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Motivation
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NASA Ames has a strong legacy in ground-testing:

• Operates six high-power arc-heaters (10–60 MW) to deliver high-
enthalpy flows (convective and/or radiative) for extended periods 
of time and for various gas mixtures

• Relied upon for every NASA mission with entry phase ADEPT arc-jet test – 60 MW IHF
Credit: NASA/TSF
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Demand for a smaller-scale facility to support the rapid, low-cost development of low-
maturity technologies prior to them being implemented/tested in the larger facilities:

• Diagnostics (e.g., non-intrusive flow measurements)

• Instrumentation (e.g., intrusive flow measurements)

• Materials (e.g., screening of novel TPS)

S upporting the development and testing of  
low-maturity  level technologies
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mAR C  II’s previous vacuum system was unable to 
maintain pe/p∞>1 under test conditions

100 A

• Underexpanded flow (pe/p∞>1) is desirable to provide large region of constant flow conditions.

• High test box pressures after arc-on were the root cause of overexpanded flow (A/A*≃11.3).

• To reliably sustain pe/p∞>1, the need for a new vacuum system was identified. 

100 A, 0.25 g/s

Overexpanded (pe/p∞<1)



mAR C  II
miniature Arc-jet Research Chamber (second-generation)
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Facility  — arc  heater & test box
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Components:

1. MAX 200 torch body

2. Cathode

3. Constrictor disks (x2)

4. Anode

5. Nozzle

6. Test box

7. Diffuser (new)

8. Heat exchanger (new)

Cooling 
circuit 1

to vacuum 
pumps

(1) (3)

(2)
(4)
(5)

(6) (7)

air

(8) + sweep arm for intrusive 
flow characterization

Cooling 
circuit 2



Facility  — f low characterization
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High-speed camera

Trident

Gauges

Non-intrusive flow diagnostics:

• High-speed camera with notch filter

• Optical emission spectroscopy (OES)

– in progress –

Optical access 
at nozzle ex it 
plane

OES

Arc heater

Intrusive flow diagnostics:

• Sweep arm with trident holder

• Water-cooled Gardon gauge (3/16” 
hemispherical) used for stagnation 
point heat flux measurements

1 sec dwell

~0.7 m/s sweep speed
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diffuser

heat exchanger

heat exchanger

suction line

gate valve

booster pump
internal 

view

• Refurbished mechanical booster pump was procured and coupled to the existing two-stage 
direct drive rotary vane pump (both water-cooled).

Facility  — upgraded vacuum system

• Water-cooled diffuser and a heat exchanger were designed in-house and installed.

rotary vane pump



Arc- jet performance
Flow enthalpy equations & numerical modeling
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Flow enthalpy  — enthalpy  by  energy  balance (EB2)

A bulk enthalpy estimate can be calculated via an energy balance from the arc power 𝑃𝑃arc and the 
power lost in the arc heater cooling circuit ∆𝑃𝑃cool:
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�ℎ
EB2 =

𝑃𝑃arc − ∆𝑃𝑃cool
𝑚̇𝑚 =

(𝐼𝐼𝐼𝐼) − (𝑚̇𝑚w𝑐𝑐p,w∆𝑇𝑇w)
𝑚̇𝑚

𝐼𝐼 : arc current

𝑉𝑉 : arc voltage

𝑚̇𝑚 : air mass flow rate

𝑚̇𝑚w : cooling water flow rate

∆𝑇𝑇w : temperature difference between water 
supply and return lines

𝑐𝑐p,w : isobaric specific heat capacity (water)

where

• Commonly used in the high-power arc-jet facilities at NASA Ames.



Flow enthalpy  — sonic  f low method & correlations
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𝜎𝜎 =
𝑚̇𝑚

𝐴𝐴𝑡𝑡𝑝𝑝0,col

�ℎT =
155.8
𝜎𝜎

2

Thompson, Prabhu, et al. (2011)

�ℎS =
158.7
𝜎𝜎

1.971

Shepard et al. (1993)

�ℎW =
123
𝜎𝜎

2.52

Winovich (1964)

where the sonic flow parameter

• The correlation constants are known to be facility dependent.

