
Proceedings of the ASME 2024 International Design Engineering Technical Conferences
Computers and Information in Engineering Conference

IDETC/CIE2024
August 25-28, 2024, Washington, DC, USA

IDETC/CIE2024-143549

DEFINING A MODELLING LANGUAGE TO SUPPORT FUNCTIONAL HAZARD ASSESSMENT

Daniel Hulse1,∗, Seydou Mbaye1, Lukman Irshad2,1

1Intelligent Systems Division, NASA Ames Research Center, Moffett Field, CA 94035
2KBR Inc., Moffett Field, CA 94035

ABSTRACT
Functional Hazard Assessment (FHA) is a key early-stage

engineering process that supports the incorporation of safety in
design by identifying the high-level functional hazards the sys-
tem may encounter. While many FHA-like methodologies have
been proposed in the design engineering literature, many of these
methodologies have had difficulty becoming accepted industry
practice. Industry standards, on the other hand, either provide
too little recommendation on how to represent the function of
the system to perform FHA, or rely on existing design artefacts
which insufficiently support the goals of the process. This paper
presents some of the problems with current modelling languages
(both proposed and used) for FHA which limit the scope, ex-
pressiveness, flexibility, and precision of the analysis. It then
outlines desirable principles an FHA-supporting analysis lan-
guage should embody, and introduces the Functional Reasoning
Design Language (FRDL), a formal modelling language for de-
scribing the functional elements of a system and their interactions,
which aims to satisfy these principles. To demonstrate the use
of this language, the modelling and hazard analysis of a disas-
ter response drone is presented. While this case study is limited
in scope, it highlights how FRDL can represent system function
while reducing the ambiguity present in typical FHA-supporting
functional modelling languages.

Keywords: Hazard Assessment, Functional Modelling, Risk
Analysis, Model-Based Systems Engineering
1. INTRODUCTION

Functional Hazard Assessment (FHA) is one of the first anal-
yses performed in the safety assessment process and is used to
identify the high-level functional hazards which could occur in a
system [1]. This FHA process is a key part of the safety assess-
ment and safety-informed design process for two reasons. First,
because it is conducted prior to design activity, it can have a sig-
nificant impact on driving requirements and decisions supporting
system safety (which one would expect to have more impact on

∗Corresponding author: daniel.e.hulse@nasa.gov

the overall system development process [2]). Second, it is per-
formed not just at the product level, but for each system and
subsystem [1, 3], meaning the process will be undergone several
times in design process as the design becomes more detailed.
However, despite the key nature of the FHA in establishing a
safety strategy, FHAs are often not revisited in the design pro-
cess, but instead feed into more detailed analyses of safety such
as preliminary system safety analyses (PSSAs) and system safety
assessments (SSAs) [4], which can create problems when these
assessments are supposed to be cross-checked against the FHA
in the Verification and Validation process.

Given its importance, improving the FHA process has signif-
icant potential to the overall effectiveness of the safety-informed
design process. While FHA-like “function-level” hazard anal-
yses have been performed from the origin of the safety engi-
neering field (as a part of MIL–P–1629 FMECA processes and
their derivatives), the delineation of FHA as its own process is
somewhat more recent, first being featured in the aviation safety
standard ARP-4761 [1] in 1996 and then in the military safety
standard MIL-STD-882E in 2012 [3]. In essence, the designer
identifies the major functions to be accomplished in the system
and the hazardous conditions which could affect them. While
the standards do not specify the use of any model or diagram to
inform the process, doing so is often necessary for understanding
the effects of failure in highly integrated systems [5]. However,
the lack of a defined formalism to support this process means that
different analysts may create different types of diagrams which
abstract the system differently–whether that be the flow charts
(or “functional flow block diagrams” [5]) used as examples in
ARP-926C [6], containment hierarchies (see examples: [7, 8]),
or the control block diagrams used in STAMP/STPA [9].

Over the past 20 years, two major lines of research have pro-
posed various improvements to the system representation used to
support early design hazard analysis. In the engineering design
literature, much has been done to tie the idea of functional fail-
ures (identified in FHA) to functional modelling frameworks (i.e.,
energy-materials-signals models described in Ref. [10]) proposed

1
The United States Government retains, and by accepting the article for publication, the publisher acknowledges that the United States Government retains, a non-exclusive,

paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for United States Government purposes.



by design theory [11]. Particularly, models in which the functions
of the system act on flows of energy, material, and signals have
been demonstrated in the context of identifying faults and their
propagated effects through the system [12–14]. In the field of
system safety, on the other hand, there has been much activity
applying the ideas of system science to the understanding of how
hazards arise [15, 16]. One of the most influential methodologies
has been Systems Theoretic Process Analysis (STPA) [17], which
is based on the Systems Theoretic Accident Model and Process
(STAMP) hazard model that considers the feedback structure be-
tween processes and their controllers (e.g., software, operators,
etc) [18]. STPA frameworks have seen significant interest from
industry because of their ability to understand accidents by push-
ing the scope of hazard analysis from the designed system (i.e.,
inputs and outputs of a function) to the high-level interactions
between the system and its operators.

While efforts in the literature have provided important theory
for improving the FHA process, they often run into limitations as
the design scope increases from the initiating realm of research
interest (e.g., mechanical systems, socio-technical interactions,
etc.) to more general applications. In previous work, the authors
have developed simulation tools for modelling hazards arising
from operators, physical/mechanical behaviors, as well as their
interactions [19, 20]. As a practical necessity, this has led to
the development of generic, abstract modelling structures for
representing the functions of a system in a way that is amenable to
simulation. This paper applies the insights from this development
work to motivate and develop the Functional Reasoning Design
Language (FRDL) for representing function structures in the FHA
process. The aim of FRDL is to rationalize the development
of FHA while accommodating desirable features identified in
the literature. The major contributions of this work are thus
(1) The identification of issues present in current early design
representation used (in practice and in literature) for FHA, (2) The
identification of principles that functional modelling languages
should embody to address these issues, and (3) The introduction
of the FRDL language which embodies these principles.

The organization of this paper is as follows. First, some
basic background on Functional Hazard Assessment and related
research is presented in Section 2. Then, the issues with these
approaches, definition of principles, and proposed FRDL mod-
elling constructs will be presented in Section 3. Next, FRDL
will be demonstrated in Section 4 and compared with existing
approaches for FHA. Finally, conclusions will be presented in
Section 5, along with lessons and avenues for further work.
2. BACKGROUND

This section discusses the state of standards and ongoing
research in FHA to motivate and contextualize the development
of FRDL in Section 3.
2.1 FHA Standards

The FHA process is defined in the military standard MIL-
STD-882E [3], as well as the aerospace standard ARP-4761 [1]
and FAA Advisory Curricular AC.23.1309-1E [21], as a pro-
cess supporting the identification of product-level hazards which
may occur, as well as their high-level effects. Generally, these
standards do not describe the process of performing the analysis
itself as much as the format of the output (e.g., tables, standard

Function A

Function B Function C

Parallel Functions

Sequential
Functions

FIGURE 1: Template Functional Model in ARP-926

severity classifications, etc). The analysis process for performing
FHA is similar to other discursive hazard analysis approaches
such as Failure Modes and Effects Analysis and Hazard and Risk
Analysis (defined in the ISO-26262 “functional safety” standard
for automotive industries [22]), except that it doesn’t include an
assessment of rate or probability, since that information is not yet
available.

As such, the analysis aspect of FHA may be gleaned from the
Fault/Failure Analysis (F/FA) process described in ARP-926 [6],
which is meant to generalize FMEA-like failure analyses. ARP-
926 describes a “Functional Approach” to F/FA, which may be
performed in a “top-down” or “bottom up,” sense. In the “top-
down” approach, functional analysis is performed that views the
overall function of the system as a single, with its input functions
on the left of the block and output functions on the right of the
block, as exemplified in Figure 15. This is used to determine the
hazardous conditions (failure modes, poor inputs, etc.) and their
effects in the context of the overall system function (i.e., inputs
and outputs from the function). The other, low-level “bottom-up”
analysis creates a functional flow block diagram of the system,
where the overall function is split into a set of interacting func-
tions in which the outputs of one function feed into the inputs of
the next functions, as shown in Figure 3. While these diagrams
are similar to EMS models shown in Figure 3 and 2 (e.g., [10, 23]),
they apply a somewhat similar convention where the arrows con-
necting functions are not flows of energy, materials, and signal,
but merely represent temporal sequence. Forks in arrows thus
represent functions performed in parallel with each other, rather
than in sequence.

