cogState_icReady = true;

48 cogState_nominalPlanEngaged = true;
49 ret = SUCCESS;

50 |}

51

52 | inline EngageNominalPlan_Execute(ret) {
53 printf ("EngageNominalPlan_Execute ()\n");
54 ret = INPROGRESS;

55 |}

57 |inline EngageNominalPlan_Terminate(ret) ({
58 printf ("EngageNominalPlan_Terminate ()\n");

59 cogState_nominalPlanEngaged = false;
60 ret = SUCCESS;

61 |}

62

63 | inline LandPhaseHandler_Execute(ret) {
64 printf("LandPhaseHandler_Execute ()\n");

65 command_t cmd;
66 cmd.commandType = LAND_COMMAND;
67 cogState_cognitionCommands !cmd;

68 cogState_missionStart = LANDING;
69 ret = SUCCESS;

12
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Listing |/| shows portions of the model that capture the Event Manager’s method for running the top
priority handler. If the handler’s state is NOOP, then it first checks whether the corresponding trigger
is still true. If it is, then it sets its state to INITIALIZE and calls RunEvent() to process it according
to the Event Manager’s state machine logic. If it is not, then it records the handler as inactive in
Cognition’s state. If the handler’s state is not NOOP, then it simply calls RunEvent() to process it.
If the result of processing it is that the handler is done, it records the handler as now inactive in
Cognition’s state.

4.2 Verification of ICAROUS model in Spin

The listings in Section 4.1 show the final version of the ICAROUS Spin model. However, part of the
motivation for this work is that originally, the handler for engaging the nominal flight plan was not
behaving as expected. Modeling, simulating, and verifying ICAROUS in Spin helped uncover the
reasons for unexpected behaviors and explore potential fixes. LTL specifications used for verification
are given in Listing 8| Portions of the model that changed over the course of this process are colored
light blue in Listings [f], [5] and[6] and the reasons for the changes are explained here.

Listing 8: LTL specifications for the Spin model of ICAROUS.

Itl missionStartFlight { <> (cogState_missionStart == FLIGHT) }
Itl setGuidanceFlightPlanOnce { <> (setGuidanceFlightPlanCounter == 1) &&

[1 (setGuidanceFlightPlanCounter <= 1) }
Itl engagedOnThenOff { <> (cogState_nominalPlanEngaged && <> (!cogState_nominalPlanEngaged)) }
Itl guidanceReachesFlightPlanEnd { <> (guideState_nextWpld == activePlanSize) }
Itl stackLanding { (!stackState_land U stackState_nextWP1 == activePlanSize) &&

<> (stackState_land) }
Itl landSteps { <> (landSteps > 0) }
Itl lastWaypointsReachedInOrder { <> (guideState_nextWpld == 4 &&
<> (guideState_nextWpld == 5)) }

Itl lastWaypointsNotReachedOutOfOrder { guideState_nextWpld != 5 U guideState_nextWpld == }

Simulation of the first version of the model did not terminate. Note that the model contains simple
print statements to output basic information, such as when certain inline procedures are called and
what the values of triggers are when they are evaluated. By default, these are printed during a Spin
simulation. Reviewing simulation outputs showed that after the takeoff phase handler terminated, all
triggers remained false. Indeed, the verification mode of Spin can be used to check for non-progress
cycles, and it found one in which after the takeoff phase handler terminated, the model infinitely
cycled through running the Guidance and Cognition modules, yet all trigger values remained false.
Inspection of the model showed that the trigger for the engage nominal plan handler expected the
missionStart attribute of Cognition to be set to FLIGHT, but this never occurred. Using Spin to
verify this expected property, encoded as LTL specification missionStartFlight, returned the same
counterexample. A statement to set this variable in the takeoff phase handler’s Terminate() method
was therefore added, leading to the second version of the model.

Simulation of the second version of the model did terminate, and verification of LTL specification mis-
sionStartFlight was successful. However, inspection of the simulation output showed an unexpected
behavior. The engage nominal flight handler cycled several times through its Initialize(), Execute(),
and Terminate() methods. The logic now in this handler’s Initialize() method was originally in its
Execute() method instead, except there was no Cognition attribute nominalPlanEngaged to track
whether the nominal plan is engaged, no counter setGuidanceFlightPlanCounter to track the number
of times a guidance flight plan is set, and the Execute() method returned value SUCCESS instead of
INPROGRESS. Given that the Execute() method called SetGuidanceFlightPlan(), the fact that it was
called repeatedly was undesirable, since the nominal flight plan only needs to be set once. Attempting
to verify LTL specification setGuidanceFlightPlanOnce, which specifies that the counter should reach
a value of one but not exceed it, resulted in a counterexample. This counterexample showed that
the trigger for the engage nominal plan handler remained true, and since each of the handler's meth-
ods returned SUCCESS, the cycling behavior followed from the logic of the Event Manager state
machine encoded in procedure RunEvent() when RunEventHandlers() was called, until the higher
priority trigger for the land phase handler became true. The call to SetGuidanceFlightPlan() and the

13



Formal Verification of an Autonomy Architecture for Unmanned Aircraft

corresponding counter was moved to the handler’s Initialize() method so that it would only get called
once, along with the statement to set Cognition’s icReady flag to true. The return value of the Exe-
cute() method was changed to INPROGRESS, so that the handler would not automatically transition
from its EXECUTE to TERMINATE state. A Cognition state variable to track whether the nominal plan
is engaged was also added to the model. It is initialized to false, set to true in the handler’s Initialize()
method, and set to false in the handler’s Terminate() method. These changes led to the third version
of the model.