Other formulations are available:

[kg/m2atm]



Laminar simulations were performed using the Data Parallel Line Relaxation (DPLR) code, v4.04.
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Gardon gauge
𝑇𝑇wall =  350 K
Fully catalytic

5-species air mixture
(N2, O2, NO, N, O) 

Arc column
𝑇𝑇wall = 350 K
Fully catalytic

Nozzle
𝑇𝑇wall =  350 K
Fully catalytic

• Experimental measurements for air flow rate 𝑚̇𝑚, arc column pressure 𝑝𝑝col , and test box 
pressure 𝑝𝑝∞ were combined with chemical equilibrium calculations (CEA) to set the inlet/outlet 
boundary conditions.

• Inlet enthalpy �ℎ was calculated using the Winovich equation �ℎW . 

𝑝𝑝∞ 

𝑝𝑝col

Axisymmetric boundary condition

N umerical modeling — laminar N avier–S tokes



Test matrix
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Run Measured arc current
Iarc [A]

Measured flow rate, 
ṁ [g/s]

1 42 0.23
2 96 0.23
3 142 0.23
4 188 0.23
5 40 0.23
6 183 0.23
7 42 0.14

Seven runs were completed over the course of a two-day Integrated Systems Testing campaign.

The Gardon gauge was 70 mm from the nozzle exit plane for all conditions.



R esults & Discussion
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• 2X improvement in pump-down time to base pressure, 13X improvement in base pressure.

After arc-on (t = 0 s)Before arc-on (pump-down)

100 A, 0.25 g/s

• After arc-on, test box reached steady-state in <10 seconds where pe/p∞>1.

• Average test box pressure during tests: ~17±0.2 Pa (0.13±0.002 torr).

0.25 g/s

0.15 g/s
15 mins to reach base
pressure of 4 Pa (0.03 torr)

35 mins to reach base
pressure of 53 Pa (0.4 torr)

Performance of  the new vacuum system
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Performance of  the new vacuum system
C hange in nozzle f low structure

Overexpanded (pe/p∞<1) Underexpanded (pe/p∞>1)

For the same set conditions: 100 A, 0.25 g/s

Previous vacuum system New vacuum system
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Bulk f low enthalpy
EB2 measurements — �̇𝒎𝒎 = 0 .23 g/s

• Despite low ΔTW values, SNR(ΔTW) is high: 29 to 85.

• We fit linear polynomials through the arc power Parc and cooling power ΔPcool data points.

• A relationship between Iarc and hEB2 is proposed for �̇𝑚𝑚 = 0.23 g/s: when a specific enthalpy is 
desired at this flow rate, the required arc current setting can be simply back-calculated. 

�ℎ
EB2 =

𝑃𝑃arc − ∆𝑃𝑃cool
𝑚̇𝑚

=
(𝐼𝐼𝐼𝐼) − (𝑚̇𝑚w𝑐𝑐p,w∆𝑇𝑇w)

𝑚̇𝑚
�ℎ
EB2 =

𝑃𝑃arc − ∆𝑃𝑃cool
𝑚̇𝑚

 =  
7.99 ̅𝐼𝐼arc + 1018.7

0.23 × 10−3
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Bulk f low enthalpy
C omparison with previous mAR C  datasets

• EB2 method: three of the four EB2 enthalpy values are lower than those calculated via Winovich.

• Combination of low current and high flow rate leads to highest η.

• Detailed comparison will be possible after full characterization of the facility is completed.

• Using the Winovich equation, we report arc-jet efficiencies of 14 < η < 32%.

𝜂𝜂 =
�ℎ

�𝑃𝑃arc
𝑚̇𝑚



�̇𝑚𝑚 = 0.23 g/s

Region for testing of 
reusable TPS
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S tagnation point heat f lux
3/16” hemispherical Gardon gauge (water-cooled)

41 A, 0.14 g/s 183 A, 0.23 g/s142 A, 0.23 g/s96 A, 0.23 g/s40 A, 0.23 g/s

• Upgraded vacuum system has enabled 
mARC II to generate the desired 
underexpanded flow (pe/p∞>1).

• This has led to a ~4X reduction in heat flux 
for the same set test conditions.