However, diagramming conventions vary by domain. No-
tably, for digital systems and equipment (ARP 1834 [24]), func-
tional block diagrams show the interaction of electricity and/or
signals between functions. In this domain, signal connections
are often specified using bidirectional arrows, since communi-
cations may go back and forth between the individual functions
or components using the same channel. This is different from a
functional flow block diagram, where the arrows only flow in one
direction through the system. Additionally, fault probability in
the domain of software is generally considered to be “impossible
to quantify” since they are solely the result of design errors and
not physical processes [25]. Recently, in the autonomous vehicle
domain, ISO-21448 has introduced more methods to assist with
autonomy-related hazards, including the use of systems-theoretic
models to examine hazards arising from the interactions between
the driver, the vehicle, and the environment [26]. This has been
motivated by an increasing interest in accounting for complex
interactions that happen at the system/vehicle level to understand
the risks posted by autonomous systems.

2
The United States Government retains, and by accepting the article for publication, the publisher acknowledges that the United States Government retains, a non-exclusive,

paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for United States Government purposes.



Function Name
Energy In

Material In

Signal In

Energy Out

Material Out

Signal Out

FIGURE 2: Template high-level functional model

To summarize, while FHA-related standards agree in the
general approach of identifying the system functions, hazards,
and resulting effects, the underlying models used to analyze the
system in support of this are not properly standardized and vary by
domain, especially as FHA is applied to increasingly complex and
autonomous systems. The aim of this paper is to address this issue
by providing a single language which can be used consistently
across domains while accounting for the complex interactions
present in autonomous and highly-integrated systems.
2.2 FHA Literature

Literature on FHA can be broken down into examples of FHA
to novel use-cases (such as aeroelastic wings [27], virtual control
towers [28], software [29], and AI/ML functionality [30]) and
the development of methodology to support the FHA process.
While standards do not impose a specific means to model the
functions of the system to inform the FHA process, research has
developed formal methodologies to improve the process. While
the traditional FHA process only requires listing the functions of
the system to identify hazards and their effects, it is considered
good practice to inform the process using function-flow block
diagrams (see Figure 1) [31], especially when designing highly-
integrated systems [5]. Methodologies for FHA generally focus
on ways to improve the underlying language used to represent
functionality, by applying formalized languages and/or modelling
and simulation techniques to the analysis.

One of the most common conventions for representing func-
tion in the FHA literature is with a hierarchical containment
model. In this convention, primary functions of the system are
decomposed into sub-functions and organized in a hierarchical
tree until an acceptable level abstraction is achieved [7, 32]. One
of the obvious failings of this representation is that it doesn’t
capture the behavioral interactions between functions, and is thus
no different than a hierarchical list. As such, methodological ex-
tensions to this approach have enabled the representation of rela-
tionships between functions. The Goal Tree Success Tree Master
Plant Logic Diagram (GTSC-MPLD) provides a more successful
consideration of interactions which provides more operations for
physical interactions using “AND/OR” gates in the context of an
overall function/component hierarchy as well as task analysis for
human operators [33]. However, in doing so, requires much more
detail and thus loses some of the advantage of a functional per-
spective. Other frameworks augment the hierarchical model with
separate (functional-block-diagram-like) diagrams which include
“input/output” and “method/constraint” arrows [34]. While these
methods enable some ability to assess interactions, they are also
somewhat complex methods and tend to push the designer to-
wards breaking the system down into detail, rather than focusing
on high-level hazards one would consider in FHA.

In the engineering design field, there has been much interest
in using formal functional modelling languages to support FHA-
like analyses. Particularly, energy/materials/signals (EMS) mod-

Function A

Energy

Function B

Function C

Signal In

Material In
Material Out

Signal

Energy In

Signal Out

Energy Out

FIGURE 3: Template functional decomposition

els such as the Functional Basis Engineering Design (FBED) [23]
and others [10] have a similar structure to function-flow block di-
agrams, as shown in Figure 15. The main difference is that when
decomposing the overall function into a functional model, they
apply a “spacio-temporal” representation that ties the sequence
of functions to their input-output relationships, as illustrated in
Figure 3, enabling a better understanding of their physical inter-
actions. Using these models has been shown to assist with the
generation of FMEA-style hazard tables [35], and have been ex-
tended to enable the representation of human actions and errors
in the design process [36, 37]. However, EMS-based modelling
approaches are somewhat deceptive in the context of failure anal-
ysis because they represent the system as a directed graph, which
neglects bi-directional propagation behavior and makes it diffi-
cult to understand important feedback loops between the system
and its environment/user (since these are generally considered to
be outside the system boundary).

Modelling and simulation has been an active area of interest
for formalizing, informing, and iteratively developing the FHA.
Many of these simulation approaches have been based on EMS-
type models. Early methods for simulating hazards in functional
models involved creating component models of the system to
propagate to the functional level [12]. These models have further
been augmented with action sequence graphs to simulate func-
tion failures and human error propagation in tandem to support
joint errors [38]. A key insight from simulation has been that
functions often have inherent associated behaviors which can be
modelled without fully specifying components [13], as illustrated
in Figure 6. That is, functions represent defined physical behav-
iors which may be realistically modelled without fully specifying
components. This has led to modelling frameworks that rely
primarily on function information [19], which in turn have been
augmented to further represent human behaviors and hazard by
including human-oriented modelling constructs such as action
sequence graphs, performance shaping factors, and information
networks [20, 39]. Outside of the engineering design literature,
SysML has been used to inform FHA [40]. While this has been
helpful for enabling a model-based hazard analysis paradigm,
SysML has no concept of “function” and one is often left us-
ing diagrams (e.g., activity or block diagrams) which don’t fully
communicate the concept of functionality as having interacting
structural and behavioral properties. In the past, this problem has
been addressed to some extent by creating an interacting simula-
tion that uses an EMS-based modelling paradigm [41]. Similarly,
state charts have been used to simulate behavioral models to in-
form FHA [42], which is helpful for formalizing behavior but
not representing structure, making it difficult to derive failure
propagation without modelling it explicitly via states.

3
The United States Government retains, and by accepting the article for publication, the publisher acknowledges that the United States Government retains, a non-exclusive,

paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for United States Government purposes.



Control Actions Feedback

Controlled Process

Process
Model

Control
Algorithm

Controller/Operator

FIGURE 4: Template STAMP model used in STPA

More recently, systems theory-based hazard analysis ap-
proaches like Function Resonance Analysis Method (FRAM) and
System Theoretic Process Analysis (STPA) have gained attention
due to their ability to represent complex interactions between dif-
ferent system elements [43]. STPA [44] uses a control structure
where the system is considered a collection of interacting con-
trol loops where controllers, controlling processes, and support
systems are captured through blocks and interacting feedback
arrows, as shown in Figure 4. This enables the assessment of
poor control actions–the archetypical cause of “accident”–type
catastrophes which have increasing impact as systems increase in
complexity. FRAM [15, 45], on the other hand, uses a functional
representation where a function is described using six characteris-
tics; inputs, outputs, preconditions, resources, times, and control.
the interconnection between functions are represented through
the connections between function characteristics (e.g., output of
one function is a resource to another) and hazards are considered
to emerge due to the variability of these interactions. Because
of its representation of time-based dynamics and event sequence,
FRAM is somewhat more flexible for understanding the dynamic
behavior of systems necessary for understanding resilience [46].
Both STPA and FRAM resolve a major problem in EMS-based
models, in that they enable the representation of high-impact haz-
ards that arise from the operator and external environment that
would otherwise considered to be outside the system boundary
(and thus, out of scope of the analysis). However, one major
limitation of these methods is that they tend not to treat the phys-
ical/technical aspect of system behavior with as much rigor as
EMS-based methods. Nevertheless, these methods have seen in-
creasing interest from industry, with STPA being suggested in
ISO-21448 as a way to analyze hazard relating to autonomous
and semi-autonomous driving.
3. DEFINING THE FRDL

The development of the functional reasoning design language
is motivated by the inherent issues present in existing system mod-
elling formalisms for informing the FHA. This section highlights
some of these issues, identifies desired principles for an FHA-
supporting language to fulfill, and uses these principles to justify
the modelling constructs which make up the FRDL.
3.1 Defining Behavioral Blocks

One core feature of FHA modelling languages is the repre-
sentation of the overall system and its decomposition into indi-
vidual elements. From there, these blocks may be arranged as a
part of a hierarchy, temporal block diagram (in ARP-926 [47]),
function-flow block diagram (in FFDM [11]), or control structure
(in STPA [17]). In general, these approaches agree that a function
should be a “form-invariant” representation of the overall “pur-

specializes

Function:
Abstract functional
behavior embodied

by the system.

specializes

Action:
Logical behavior or

task performed by the
system.