Simulation of the third version of the model showed that the engage nominal plan handler no longer
cycled between its three methods. LTL specifications missionStartFlight and setGuidanceFlight-
PlanOnce were verified to hold. However, the simulation output showed that its Terminate() method
was never called. LTL specification engagedOnThenOff encodes the property that eventually Cog-
nition’s attribute nominalPlanEngaged becomes true and then later eventually becomes false, which
should happen in the Terminate() method. Verification of this property resulted in a counterexample.
This counterexample showed that when the higher priority land phase handler became active while
the engage nominal plan handler was still active, the Event Manager set the engage nominal plan
handler’s state to DONE, bypassing execution of its Terminate() method. A change to RunEvent-
Monitor() was made to first set the interrupted handler’s state to TERMINATE, run the handler, and
then set its state to DONE. This led to the fourth and final version of the model, for which the desired
properties were verified to hold.

Verification of additional LTL specifications can be used to continue to build confidence in the model.
For example, the LTL specification guidanceReachesFlightPlanEnd was used to check that Guidance
eventually sets its next waypoint index to the length of the flight plan, which is one index past the last
waypoint (due to zero-based indexing). LTL specification stackLanding was used to check that even-
tually Stack records that the next waypoint index is the length of the flight plan, that it does not register
landing before that, but it does eventually register it. LTL specification landSteps was used to check
that a non-zero number of steps are taken during landing. LTL specifications lastWaypointsReached!-
nOrder and lastWaypointsNotReachedOutOfOrder were used to check that waypoint 4 is eventually
reached and waypoint 5 is later reached, but waypoint 5 is not reached before waypoint 4. Note that
longer versions of these two specifications that include all waypoints cannot be fully analyzed in Spin
with the default settings. This is because, in the worst case, the time required for verification grows
exponentially with number of temporal operators in an LTL formula [5]. Even increasing the search
depth and available memory significantly did not enable Spin to fully explore the model with respect
to those specifications. State explosion is a well-known drawback of model checking, and in future
iterations of this work, different techniques to reduce the number of states will be explored.

5. Discussion and Conclusions

In this paper, the use of model checking to model and verify the ICAROUS architecture for building
safety-centric autonomous unmanned aircraft was explored. Key ICAROUS capabilities were mod-
eled in Promela, the language of the Spin model checker. Then an iterative verification process was
performed in which Spin was first used to simulate the model, then it was used to verify through
model checking whether the model satisfied LTL specifications expressing desired behaviors of the
modeled system. Both simulation results and counterexamples produced through model checking
were used to find and fix errors in the model. As demonstrated in this application, simulation provides
a fast way to find relatively straightforward errors, and model checking provides a way to find more
complex errors and ultimately prove that a model satisfies a set of given specifications.

The original motivation for this work was that the handler for engaging the nominal flight plan after
takeoff in ICAROUS was not triggering as expected. Instead, code was added to run this handler
manually after takeoff. The iterative process of simulation and model checking discussed in this
paper helped identify the issue that was preventing the trigger from firing, then refine a candidate
solution that would not have undesirable side-effects. Changes to the model were implemented in
an experimental version of the code, and the code for manually running the handler after takeoff was
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removed. The ICAROUS development team has a test suite containing 44 continuous integration
tests. The experimental version of the code passed all but one of these tests. The test that failed
is one of nine tests that check interactions with the Traffic Monitor, which was not included in this
model. Unfortunately, when a test does not pass, it is not always easy to understand the underlying
cause. There are several reasons for this. One is that the system is a mix of Python and C++ code,
which makes it hard to run a debugger and step through a particular execution of the system. Another
is that the full system has a very large state composed of the state of many individual components
whose interactions and effects on each other can be difficult to reason about. For systems such as
this, failures due to erroneous interactions between components are often some of the most difficult
to identify and understand. A model of the system that targets component interactions and abstracts
out other details makes it easier to find these types of errors. Model checking provides feedback in
the form of simulation paths and counterexamples that are generally easier to understand, though
it does take additional time to develop the model. Future work will continue to expand this model
of ICAROUS to include additional components such as the Traffic Monitor, with the goal of finding a
solution that both allows the handler for engaging the nominal flight plan to trigger as expected and
for all the continuous integration tests to pass.

Other future work will focus on modeling ICAROUS as it runs with cFS. In this paper, Pycarous and
the Autonomy Stack are used to coordinate interactions between ICAROUS components, and there
is only a single thread of execution in the code that is driven by Pycarous. This leads to a model that is
not that complex in the sense that it only consists of a single process with very little non-determinism
in how it executes; the only non-determinism is in the number of time steps it takes to reach each
waypoint and to land. In fact, this model does not have many features that Spin is geared toward
analyzing. In cFS however, ICAROUS components run in asynchronous threads and communicate
over a bus using a publisher-subscriber messaging pattern. Non-deterministic interleaving between
processes can lead to different behaviors, some of which occasionally cause continuous integration
tests to fail. Since the Spin model checker is well-suited to this type of problem, it was chosen for
this preliminary modeling exercise, which will serve as a starting point for identifying possible errors
in ICAROUS when it runs with cFS and exploring potential solutions.
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