• We report the lowest stagnation point heat 
fluxes measured in mARC II to date:

             – minimum of 26 W /cm2

             – maximum of 81 W /cm2

• Can deliver the low heating rates 
needed for testing of low-maturity 
tech (e.g., reusable TPS materials).

• kW/cm2 heat fluxes are anticipated 
for ↑ currents, ↑ flow rates, and 
↓ distance from nozzle.

3/16” hemispherical Gardon gauge
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N umerical results
Laminar axisymmetric  model (4 2 A , 0 .23 g/s)

�̇𝑞𝑞

70 mm

• No visible Mach disk upstream of Gardon gauge for conditions tested in present work*.

• Radial enthalpy gradient is steep near the walls owing to heat conduction (TW = 350 K).

*Franquet et al., ‘Free underexpanded jets in a quiescent medium: A review’ (2015).



• Laminar model shows good agreement with 
experimental results at low arc currents (3–
15%, 42 A).

• Discrepancy between experimental 
measurements and numerical results 
increases with arc power (49%, 188 A).

• Further work will be undertaken to understand 
the reasons behind this trend.
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N umerical results
S tagnation point heat f lux — comparing to experimental data

3%

15%

25%
43%

49%

3/16” hemispherical Gardon gauge



C oncluding R emarks & Future W ork
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C oncluding R emarks

Integrated Systems Testing campaign was completed after the mARC II facility was upgraded.

1. The vacuum system upgrade had a signif icant impact on mAR C  II performance :

• 13X improvement in base pressure pre-test & reliable underexpanded flow (pe/p∞>1) during test.

• Reduced heat fluxes by ~4X for same set test conditions.

• Lowest heat fluxes measured in mARC II to date (26–81 W/cm2).

• First demonstration that mARC II can enable research needing low heat rate testing.
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C oncluding R emarks

Integrated Systems Testing campaign was completed after the mARC II facility was upgraded.

2. Bulk enthalpy  via EB2 method was reported for the f irst time for mAR C  II:

• Initial data suggests EB2 generally estimates lower enthalpy than sonic flow (e.g., Winovich).

• Simple equation is proposed for interpolating EB2 enthalpy based on arc current (ṁ = 0.23 g/s).

3. Laminar numerical simulations were undertaken:

• Good agreement with experimental stagnation point heat flux at low arc currents (3–15%, 42 A).

• Discrepancy increases with arc power (49%, 188 A).
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Future W ork

1. Full characterization of  mAR C  II’s operational envelope of  using air f lows will be completed:

− Stagnation heat flux, radial heat flux profile, and stagnation pressure.

− EB2 enthalpy to develop a correlation for the mARC II facility.

2. Additional ef forts will be undertaken to understand the disparity  between experimental and 
numerical heat f lux results at higher set arc  currents.

3. Optical diagnostics have been implemented to characterize species and shock structures in 
the f low — further ref inements and expansions planned.
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Bulk f low enthalpy
EB2 measurements — ∆�𝑻𝑻𝑾𝑾 time series signals

• EB2 method is driven by the cooling water 
flow rate and the temperature change ΔTW.

• Since water flow rate was measured to be 
constant ( �̇𝑚𝑚W = 2.79±0.05 kg/s), we plot 
the cooling water temperature change with 
time.

• Signals have been shifted in time so that 
arc-on times align.

• Despite low ΔTW values, SNR(ΔTW) is high: 
29 to 85.
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S tagnation point heat f lux
S ignal- to-noise in Gardon gauge — 4 0  A, �̇𝒎𝒎 = 0 .23 g/s

• We sampled at fs=80 Hz, 500 Hz, and 
8000 Hz, depending on the run.

• Four major peaks in the FFT: 300 Hz, 
600 Hz, 800 Hz, and 1600 Hz (600 Hz 
and 1600 Hz are likely 2nd harmonics).

• Low-pass Butterworth filter used to 
filter higher frequency noise (AC signals 
not of interest; rise time of raw signal 
was matched).

• Filtering does not reduce σ or SNR of 
signal when fs=80 Hz, but does at 
fs=500 Hz and fs=8000 Hz.

• In future experiments, we will use the 
highest sampling rate (8000 Hz is 
currently the maximum) along with the 
low-pass filter to maximize the SNR of 
the heat flux measurements.

8000 Hz



Test matrix and outputs
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