BehavioralBlock:
Behavioral element or phenomena.

specializes

Component:
Physical hardware
embodying function
or action behaviors.

FIGURE 5: Types of blocks representing system structure.

pose” or “task” performed by the system–a feature they share with
EMS-based functional modelling languages. However, defining
these functions is often an issue for the FHA process, since there
is always some difficulty abstracting what is known about the
system into these functions [5], which is a result of Problem 1.
Problem 1: Existing FHA models impose functional abstrac-
tions which may not be appropriate in a general design context.
Specifically, there is confusion between the system being made up
of “technical functions,” which are functionalities of the system
(i.e., the framework used in the FFDM literature), “tasks,” which
are discrete modes or events the system performs (a framework
more suited to function block diagrams), and components, which
are the physical elements of the system (a framework which often
happens when engineers do not readily conceptualize the func-
tional abstraction). Often, rules imposed by languages enforcing
a single type of abstraction (e.g., a function must be a noun-verb
pair acting on inputs to produce outputs, etc.) do not apprecia-
bly resolve the ambiguities that create this distinction, leading to
incoherent models. This is especially relevant to the design of
aircraft, where the overall function of the aircraft is not readily
expressed in terms of inputs and outputs and utilized functionality
may change over the phases of operation.
Principle 1: Graphical FHA languages should delineate the dif-
ferent temporal and structural aspects of system function. Specif-
ically, functions which are considered more as “tasks” have a
temporal element (e.g., a state in which the task is “complete”
or “failed”), whereas functions considered more as “functional-
ity” must be maintained throughout the operation of the system.
For example, an aircraft may turn left and right multiple times
to accomplish a given mission, tasks which rely on the existence
of pitching and general aviation functionality embodied by wing,
aileron, and control components. The distinction between these
abstractions should thus be clearly delineated so that they are
not confused. As an example, the SysML language differentiates
structural and behavioral elements of the system as “blocks” and
“activities,” respectively, creating a conceptual distinction which
avoids confusion. This principle is embodied in Solution 1.
Solution 1: In FRDL, functions are represented as a type of
behavioral element which may contain actions or components.
Functions, components, and actions are abstract behavioral el-
ements of the system, meaning that they embody phenomena,
as shown in Figure 5. Examples of these phenomena include
physical equations (e.g., equations of motion, force balance, etc),
logical operations, and tasks (e.g., pressing a button or taking an
object to a location). Behavioral blocks are differentiated by the
type of behavior and structure they represent. In this formalism,
functions thus represent abstract functionality which itself may

4
The United States Government retains, and by accepting the article for publication, the publisher acknowledges that the United States Government retains, a non-exclusive,

paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for United States Government purposes.



uses

Affect Forward
Acceleration

ΣTr = Iα
uses

Support Frame

ΣFv = 0

uses

Control Path of Travel

ΣFh = ma

Wheel
(Left Rear)

Wheel
(Right Rear)

Wheel
(Left Front)

Wheel
(Right Front)

Functions: Overall System Behaviors

Components: System Hardware Embodying Behaviors

FIGURE 6: Relationship between functions (high-level behaviors)
and components in an automotive wheelbase.

be further embodied by actions or components. Actions in turn
represent the logical behavior or sequential tasks performed by
the system over the course of an operation, such as taking off or
landing an aircraft. Components, on the other hand, represent
the hardware elements which will physically embody the system.
The relationship between component and function is illustrated
in Figure 6 in the case of wheels in a car, where the functions “af-
fect forward accelleration”, “support frame,” and “control path of
travel” are each based on aggregating individual behaviors from
each of the wheels. This behavioral perspective clarifies the role
of functions compared to components while imposing a level of
formality on what a function can be. Specifically, functions are
concrete system behaviors (e.g., movement, acceleration, force
balance) which will be in the system regardless of the specific
component architecture. However, while delineating behavioral
block types enables a more expressive language for representing
system behavior, more information may further inform analysis,
which motivates Problem 2.
Problem 2: Existing FHA languages do not convey certain rel-
evant aspects of function behavior. Generally, FHA-informing
languages represent functions solely as boxes with a name for the
function, with no further indication of known characteristics of
the function. One exception to this is STPA, which specifies one
box as a “controlled process” and another as a “controller,” which
in turn delineates the type of behavior of each box (as control-
ling versus controlled behavior) and informs the identification of
hazardous behavior associated with each function [17]. Given
the other aspects of functions (timing, embodiment, and con-
trol structure), solely specifying functions as boxes represents
a missed opportunity to use these properties to inform hazard
analysis, justifying Principle 2.
Principle 2: FHA languages should include the flexibility to
convey structural and behavioral attributes to inform analysis.
Relevant structural and behavioral attributes should be able to
be expressed when representing functions to better inform haz-
ard identification. Properties like timing, embodied components,
parameters, can all improve the understanding of hazardous be-
havior. Thus, to inform analysis, designers should be given a
means to convey this information–not as a requirement of the
FHA process, but as an option to provide more detail. Providing
this capability would further help address Problem 1 by giving
designers a means to not lose relevant information when applying
the functional abstraction. This motivates Solution 2.
Solution 2: In FRDL, behavioral blocks may be annotated to con-

i:dt:o

start time
i: input arrow

s: scenario start
<num>: given time

change interval
dt: unspecified

<num>: given timestep

end time
o: output arrow
e: scenario end
<num>: given time

starts scenario
(if provided)

ends scenario
(if provided)

Dynamics Tag

H Human A
Ph Physical Process L Logical Process

PlPe Perception
Cm Communications Cn Controls

Within System
Boundary

Out of System
Boundary

Contains Component, Action,
and/or Function ArchitectureCAF

Behavior Tag

Architecture Tag

Scope Tag

FIGURE 7: Proposed tags for annotating functions

vey relevant behavioral and structural details. In order to specify
hazard-effecting details which may inform analysis, FRDL en-
ables the use of tags and annotations. These tags are shown in
Figure 7 and explained in the next sub-sections.

3.1.1 Design Scope. With the increasing autonomous op-
erations of complex engineered system in safety-critical environ-
ments (e.g., autonomous vehicles), it is becoming increasingly
important to extend the scope of hazard analysis to consider in-
teractions between the system and the environment. However,
conveying this from a functional perspective may be confusing–
typically, there is guidance to think of functions as intended func-
tionality or “tasks” the system must perform [10]. To consider
external interactions outside of the design scope, there should
thus be a means to clarify which functions are external versus
designed. In FRDL, this may be represented using the “Design
Scope” tags shown in Figure 7, where a white box represents
a designed aspect of the system, and a grey box represents an
external function the system interacts with.

3.1.2 Architecture. One key feature of the functional ab-
straction is that functions may be broken down into further sub-
functions, or, as specified in Solution 1, embodied by components
or actions. As this is performed, the overall function may thus
be considered to contain architectural information. If these de-
tails have been represented somewhere (e.g., on a lower-level
diagram), it may be important to convey that information so they
may be referenced in the overall hazard analysis. In turn, it should
be possible to distinguish functions which have been broken down
in detail like that (e.g., a pre-designed function) as opposed to

5
The United States Government retains, and by accepting the article for publication, the publisher acknowledges that the United States Government retains, a non-exclusive,

paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for United States Government purposes.



being treated at a high-level (a function to design). In FRDL,
this may be represented using the “Architecture” tags shown in
Figure 7, where a C represents a component architecture, an A
represents an action architecture, and F represents a functional
architecture (see Section 3.3 for definitions).

3.1.3 Behavior Type. As mentioned previously, different
types of behavior may have different types of hazards associated
with them. In particular, physical behaviors can be modified by
physical conditions, and thus have a variety of physical mecha-
nisms associated with them that can cause them to fail. Logical
behaviors (i.e., control logic), on the other hand, cannot be mod-
ified, except insofar as they are embodied by physical processes
(e.g., memory, bit-flips, etc) or implementation (design errors).
This information can thus be used to inform the analysis, as ex-
emplified in the literature (see: [17, 20]). FRDL represents this
behavioral information using the “behavior type” tag shown in
Figure 7, which delineates human/autonomous agents represent-
ing types of operators, physical/logical types of elemental behav-
iors, and planning, perception, communications, and control as
sub-operational behaviors. Note that the list of tags provided may
be expanded as more behavioral distinctions are identified, and
that multiple tags may be used for each function to represent the
full scope of behavior within the function.

3.1.4 Dynamics. Finally, an important and related aspect
of functional behavior is the dynamics involved. Behavioral dy-
namics determine important hazard-effecting properties like fault
opportunity (i.e., in which phases of operation a fault may arise),
timing errors (highlighted in STPA [17]), and resulting effects (as
explored in [48]). This time-related information is further impor-
tant for understanding the resilience of the system (i.e., capacity
for recovery). To specify this dynamic information, FRDL uses
the “Dynamics” tags shown in Figure 7, which state whether the
function or action activates at a given time, updates continuously
over a given timestep, and deactivates at a particular time. Note
that these specifics may not be known early in the FHA pro-
cess and thus are not required to be specified in full, and should
be considered notional, abstract assumptions used to support an
analysis, rather than concrete system requirements. For example,
tagging a the function “accumulate water” with a timestep of 1
minute means that the task of accumulating water progresses in
the scale of minute, not that it must literally accumulate the wa-
ter every minute. Further means of specifying the dynamics of
function behavior in the context of its interactions are defined in
Section 3.2.2.
3.2 Defining Flows

In FHA-supporting languages, flow arrows represent a few
distinct but related properties. In function-flow block diagrams,
flow arrows represent sequence, while in EMS-based functional
models, flow arrows represent “spacio-temporal” information–
meaning, the transference of energy, material, and signal and the
sequence implied by that transference [10, 23]. This presents
ambiguities and limitations which make it difficult to represent
bi-directional interactions which unfold over time, as stated in
Problem 3.
Problem 3: FHA languages apply ambiguous definitions of
functional flow which conflate “what” with “when” and “how”.
Specifically, arrows can represent causality or sequence, but can

Flow:
Shared

Variables or
Properties

specializes

CommsFlow:
Flow network

enabling
communications

MultiFlow:
Flow with
Multiplicity

specializes

FIGURE 8: Types of flows

also represent input-output relationships of energy, materials, and
signals. These arrows confuse the analyst’s understanding of sys-
tem failure propagation, because functional interactions are often
bi-directional, meaning the functional failures may not solely im-
pact “downstream” functions later in the sequence of arrows, but
also “upstream” functions. For example, a short in a light bulb not
only affects the optical energy output, but also affects power input
from electricity sources. This potential for bidirectional causality
is not represented in current FHA-supporting languages in part
because they confuse EMS linkages with causality, motivating
Principle 3.
Principle 3: FHA languages should delineate between causality
and connections between functions. It is important to repre-
sent both connections (i.e., the “what”–energy, materials, sig-
nals and/or shared variables or properties) and causality (i.e., the
“how” specifying what properties cause a change in behavior)
as linkages between functions. Causality is important for un-
derstanding how a change in one block may lead to changes in
other (e.g., for advancing to the next step in a sequence of tasks).
Connections, on the other hand, are important for representing
the mechanisms by which a change in one function’s behavior
may effect other functions. Both sets of information should be
included to support analysis, but they should be delineated to
avoid their conflation.
Solution 3: Causality and connections may represented via flow
nodes and connection, activation, and propagation relationships.
Flows in FRDL are defined as nodes which connect behavioral
blocks in an overall architecture. Flows represent the shared vari-
ables which connect functions, which may be energy, materials,
signals, or other shared aspects (e.g., components, objects, ag-
gregations of properties, etc.). As nodes (as opposed to edges),
flows can belong to more than two behavioral blocks, which repre-
sents an advancement over traditional representations of function
(e.g., EMS models). This enables the representation of more
complex interactions between functions typical of complex sys-
tems, such as variable coupling (e.g., multiple functions in an
aircraft sharing the same position, velocity, attitude, etc). The
notion of perception and communication relationships is further
expressed by delineating types of flows, as shown in Figure 8,
which follows the definitions described in previous work [39] for
representing distributed situational awareness properties. Here,
MultiFlows represent flows which contain multiple copies (e.g.,
ones perceived by individual functions), while CommsFlows may
represent an entire flow network enabling communications (i.e.,
flow copies communicated between different functions). These
containment arrows and flow types provide a rich language for
understanding how shared properties flow between functions.

Three main types of relationships are defined to related be-
havioral blocks and flows, as shown in Figure 9, which represent
the connection of the block to the flow, how the flow activates

6
The United States Government retains, and by accepting the article for publication, the publisher acknowledges that the United States Government retains, a non-exclusive,

paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for United States Government purposes.



Connection Type
(e.g., uses, percieves)

Condition
(e.g., x>10)

ToFrom
Activation

Connection
Block Flow

Propagation

Condition To
Unidirectional Propagation

[Block Condition]>o
(Flow Condition)>□

N-Directional Propagation

Block Flow

Reverse Condition (r) FromTo

FIGURE 9: Options for representing flow containment and propa-
gation relationships.

blocks (and vice versa), and how the propagation of flow char-
acteristics between blocks. These are described in detail in the
following subsections:

3.2.1 Aggregation. With flows defined as variables and
properties shared between behavioral blocks, aggregation con-
nections (a relationship borrowed from SysML) may be used to
describe whether a flow belongs to a given block. These connec-
tions are represented with a diamond at the block end and a line at
the flow end, as shown in Figure 9. Connection type annotations
may additionally be used to give more insight into how tightly
the flow couples the blocks it connects. For example, a “uses”
annotation could be used to convey that the block takes the flow
as input and modifies it (which may be a strong coupling), while
a “perceives” annotation could be used to convey that the block
copies the input (which may be a weaker coupling).

3.2.2 Activation. In FRDL, the activation behavior may be
specified separately from sharing of flows, to enable a clearer
picture of the interactions between functions. Activation refers to
how the behavior in one function (or values of a flow) changes or
updates the behavior of a connected function. This idea originates
from the simulation of tightly-coupled behavioral models, where
simulating one functional block often requires re-simulating con-
nected function to propagate failures and achieve consistent be-
havior. In previous work, this has been accommodated via “static
propagation” algorithms in fmdtools functional models [19] and
conditions in action sequence graphs [20]. Outside of simulation,
conveying propagation has potential to rationalize hazard anal-
ysis process by making the tabulation of effects from initiating
causes more legible and explicit. To achieve this, FRDL provides
the activation arrows shown in Figure 9, which may be used to
describe how a condition from one block will result in changed
behavior in another block via their flow connections.

3.2.3 Propagation. Finally, propagation arrows, shown in
Figure 9 represent both the connection of blocks and flows, as well
as the activation or update behavior that is carried by the flow.
Propagation arrows are represented with an arrow along with
the activation condition(s) it carries, may be unidirectional or
n-directional, and can optionally additionally be annotated with
type tags (e.g., <uses>) at the end of the edge corresponding

rate (r)

<uses>

feedback (r)

<controlled by>

provided

<provides>

heat

<outputs>

Function Name

controlControl Function
Name

potential

Provide Energy

providedSupply Material

External
Signals

External
Energy

In

used (r)
<uses>External

Material
In

Evacuate Waste
Energy

used (r)

Take Output
Material From

Function Name

External
Material

Out

evac rate (r)External
Energy

Out

Ph

Ph

A, Co

Ph

Ph

0:dt:e

Ph, L, CoF

i:dt:off

s:dt:e

s:dt:e

i:dt:o

FIGURE 10: Function-In-Context Diagram for Figure 2

to the behavioral block, as shown in Figure 10. Unidirectional
arrows convey a single reversible direction of propagation, with
activation conditions propagating along the direction specified
by the arrow and reverse activation conditions (marked with (r))
propagating in the reverse direction.

N-directional propagation arrows carry multiple activating
conditions between blocks and flows using the notation shown in
Figure 9, where [condition]> ◦ represents a block condition
activating a flow and (condition)> □ represents a flow con-
dition activating a block. While propagation arrows convey the
same information as activation and connection arrows, they are
recommended for use when flows connect more than two blocks
or when a block is expected to be decomposed in a lower-level
architecture diagram, since they concisely group multiple related
flow properties.
3.3 Architectures

In the FHA processes, various representations are used to
show how an overall function is embodied by sub-functions.
These sub-functions are in turn used to identify hazardous scenar-
ios which may effect the overall function. As described in Prob-
lems 1 and 3, this is in part due to inadequate function and flow
abstractions, which may be solved (Solutions 1 and 3) by defin-
ing different types of blocks (function, component, and action) in
terms of behavior and structure and separating flow containment
from the propagation behavior. When taken together, the result-
ing language provides a means of describing system architecture
described in Solution 4.
Solution 4: System architectures are represented with bipartite
graphs of blocks and flows, where edges may represent contain-
ment and propagation relationships.

In FRDL, architectures are represented using bipartite graphs
of functions and flows to better express behavioral interactions
between functions. A template for this representation is shown in
Figure 11. In this representation, flows may be shared by multiple
functions without (on its own) conveying an input-output relation-
ship. Instead, the propagation information is specified explicitly
via propagation arrows. This is an important consideration for
modelling highly-coupled physical systems, where different prop-
erties flow though the system in different directions. For example,
in a valve system, water may flow in a defined spacio-temporal di-
rection, but a blockage of water may cause a backup of pressure,
leading to faults considered “previous” in the functional flow.
This overall system representation may be specialized by block
type to further describe different types of system architectures.

7
The United States Government retains, and by accepting the article for publication, the publisher acknowledges that the United States Government retains, a non-exclusive,

paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for United States Government purposes.



new

signal

Function A
potential

Function B

External
Energy

In

External
Material

Out

[provided]>o

(taken)>□

usage (r)

[heat]>o

(evac rate)>□

Function C

new
signal

Control
Signal

Internal
Energy External

Energy
Out

External
Material

In

i:dt:o

i:dt:o

i:dt:off

Ph

L,Co

Ph

[feedback]>o

(control)>□

External
Signals

[rate]>o

(potential)>□

[used]>o

(provided)>□

FIGURE 11: Functional Architecture Corresponding to Figure 3

Action 1
CompleteAction 1 Action 2

Complete

Action 2
Failed

Action 2 Action 3
0::

affects
modifies usesAffected

Flow 2

uses

uses

uses
Affected
Flow 1

Action 4
Complete Action 4

::e

FIGURE 12: Template Action Architecture Diagram

3.3.1 Architecture Types. Considering the three types of
behavioral blocks presented in Section 3.1, three main types of
system architecture diagrams may be defined–functional archi-
tectures, action architectures, and component architectures.

Functional Architecture Diagrams show the functions
of the system and their interactions via flows and propaga-
tion/activation arrows. These diagrams are important for convey-
ing the high-level behaviors of the system and their interactions
with each other, as illustrated in Figure 10 and Figure 11. One
common characteristic of function architecture diagrams is that
interactions between functions may be based both on updated
information (e.g., if a flow changes in one function, it changes
another connected function) as well as the unfolding of behavior
over time. As a result, it can be useful to use the time-based
behavior tags (in addition to propagation arrows) to specify how
these functions may be activated. Two major functional archi-
tecture diagrams may be used to support the FHA process. In
the initial top-down analysis of hazards, a Function-In-Context
Diagram, which shows the overall functionality provided by the
system and its interactions with external functions (see Figure 10)
may be developed to support the process. In the bottom-up anal-
ysis of hazards, on the other hand, the Functional Architecture
diagram may be used to analyze the individual functions of the
system and their interactions with each other (see Figure 11).

When analyzing the logical behavior of the system, Action
Architecture Diagrams may be constructed to convey the se-
quence of tasks performed by the system over time. A template

uses
Component B

(left)uses
Component A

(right)

Interaction
Flow (e.g.

Force)

new input
signal

new input
signal

Input
Signal

Flow to
Affect

new
output

new
output

New Value

New Value

FIGURE 13: Template Component Architecture Diagram

of this diagram type is shown in Figure 12. One unique property
of action architectures is that the propagation arrows are often
based on completion or performance of tasks, rather than new
inputs or output flow values. This is because action architec-
tures are generally used to represent how the system transitions
between states over time.

Finally, when analyzing the interactions between specific
components in a function or set of functions, an Component Ar-
chitecture Diagram can be constructed, as shown in Figure 13.
Note that component architectures may be similar to functional
architectures, since they show a static view of behavioral propaga-
tion across physical properties of the system, rather than tasks ac-
complished over time. The main difference is that the functional
view summarizes an overall behavior (e.g., locomotion) fulfilled
by a component architecture (e.g., wheels on a car). Since compo-
nents may contribute to multiple functions, components may be
featured in multiple component architectures contained in differ-
ent functions which would take on different characteristics (e.g.,
wheels on a car both contribute to moving the passengers as well
as supporting them vertically).

These architectures represent the propagation of behavior
between different aspects of the system. In general, these views
of the system may be used to form an overall hierarchy of abstrac-
tion, where the functional decomposition is used to represent the
overall, integrated behavior of the system, while component and
action architectures are used to represent the behavior of indi-
vidual functions–specifically, component architectures are used
to represent the embodiment of functions as hardware while ac-
tion architectures are used to represent the tasks or sequence of
operations defining controller and/or operator functions.
3.4 Summary and Process

FRDL thus provides a unified, integrated model for under-
standing behavior in complex systems at varying levels of abstrac-
tion to support design activities. Using this language, one can
define the structure and behavior of the system to inform hazard
analysis both in early design (when one is interested in analyzing
overall behavior and interactions) and carry it into the later de-
sign stages (when one is interested in analyzing the behavior of
subsystems and components). Using FRDL to support the tradi-
tional hazard analysis process would thus involve going through
the process shown in Figure 14 (though it should be noted that
FRDL is merely a language and could, in theory, support many
different types of analyses).

8
The United States Government retains, and by accepting the article for publication, the publisher acknowledges that the United States Government retains, a non-exclusive,

paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for United States Government purposes.



Traditional Approach
(ARP-926)

Use overall function
diagram with inputs

and outputs to identify
high-level hazards
from the top-down

Use functional-flow
block diagram to

identify sources of
hazards from

contained functions
from the bottom-up

Overall
Functional

Analysis

Functional
Architecture

Analysis

Controls
Analysis

Component
Analysis Use component block

diagram to identify
sources of hazards at
the system level from
the component level.

Proposed Approach
using FPDL

Create function-in-
context diagram to
analyze hazardous

interactions between
the system function
and its immediate

context

Create function
architecture

diagram to analyze
the propagation of

hazards through the
system.

Create action
architecture

diagrams of control
functions to analyze

control failures

Create component
architecture

diagrams to analyze
how component

failures propagate to
the functional level

FIGURE 14: Proposed FHA process using FRDL.

This approach has a number of advantages over approaches
used in practice as well as in literature. Unlike traditional FHA
approaches, the formalism FRDL provides can be used to perform
controls analysis, a capability which is becoming more and more
important as systems become more automated. While this analy-
sis can already be performed using an approach like STPA [17],
FRDL’s unified language means that the analysis of controls can
be inherently integrated with component and functional analyses,
rather than requiring a separate model and process. A major
advantage of this unified view is that it means there can be di-
rect, internal consistency between the different types of analyses
that carry through the safety analysis process from the earliest
(functional stages) through detailed design. This in turn should
enable a streamlined V&V process, since high-level and low-
level analyses of hazards can be kept consistent throughout de-
sign, rather than having high level analyses be abandoned as the
design becomes more detailed, only to then need to be brought
into consistency as a part of V&V. While this unified view is
possible to achieve in simulation (see: [20, 38]), the setup cost for
a simulation is relatively high compared to a diagram and exist-
ing diagramming approaches have not supported this ability very
well. Thus, FRDL has potential to encourage the transforma-
tion of safety analysis from its existing document-based approach
process into an agile, model-based process.
4. DEMONSTRATION: DISASTER RESPONSE DRONE

This section demonstrates the use of the FRDL language on a
drone carrying out a wildfire surveillance mission. In this demon-
stration the drone is tasked with autonomously flying to an active

Unmanned Aircraft
System

Electrical Power

Survey

Mitigate

Return to home prompt

Stored data

Error logs

Aviate

Retardant

Service

Retardant reload

Battery swap

Communications
Navigation control

Return to home mode

Retardant deployment
Obstacle avoidance

Speed and altitude signal

Battery level signal

GPS signal

System health signal

Incidental Input Functions

Non-Operational
Input Functions

Non-Operational
Output Functions

Diagnostic Display
Output Functions

Primary Output FunctionsPrimary Input Functions

Metrics

Incidental Output Functions

Retardant level signal

FIGURE 15: Drone Function Diagram

Supply and
Maintain Drone

Communicate
with Drone

[fire moved]>o
(fire mitigated)>▢

Propagate Fire
Survey and
Mitigate Fire

A

H,Cm

Ph

Comms

Environment

[drone sent]>o
(drone recieved)>▢

[ext sent]>o
(ext recieved)>▢

i:1m:o

0:1m:i

CA

H

i:1m:o
s:10m:e

Mission
Over

[fire mitigated]>o
(fire moved)>▢

provides

Ready for
Mission uses

Supplies

FIGURE 16: Drone Function-in-Context Diagram

fire, mapping the area with onboard surveillance technology, and
providing feedback to the ground crew about the evolution of
the fire. While the drone acts autonomously, the ground crew is
tasked with inspecting the drone and ensuring its airworthiness
pre-flight, as well as defining overall mission scope (surveillance,
retardant drops, etc.). In-flight, the system is equipped with self-
diagnostic tools that will gauge critical parameters such as battery
health, amount of available retardant, among others, and initiate
a return-to-home command if any of those drops below a safety
threshold. The hazards in this drone have been analyzed in pre-
vious work, which proposed the use of Model-Based Systems
Engineering for Fault Tree Analysis and FMECA [49, 50]. One
issue with that work was that it relied on subjective interpretation
and judgement to assess the consequences of hazards. The aim of
this demonstration is to show how FRDL can better inform this
kind of assessment by unambiguously formalizing the behavioral
interactions between functions in the context of the overall FHA
process shown in Figure 14.
4.1 Overall Functional Analysis

Overall functional analysis defines the function of the system
and its inputs and outputs to identify and evaluate high-level haz-
ards. In ARP-926, these inputs and outputs are functions used by
the system (primary, incidental, and non-operational) and func-
tions provided by the system (primary, incidental, diagnostic, and

9
The United States Government retains, and by accepting the article for publication, the publisher acknowledges that the United States Government retains, a non-exclusive,

paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for United States Government purposes.



non-operational), as shown in Figure 15. In the FRDL approach,
on the other hand, the overall function of the system is presented
in the context of its interactions with external functions, as shown
in Figure 16. These diagrams have slightly a different scope
and properties which will affect hazard analysis–while the drone
function diagram in Figure 15 provides a more detailed account-
ing of all inputs and outputs by eliciting the different categories,
it conveys very little in terms of how the function will interact
with its environment and operators. Furthermore, the idea of
“input” and “output” functions is confusing, since it lacks timing
information. On the other hand, the function-in-context diagram
in Figure 16, provides much more information about the inter-
actions and timing of the functions it performs, which is helpful
for understanding how external factors (e.g., misperception of en-
vironment, failure to receive messages) may drive drone failure
and why (e.g, sensor failure, communications interference). Note
that while this may appear to come at the expense of detail, these
details may be further added by further defining the properties
of the individual flows (e.g., defining supplies to include battery
swap and retardant reload).
4.2 Functional Architecture Analysis

Diagrams conveying architectural information are used to
inform the bottom-up analysis of how failures in sub-functions
lead to overall functional failure. This would be achieved for
the drone per ARP-926 using a function-flow block diagram, as
shown in Figure 18. In this work, a function architecture diagram
as shown in Figure 17 is proposed to take the place of the function-
flow block diagram. While a full assessment of hazards is out
of the scope of this short demonstration, it should be apparent
how much more informative the function architecture diagram
is conveying than the function block diagram. Specifically, by
providing much more information in a much more formalized
way, the function architecture can be used to trace hazards from
their originating function through the system architecture.

As an example, consider a motor failure in the “Aviate” func-
tion. As depicted in Figure 17, it can easily be traced to the
inability to affect the environment (and thus, drop retardant and
execute mission), as well as potential for adverse energy usage.
Considering an analogous fault in the “acquire thrust” function
of the function block diagram in Figure 18, can only readily be
traced to being unable to fly to the fire area and drop retardant.
This illustrates how the FRDL-based function architecture can
be used to better identify failure propagation paths through the
system. However, it should be noted that the FRDL diagram
requires more set-up effort to define the diagram. The benefit
of this effort is that it provides a more formalized design artifact
which can continue to inform the design process as the system
becomes more detailed.
5. CONCLUSION

This paper highlighted some of the challenges using existing
functional representations of systems to support hazard analysis.
In hazard analysis standards, the representation of the system is
often an informal block diagram or containment structure, which
both provide an inadequate understanding of system interactions
and behaviors for understanding how hazardous conditions prop-
agate through the system. To address these challenges, this paper
proposes the use of the Functional Reasoning Design Language

Plan and Execute
Mission

EE Used (r)

changed
position

Aviate

[retardant used]>o
(retardant supplied)>▢

release

Contain and
Release Retardant

EE Supplied

EE Supplied

Store and Supply
Energy

Supplies

Aviation
Control

E.E.
High

Retardant
Control

feedback (r) control

[sent]>o
(recieved)>▢

[charge used]>o
(charge supplied)>▢

C

C CA

EE Used (r)

CA
Ph

Ph
Pl, Co

EE Used (r)

updated
state

EE Used (r)

Perceive
environment

CA

changed
state

Perceived
Env. and
Position

changed
supply level

release released

Comms

E.E.
Low

Environment

s:dt:e

s:dt:e

i:10s:o
i:dt:o

s:dt:e

Pr

Ph

FIGURE 17: Drone Functional Architecture

Mitigate fire Survey fire area

Import supplies Mitigate Fire

Drop retardant

Deploy
retardant

Map fire area

Fly to fire area

Check retardant
status

Acquire thrustImport energy

FIGURE 18: Drone Function Block Diagram

(FRDL) to represent system function and interactions in support
of hazard assessment. This language was developed based on
lessons learned developing high-level simulations of hazardous
behaviors, and thus resolves many ambiguities which can lead to
poor system specification. We were able to then demonstrate this
language on a multirotor drone used for fire response, showing
how this language can help represent the functional, operational,
and hardware aspects of failure to support overall hazard assess-
ment. This language has a number of advantages over the state
of the literature and practice due to its ability to represent each of
these aspects in an unambiguous and consistent model.

This work represents a start at developing a coherent lan-
guage to support the assessment of hazards in the engineering
process. In future work, we hope to more comprehensively (quan-
titatively, rather than qualitatively) study the use of FRDL vis-a-
vis existing FHA languages for identifying hazardous conditions,
scenarios, and effects. Ideally, future work should empirically
study if designers using this language identify more hazards,
and effects. Additionally, this language is currently merely a
specification–in future work, we further hope to develop a com-
prehensive toolset for hazard analysis, including a model-based
systems engineering tool for developing these models and linking
them with explicit analyses (FHA, FMEA, FTA, etc).
ACKNOWLEDGMENTS

This research was funded by the System-Wide Safety project
in the NASA Aeronautics Research Mission Directorate. The
findings herein represent the research of the authors and do not
necessarily the view of the U.S. Government or NASA. Reference
herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not
constitute or imply its endorsement by the U.S. Government.

10
The United States Government retains, and by accepting the article for publication, the publisher acknowledges that the United States Government retains, a non-exclusive,

paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for United States Government purposes.



REFERENCES
[1] Committee, SAE International S-18 et al. “ARP4761 Guide-

lines and methods for conducting the safety assessment pro-
cess on civil airborne system and equipment.” Warrendale,
Pennsylvania: Society of Automotive Engineers (1996).

[2] Tan, James JY, Otto, Kevin N and Wood, Kristin L. “Rela-
tive impact of early versus late design decisions in systems
development.” Design Science Vol. 3 (2017): p. e12.

[3] Smith, Robert E. “MIL-STD-882E.” Department of De-
fence (2012).

[4] Joshi, Anjali, Whalen, Mike and Heimdahl, M. “Model-
based safety analysis final report.” NASA Techreport (2005).

[5] Wilkinson, PJ and Kelly, TP. “Functional hazard analysis
for highly integrated aerospace systems.” (1998).

[6] Aircraft, SAE S-18, Dev, Sys and Committee, Safety As-
sessment. “SAE ARP926C: Fault/Failure Analysis Proce-
dure.” SAE International (2018).

[7] Graydon, Mallory, Neogi, Natasha A and Wasson, Kim-
berly. “Guidance for designing safety into urban air mo-
bility: Hazard analysis techniques.” AIAA Scitech 2020
Forum: p. 2099. 2020.

[8] Denney, Ewen W. “AdvoCATE User Guide.” NASA V&V
Commercial Systems TC-3 Conference and Seminar Series.
2022.

[9] Leveson, Nancy. “STPA (System-Theoretic Process Anal-
ysis) Compliance with MIL-STD-882E and other Army
Safety Standards.” (2016)URL http://sunnyday.mit.edu/
compliance-with-882.pdf.

[10] Pahl, Gerhard and Beitz, Wolfgang. Engineering design: a
systematic approach. Springer Science & Business Media
(2007).

[11] Stone, Robert B., Tumer, Irem Y. and Van Wie,
Michael. “The Function-Failure Design Method.”
Journal of Mechanical Design Vol. 127 No. 3
(2004): pp. 397–407. DOI 10.1115/1.1862678. URL
https://asmedigitalcollection.asme.org/mechanicaldesign/
article-pdf/127/3/397/5601418/397_1.pdf, URL
https://doi.org/10.1115/1.1862678.

[12] Kurtoglu, Tolga and Tumer, Irem Y. “A Graph-Based
Fault Identification and Propagation Framework for Func-
tional Design of Complex Systems.” Journal of Mechan-
ical Design Vol. 130 No. 5 (2008): p. 051401. DOI
10.1115/1.2885181.

[13] McIntire, Matthew G, Keshavarzi, Elham, Tumer, Irem Y
and Hoyle, Christopher. “Functional models with inherent
behavior: Towards a framework for safety analysis early in
the design of complex systems.” ASME International Me-
chanical Engineering Congress and Exposition, Vol. 50657:
p. V011T15A035. 2016. American Society of Mechanical
Engineers.

[14] Jensen, David, Tumer, Irem Y and Kurtoglu, Tolga. “Flow
State Logic (FSL) for analysis of failure propagation in early
design.” International Design Engineering Technical Con-
ferences and Computers and Information in Engineering
Conference, Vol. 49057: pp. 1033–1043. 2009.

[15] Patriarca, Riccardo, Di Gravio, Giulio, Woltjer, Rogier,
Costantino, Francesco, Praetorius, Gesa, Ferreira, Pedro

and Hollnagel, Erik. “Framing the FRAM: A literature re-
view on the functional resonance analysis method.” Safety
Science Vol. 129 (2020): p. 104827.

[16] Zhang, Yingyu, Dong, Chuntong, Guo, Weiqun, Dai, Jiabao
and Zhao, Ziming. “Systems theoretic accident model and
process (STAMP): A literature review.” Safety science Vol.
152 (2022): p. 105596.

[17] Ishimatsu, Takuto, Leveson, Nancy G, Thomas, John,
Katahira, Masa, Miyamoto, Yuko and Nakao, Haruka.
“Modeling and hazard analysis using STPA.” (2010).

[18] Leveson, Nancy. “A new accident model for engineering
safer systems.” Safety science Vol. 42 No. 4 (2004): pp.
237–270.

[19] Hulse, Daniel, Walsh, Hannah, Dong, Andy, Hoyle, Christo-
pher, Tumer, Irem, Kulkarni, Chetan and Goebel, Kai. “fmd-
tools: A fault propagation toolkit for resilience assessment
in early design.” International Journal of Prognostics and
Health Management Vol. 12 No. 3 (2021).

[20] Irshad, Lukman and Hulse, Daniel. “Resilience Modeling in
Complex Engineered Systems With Human-Machine Inter-
actions.” International Design Engineering Technical Con-
ferences and Computers and Information in Engineering
Conference, Vol. 86212: p. V002T02A024. 2022. Ameri-
can Society of Mechanical Engineers.

[21] Administration, Federal Aviation. “AC.23.1309-1E.”
(2011)URL https://www.faa.gov/documentLibrary/media/
Advisory_Circular/AC_23_1309-1E.pdf.

[22] ISO. “ISO 26262 Road vehicles — Functional safety.”
(2018).

[23] Stone, Robert B and Wood, Kristin L. “Development of a
functional basis for design.” International Design Engineer-
ing Technical Conferences and Computers and Information
in Engineering Conference, Vol. 19739: pp. 261–275. 1999.
American Society of Mechanical Engineers.

[24] International, SAE. “ARP1834 Fault/Failure Analysis For
Digital Systems and Equipment.” Warrendale, Pennsylva-
nia: Society of Automotive Engineers (2018).

[25] SC-205, RTCA Committee. “DO-178C Software Consider-
ations in Airborne Systems and Equipment Certification.”
(2011).

[26] ISO. “ISO-21448 Road vehicles — Safety of the intended
functionality.” (2022).

[27] Noviello, Maria Chiara, Dimino, Ignazio, Concilio, Anto-
nio, Amoroso, Francesco and Pecora, Rosario. “Aeroelastic
assessments and functional hazard analysis of a regional air-
craft equipped with morphing winglets.” Aerospace Vol. 6
No. 10 (2019): p. 104.

[28] Meyer, Lothar, Vogel, Markus and Fricke, Hartmut. “Func-
tional hazard analysis of virtual control towers.” IFAC Pro-
ceedings Volumes Vol. 43 No. 13 (2010): pp. 146–151.

[29] Tran, Vu N, Tran, Long V and Tran, Viet N. “Functional
Hazard Analysis for Engineering Safe Software Require-
ments.” 2021 4th International Conference on Information
and Computer Technologies (ICICT): pp. 142–148. 2021.
IEEE.

[30] Nagy, Bruce, Edwards, Loren and Sivapragasam, Gunen-
dran. “Functional hazard analysis and subsystem hazard

11
The United States Government retains, and by accepting the article for publication, the publisher acknowledges that the United States Government retains, a non-exclusive,

paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for United States Government purposes.

http://sunnyday.mit.edu/compliance-with-882.pdf
http://sunnyday.mit.edu/compliance-with-882.pdf
https://doi.org/10.1115/1.1862678
https://asmedigitalcollection.asme.org/mechanicaldesign/article-pdf/127/3/397/5601418/397_1.pdf
https://asmedigitalcollection.asme.org/mechanicaldesign/article-pdf/127/3/397/5601418/397_1.pdf
https://doi.org/10.1115/1.1862678
https://doi.org/10.1115/1.2885181
https://www.faa.gov/documentLibrary/media/Advisory_Circular/AC_23_1309-1E.pdf
https://www.faa.gov/documentLibrary/media/Advisory_Circular/AC_23_1309-1E.pdf


analysis of artificial intelligence/machine learning functions
within a sandbox program.” Acquisition Research Program
(2021).

[31] Ericson, Clifton A et al. Functional Hazard Analy-
sis. John Wiley & Sons, Ltd (2005): Chap. 15, pp.
271–289. DOI https://doi.org/10.1002/0471739421.ch15.
URL https://onlinelibrary.wiley.com/doi/pdf/10.1002/
0471739421.ch15, URL https://onlinelibrary.wiley.com/
doi/abs/10.1002/0471739421.ch15.

[32] Johannessen, Per, Grante, Christian, Alminger, Anders, Ek-
lund, Ulrik and Torin, Jan. “Hazard analysis in object ori-
ented design of dependable systems.” 2001 International
Conference on Dependable Systems and Networks: pp. 507–
512. 2001. IEEE.

[33] Modarres, Mohammad. “Functional modeling of complex
systems using a GTST-MPLD framework.” Proceedings
of the International Workshop on Functional Modeling of
Complex Technical Systems: pp. 12–14. 1993.

[34] Rasmussen, Birgitte and Whetton, Cris. “Hazard identi-
fication based on plant functional modelling.” Reliability
Engineering & System Safety Vol. 55 No. 2 (1997): pp.
77–84.

[35] Stone, Robert B, Tumer, Irem Y and Van Wie, Michael.
“The function-failure design method.” Journal of Mechan-
ical Design Vol. 127 No. 3 (2005): pp. 397–407.

[36] Sangelkar, Shraddha and McAdams, Daniel A. “Creat-
ing actionfunction diagrams for user centric design.” 2012
ASEE Annual Conference & Exposition: pp. 25–355. 2012.

[37] Soria Zurita, Nicolás F, Stone, Robert B, Onan Demirel,
H and Tumer, Irem Y. “Identification of human–system
interaction errors during early design stages using a func-
tional basis framework.” ASCE-ASME Journal of Risk and
Uncertainty in Engineering Systems, Part B: Mechanical
Engineering Vol. 6 No. 1 (2020): p. 011005.

[38] Irshad, Lukman, Ahmed, Salman, Demirel, H Onan and
Tumer, Irem Y. “Computational functional failure analysis
to identify human errors during early design stages.” Jour-
nal of Computing and Information Science in Engineering
Vol. 19 No. 3 (2019): p. 031005.

[39] Irshad, Lukman and Hulse, Daniel. “Modeling Distributed
Situation Awareness in Resilience-Based Design of Com-
plex Engineered Systems.” International Design Engineer-
ing Technical Conferences and Computers and Information
in Engineering Conference, Vol. 87295: p. V002T02A050.
2023. American Society of Mechanical Engineers.

[40] Schäfer, Michael, Berres, Axel and Bertram, Oliver. “In-
tegrated model-based design and functional hazard assess-
ment with SysML on the example of a shock control bump
system.” CEAS Aeronautical Journal Vol. 14 No. 1 (2023):
pp. 187–200.

[41] Jiao, Jian, Pang, Shujie, Chu, Jiayun, Jing, Yongfeng and
Zhao, Tingdi. “An Improved FFIP Method Based on Mathe-
matical Logic and SysML.” Applied Sciences Vol. 11 No. 8
(2021): p. 3534.

[42] El Ariss, Omar, Xu, Dianxiang and Wong, W Eric. “In-
tegrating safety analysis with functional modeling.” IEEE

Transactions on Systems, Man, and Cybernetics-Part A:
Systems and Humans Vol. 41 No. 4 (2011): pp. 610–624.

[43] Zikrullah, Nanda Anugrah, Kim, Hyungju, van der Meulen,
Meine JP, Skofteland, Gunleiv and Lundteigen, Mary Ann.
“A comparison of hazard analysis methods capability for
safety requirements generation.” Proceedings of the Insti-
tution of Mechanical Engineers, Part O: Journal of Risk
and Reliability Vol. 235 No. 6 (2021): pp. 1132–1153.

[44] Ishimatsu, Takuto, Leveson, Nancy G, Thomas, John P,
Fleming, Cody H, Katahira, Masafumi, Miyamoto, Yuko,
Ujiie, Ryo, Nakao, Haruka and Hoshino, Nobuyuki. “Haz-
ard analysis of complex spacecraft using systems-theoretic
process analysis.” Journal of spacecraft and rockets Vol. 51
No. 2 (2014): pp. 509–522.

[45] Hollnagel, Erik. FRAM: the functional resonance analysis
method: modelling complex socio-technical systems. Crc
Press (2017).

[46] Toda, Yoshinari, Matsubara, Yutaka and Takada, Hiroaki.
“FRAM/STPA: Hazard analysis method for FRAM model.”
Proceedings of the 2018 FRAM Workshop. Cardiff, Wales:
pp. 1–17. 2018.

[47] International, SAE. “ARP 926: Fault/Failure Analysis Pro-
cedure.” (2018).

[48] Hulse, Daniel, Hoyle, Christopher, Tumer, Irem Y, Goebel,
Kai and Kulkarni, Chetan. “Temporal Fault Injection Con-
siderations in Resilience Quantification.” International De-
sign Engineering Technical Conferences and Computers
and Information in Engineering Conference, Vol. 84003:
p. V11AT11A040. 2020. American Society of Mechanical
Engineers.

[49] Mbaye, Seydou, Jones, Garfield, Infeld, Samantha I., Okon,
Shira and Davies, Misty D. A Model-Based Systems Engi-
neering Evaluation of the Evolution to an In-Time Aviation
Safety Management System: DOI 10.2514/6.2022-3423.
URL https://arc.aiaa.org/doi/abs/10.2514/6.2022-3423.

[50] Mbaye, Seydou, Walsh, Hannah S., Davies, Misty, Infeld,
Samantha I. and Jones, Garfield. From BERTopic to SysML:
Informing Model-Based Failure Analysis with Natural Lan-
guage Processing for Complex Aerospace Systems: DOI
10.2514/6.2024-2700. URL https://arc.aiaa.org/doi/abs/10.
2514/6.2024-2700.

[51] Beckers, Kristian, Heisel, Maritta, Frese, Thomas and Hate-
bur, Denis. “A structured and model-based hazard analysis
and risk assessment method for automotive systems.” 2013
IEEE 24th International Symposium on Software Reliability
Engineering (ISSRE): pp. 238–247. 2013. IEEE.

[52] Eisenbart, Boris, Gericke, Kilian and Blessing, Luciënne.
“An analysis of functional modeling approaches across dis-
ciplines.” AI EDAM Vol. 27 No. 3 (2013): pp. 281–289.

[53] Hadef, Hefaidh, Negrou, Belkhir, Ayuso, Tomás González,
Djebabra, Mébarek and Ramadan, Mohamad. “Prelimi-
nary hazard identification for risk assessment on a complex
system for hydrogen production.” International Journal of
Hydrogen Energy Vol. 45 No. 20 (2020): pp. 11855–11865.

[54] Irshad, Lukman, Ahmed, Salman, Demirel, Onan and
Tumer, Irem Y. “Coupling digital human modeling with

12
The United States Government retains, and by accepting the article for publication, the publisher acknowledges that the United States Government retains, a non-exclusive,

paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for United States Government purposes.

https://doi.org/https://doi.org/10.1002/0471739421.ch15
https://onlinelibrary.wiley.com/doi/pdf/10.1002/0471739421.ch15
https://onlinelibrary.wiley.com/doi/pdf/10.1002/0471739421.ch15
https://onlinelibrary.wiley.com/doi/abs/10.1002/0471739421.ch15
https://onlinelibrary.wiley.com/doi/abs/10.1002/0471739421.ch15
https://doi.org/10.2514/6.2022-3423
https://arc.aiaa.org/doi/abs/10.2514/6.2022-3423
https://doi.org/10.2514/6.2024-2700
https://arc.aiaa.org/doi/abs/10.2514/6.2024-2700
https://arc.aiaa.org/doi/abs/10.2514/6.2024-2700


early design stage human error analysis to assess ergonomic
vulnerabilities.” AIAA SciTech 2019 forum: p. 2349. 2019.

[55] Borza, John S. “FAST Diagrams : The Foundation for
Creating Effective Function Models.” 2011. URL https:
//api.semanticscholar.org/CorpusID:53612032.

[56] Lawrence, Philip and Gill, Simon. “Human hazard analysis:
A prototype method for human hazard analysis developed
for the large commercial aircraft industry.” Disaster Pre-
vention and Management: An International Journal Vol. 16
No. 5 (2007): pp. 718–739.

13
The United States Government retains, and by accepting the article for publication, the publisher acknowledges that the United States Government retains, a non-exclusive,

paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for United States Government purposes.

https://api.semanticscholar.org/CorpusID:53612032
https://api.semanticscholar.org/CorpusID:53612032

	1 Introduction
	2 Background
	2.1 FHA Standards
	2.2 FHA Literature

	3 Defining the FRDL
	3.1 Defining Behavioral Blocks
	3.1.1 Design Scope
	3.1.2 Architecture
	3.1.3 Behavior Type
	3.1.4 Dynamics

	3.2 Defining Flows
	3.2.1 Aggregation
	3.2.2 Activation
	3.2.3 Propagation

	3.3 Architectures
	3.3.1 Architecture Types

	3.4 Summary and Process

	4 Demonstration: Disaster Response Drone
	4.1 Overall Functional Analysis
	4.2 Functional Architecture Analysis

	5 Conclusion

